Artificial Intelligence for MR Image Reconstruction: An Overview for Clinicians
Artificial intelligence (AI) shows tremendous promise in the field of medical imaging, with recent breakthroughs applying deep‐learning models for data acquisition, classification problems, segmentation, image synthesis, and image reconstruction. With an eye towards clinical applications, we summari...
Saved in:
Published in | Journal of magnetic resonance imaging Vol. 53; no. 4; pp. 1015 - 1028 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.04.2021
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Artificial intelligence (AI) shows tremendous promise in the field of medical imaging, with recent breakthroughs applying deep‐learning models for data acquisition, classification problems, segmentation, image synthesis, and image reconstruction. With an eye towards clinical applications, we summarize the active field of deep‐learning‐based MR image reconstruction. We review the basic concepts of how deep‐learning algorithms aid in the transformation of raw k‐space data to image data, and specifically examine accelerated imaging and artifact suppression. Recent efforts in these areas show that deep‐learning‐based algorithms can match and, in some cases, eclipse conventional reconstruction methods in terms of image quality and computational efficiency across a host of clinical imaging applications, including musculoskeletal, abdominal, cardiac, and brain imaging. This article is an introductory overview aimed at clinical radiologists with no experience in deep‐learning‐based MR image reconstruction and should enable them to understand the basic concepts and current clinical applications of this rapidly growing area of research across multiple organ systems. |
---|---|
AbstractList | Artificial intelligence (AI) shows tremendous promise in the field of medical imaging, with recent breakthroughs applying deep-learning models for data acquisition, classification problems, segmentation, image synthesis, and image reconstruction. With an eye towards clinical applications, we summarize the active field of deep-learning-based MR image reconstruction. We review the basic concepts of how deep-learning algorithms aid in the transformation of raw k-space data to image data, and specifically examine accelerated imaging and artifact suppression. Recent efforts in these areas show that deep-learning-based algorithms can match and, in some cases, eclipse conventional reconstruction methods in terms of image quality and computational efficiency across a host of clinical imaging applications, including musculoskeletal, abdominal, cardiac, and brain imaging. This article is an introductory overview aimed at clinical radiologists with no experience in deep-learning-based MR image reconstruction and should enable them to understand the basic concepts and current clinical applications of this rapidly growing area of research across multiple organ systems. Artificial intelligence (AI) shows tremendous promise in the field of medical imaging with recent breakthroughs applying deep learning models for data acquisition, classification problems, segmentation, image synthesis and image reconstruction. With an eye towards clinical applications, we summarize the active field of deep learning-based MR image reconstruction. We will review the basic concepts of how deep learning algorithms aid in the transformation of raw k-space data to image data and specifically examine accelerated imaging and artifact suppression. Recent efforts in these areas show that deep learning-based algorithms can match