4-(N,N-Dimethylamino)pyridine-Embedded Nanoporous Conjugated Polymer as a Highly Active Heterogeneous Organocatalyst
We report herein for the first time the incorporation of a versatile organocatalyst, 4‐(N,N‐dimethylamino)pyridine (DMAP), into the network of a nanoporous conjugated polymer (NCP) by the “bottom‐up” approach. The resulting DMAP‐NCP material possesses highly concentrated and homogeneously distribute...
Saved in:
Published in | Chemistry : a European journal Vol. 18; no. 20; pp. 6328 - 6334 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
14.05.2012
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We report herein for the first time the incorporation of a versatile organocatalyst, 4‐(N,N‐dimethylamino)pyridine (DMAP), into the network of a nanoporous conjugated polymer (NCP) by the “bottom‐up” approach. The resulting DMAP‐NCP material possesses highly concentrated and homogeneously distributed DMAP catalytic sites (2.02 mmol g−1). DMAP‐NCP also exhibits enhanced stability and permanent porosity due to the strong covalent linkage and the rigidity of the “bottom‐up” monomers. As a result, DMAP‐NCP shows excellent catalytic activity in the acylation of alcohols with yields of 92–99 %. The DMAP‐NCP catalyst could be easily recovered from the reaction mixture and reused in at least 14 consecutive cycles without measurable loss of activity. Moreover, the catalytic acylation reaction could be performed under neat and continuous‐flow conditions for at least 536 h of continuous work with the same catalyst activity.
Nanoporous catalyst: DMAP‐NCP, a new network nanoporous conjugated polymer containing 4‐(N,N‐dimethylamino)pyridine catalytic moieties, has been constructed by the “bottom‐up” strategy. It shows excellent activity and recyclability in the acylation of alcohols and phenols, even under neat and continuous‐flow conditions (see figure). This study demonstrates the possibility of using DMAP‐NCP as a robust and effective heterogeneous catalyst, especially for practical applications on a large scale. |
---|---|
AbstractList | We report herein for the first time the incorporation of a versatile organocatalyst, 4-(N,N-dimethylamino)pyridine (DMAP), into the network of a nanoporous conjugated polymer (NCP) by the "bottom-up" approach. The resulting DMAP-NCP material possesses highly concentrated and homogeneously distributed DMAP catalytic sites (2.02mmolg-1). DMAP-NCP also exhibits enhanced stability and permanent porosity due to the strong covalent linkage and the rigidity of the "bottom-up" monomers. As a result, DMAP-NCP shows excellent catalytic activity in the acylation of alcohols with yields of 92-99%. The DMAP-NCP catalyst could be easily recovered from the reaction mixture and reused in at least 14 consecutive cycles without measurable loss of activity. Moreover, the catalytic acylation reaction could be performed under neat and continuous-flow conditions for at least 536h of continuous work with the same catalyst activity. [PUBLICATION ABSTRACT] We report herein for the first time the incorporation of a versatile organocatalyst, 4‐(N,N‐dimethylamino)pyridine (DMAP), into the network of a nanoporous conjugated polymer (NCP) by the “bottom‐up” approach. The resulting DMAP‐NCP material possesses highly concentrated and homogeneously distributed DMAP catalytic sites (2.02 mmol g−1). DMAP‐NCP also exhibits enhanced stability and permanent porosity due to the strong covalent linkage and the rigidity of the “bottom‐up” monomers. As a result, DMAP‐NCP shows excellent catalytic activity in the acylation of alcohols with yields of 92–99 %. The DMAP‐NCP catalyst could be easily recovered from the reaction mixture and reused in at least 14 consecutive cycles without measurable loss of activity. Moreover, the catalytic acylation reaction could be performed under neat and continuous‐flow conditions for at least 536 h of continuous work with the same catalyst activity. Nanoporous catalyst: DMAP‐NCP, a new network nanoporous conjugated polymer containing 4‐(N,N‐dimethylamino)pyridine catalytic moieties, has been constructed by the “bottom‐up” strategy. It shows excellent activity and recyclability in the acylation of alcohols and phenols, even under neat and continuous‐flow conditions (see figure). This study demonstrates the possibility of using DMAP‐NCP as a robust and effective heterogeneous catalyst, especially for practical applications on a large scale. We report herein for the first time the incorporation of a versatile organocatalyst, 4-(N,N-dimethylamino)pyridine (DMAP), into the network of a nanoporous conjugated polymer (NCP) by the "bottom-up" approach. The resulting DMAP-NCP material possesses highly concentrated and homogeneously distributed DMAP catalytic sites (2.02 mmol g(-1)). DMAP-NCP also exhibits enhanced stability and permanent porosity due to the strong covalent linkage and the rigidity of the "bottom-up" monomers. As a result, DMAP-NCP shows excellent catalytic activity in the acylation of alcohols with yields of 92-99 %. The DMAP-NCP catalyst could be easily recovered from the reaction mixture and reused in at least 14 consecutive cycles without measurable loss of activity. Moreover, the catalytic acylation reaction could be performed under neat and continuous-flow conditions for at least 536 h of continuous work with the same catalyst activity. We report herein for the first time the incorporation of a versatile organocatalyst, 4-(N,N-dimethylamino)pyridine (DMAP), into the network of a nanoporous conjugated polymer (NCP) by the "bottom-up" approach. The resulting DMAP-NCP material possesses highly concentrated and homogeneously distributed DMAP catalytic sites (2.02 mmol g(-1)). DMAP-NCP also exhibits enhanced stability and permanent porosity due to the strong covalent linkage and the rigidity of the "bottom-up" monomers. As a result, DMAP-NCP shows excellent catalytic activity in the acylation of alcohols with yields of 92-99 %. The DMAP-NCP catalyst could be easily recovered from the reaction mixture and reused in at least 14 consecutive cycles without measurable loss of activity. Moreover, the catalytic acylation reaction could be performed under neat and continuous-flow conditions for at least 536 h of continuous work with the same catalyst activity.We report herein for the first time the incorporation of a versatile organocatalyst, 4-(N,N-dimethylamino)pyridine (DMAP), into the network of a nanoporous conjugated polymer (NCP) by the "bottom-up" approach. The resulting DMAP-NCP material possesses highly concentrated and homogeneously distributed DMAP catalytic sites (2.02 mmol g(-1)). DMAP-NCP also exhibits enhanced stability and permanent porosity due to the strong covalent linkage and the rigidity of