and, in some cases, eclipse conventional reconstruction methods in terms of image quality and computational efficiency across a host of clinical imaging applications including musculoskeletal, abdominal, cardiac, and brain imaging. This article is an introductory overview aimed at clinical radiologists with no experience in deep learning-based MR image reconstruction and should enable them to understand the basic concepts and current clinical applications of this rapidly growing area of research across multiple organ systems. Artificial intelligence (AI) shows tremendous promise in the field of medical imaging, with recent breakthroughs applying deep‐learning models for data acquisition, classification problems, segmentation, image synthesis, and image reconstruction. With an eye towards clinical applications, we summarize the active field of deep‐learning‐based MR image reconstruction. We review the basic concepts of how deep‐learning algorithms aid in the transformation of raw k‐ space data to image data, and specifically examine accelerated imaging and artifact suppression. Recent efforts in these areas show that deep‐learning‐based algorithms can match and, in some cases, eclipse conventional reconstruction methods in terms of image quality and computational efficiency across a host of clinical imaging applications, including musculoskeletal, abdominal, cardiac, and brain imaging. This article is an introductory overview aimed at clinical radiologists with no experience in deep‐learning‐based MR image reconstruction and should enable them to understand the basic concepts and current clinical applications of this rapidly growing area of research across multiple organ systems. Artificial intelligence (AI) shows tremendous promise in the field of medical imaging, with recent breakthroughs applying deep-learning models for data acquisition, classification problems, segmentation, image synthesis, and image reconstruction. With an eye towards clinical applications, we summarize the active field of deep-learning-based MR image reconstruction. We review the basic concepts of how deep-learning algorithms aid in the transformation of raw k-space data to image data, and specifically examine accelerated imaging and artifact suppression. Recent efforts in these areas show that deep-learning-based algorithms can match and, in some cases, eclipse conventional reconstruction methods in terms of image quality and computational efficiency across a host of clinical imaging applications, including musculoskeletal, abdominal, cardiac, and brain imaging. This article is an introductory overview aimed at clinical radiologists with no experience in deep-learning-based MR image reconstruction and should enable them to understand the basic concepts and current clinical applications of this rapidly growing area of research across multiple organ systems.Artificial intelligence (AI) shows tremendous promise in the field of medical imaging, with recent breakthroughs applying deep-learning models for data acquisition, classification problems, segmentation, image synthesis, and image reconstruction. With an eye towards clinical applications, we summarize the active field of deep-learning-based MR image reconstruction. We review the basic concepts of how deep-learning algorithms aid in the transformation of raw k-space data to image data, and specifically examine accelerated imaging and artifact suppression. Recent efforts in these areas show that deep-learning-based algorithms can match and, in some cases, eclipse conventional reconstruction methods in terms of image quality and computational efficiency across a host of clinical imaging applications, including musculoskeletal, abdominal, cardiac, and brain imaging. This article is an introductory overview aimed at clinical radiologists with no experience in deep-learning-based MR image reconstruction and should enable them to understand the basic concepts and current clinical applications of this rapidly growing area of research across multiple organ systems. |
Author | Knoll, Florian Lin, Dana J. Johnson, Patricia M. Lui, Yvonne W. |
AuthorAffiliation | 1 Department of Radiology, NYU School of Medicine / NYU Langone Health 2 New York University School of Medicine, Center for Biomedical Imaging |
AuthorAffiliation_xml | – name: 1 Department of Radiology, NYU School of Medicine / NYU Langone Health – name: 2 New York University School of Medicine, Center for Biomedical Imaging |
Author_xml | – sequence: 1 givenname: Dana J. surname: Lin fullname: Lin, Dana J. organization: NYU School of Medicine/NYU Langone Health – sequence: 2 givenname: Patricia M. surname: Johnson fullname: Johnson, Patricia M. organization: New York University School of Medicine – sequence: 3 givenname: Florian surname: Knoll fullname: Knoll, Florian organization: New York University School of Medicine – sequence: 4 givenname: Yvonne W. orcidid: 0000-0002-9984-9164 surname: Lui fullname: Lui, Yvonne W. email: yvonne.lui@nyulangone.org organization: NYU School of Medicine/NYU Langone Health |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32048372$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kd1rFDEUxYNUbLv64h8gA76IMDW5mXysD8Ky-LHSsrDoc0jTO2uWmaQmM1v635vp1qJFJA8J5HcO59x7So5CDEjIS0bPGKXwbtcnfwaKKv2EnDABUIPQ8qi8qeA101Qdk9Ocd5TS-bwRz8gxB9poruCErBdp8K133nbVKgzYdX6LwWHVxlRdbKpVb7dYbdDFkIc0usHH8L5ahGq9x7T3eHMHLjsfJo-Qn5Onre0yvri_Z-T7p4_fll_q8_Xn1XJxXjvBGl1rKHlb65R0cwFyrqQEjdI5BRoQqZZXrG0brVtslHCArJGXjeVCaOCOI5-RDwff6_GyxyuHYUi2M9fJ9zbdmmi9-fsn-B9mG_dGNcBlOTPy5t4gxZ8j5sH0PrvS3waMYzbARcME43pCXz9Cd3FModQzICjTUkMxnZFXfyZ6iPJ71gV4ewBcijknbB8QRs20SDMt0twtssD0Eez8YKfplza--7eEHSQ3vsPb_5ibrxeb1UHzC9oTr2s |
CitedBy_id | crossref_primary_10_1007_s10334_023_01127_6 crossref_primary_10_1038_s41598_024_71893_3 crossref_primary_10_1007_s11604_025_01756_y crossref_primary_10_3348_jksr_2022_0156 crossref_primary_10_1148_radiol_212922 crossref_primary_10_1148_rg_220133 crossref_primary_10_1016_j_neucom_2022_10_061 crossref_primary_10_12998_wjcc_v11_i7_1477 crossref_primary_10_1002_mrm_29033 crossref_primary_10_1038_s41598_024_79348_5 crossref_primary_10_1097_RCT_0000000000001556 crossref_primary_10_1002_gamm_202470014 crossref_primary_10_1016_j_bspc_2022_103610 crossref_primary_10_3348_kjr_2024_0653 crossref_primary_10_2214_AJR_23_29933 crossref_primary_10_3390_diagnostics11081484 crossref_primary_10_1007_s10278_023_00816_x crossref_primary_10_1080_17476348_2023_2241355 crossref_primary_10_13104_imri_2022_1102 crossref_primary_10_1016_j_ejrad_2022_110648 crossref_primary_10_1109_TMI_2023_3323215 crossref_primary_10_1186_s12880_023_01157_5 crossref_primary_10_6009_jjrt_2023_2260 crossref_primary_10_1007_s12194_024_00832_8 crossref_primary_10_1016_j_mri_2024_03_022 crossref_primary_10_1016_j_commatsci_2024_112846 crossref_primary_10_1002_mrm_29261 crossref_primary_10_1007_s00381_023_06041_9 crossref_primary_10_1097_RLI_0000000000000928 crossref_primary_10_1016_j_compag_2023_108051 crossref_primary_10_1097_01_CDR_0001007292_00100_cc crossref_primary_10_1007_s11547_024_01947_z crossref_primary_10_1007_s00247_021_05086_9 crossref_primary_10_1007_s10489_021_02604_y crossref_primary_10_1155_2022_3688797 