the "bottom-up" monomers. As a result, DMAP-NCP shows excellent catalytic activity in the acylation of alcohols with yields of 92-99 %. The DMAP-NCP catalyst could be easily recovered from the reaction mixture and reused in at least 14 consecutive cycles without measurable loss of activity. Moreover, the catalytic acylation reaction could be performed under neat and continuous-flow conditions for at least 536 h of continuous work with the same catalyst activity. We report herein for the first time the incorporation of a versatile organocatalyst, 4‐( N,N ‐dimethylamino)pyridine (DMAP), into the network of a nanoporous conjugated polymer (NCP) by the “bottom‐up” approach. The resulting DMAP‐NCP material possesses highly concentrated and homogeneously distributed DMAP catalytic sites (2.02 mmol g −1 ). DMAP‐NCP also exhibits enhanced stability and permanent porosity due to the strong covalent linkage and the rigidity of the “bottom‐up” monomers. As a result, DMAP‐NCP shows excellent catalytic activity in the acylation of alcohols with yields of 92–99 %. The DMAP‐NCP catalyst could be easily recovered from the reaction mixture and reused in at least 14 consecutive cycles without measurable loss of activity. Moreover, the catalytic acylation reaction could be performed under neat and continuous‐flow conditions for at least 536 h of continuous work with the same catalyst activity. |
Author | Du, Xin Wang, Wei David Wang, Wei Shi, Jiao Yi Sun, Ya Lei Zhang, Yuan Zhang, Yong |
Author_xml | – sequence: 1 givenname: Yuan surname: Zhang fullname: Zhang, Yuan organization: State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000 (P.R. China), Fax: (+86) 931-8915557 – sequence: 2 givenname: Yong surname: Zhang fullname: Zhang, Yong organization: State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000 (P.R. China), Fax: (+86) 931-8915557 – sequence: 3 givenname: Ya Lei surname: Sun fullname: Sun, Ya Lei organization: State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000 (P.R. China), Fax: (+86) 931-8915557 – sequence: 4 givenname: Xin surname: Du fullname: Du, Xin organization: State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000 (P.R. China), Fax: (+86) 931-8915557 – sequence: 5 givenname: Jiao Yi surname: Shi fullname: Shi, Jiao Yi organization: State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000 (P.R. China), Fax: (+86) 931-8915557 – sequence: 6 givenname: Wei David surname: Wang fullname: Wang, Wei David organization: State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000 (P.R. China), Fax: (+86) 931-8915557 – sequence: 7 givenname: Wei surname: Wang fullname: Wang, Wei email: wang_wei@lzu.edu.cn organization: State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000 (P.R. China), Fax: (+86) 931-8915557 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22467297$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU2LE0EQhhtZcT_06lEGvKzgxP7u6eMS40ZZsyKK4KXp6alNOs5MZ7s76vx7J2YNsiCeCornqSrqPUVHfegBoacETwjG9JVbQTehmBDMMK0eoBMiKCmZkuIInWDNVSkF08foNKU1xlhLxh6hY0q5VFSrE5R5eb54uShf-w7yamht5_vwYjNE3_geyllXQ9NAUyxsHzYhhm0qpqFfb5c2j90PoR06iIVNhS3mfrlqh-LCZf8dijlkiGEJPeyc67gcBzibbTuk_Bg9vLFtgid39Qx9fjP7NJ2XV9eXb6cXV6UThFellYxooTmnVaPAKgWC1JJbZZVTta1FI7GoWC0FF1UNUiqsCXG1dowqxhw7Q-f7uZsYbreQsul8ctC29vdVhox_I0ozxkf0-T10HbaxH68zhFKmdMW5GKlnd9S27qAxm-g7Gwfz558jMNkDLoaUItwcEILNLjCzC8wcAhsFfk9wPtvsQ5-j9e2_Nb3XfvgWhv8sMdP57P3fbrl3fcrw8-Da-M1IxZQwXxaXZkG-UvrxHTNz9gs4Trhi |
CODEN | CEUJED |
CitedBy_id | crossref_primary_10_1002_slct_201601578 crossref_primary_10_1002_asia_202100854 crossref_primary_10_1002_marc_201400220 crossref_primary_10_1039_c3cs60160a crossref_primary_10_1007_s41061_017_0156_1 crossref_primary_10_1021_acssuschemeng_1c01537 crossref_primary_10_1039_C7TA05534J crossref_primary_10_1039_C3CC49220F crossref_primary_10_1039_C3PY00854A crossref_primary_10_1016_j_molcata_2013_07_009 crossref_primary_10_1021_ol4030875 crossref_primary_10_1039_C6CC09660C crossref_primary_10_1021_acs_orglett_7b02682 crossref_primary_10_1002_cctc_201501252 crossref_primary_10_1016_j_reactfunctpolym_2016_04_015 crossref_primary_10_1002_ejoc_201901195 crossref_primary_10_1002_slct_201600174 crossref_primary_10_1039_C9PY00326F crossref_primary_10_1021_acs_macromol_7b02515 crossref_primary_10_1039_C5CC00609K crossref_primary_10_1021_cm503086w crossref_primary_10_1007_s12274_020_3217_7 crossref_primary_10_1021_acs_joc_0c02764 crossref_primary_10_1039_D2RA00084A crossref_primary_10_1021_ja411067a crossref_primary_10_1039_C9CS00315K crossref_primary_10_1016_j_eurpolymj_2015_03_070 crossref_primary_10_1039_D2TA02423C crossref_primary_10_1016_j_jphotochemrev_2019_100319 crossref_primary_10_1039_D3OB00624G crossref_primary_10_1002_chem_201403002 crossref_primary_10_1039_C4CC02837F crossref_primary_10_1039_C7PY01127J crossref_primary_10_1002_aoc_3534 crossref_primary_10_1016_j_apcatb_2015_04_054 crossref_primary_10_1002_ajoc_202300546 crossref_primary_10_1021_acs_chemmater_8b04508 crossref_primary_10_1002_slct_201600824 crossref_primary_10_1039_C6RA03331H crossref_primary_10_1039_C6RA18078G crossref_primary_10_1039_D1GC02319E crossref_primary_10_1021_acscatal_0c03702 crossref_primary_10_1002_asia_201300152 crossref_primary_10_1039_C4PY00608A crossref_primary_10_1021_acscatal_0c05205 crossref_primary_10_1002_chem_201602337 crossref_primary_10_1039_C5CS00198F crossref_primary_10_1080_00219592_2024_2384402 crossref_primary_10_1016_j_apcata_2017_03_009 crossref_primary_10_1016_j_polymer_2013_06_004 crossref_primary_10_1039_D0CY01164A crossref_primary_10_1016_j_jcat_2018_09_015 crossref_primary_10_1002_asia_201701107 crossref_primary_10_1039_C8NJ02500B crossref_primary_10_1556_JFC_D_12_00017 crossref_primary_10_1039_C4TA02521K crossref_primary_10_1155_2014_402860 crossref_primary_10_1016_j_eurpolymj_2020_109560 crossref_primary_10_1002_open_201700073 crossref_primary_10_1080_00397911_2015_1105983 crossref_primary_10_1007_s12039_016_1057_5 crossref_primary_10_1021_acscatal_5b00069 crossref_primary_10_1055_a_1934_1189 crossref_primary_10_1021_acssuschemeng_4c06026 |