crossref_primary_10_3390_tomography9050152 crossref_primary_10_3390_s23063062 crossref_primary_10_1002_jmri_29038 crossref_primary_10_3390_bioengineering10010022 crossref_primary_10_1111_jon_13187 crossref_primary_10_1016_j_acra_2022_07_018 crossref_primary_10_3390_cancers15092573 crossref_primary_10_1007_s12312_024_01374_1 crossref_primary_10_1186_s41747_025_00562_5 crossref_primary_10_1055_a_1800_8789 crossref_primary_10_1002_jmri_28462 crossref_primary_10_1016_j_acra_2022_06_003 crossref_primary_10_1148_radiol_221822 crossref_primary_10_1038_s41467_021_27317_1 crossref_primary_10_1063_5_0152815 crossref_primary_10_14245_ns_2448388_194 crossref_primary_10_1259_dmfr_20230024 crossref_primary_10_1007_s00256_024_04723_2 crossref_primary_10_1007_s10554_024_03234_4 crossref_primary_10_2463_mrms_mp_2024_0025 crossref_primary_10_1016_j_semradonc_2023_10_008 crossref_primary_10_3390_bioengineering10121373 crossref_primary_10_1002_mrm_28911 crossref_primary_10_1016_j_canrad_2023_11_004 crossref_primary_10_1016_j_media_2024_103398 crossref_primary_10_1002_jmri_28573 crossref_primary_10_1016_j_jocmr_2025_101873 crossref_primary_10_1002_jmri_27485 crossref_primary_10_3390_diagnostics15060689 crossref_primary_10_1038_s41598_020_70551_8 crossref_primary_10_1053_j_ro_2022_10_002 crossref_primary_10_1111_1754_9485_13276 crossref_primary_10_1007_s10334_023_01129_4 crossref_primary_10_1007_s11548_021_02399_w crossref_primary_10_1177_14727978251319398 crossref_primary_10_1007_s00247_022_05529_x crossref_primary_10_1007_s11936_020_00828_8 crossref_primary_10_1053_j_ro_2023_02_003 crossref_primary_10_1002_jmri_29294 crossref_primary_10_1002_mp_15936 crossref_primary_10_1148_rycan_230077 crossref_primary_10_1007_s10334_024_01173_8 crossref_primary_10_1055_s_0041_1730401 crossref_primary_10_1016_j_metrad_2024_100124 crossref_primary_10_1186_s12938_024_01281_5 crossref_primary_10_1177_02841851231192786 crossref_primary_10_3390_bioengineering10091012 crossref_primary_10_1016_j_radcr_2024_07_135 crossref_primary_10_1088_1402_4896_ad203c crossref_primary_10_1109_TMI_2023_3234968 crossref_primary_10_31159_ksmrt_2023_33_4_41 crossref_primary_10_1259_bjr_20210527 crossref_primary_10_3390_cancers16101827 crossref_primary_10_1002_mrm_29625 crossref_primary_10_1016_S1470_2045_24_00036_6 crossref_primary_10_1097_RLI_0000000000000847 crossref_primary_10_1055_a_1718_4128 crossref_primary_10_1097_RLI_0000000000001114 crossref_primary_10_1016_j_mri_2024_02_006 crossref_primary_10_3390_diagnostics13172747 crossref_primary_10_1002_mp_16256 crossref_primary_10_1002_ird3_108 crossref_primary_10_1038_s41598_023_41545_z crossref_primary_10_1093_eurheartj_ehad775 crossref_primary_10_1088_1361_6560_acc0cd crossref_primary_10_1097_BSD_0000000000001677 crossref_primary_10_1148_ryct_230177 crossref_primary_10_1186_s12880_024_01229_0 crossref_primary_10_1002_jmri_28663 crossref_primary_10_1016_j_crad_2023_12_018 crossref_primary_10_1038_s41598_025_85209_6 crossref_primary_10_1016_j_nic_2020_08_008 crossref_primary_10_1093_bjrai_ubae013 crossref_primary_10_3389_fcvm_2021_682924 crossref_primary_10_1038_s44222_023_00086_w crossref_primary_10_1002_mrm_29642 crossref_primary_10_1177_20584601211023939 crossref_primary_10_2463_mrms_mp_2021_0103 crossref_primary_10_3390_diagnostics14040388 crossref_primary_10_1002_jmri_28899 crossref_primary_10_1002_jmri_27848 crossref_primary_10_1016_j_ejro_2024_100588 crossref_primary_10_1016_j_ijcard_2021_09_012 crossref_primary_10_3390_ijms24043151 crossref_primary_10_1016_j_acra_2025_01_004 crossref_primary_10_1016_j_crad_2022_08_127 crossref_primary_10_1016_j_jmir_2022_04_048 crossref_primary_10_1136_bcr_2023_259006 crossref_primary_10_1016_j_clon_2021_11_008 crossref_primary_10_1007_s00261_024_04599_9 crossref_primary_10_1109_TVCG_2022_3219248 crossref_primary_10_1148_radiol_240516 crossref_primary_10_1162_imag_a_00313 crossref_primary_10_47102_annals_acadmedsg_202360 crossref_primary_10_1007_s00330_023_09742_6 crossref_primary_10_1055_a_2157_6670 crossref_primary_10_2463_mrms_rev_2023_0047 |