Cites_doi | 10.1021/ol017198s 10.1002/ange.201005864 10.1038/nchem.738 10.1002/anie.201005864 10.1002/ange.201000167 10.1021/ja202223d 10.1002/anie.200460373 10.1021/ma200915f 10.1002/ange.200460373 10.1039/C0CC03914D 10.1002/anie.200605216 10.1039/B815044C 10.1021/ja052431t 10.1007/128_2009_5 10.1021/cs2001303 10.1039/c1cc10268k 10.1021/ja902116f 10.1016/S0040-4039(00)91094-3 10.1039/B920113K 10.1002/chem.200903043 10.1021/ja803708s 10.1002/chem.200900899 10.1021/ja1069773 10.1021/ma1006396 10.1021/ma802625d 10.1021/cm9030446 10.1039/B309117A 10.1002/marc.200800642 10.1002/anie.197805691 10.1021/ja063688 10.1039/b610416a 10.1002/anie.196909811 10.1021/ma901801s 10.1002/ange.200400650 10.1002/chem.201002568 10.1246/bcsj.54.631 10.1002/ange.200605216 10.1039/b807083k 10.1002/anie.200400650 10.1002/anie.200902009 10.1002/chem.200801570 10.1002/ange.200705710 10.1039/B715660J 10.1021/ja801691x 10.1021/ma9005473 10.1021/ja1017706 10.1002/ange.200902009 10.1021/ja109166b 10.1021/ja203564w 10.1002/ange.200904637 10.1021/ja0524898 10.1038/nature07367 10.1021/ja100327h 10.1016/j.catcom.2009.01.034 10.1039/b800704g 10.1039/a803757d 10.1021/ar980001k 10.1021/cs200131g 10.1039/c0cc00235f 10.1002/anie.200705710 10.1021/ma702411b 10.1002/adsc.200606096 10.1002/ange.19780900806 10.1021/cm901280w 10.1002/smll.200801762 10.1021/ol901134v 10.1021/jo00220a052 10.1039/b303996j 10.1021/ma802322j 10.1039/b718925g 10.1002/ejoc.201000319 10.1021/nl904082k 10.1002/adma.200801971 10.1002/chem.200900532 10.1021/ja075824w 10.1002/chem.200902982 10.1002/ange.200906827 10.1002/adma.200802692 10.1021/ma1008447 10.1002/anie.200701595 10.1021/cr050992x 10.1021/ja1028556 10.1002/chem.201000675 10.1039/b807080f 10.1021/jo902585j 10.1021/ja200602e 10.1039/c1sc00329a 10.1039/c0sc00339e 10.1039/B715563H 10.1002/anie.200904637 10.1002/anie.201000167 10.1021/ja8010176 10.1002/anie.200906827 10.1039/cs9831200129 10.1021/ja00367a025 10.1002/ange.200701595 10.1351/pac198557040603 10.1002/ange.19690812313 |
ContentType | Journal Article |
Copyright | Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.201103028 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 6334 |
ExternalDocumentID | 2835969231 22467297 10_1002_chem_201103028 CHEM201103028 ark_67375_WNG_N1Z22RJ3_H |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Youth Innovation Research Fund for Interdiscipline of Lanzhou University funderid: LZUJC200912 – fundername: Fundamental Research Funds for the Central Universities funderid: lzujbky‐2010‐111 – fundername: National Natural Science Foundation of China funderid: 21172103 |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c5148-a6319594428d7ea77e51b64a7a7c7bab5d60583b65458be6670911cb9c32733c3 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Fri Jul 11 05:33:28 EDT 2025 Fri Jul 25 10:43:06 EDT 2025 Thu Apr 03 06:55:14 EDT 2025 Tue Jul 01 03:34:25 EDT 2025 Thu Apr 24 22:51:23 EDT 2025 Wed Jan 22 16:57:08 EST 2025 Wed Oct 30 09:57:09 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5148-a6319594428d7ea77e51b64a7a7c7bab5d60583b65458be6670911cb9c32733c3 |
Notes | ark:/67375/WNG-N1Z22RJ3-H ArticleID:CHEM201103028 National Natural Science Foundation of China - No. 21172103 Fundamental Research Funds for the Central Universities - No. lzujbky-2010-111 istex:D90CB020B32E2A8C168814A5DF8490440D53BB51 Youth Innovation Research Fund for Interdiscipline of Lanzhou University - No. LZUJC200912 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 22467297 |
PQID | 1223798445 |
PQPubID | 986340 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1011179334 proquest_journals_1223798445 pubmed_primary_22467297 crossref_primary_10_1002_chem_201103028 crossref_citationtrail_10_1002_chem_201103028 wiley_primary_10_1002_chem_201103028_CHEM201103028 istex_primary_ark_67375_WNG_N1Z22RJ3_H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 14, 2012 |
PublicationDateYYYYMMDD | 2012-05-14 |
PublicationDate_xml | – month: 05 year: 2012 text: May 14, 2012 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chem. Eur. J |
PublicationYear | 2012 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | J. X. Jiang, C. Wang, A. Laybourn, T. Hasell, R. Clowes, Y. Z. Khimyak, J. L. Xiao, S. J. Higgins, D. J. Adams, A. I. Cooper, Angew. Chem. 2011, 123, 1104-1107 U. Ragnarsson, L. Grehn, Acc. Chem. Res. 1998, 31, 494-501 L. Chen, Y. Honsho, S. Seki, D. Jiang, J. Am. Chem. Soc. 2010, 132, 6742-6748 F. Song, C. Wang, J. M. Falkowski, L. Ma, W. B. Lin, J. Am. Chem. Soc. 2010, 132, 15390-15398 J. Schmidt, M. Werner, A. Thomas, Macromolecules 2009, 42, 4426-4429 J. X. Jiang, A. I. Cooper, Top Curr. Chem. 2010, 293, 1-33 Angew. Chem. Int. Ed. 2010, 49, 1533-1535 L. Shi, X. W. Wang, C. A. Sandoval, Z. Wang, H. J. Li, J. Wu, L. T. Yu, K. L. Ding, Chem. Eur. J. 2009, 15, 9855-9867. C. Wang, Z. G. Xie, K. E. deKrafft, W. B. Lin, J. Am. Chem. Soc. 2011, 133, 13445-13454 C. E. Chan-Thaw, A. Villa, L. Prati, A. Thomas, Chem. Eur. J. 2011, 17, 1052-1057. J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, Chem. Soc. Rev. 2009, 38, 1450-1459 D. Vuluga, J. Legros, B. Crousse, D. Bonnet-Delpon, Chem. Eur. J. 2010, 16, 1776-1779 F. M. Menger, D. J. McCann, J. Org. Chem. 1985, 50, 3928-3930 J. X. Jiang, F. Su, A. Trewin, C. D. Wood, H. Niu, J. T. A. Jones, Y. Z. Khimyak, A. I. Cooper, J. Am. Chem. Soc. 2008, 130, 7710-7720 F. Cozzi, Adv. Synth. Catal. 2006, 348, 1367-1390 S. Makhseed, F. Al-Kharafi, J. Samuel, B. Ateya, Catal. Commun. 2009, 10, 1284-1287. A. Corma, H. Garcia, A. Leyva, Chem. Commun. 2003, 2806-2807 K. Gedrich, M. Heitbaum, A. Notzon, I. Senkovska, R. Fröhlich, J. Getzschmann, U. Mueller, F. Glorius,, S. Kaskel, Chem. Eur. J. 2011, 17, 2099-2106. R. Murugan, E. F. V. Scriven, Aldrichimica Acta 2003, 36, 21-29 A. M. Shultz, O. K. Farha, J. T. Hupp, S. T. Nguyen, Chem. Sci. 2011, 2, 686-689. J. Weber, A. Thomas, J. Am. Chem. Soc. 2008, 130, 6334-6335 Angew. Chem. Int. Ed. 2010, 49, 8328-8344. Angew. Chem. Int. Ed. Engl. 1978, 17, 569-583. C. Ó. Dálaigh, S. A. Corr, Y. Gun'ko, S. J. Connon, Angew. Chem. 2007, 119, 4407-4410 E. J. Delaney, L. E. Wood, I. M. Klotz, J. Am. Chem. Soc. 1982, 104, 799-807. T. Hasell, C. D. Wood, R. Clowes, J. T. A. Jones, Y. Z. Khimyak, D. J. Adams, A. I. Cooper, Chem. Mater. 2010, 22, 557-564 D. W. C. MacMillan, Nature 2008, 455, 304-308. C. D. Wu, A. G. Hu, L. Zhang, W. B. Lin, J. Am. Chem. Soc. 2005, 127, 8940-8941 R. Palkovits, M. Antonietti, P. Kuhn, A. Thomas, F. Schuth, Angew. Chem. 2009, 121, 7042-7045 Angew. Chem. Int. Ed. 2009, 48, 6909-6912 O. Gleeson, R. Tekoriute, Y. Gun'ko, S. J. Connon, Chem. Eur. J. 2009, 15, 5669-5673 D. E. Bergbreiter, P. L. Osburn, C. M. Li, Org. Lett. 2002, 4, 737-740 A. Kuschel, S. Polarz, J. Am. Chem. Soc. 2010, 132, 6558-6565. A. Thomas, Angew. Chem. 2010, 122, 8506-8523 P. Kuhn, A. Forget, D. S. Su, A. Thomas, M. Antonietti, J. Am. Chem. Soc. 2008, 130, 13333-13337 P. Kuhn, M. Antonietti, A. Thomas, Angew. Chem. 2008, 120, 3499-3502 L. Q. Ma, J. M. Falkowski, C. Abney, W. B. Lin, Nat. Chem. 2010, 2, 838-846 J. Germain, J. M. J. Frechet, F. Svec, Small 2009, 5, 1098-1111 J. X. Jiang, A. Trewin, F. Su, C. D. Wood, H. Niu, J. T. A. Jones, Y. Z. Khimyak, A. I. Cooper, Macromolecules 2009, 42, 2658-2666 A. C. Spivey, S. Arseniyadis, Angew. Chem. 2004, 116, 5552-5557 P. Kuhn, A. Thomas, M. Antonietti, Macromolecules 2009, 42, 319-326 S. Shinkai, H. Tsuji, Y. Hara, O. Manabe, Bull. Chem. Soc. Jpn. 1981, 54, 631-632 L. Q. Ma, C. Abney, W. B. Lin, Chem. Soc. Rev. 2009, 38, 1248-1256. H. J. Mackintosh, P. M. Budd, N. B. McKeown, J. Mater. Chem. 2008, 18, 573-578 S. W. Yuan, B. Dorney, D. White, S. Kirklin, P. Zapol, L. P. Yu, D. J. Liu, Chem. Commun. 2010, 46, 4547-4549 M. Gruttadauria, F. Giacalone, R. Noto, Chem. Soc. Rev. 2008, 37, 1666-1688. M. G. Schwab, B. Fassbender, H. W. Spiess, A. Thomas, X. L. Feng, K. Mullen, J. Am. Chem. Soc. 2009, 131, 7216-7217. For a recent example of organocatalytic MOFs, see: D. J. Lun, G. I. N. Waterhouse, S. G. Telfer, J. Am. Chem. Soc. 2011, 133, 5806-5809. R. Dawson, A. Laybourn, R. Clowes, Y. Z. Khimyak, D. J. Adams, A. I. Cooper, Macromolecules 2009, 42, 8809-8816 Q. Chen, M. Luo, T. Wang, J. X. Wang, D. Zhou, Y. Han, C. S. Zhang, C. G. Yan, B. H. Han, Macromolecules 2011, 44, 5573-5577. For a recent review on porous organic polymers in catalysis, see: P. Kaur, J. T. Hupp, S. T. Nguyen, ACS Catal. 2011, 1, 819-835. J. X. Jiang, F. Su, A. Trewin, C. D. Wood, N. L. Campbell, H. Niu, C. Dickinson, A. Y. Ganin, M. J. Rosseinsky, Y. Z. Khimyak, A. I. Cooper, Angew. Chem. 2007, 119, 8728-8732 K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett. 1975, 16, 4467-4470. O. K. Farha, A. M. Spokoyny, B. G. Hauser, Y.-S. Bae, S. E. Brown, R. Q. Snurr, C. A. Mirkin, J. T. Hupp, Chem. Mater. 2009, 21, 3033-3035 X. Du, Y. L. Sun, B. E. Tan, Q. F. Teng, X. J. Yao, C. Y. Su, W. Wang, Chem. Commun. 2010, 46, 970-972. A. Trewin, A. I. Cooper, Angew. Chem. 2010, 122, 1575-1577 T. E. Kristensen, T. Hansen, Eur. J. Org. Chem. 2010, 3179-3204. H.-T. Chen, S. Huh, J. W. Wiench, M. Pruski, V. S.-Y. Lin, J. Am. Chem. Soc. 2005, 127, 13305-13311 Angew. Chem. Int. Ed. 2004, 43, 5138-5175. Y. Zhang, S. N. Riduan, J. Y. Ying, Chem. Eur. J. 2009, 15, 1077-1081 E. F. V. Scriven, Chem. Soc. Rev. 1983, 12, 129-161 M. Rose, A. Notzon, M. Heitbaum, G. Nickerl, S. Paasch, E. Brunner, F. Glorius, S. Kaskel, Chem. Commun. 2011, 47, 4814-4816. J. X. Jiang, F. Su, H. Niu, C. D. Wood, N. L. Campbell, Y. Z. Khimyak, A. I. Cooper, Chem. Commun. 2008, 486-488 E. Stöckel, X. F. Wu, A. Trewin, C. D. Wood, R. Clowes, N. L. Campbell, J. T. A. Jones, Y. Z. Khimyak, D. J. Adams, A. I. Cooper, Chem. Commun. 2009, 212-214 W. Steglich, G. Höfle, Angew. Chem. 1969, 81, 1001-1001 H. C. Cho, H. S. Lee, J. Chun, S. M. Lee, H. J. Kim, S. U. Son, Chem. Commun. 2011, 47, 917-919. Angew. Chem. Int. Ed. 2004, 43, 5436-5441 Z. G. Xie, C. Wang, K. E. deKrafft, W. B. Lin, J. Am. Chem. Soc. 2011, 133, 2056-2059. J. Schmidt, J. Weber, J. D. Epping, M. Antonietti, A. Thomas, Adv. Mater. 2009, 21, 702-705 Angew. Chem. Int. Ed. 2009, 48, 9457-9460 T. E. Kristensen, K. Vestli, K. A. Fredriksen, F. K. Hansen, T. Hansen, Org. Lett. 2009, 11, 2968-2971 A. I. Cooper, Adv. Mater. 2009, 21, 1291 I. Pulko, J. Wall, P. Krajnc, N. R. Cameron, Chem. Eur. J. 2010, 16, 2350-2354 Angew. Chem. Int. Ed. 2007, 46, 8574-8578 R. Chinchilla, C. Nájera, Chem. Rev. 2007, 107, 874-922. D. C. Sherrington, Chem. Commun. 1998, 2275-2286. L. Chen, Y. Yang, D. L. Jiang, J. Am. Chem. Soc. 2010, 132, 9138-9143. P. L. Dalko, L. Moisan, Angew. Chem. 2004, 116, 5248-5286 Angew. Chem. Int. Ed. 2011, 50, 1072-1075. T. Ben, H. Ren, S. Q. Ma, D. P. Cao, J. H. Lan, X. F. Jing, W. C. Wang, J. Xu, F. Deng, J. M. Simmons, S. L. Qiu, G. S. Zhu, Angew. Chem. 2009, 121, 9621-9624 P. M. Budd, B. Ghanem, K. Msayib, N. B. McKeown, C. Tattershall, J. Mater. Chem. 2003, 13, 2721-2726 R. Dawson, F. Su, H. Niu, C. D. Wood, J. T. A. Jones, Y. Z. Khimyak, A. I. Cooper, Macromolecules 2008, 41, 1591-1593 A. Thomas, P. Kuhn, J. Weber, M.-M. Titirici, M. Antonietti, Macromol. Rapid Commun. 2009, 30, 221-236 Angew. Chem. Int. Ed. 2007, 46, 4329-4332 T. E. Kristensen, K. Vestli, M. G. Jakobsen, F. K. Hansen, T. Hansen, J. Org. Chem. 2010, 75, 1620-1629. J. X. Jiang, A. Trewin, D. J. Adams, A. I. Cooper, Chem. Sci. 2011, 2, 1777-1781. N. B. McKeown, P. M. Budd, Macromolecules 2010, 43, 5163-5176 K. E. Price, B. P. Mason, A. R. Bogdan, S. J. Broadwater, J. L. Steinbacher, D. T. McQuade, J. Am. Chem. Soc. 2006, 128, 10376-10377 L. Q. Ma, M. M. Wanderley, W. B. Lin, ACS Catal. 2011, 1, 691-697. G. Höfle, W. Steglich, H. Vorbruggen, Angew. Chem. 1978, 90, 602-615 A. Sakakura, K. Kawajiri, T. Ohkubo, Y. Kosugi, K. Ishihara, J. Am. Chem. Soc. 2007, 129, 14775-14779. M. Benaglia, New J. Chem. 2006, 30, 1525-1533 M. Rose, W. Bohlmann, M. Sabo, S. Kaskel, Chem. Commun. 2008, 2462-2464 C. E. Chan-Thaw, A. Villa, P. Katekomol, D. Su, A. Thomas, L. Prati, Nano Lett. 2010, 10, 537-541 K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 1985, 57, 603-619. Angew. Chem. Int. Ed. Engl. 1969, 8, 981-981. A. B. Powell, Y. Suzuki, M. Ueda, C. W. Bielawski, A. H. Cowley, J. Am. Chem. Soc. 2011, 133, 5218-5220. Angew. Chem. Int. Ed. 2008, 47, 3450-3453 A. C. Evans, A. Lu, C. Ondeck, D. A. Longbottom, R. K. O'Reilly, Macromolecules 2010, 43, 6374-6380. 2010; 10 2006; 30 2007; 107 2010; 16 2009; 42 1975; 16 2010 2010; 122 49 2003; 13 2008; 37 1982; 104 2011 2011; 123 50 2011; 17 1983; 12 2009; 11 2010; 22 2009; 10 1978 1978; 90 17 1985; 50 2010; 2 2006; 128 2009; 15 1985; 57 2004 2004; 116 43 2010; 75 2007; 129 2011; 2 2009; 21 2011; 1 2010 2008; 18 2009 1998 2008 2003; 36 2002; 4 2003 2009; 131 1969 1969; 81 8 2011; 133 2009 2009; 121 48 2010; 43 2009; 30 2010; 46 2005; 127 2010; 132 2011; 44 2010; 293 2008; 455 2009; 5 2008; 41 2011; 47 2007 2007; 119 46 2006; 348 2008 2008; 120 47 1998; 31 2009; 38 2008; 130 1981; 54 e_1_2_6_72_2 e_1_2_6_53_2 e_1_2_6_95_2 e_1_2_6_30_3 e_1_2_6_30_2 e_1_2_6_91_2 e_1_2_6_19_2 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_38_2 e_1_2_6_76_2 e_1_2_6_15_2 e_1_2_6_57_2 e_1_2_6_83_3 e_1_2_6_83_2 e_1_2_6_64_2 e_1_2_6_41_2 e_1_2_6_60_2 e_1_2_6_9_2 e_1_2_6_5_2 Murugan R. (e_1_2_6_80_2) 2003; 36 e_1_2_6_1_3 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_1_2 e_1_2_6_49_3 e_1_2_6_87_3 e_1_2_6_87_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_68_2 e_1_2_6_50_2 e_1_2_6_73_2 e_1_2_6_96_2 e_1_2_6_73_3 e_1_2_6_31_2 e_1_2_6_92_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_77_2 e_1_2_6_61_2 e_1_2_6_84_2 e_1_2_6_42_2 e_1_2_6_6_2 e_1_2_6_69_3 e_1_2_6_23_2 e_1_2_6_69_2 e_1_2_6_2_2 e_1_2_6_65_2 e_1_2_6_88_2 e_1_2_6_27_2 e_1_2_6_46_2 e_1_2_6_51_2 e_1_2_6_97_2 e_1_2_6_74_2 e_1_2_6_93_2 e_1_2_6_70_2 e_1_2_6_13_2 e_1_2_6_59_2 e_1_2_6_59_3 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_55_2 e_1_2_6_36_3 e_1_2_6_36_2 e_1_2_6_78_2 e_1_2_6_62_2 e_1_2_6_85_2 e_1_2_6_20_2 e_1_2_6_81_2 e_1_2_6_7_2 e_1_2_6_3_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_47_3 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_66_2 e_1_2_6_89_2 e_1_2_6_52_2 e_1_2_6_75_2 e_1_2_6_94_2 e_1_2_6_71_2 e_1_2_6_90_2 e_1_2_6_18_2 e_1_2_6_79_3 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_79_2 e_1_2_6_98_2 e_1_2_6_56_3 e_1_2_6_63_2 e_1_2_6_86_2 e_1_2_6_40_2 e_1_2_6_82_2 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_48_2 e_1_2_6_21_2 e_1_2_6_44_2 e_1_2_6_67_2 e_1_2_6_25_2 |