Cites_doi | 10.1002/mrm.27771 10.1109/TMI.2018.2820120 10.1371/journal.pone.0223141 10.1109/TMI.2018.2858752 10.1148/radiol.2018180445 10.1002/mrm.1910380414 10.1109/TMI.2018.2833635 10.1002/mrm.21391 10.1016/j.media.2019.04.009 10.1002/mrm.27178 10.3174/ajnr.A5543 10.1088/1361-6560/ab0606 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S 10.1148/radiol.2017170700 10.1109/TMI.2018.2865356 10.1002/jmri.26534 10.1016/j.zemedi.2018.12.003 10.1109/TMI.2017.2760978 10.1109/ISBI.2016.7493320 10.1002/mrm.10171 10.1002/mrm.27420 10.1102/1470-7330.2005.0018 10.1002/mrm.27896 10.1109/TIP.2003.819861 10.1118/1.596065 10.4236/ojmi.2017.74018 10.1002/mrm.27106 10.1109/CVPR.2009.5206848 10.1002/mrm.27201 10.3389/fneur.2019.00869 10.1109/TMI.2018.2887072 10.2967/jnumed.117.198051 10.1109/TMI.2016.2551324 10.1088/1361-6560/aac71a 10.1097/00005382-199001000-00011 10.1002/mrm.27134 10.1148/rg.2017170077 10.4236/ojmi.2017.73010 10.1088/1361-6560/aac763 10.1148/radiol.2018180547 10.1016/j.acra.2018.02.018 10.1007/s00259-019-04374-9 10.1109/TMI.2017.2785879 10.1109/TMI.2018.2863670 10.1038/nature25988 10.1002/mrm.27355 10.1088/0031-9155/60/20/8047 10.1038/nature14539 10.1109/TPAMI.2015.2439281 10.1002/mrm.26977 10.1002/mp.12122 10.1038/s41568-018-0016-5 10.1007/s11604-018-0796-2 |
ContentType | Journal Article |
Copyright | 2020 International Society for Magnetic Resonance in Medicine 2020 International Society for Magnetic Resonance in Medicine. 2021 International Society for Magnetic Resonance in Medicine |
Copyright_xml | – notice: 2020 International Society for Magnetic Resonance in Medicine – notice: 2020 International Society for Magnetic Resonance in Medicine. – notice: 2021 International Society for Magnetic Resonance in Medicine |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 K9. P64 7X8 5PM |
DOI | 10.1002/jmri.27078 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1522-2586 |
EndPage | 1028 |
ExternalDocumentID | PMC7423636 32048372 10_1002_jmri_27078 JMRI27078 |
Genre | reviewArticle Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health funderid: P41EB017183; R01EB023532; R21EB027241 – fundername: NIBIB NIH HHS grantid: R21 EB027241 – fundername: NIBIB NIH HHS grantid: P41 EB027061 – fundername: NIH HHS grantid: P41EB017183 – fundername: NIBIB NIH HHS grantid: R01 EB024532 – fundername: NIBIB NIH HHS grantid: P41 EB017183 – fundername: NIBIB NIH HHS grantid: P41 EB015894 – fundername: NHLBI NIH HHS grantid: R00 HL111410 – fundername: NIH HHS grantid: R21EB027241 – fundername: NIH HHS grantid: R01EB023532 |
GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c5148-82270fac76c9526976628e6cc7282ee086d1ff488fe475c2e146b4a355823c3e3 |
IEDL.DBID | DR2 |
ISSN | 1053-1807 1522-2586 |
IngestDate | Thu Aug 21 14:33:12 EDT 2025 Fri Jul 11 11:32:38 EDT 2025 Fri Jul 25 12:09:46 EDT 2025 Mon Jul 21 06:01:19 EDT 2025 Tue Jul 01 03:56:44 EDT 2025 Thu Apr 24 23:10:56 EDT 2025 Wed Jan 22 16:29:51 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | deep learning MRI image reconstruction |
Language | English |