References_xml | – reference: K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett. 1975, 16, 4467-4470. – reference: K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 1985, 57, 603-619. – reference: C. D. Wu, A. G. Hu, L. Zhang, W. B. Lin, J. Am. Chem. Soc. 2005, 127, 8940-8941; – reference: D. W. C. MacMillan, Nature 2008, 455, 304-308. – reference: P. Kuhn, M. Antonietti, A. Thomas, Angew. Chem. 2008, 120, 3499-3502; – reference: D. Vuluga, J. Legros, B. Crousse, D. Bonnet-Delpon, Chem. Eur. J. 2010, 16, 1776-1779; – reference: H. J. Mackintosh, P. M. Budd, N. B. McKeown, J. Mater. Chem. 2008, 18, 573-578; – reference: T. E. Kristensen, K. Vestli, M. G. Jakobsen, F. K. Hansen, T. Hansen, J. Org. Chem. 2010, 75, 1620-1629. – reference: J. Schmidt, M. Werner, A. Thomas, Macromolecules 2009, 42, 4426-4429; – reference: A. Trewin, A. I. Cooper, Angew. Chem. 2010, 122, 1575-1577; – reference: A. C. Spivey, S. Arseniyadis, Angew. Chem. 2004, 116, 5552-5557; – reference: S. Makhseed, F. Al-Kharafi, J. Samuel, B. Ateya, Catal. Commun. 2009, 10, 1284-1287. – reference: J. Germain, J. M. J. Frechet, F. Svec, Small 2009, 5, 1098-1111; – reference: J. X. Jiang, A. Trewin, D. J. Adams, A. I. Cooper, Chem. Sci. 2011, 2, 1777-1781. – reference: D. C. Sherrington, Chem. Commun. 1998, 2275-2286. – reference: For a recent review on porous organic polymers in catalysis, see: P. Kaur, J. T. Hupp, S. T. Nguyen, ACS Catal. 2011, 1, 819-835. – reference: R. Dawson, F. Su, H. Niu, C. D. Wood, J. T. A. Jones, Y. Z. Khimyak, A. I. Cooper, Macromolecules 2008, 41, 1591-1593; – reference: X. Du, Y. L. Sun, B. E. Tan, Q. F. Teng, X. J. Yao, C. Y. Su, W. Wang, Chem. Commun. 2010, 46, 970-972. – reference: H. C. Cho, H. S. Lee, J. Chun, S. M. Lee, H. J. Kim, S. U. Son, Chem. Commun. 2011, 47, 917-919. – reference: A. I. Cooper, Adv. Mater. 2009, 21, 1291; – reference: S. W. Yuan, B. Dorney, D. White, S. Kirklin, P. Zapol, L. P. Yu, D. J. Liu, Chem. Commun. 2010, 46, 4547-4549; – reference: W. Steglich, G. Höfle, Angew. Chem. 1969, 81, 1001-1001; – reference: T. E. Kristensen, T. Hansen, Eur. J. Org. Chem. 2010, 3179-3204. – reference: J. Schmidt, J. Weber, J. D. Epping, M. Antonietti, A. Thomas, Adv. Mater. 2009, 21, 702-705; – reference: Q. Chen, M. Luo, T. Wang, J. X. Wang, D. Zhou, Y. Han, C. S. Zhang, C. G. Yan, B. H. Han, Macromolecules 2011, 44, 5573-5577. – reference: J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, Chem. Soc. Rev. 2009, 38, 1450-1459; – reference: A. Kuschel, S. Polarz, J. Am. Chem. Soc. 2010, 132, 6558-6565. – reference: I. Pulko, J. Wall, P. Krajnc, N. R. Cameron, Chem. Eur. J. 2010, 16, 2350-2354; – reference: Angew. Chem. Int. Ed. 2007, 46, 8574-8578; – reference: T. Hasell, C. D. Wood, R. Clowes, J. T. A. Jones, Y. Z. Khimyak, D. J. Adams, A. I. Cooper, Chem. Mater. 2010, 22, 557-564; – reference: M. Gruttadauria, F. Giacalone, R. Noto, Chem. Soc. Rev. 2008, 37, 1666-1688. – reference: P. L. Dalko, L. Moisan, Angew. Chem. 2004, 116, 5248-5286; – reference: R. Dawson, A. Laybourn, R. Clowes, Y. Z. Khimyak, D. J. Adams, A. I. Cooper, Macromolecules 2009, 42, 8809-8816; – reference: L. Chen, Y. Yang, D. L. Jiang, J. Am. Chem. Soc. 2010, 132, 9138-9143. – reference: Angew. Chem. Int. Ed. Engl. 1978, 17, 569-583. – reference: F. M. Menger, D. J. McCann, J. Org. Chem. 1985, 50, 3928-3930; – reference: Angew. Chem. Int. Ed. 2004, 43, 5436-5441; – reference: U. Ragnarsson, L. Grehn, Acc. Chem. Res. 1998, 31, 494-501; – reference: L. Shi, X. W. Wang, C. A. Sandoval, Z. Wang, H. J. Li, J. Wu, L. T. Yu, K. L. Ding, Chem. Eur. J. 2009, 15, 9855-9867. – reference: O. Gleeson, R. Tekoriute, Y. Gun'ko, S. J. Connon, Chem. Eur. J. 2009, 15, 5669-5673; – reference: J. X. Jiang, A. I. Cooper, Top Curr. Chem. 2010, 293, 1-33; – reference: J. X. Jiang, F. Su, A. Trewin, C. D. Wood, N. L. Campbell, H. Niu, C. Dickinson, A. Y. Ganin, M. J. Rosseinsky, Y. Z. Khimyak, A. I. Cooper, Angew. Chem. 2007, 119, 8728-8732; – reference: L. Chen, Y. Honsho, S. Seki, D. Jiang, J. Am. Chem. Soc. 2010, 132, 6742-6748; – reference: Angew. Chem. Int. Ed. 2010, 49, 1533-1535; – reference: P. Kuhn, A. Thomas, M. Antonietti, Macromolecules 2009, 42, 319-326; – reference: Angew. Chem. Int. Ed. 2004, 43, 5138-5175. – reference: H.-T. Chen, S. Huh, J. W. Wiench, M. Pruski, V. S.-Y. Lin, J. Am. Chem. Soc. 2005, 127, 13305-13311; – reference: T. E. Kristensen, K. Vestli, K. A. Fredriksen, F. K. Hansen, T. Hansen, Org. Lett. 2009, 11, 2968-2971; – reference: Angew. Chem. Int. Ed. 2009, 48, 6909-6912; – reference: C. E. Chan-Thaw, A. Villa, L. Prati, A. Thomas, Chem. Eur. J. 2011, 17, 1052-1057. – reference: T. Ben, H. Ren, S. Q. Ma, D. P. Cao, J. H. Lan, X. F. Jing, W. C. Wang, J. Xu, F. Deng, J. M. Simmons, S. L. Qiu, G. S. Zhu, Angew. Chem. 2009, 121, 9621-9624; – reference: C. Ó. Dálaigh, S. A. Corr, Y. Gun'ko, S. J. Connon, Angew. Chem. 2007, 119, 4407-4410; – reference: M. Benaglia, New J. Chem. 2006, 30, 1525-1533; – reference: Angew. Chem. Int. Ed. 2009, 48, 9457-9460; – reference: G. Höfle, W. Steglich, H. Vorbruggen, Angew. Chem. 1978, 90, 602-615; – reference: Angew. Chem. Int. Ed. 2010, 49, 8328-8344. – reference: E. F. V. Scriven, Chem. Soc. Rev. 1983, 12, 129-161; – reference: Angew. Chem. Int. Ed. 2011, 50, 1072-1075. – reference: For a recent example of organocatalytic MOFs, see: D. J. Lun, G. I. N. Waterhouse, S. G. Telfer, J. Am. Chem. Soc. 2011, 133, 5806-5809. – reference: Angew. Chem. Int. Ed. 2007, 46, 4329-4332; – reference: F. Cozzi, Adv. Synth. Catal. 2006, 348, 1367-1390; – reference: A. Sakakura, K. Kawajiri, T. Ohkubo, Y. Kosugi, K. Ishihara, J. Am. Chem. Soc. 2007, 129, 14775-14779. – reference: M. Rose, W. Bohlmann, M. Sabo, S. Kaskel, Chem. Commun. 2008, 2462-2464; – reference: R. Chinchilla, C. Nájera, Chem. Rev. 2007, 107, 874-922. – reference: A. Thomas, Angew. Chem. 2010, 122, 8506-8523; – reference: E. J. Delaney, L. E. Wood, I. M. Klotz, J. Am. Chem. Soc. 1982, 104, 799-807. – reference: Y. Zhang, S. N. Riduan, J. Y. Ying, Chem. Eur. J. 2009, 15, 1077-1081; – reference: J. Weber, A. Thomas, J. Am. Chem. Soc. 2008, 130, 6334-6335; – reference: Angew. Chem. Int. Ed. Engl. 1969, 8, 981-981. – reference: M. Rose, A. Notzon, M. Heitbaum, G. Nickerl, S. Paasch, E. Brunner, F. Glorius, S. Kaskel, Chem. Commun. 2011, 47, 4814-4816. – reference: K. Gedrich, M. Heitbaum, A. Notzon, I. Senkovska, R. Fröhlich, J. Getzschmann, U. Mueller, F. Glorius,, S. Kaskel, Chem. Eur. J. 2011, 17, 2099-2106. – reference: P. M. Budd, B. Ghanem, K. Msayib, N. B. McKeown, C. Tattershall, J. Mater. Chem. 2003, 13, 2721-2726; – reference: L. Q. Ma, M. M. Wanderley, W. B. Lin, ACS Catal. 