License | 2020 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5148-82270fac76c9526976628e6cc7282ee086d1ff488fe475c2e146b4a355823c3e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-9984-9164 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7423636 |
PMID | 32048372 |
PQID | 2501868242 |
PQPubID | 1006400 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7423636 proquest_miscellaneous_2354151386 proquest_journals_2501868242 pubmed_primary_32048372 crossref_primary_10_1002_jmri_27078 crossref_citationtrail_10_1002_jmri_27078 wiley_primary_10_1002_jmri_27078_JMRI27078 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2021 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Nashville |
PublicationSubtitle | JMRI |
PublicationTitle | Journal of magnetic resonance imaging |
PublicationTitleAlternate | J Magn Reson Imaging |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 1987; 14 2018; 286 2019; 290 2015; 521 2019; 55 2019; 10 2018; 289 2017; 44 2019; 37 2019; 14 2009 2018; 80 2019; 38 2018; 63 1999; 42 2017; 07 2016; 38 2016; 35 2007; 58 2018; 25 2018; 18 2002; 47 2018; 39 2019; 82 2019; 81 2018; 5 2017; 37 2015; 60 2019; 64 2019; 46 2018; 555 2004; 13 2005; 5 2019; 49 2019 1985 2018 2019; 29 1997; 38 2016 2018; 38 2018; 37 2018; 59 1990; 5 2018; 79 Liu F (e_1_2_11_51_1) 2018; 5 e_1_2_11_55_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_36_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 Lecun Y (e_1_2_11_19_1) 1985 e_1_2_11_60_1 e_1_2_11_20_1 e_1_2_11_45_1 Fuin N (e_1_2_11_33_1) 2019 e_1_2_11_47_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_17_1 e_1_2_11_15_1 Zhang C (e_1_2_11_62_1) 2019 e_1_2_11_38_1 Sun J (e_1_2_11_9_1) 2016 e_1_2_11_50_1 e_1_2_11_10_1 Chen F (e_1_2_11_32_1) 2019 e_1_2_11_31_1 e_1_2_11_56_1 e_1_2_11_58_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_12_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 Chaudhari AS (e_1_2_11_59_1) 2019 e_1_2_11_61_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_46_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 Kobler E (e_1_2_11_54_1) 2018 |
References_xml | – year: 1985 – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 article-title: Deep learning publication-title: Nature – volume: 80 start-page: 2139 issue: 5 year: 2018 end-page: 2154 article-title: Super‐resolution musculoskeletal MRI using deep learning publication-title: Magn Reson Med – start-page: 10 year: 2016 end-page: 18 article-title: ADMM‐net for compressive sensing MRI publication-title: Adv Neural Inf Process Syst – volume: 5 issue: 1 year: 2018 article-title: A deep learning approach for (18)F‐FDG PET attenuation correction publication-title: Eur J Nucl Med Mol Imaging Phys – volume: 46 start-page: 2700 issue: 13 year: 2019 end-page: 2707 article-title: Next generation research applications for hybrid PET/MR and PET/CT imaging using deep learning publication-title: Eur J Nucl Med Mol Imaging – volume: 49 start-page: 939 issue: 4 year: 2019 end-page: 954 article-title: Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI publication-title: J Magn Reson Imaging – volume: 44 start-page: 902 issue: 3 year: 2017 end-page: 913 article-title: Hybrid ZTE/Dixon MR‐based attenuation correction for quantitative uptake estimation of pelvic lesions in PET/MRI publication-title: Med Phys – volume: 25 start-page: 1472 issue: 11 year: 2018 end-page: 1480 article-title: Deep learning in radiology publication-title: Acad Radiol – start-page: 248 year: 2009 end-page: 255 – volume: 82 start-page: 2299 issue: 6 year: 2019 end-page: 2313 article-title: K‐space deep learning for reference‐free EPI ghost correction publication-title: Magn Reson Med – volume: 35 start-page: 1344 issue: 5 year: 