2011, 1, 691-697. – reference: R. Palkovits, M. Antonietti, P. Kuhn, A. Thomas, F. Schuth, Angew. Chem. 2009, 121, 7042-7045; – reference: A. Corma, H. Garcia, A. Leyva, Chem. Commun. 2003, 2806-2807; – reference: J. X. Jiang, F. Su, A. Trewin, C. D. Wood, H. Niu, J. T. A. Jones, Y. Z. Khimyak, A. I. Cooper, J. Am. Chem. Soc. 2008, 130, 7710-7720; – reference: A. M. Shultz, O. K. Farha, J. T. Hupp, S. T. Nguyen, Chem. Sci. 2011, 2, 686-689. – reference: M. G. Schwab, B. Fassbender, H. W. Spiess, A. Thomas, X. L. Feng, K. Mullen, J. Am. Chem. Soc. 2009, 131, 7216-7217. – reference: L. Q. Ma, C. Abney, W. B. Lin, Chem. Soc. Rev. 2009, 38, 1248-1256. – reference: O. K. Farha, A. M. Spokoyny, B. G. Hauser, Y.-S. Bae, S. E. Brown, R. Q. Snurr, C. A. Mirkin, J. T. Hupp, Chem. Mater. 2009, 21, 3033-3035; – reference: A. Thomas, P. Kuhn, J. Weber, M.-M. Titirici, M. Antonietti, Macromol. Rapid Commun. 2009, 30, 221-236; – reference: D. E. Bergbreiter, P. L. Osburn, C. M. Li, Org. Lett. 2002, 4, 737-740; – reference: L. Q. Ma, J. M. Falkowski, C. Abney, W. B. Lin, Nat. Chem. 2010, 2, 838-846; – reference: C. Wang, Z. G. Xie, K. E. deKrafft, W. B. Lin, J. Am. Chem. Soc. 2011, 133, 13445-13454; – reference: E. Stöckel, X. F. Wu, A. Trewin, C. D. Wood, R. Clowes, N. L. Campbell, J. T. A. Jones, Y. Z. Khimyak, D. J. Adams, A. I. Cooper, Chem. Commun. 2009, 212-214; – reference: J. X. Jiang, C. Wang, A. Laybourn, T. Hasell, R. Clowes, Y. Z. Khimyak, J. L. Xiao, S. J. Higgins, D. J. Adams, A. I. Cooper, Angew. Chem. 2011, 123, 1104-1107; – reference: A. C. Evans, A. Lu, C. Ondeck, D. A. Longbottom, R. K. O'Reilly, Macromolecules 2010, 43, 6374-6380. – reference: F. Song, C. Wang, J. M. Falkowski, L. Ma, W. B. Lin, J. Am. Chem. Soc. 2010, 132, 15390-15398; – reference: N. B. McKeown, P. M. Budd, Macromolecules 2010, 43, 5163-5176; – reference: C. E. Chan-Thaw, A. Villa, P. Katekomol, D. Su, A. Thomas, L. Prati, Nano Lett. 2010, 10, 537-541; – reference: Z. G. Xie, C. Wang, K. E. deKrafft, W. B. Lin, J. Am. Chem. Soc. 2011, 133, 2056-2059. – reference: S. Shinkai, H. Tsuji, Y. Hara, O. Manabe, Bull. Chem. Soc. Jpn. 1981, 54, 631-632; – reference: P. Kuhn, A. Forget, D. S. Su, A. Thomas, M. Antonietti, J. Am. Chem. Soc. 2008, 130, 13333-13337; – reference: R. Murugan, E. F. V. Scriven, Aldrichimica Acta 2003, 36, 21-29; – reference: Angew. Chem. Int. Ed. 2008, 47, 3450-3453; – reference: A. B. Powell, Y. Suzuki, M. Ueda, C. W. Bielawski, A. H. Cowley, J. Am. Chem. Soc. 2011, 133, 5218-5220. – reference: K. E. Price, B. P. Mason, A. R. Bogdan, S. J. Broadwater, J. L. Steinbacher, D. T. McQuade, J. Am. Chem. Soc. 2006, 128, 10376-10377; – reference: J. X. Jiang, A. Trewin, F. Su, C. D. Wood, H. Niu, J. T. A. Jones, Y. Z. Khimyak, A. I. Cooper, Macromolecules 2009, 42, 2658-2666; – reference: J. X. Jiang, F. Su, H. Niu, C. D. Wood, N. L. Campbell, Y. Z. Khimyak, A. I. Cooper, Chem. Commun. 2008, 486-488; – volume: 116 43 start-page: 5248 5138 year: 2004 2004 end-page: 5286 5175 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 130 start-page: 6334 year: 2008 end-page: 6335 publication-title: J. Am. Chem. Soc. – volume: 107 start-page: 874 year: 2007 end-page: 922 publication-title: Chem. Rev. – volume: 75 start-page: 1620 year: 2010 end-page: 1629 publication-title: J. Org. Chem. – volume: 15 start-page: 5669 year: 2009 end-page: 5673 publication-title: Chem. Eur. J. – volume: 132 start-page: 6742 year: 2010 end-page: 6748 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 2099 year: 2011 end-page: 2106 publication-title: Chem. Eur. J. – volume: 119 46 start-page: 8728 8574 year: 2007 2007 end-page: 8732 8578 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 119 46 start-page: 4407 4329 year: 2007 2007 end-page: 4410 4332 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 15 start-page: 1077 year: 2009 end-page: 1081 publication-title: Chem. Eur. J. – volume: 16 start-page: 2350 year: 2010 end-page: 2354 publication-title: Chem. Eur. J. – volume: 16 start-page: 1776 year: 2010 end-page: 1779 publication-title: Chem. Eur. J. – volume: 1 start-page: 819 year: 2011 end-page: 835 publication-title: ACS Catal. – volume: 54 start-page: 631 year: 1981 end-page: 632 publication-title: Bull. Chem. Soc. Jpn. – volume: 129 start-page: 14775 year: 2007 end-page: 14779 publication-title: J. Am. Chem. Soc. – start-page: 212 year: 2009 end-page: 214 publication-title: Chem. Commun. – volume: 44 start-page: 5573 year: 2011 end-page: 5577 publication-title: Macromolecules – volume: 455 start-page: 304 year: 2008 end-page: 308 publication-title: Nature – volume: 81 8 start-page: 1001 981 year: 1969 1969 end-page: 1001 981 publication-title: Angew. Chem. Angew. Chem. Int. Ed. Engl. – volume: 21 start-page: 1291 year: 2009 publication-title: Adv. Mater. – volume: 31 start-page: 494 year: 1998 end-page: 501 publication-title: Acc. Chem. Res. – start-page: 2275 year: 1998 end-page: 2286 publication-title: Chem. Commun. – volume: 133 start-page: 13445 year: 2011 end-page: 13454 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 9855 year: 2009 end-page: 9867 publication-title: Chem. Eur. J. – volume: 16 start-page: 4467 year: 1975 end-page: 4470 publication-title: Tetrahedron Lett. – volume: 2 start-page: 686 year: 2011 end-page: 689 publication-title: Chem. Sci. – volume: 127 start-page: 13305 year: 2005 end-page: 13311 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 573 year: 2008 end-page: 578 publication-title: J. Mater. Chem. – volume: 133 start-page: 2056 year: 2011 end-page: 2059 publication-title: J. Am. Chem. Soc. – volume: 130 start-page: 7710 year: 2008 end-page: 7720 publication-title: J. Am. Chem. Soc. – start-page: 486 year: 2008 end-page: 488 publication-title: Chem. Commun. – volume: 42 start-page: 4426 year: 2009 end-page: 4429 publication-title: Macromolecules – volume: 1 start-page: 691 year: 2011 end-page: 697 publication-title: ACS Catal. – volume: 4 start-page: 737 year: 2002 end-page: 740 publication-title: Org. Lett. – volume: 90 17 start-page: 602 569 year: 1978 1978 end-page: 615 583 publication-title: Angew. Chem. Angew. Chem. Int. Ed. Engl. – volume: 122 49 start-page: 8506 8328 year: 2010 2010 end-page: 8523 8344 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – start-page: 2462 year: 2008 end-page: 2464 publication-title: Chem. Commun. – volume: 21 start-page: 3033 year: 2009 end-page: 3035 publication-title: Chem. Mater. – volume: 11 start-page: 2968 year: 2009 end-page: 2971 publication-title: Org. Lett. – volume: 104 start-page: 799 year: 1982 end-page: 