2016 end-page: 1351 article-title: Q‐space deep learning: Twelve‐fold shorter and model‐free diffusion MRI scans publication-title: IEEE Trans Med Imaging – volume: 82 start-page: 1452 issue: 4 year: 2019 end-page: 1461 article-title: Network accelerated motion estimation and reduction (NAMER): Convolutional neural network guided retrospective motion correction using a separable motion model publication-title: Magn Reson Med – volume: 38 start-page: 1633 issue: 7 year: 2019 end-page: 1642 article-title: MR image reconstruction using deep density priors publication-title: IEEE Trans Med Imaging – volume: 81 start-page: 439 issue: 1 year: 2019 end-page: 453 article-title: Scan‐specific robust artificial‐neural‐networks for space interpolation (RAKI) reconstruction: Database‐free deep learning for fast imaging publication-title: Magn Reson Med – volume: 59 start-page: 852 issue: 5 year: 2018 end-page: 858 article-title: Zero‐echo‐time and Dixon deep pseudo‐CT (ZeDD CT): Direct generation of pseudo‐CT images for pelvic PET/MRI attenuation correction using deep convolutional neural networks with multiparametric MRI publication-title: J Nucl Med – volume: 79 start-page: 3055 issue: 6 year: 2018 end-page: 3071 article-title: Learning a variational network for reconstruction of accelerated MRI data publication-title: Magn Reson Med – volume: 5 start-page: 67 issue: 1 year: 1990 end-page: 76 article-title: Computer‐aided diagnosis in chest radiology publication-title: J Thorac Imaging – year: 2019 article-title: Data‐driven self‐calibration and reconstruction for non‐Cartesian wave‐encoded single‐shot fast spin echo using deep learning publication-title: J Magn Reson Imaging – start-page: 6687 year: 2018 end-page: 6691 – volume: 80 start-page: 2188 issue: 5 year: 2018 end-page: 2201 article-title: KIKI‐net: Cross‐domain convolutional neural networks for reconstructing undersampled magnetic resonance images publication-title: Magn Reson Med – volume: 60 start-page: 8047 issue: 20 year: 2015 end-page: 8065 article-title: Region specific optimization of continuous linear attenuation coefficients based on UTE (RESOLUTE): Application to PET/MR brain imaging publication-title: Phys Med Biol – volume: 80 start-page: 1440 issue: 4 year: 2018 end-page: 1451 article-title: Zero TE‐based pseudo‐CT image conversion in the head and its application in PET/MR attenuation correction and MR‐guided radiation therapy planning publication-title: Magn Reson Med – volume: 555 start-page: 487 issue: 7697 year: 2018 end-page: 492 article-title: Image reconstruction by domain‐transform manifold learning publication-title: Nature – year: 2019 – volume: 58 start-page: 1182 issue: 6 year: 2007 end-page: 1195 article-title: Sparse MRI: The application of compressed sensing for rapid MR imaging publication-title: Magn Reson Med – volume: 18 start-page: 500 issue: 8 year: 2018 end-page: 510 article-title: Artificial intelligence in radiology publication-title: Nat Rev Cancer – volume: 14 start-page: 538 issue: 4 year: 1987 end-page: 548 article-title: Image feature analysis and computer‐aided diagnosis in digital radiography. I. Automated detection of microcalcifications in mammography publication-title: Med Phys – volume: 37 start-page: 1310 issue: 6 year: 2018 end-page: 1321 article-title: DAGAN: Deep de‐aliasing generative adversarial networks for fast compressed sensing MRI reconstruction publication-title: IEEE Trans Med Imaging – volume: 07 start-page: 100 issue: 03 year: 2017 end-page: 111 article-title: Performance evaluation of super‐resolution methods using deep‐learning and