807 publication-title: J. Am. Chem. Soc. – volume: 42 start-page: 8809 year: 2009 end-page: 8816 publication-title: Macromolecules – volume: 30 start-page: 221 year: 2009 end-page: 236 publication-title: Macromol. Rapid Commun. – volume: 38 start-page: 1248 year: 2009 end-page: 1256 publication-title: Chem. Soc. Rev. – volume: 130 start-page: 13333 year: 2008 end-page: 13337 publication-title: J. Am. Chem. Soc. – volume: 123 50 start-page: 1104 1072 year: 2011 2011 end-page: 1107 1075 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 50 start-page: 3928 year: 1985 end-page: 3930 publication-title: J. Org. Chem. – volume: 122 49 start-page: 1575 1533 year: 2010 2010 end-page: 1577 1535 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 10 start-page: 537 year: 2010 end-page: 541 publication-title: Nano Lett. – volume: 57 start-page: 603 year: 1985 end-page: 619 publication-title: Pure Appl. Chem. – volume: 46 start-page: 4547 year: 2010 end-page: 4549 publication-title: Chem. Commun. – volume: 133 start-page: 5806 year: 2011 end-page: 5809 publication-title: J. Am. Chem. Soc. – volume: 132 start-page: 9138 year: 2010 end-page: 9143 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 2721 year: 2003 end-page: 2726 publication-title: J. Mater. Chem. – volume: 121 48 start-page: 9621 9457 year: 2009 2009 end-page: 9624 9460 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 36 start-page: 21 year: 2003 end-page: 29 publication-title: Aldrichimica Acta – volume: 41 start-page: 1591 year: 2008 end-page: 1593 publication-title: Macromolecules – volume: 120 47 start-page: 3499 3450 year: 2008 2008 end-page: 3502 3453 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 133 start-page: 5218 year: 2011 end-page: 5220 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 1284 year: 2009 end-page: 1287 publication-title: Catal. Commun. – volume: 47 start-page: 4814 year: 2011 end-page: 4816 publication-title: Chem. Commun. – volume: 116 43 start-page: 5552 5436 year: 2004 2004 end-page: 5557 5441 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 12 start-page: 129 year: 1983 end-page: 161 publication-title: Chem. Soc. Rev. – volume: 132 start-page: 15390 year: 2010 end-page: 15398 publication-title: J. Am. Chem. Soc. – volume: 293 start-page: 1 year: 2010 end-page: 33 publication-title: Top Curr. Chem. – volume: 2 start-page: 838 year: 2010 end-page: 846 publication-title: Nat. Chem. – volume: 5 start-page: 1098 year: 2009 end-page: 1111 publication-title: Small – volume: 21 start-page: 702 year: 2009 end-page: 705 publication-title: Adv. Mater. – volume: 46 start-page: 970 year: 2010 end-page: 972 publication-title: Chem. Commun. – volume: 47 start-page: 917 year: 2011 end-page: 919 publication-title: Chem. Commun. – volume: 22 start-page: 557 year: 2010 end-page: 564 publication-title: Chem. Mater. – volume: 38 start-page: 1450 year: 2009 end-page: 1459 publication-title: Chem. Soc. Rev. – volume: 121 48 start-page: 7042 6909 year: 2009 2009 end-page: 7045 6912 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 42 start-page: 319 year: 2009 end-page: 326 publication-title: Macromolecules – volume: 127 start-page: 8940 year: 2005 end-page: 8941 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 1777 year: 2011 end-page: 1781 publication-title: Chem. Sci. – volume: 348 start-page: 1367 year: 2006 end-page: 1390 publication-title: Adv. Synth. Catal. – volume: 43 start-page: 5163 year: 2010 end-page: 5176 publication-title: Macromolecules – volume: 128 start-page: 10376 year: 2006 end-page: 10377 publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 7216 year: 2009 end-page: 7217 publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 1525 year: 2006 end-page: 1533 publication-title: New J. Chem. – volume: 42 start-page: 2658 year: 2009 end-page: 2666 publication-title: Macromolecules – volume: 37 start-page: 1666 year: 2008 end-page: 1688 publication-title: Chem. Soc. Rev. – volume: 132 start-page: 6558 year: 2010 end-page: 6565 publication-title: J. Am. Chem. Soc. – start-page: 3179 year: 2010 end-page: 3204 publication-title: Eur. J. Org. Chem. – volume: 43 start-page: 6374 year: 2010 end-page: 6380 publication-title: Macromolecules – volume: 17 start-page: 1052 year: 2011 end-page: 1057 publication-title: Chem. Eur. J. – start-page: 2806 year: 2003 end-page: 2807 publication-title: Chem. Commun. – ident: e_1_2_6_94_2 doi: 10.1021/ol017198s – ident: e_1_2_6_97_2 – ident: e_1_2_6_36_2 doi: 10.1002/ange.201005864 – ident: e_1_2_6_16_2 doi: 10.1038/nchem.738 – ident: e_1_2_6_36_3 doi: 10.1002/anie.201005864 – ident: e_1_2_6_66_2 – ident: e_1_2_6_47_2 doi: 10.1002/ange.201000167 – ident: e_1_2_6_22_2 doi: 10.1021/ja202223d – ident: e_1_2_6_79_3 doi: 10.1002/anie.200460373 – ident: e_1_2_6_72_2 doi: 10.1021/ma200915f – ident: e_1_2_6_3_2 – ident: e_1_2_6_84_2 – ident: e_1_2_6_79_2 doi: 10.1002/ange.200460373 – ident: e_1_2_6_40_2 doi: 10.1039/C0CC03914D – ident: e_1_2_6_87_3 doi: 10.1002/anie.200605216 – ident: e_1_2_6_53_2 doi: 10.1039/B815044C – ident: e_1_2_6_15_2 doi: 10.1021/ja052431t – ident: e_1_2_6_46_2 doi: 10.1007/128_2009_5 – ident: e_1_2_6_38_2 doi: 10.1021/cs2001303 – ident: e_1_2_6_39_2 doi: 10.1039/c1cc10268k – ident: e_1_2_6_65_2 doi: 10.1021/ja902116f – ident: e_1_2_6_74_2 doi: 10.1016/S0040-4039(00)91094-3 – ident: e_1_2_6_33_2 doi: 10.1039/B920113K – ident: e_1_2_6_90_2 doi: 10.1002/chem.200903043 – ident: e_1_2_6_60_2 doi: 10.1021/ja803708s – ident: e_1_2_6_98_2 doi: 10.1002/chem.200900899 – ident: e_1_2_6_17_2 doi: 10.1021/ja1069773 – ident: e_1_2_6_45_2 doi: 10.1021/ma1006396 – ident: e_1_2_6_54_2 doi: 10.1021/ma802625d – ident: e_1_2_6_57_2 doi: 10.1021/cm9030446 – ident: e_1_2_6_91_2 doi: 10.1039/B309117A – ident: e_1_2_6_43_2 doi: 10.1002/marc.200800642 – ident: e_1_2_6_83_3 doi: 10.1002/anie.197805691 – ident: e_1_2_6_86_2 doi: 10.1021/ja063688 – ident: e_1_2_6_4_2 doi: 10.1039/b610416a – ident: e_1_2_6_73_3 doi: 10.1002/anie.196909811 – ident: e_1_2_6_55_2 doi: 10.1021/ma901801s – ident: e_1_2_6_1_2 doi: 10.1002/ange.200400650 – ident: e_1_2_6_19_2 doi: 10.1002/chem.201002568 – ident: e_1_2_6_93_2 doi: 10.1246/bcsj.54.631 – volume: 36 start-page: 21 year: 2003 ident: e_1_2_6_80_2 publication-title: Aldrichimica Acta – ident: e_1_2_6_87_2 doi: 10.1002/ange.200605216 – ident: e_1_2_6_21_2 doi: 10.1039/b807083k – ident: e_1_2_6_1_3 doi: 10.1002/anie.200400650 – ident: e_1_2_6_30_3 doi: 10.1002/anie.200902009 – ident: e_1_2_6_29_2 doi: 10.1002/chem.200801570 – ident: e_1_2_6_48_2 – ident: e_1_2_6_59_2 doi: 10.1002/ange.200705710 – ident: e_1_2_6_26_2 doi: 10.1039/B715660J – ident: e_1_2_6_62_2 doi: 10.1021/ja801691x – ident: e_1_2_6_63_2 doi: 10.1021/ma9005473 – ident: e_1_2_6_13_2 doi: 10.1021/ja1017706 – ident: e_1_2_6_30_2 doi: 10.1002/ange.200902009 – ident: e_1_2_6_37_2 doi: 10.1021/ja109166b – ident: e_1_2_6_18_2 doi: 10.1021/ja203564w – ident: e_1_2_6_69_2 doi: 10.1002/ange.200904637 – ident: e_1_2_6_85_2 doi: 10.1021/ja0524898 – ident: e_1_2_6_8_2 – ident: e_1_2_6_2_2 doi: 10.1038/nature07367 – ident: e_1_2_6_71_2 doi: 10.1021/ja100327h – ident: e_1_2_6_27_2 doi: 10.1016/j.catcom.2009.01.034 – ident: e_1_2_6_6_2 doi: 10.1039/b800704g – ident: e_1_2_6_76_2 doi: 10.1039/a803757d – ident: e_1_2_6_81_2 doi: 10.1021/ar980001k – ident: e_1_2_6_23_2 doi: 10.1021/cs200131g – ident: e_1_2_6_70_2 doi: 10.1039/c0cc00235f – ident: e_1_2_6_59_3 doi: 10.1002/anie.200705710 – ident: e_1_2_6_52_2 doi: 10.1021/ma702411b – ident: e_1_2_6_5_2 doi: 10.1002/adsc.200606096 – ident: e_1_2_6_83_2 doi: 10.1002/ange.19780900806 – ident: e_1_2_6_68_2 doi: 10.1021/cm901280w – ident: e_1_2_6_44_2 doi: 10.1002/smll.200801762 – ident: e_1_2_6_9_2 doi: 10.1021/ol901134v – ident: e_1_2_6_92_2 doi: 10.1021/jo00220a052 – ident: e_1_2_6_28_2 – ident: e_1_2_6_25_2 doi: 10.1039/b303996j – ident: e_1_2_6_61_2 doi: 10.1021/ma802322j – ident: e_1_2_6_67_2 doi: 10.1039/b718925g – ident: e_1_2_6_7_2 doi: 10.1002/ejoc.201000319 – ident: e_1_2_6_14_2 – ident: e_1_2_6_31_2 doi: 10.1021/nl904082k – ident: e_1_2_6_41_2 – ident: e_1_2_6_42_2 doi: 10.1002/adma.200801971 – ident: e_1_2_6_88_2 doi: 10.1002/chem.200900532 – ident: e_1_2_6_96_2 doi: 10.1021/ja075824w – ident: e_1_2_6_24_2 – ident: e_1_2_6_89_2 doi: 10.1002/chem.200902982 – ident: e_1_2_6_56_2 doi: 10.1002/ange.200906827 – ident: e_1_2_6_64_2 doi: 10.1002/adma.200802692 – ident: e_1_2_6_11_2 doi: 10.1021/ma1008447 – ident: e_1_2_6_49_3 doi: 10.1002/anie.200701595 – ident: e_1_2_6_77_2 doi: 10.1021/cr050992x – ident: e_1_2_6_34_2 doi: 10.1021/ja1028556 – ident: e_1_2_6_32_2 doi: 10.1002/chem.201000675 – ident: e_1_2_6_20_2 doi: 10.1039/b807080f – ident: e_1_2_6_10_2 doi: 10.1021/jo902585j – ident: e_1_2_6_12_2 doi: 10.1021/ja200602e – ident: e_1_2_6_58_2 doi: 10.1039/c1sc00329a – ident: e_1_2_6_35_2 doi: 10.1039/c0sc00339e – ident: e_1_2_6_51_2 doi: 10.1039/B715563H – ident: e_1_2_6_69_3 doi: 10.1002/anie.200904637 – ident: e_1_2_6_47_3 doi: 10.1002/anie.201000167 – ident: e_1_2_6_50_2 doi: 10.1021/ja8010176 – ident: e_1_2_6_56_3 doi: 10.1002/anie.200906827 – ident: e_1_2_6_82_2 doi: 10.1039/cs9831200129 – ident: e_1_2_6_95_2 doi: 10.1021/ja00367a025 – ident: e_1_2_6_49_2 doi: 10.1002/ange.200701595 – ident: e_1_2_6_75_2 doi: 10.1351/pac198557040603 – ident: e_1_2_6_78_2 – ident: e_1_2_6_73_2 doi: 10.1002/ange.19690812313 |
SSID | ssj0009633 |
Score | 2.3335304 |
Snippet | We report herein for the first time the incorporation of a versatile organocatalyst, 4‐(N,N‐dimethylamino)pyridine (DMAP), into the network of a nanoporous... We report herein for the first time the incorporation of a versatile organocatalyst, 4‐( N,N ‐dimethylamino)pyridine (DMAP), into the network of a nanoporous... We report herein for the first time the incorporation of a versatile organocatalyst, 4-(N,N-dimethylamino)pyridine (DMAP), into the network of a nanoporous... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6328 |
SubjectTerms | 4-Aminopyridine - analogs & derivatives 4-Aminopyridine - chemical synthesis 4-Aminopyridine - chemistry acylation Catalysis Chemistry heterogeneous catalysis Molecular Structure nanoporous structures Nanostructures - chemistry organocatalysis Polymers Polymers - chemistry Porosity Proteins Rigidity |
Title | 4-(N,N-Dimethylamino)pyridine-Embedded Nanoporous Conjugated Polymer as a Highly Active Heterogeneous Organocatalyst |
URI | https://api.istex.fr/ark:/67375/WNG-N1Z22RJ3-H/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201103028 https://www.ncbi.nlm.nih.gov/pubmed/22467297 https://www.proquest.com/docview/1223798445 https://www.proquest.com/docview/1011179334 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbQeIAX7rBsAxkJcZHItvgSN49T2agmEaGJiYkXy3ZcqaxNpqaVyJ74CfxGfgnnOE1GEQgJnpoqtuI4n8_5bB9_h5Bn0hlRjLmPwf34WPg0i42RPjYFuBM5LoTJ8DTyuzwdnYrjM3n20yn-Vh-iX3DDkRHsNQ5wY-u9K9FQeKdZkOAEmDI87YsBW8iKTq70owBdbS55oWLUYO1UG_fZ3nr1Na90HTv4y-8o5zqDDS7o6DYxXePbyJPz3eXC7rrLX3Qd_-ft7pBbK35KD1pA3SXXfHmP3Bh2aeHuk0vx_eu3l_nrHH7eTDABdQOgmpTVq4tmPgFP6OHG4cx6sGgFBeNdAcOvljUdVuXnJS7aFfR9NW1mfk5NTQ3FSJNpQw-C4aUjDM-pANUe64STolVYYmrqxQNyenT4YTiKVwkcYidxodKkHLVrBExxCuWNUl4mNhVGGeWUNVYWuCnLbYq7d9anqCWXJM5mjgOr4o4_JBtlVfpNQtm-s2rg0mLMjHCZgWma4V6OM-QYbCAjEncfULuVujkm2ZjqVpeZaexR3fdoRF705S9aXY8_lnwe8NAXM_NzjIZTUn_M3-o8-cTYyTHXo4jsdIDRK0NQ6wTol8oGQkALn_a34ZPhvowJfYlRdijMx7mIyKMWaP3DUO8P5j8qIizA5S-N1Sik0f_b-pdK2-QmXDOMkEjEDtlYzJf-MRCvhX0SBtcPoNwmVw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagPZQL70dKgSAhHhJpGz_izbHatoTSRqhqBeJi2Y5X2nY3qfYhkZ74CfxGfgkzzibVIhASnKIktmI7n2fG4_E3hLwQVvNiwFwE6sdF3CVppLVwkS5AnYhBwXWKp5GP8iQ75QefRRtNiGdhGn6IzuGGM8PLa5zg6JDeumINhU6NPQcn4JT2rpNVTOuN9Pm7x1cMUoCvJps8lxGysLa8jdt0a7n-kl5axSH--jujc9mG9Upo_xYxbfOb2JPzzfnMbNrLX5gd_6t_t8nNhYka7jSYukOuufIuWeu3meHukUv-49v31_nbHC67Q8xBXQOuhmX15qKeDEEZOnixNzYOhFoRgvyuwMiv5tOwX5Vnc_TbFeHHalSP3STU01CHGGwyqsMdL3vDDCN0KgC2wzr-sGjlvUz1dHafnO7vnfSzaJHDIbICfZU6YUhfw2GVU0inpXQiNgnXUksrjTaiwH1ZZhLcwDMuQTq5OLYmtQwMK2bZA7JSVqV7REK6bY3s2aQYUM1tqmGlppkTgxTNDNoTAYnaP6jsguAc82yMVEPNTBWOqOpGNCCvuvIXDbXHH0u-9IDoiunJOQbESaE-5e9UHn-h9PiAqSwgGy1i1EIWTFUMFphMe5xDC593r-GX4daM9mOJgXbIzccYD8jDBmndx5DyD5ZAMiDU4-UvjVXIpdHdrf9LpWdkLTs5OlSH7_MPj8kNeE4xYCLmG2RlNpm7J2CHzcxTP9N-AvZiKnM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgk2Av3C-BAUZCXCSyNbETN49Tu1IGRNPExMSLZTuO1K1Nql4ksid-Ar-RX8I5TpNRBEKCpyixrfjy-Zxj-_g7hDyLjOJZzqwP6sf63MaJr1RkfZWBOonyjKsEbyN_SOPhMT84iU5-usVf80O0G244M5y8xgk-zfLdC9JQaNPEUXACTMPuZbLJ406CwRv6RxcEUgCvOpg8Fz6SsDa0jZ1wd738mlraxB7-8jubc92EdTpocJ2opva168nZznKhd8z5L8SO_9O8G-TaykClezWibpJLtrhFrvaauHC3yTn__vXby_R1Co_-CCNQV4CqUVG-mlazEahCCwn7E21BpGUUpHcJJn65nNNeWZwucdcuo4fluJrYGVVzqii6mowruuckLx2if04JsLZYxl0VLd0eUzVf3CHHg_2PvaG_iuDgmwh3KlXMkLyGwxonE1YJYaNAx1wJJYzQSkcZnsoyHePxnbYxkskFgdGJYWBWMcPuko2iLOx9QsOO0aJr4iwPFTeJgnWaYjbKEzQywm7kEb8ZQGlW9OYYZWMsa2LmUGKPyrZHPfKizT-tiT3-mPO5w0ObTc3O0B1ORPJT-kamwecwPDpgcuiR7QYwciUJ5jIA-0skXc6hhk_bZBgyPJhRri_RzQ6Z-RjjHrlXA639GRL-wQJIeCR0cPlLZSUyabRvD_6l0BNy5bA_kO_fpu8eki34HKK3RMC3ycZitrSPwAhb6Mdunv0AUkEpIg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=4-%28N%2CN-dimethylamino%29pyridine-embedded+nanoporous+conjugated+polymer+as+a+highly+active+heterogeneous+organocatalyst&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Zhang%2C+Yuan&rft.au=Zhang%2C+Yong&rft.au=Sun%2C+Ya+Lei&rft.au=Du%2C+Xin&rft.date=2012-05-14&rft.eissn=1521-3765&rft.volume=18&rft.issue=20&rft.spage=6328&rft_id=info:doi/10.1002%2Fchem.201103028&rft_id=info%3Apmid%2F22467297&rft.externalDocID=22467297 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |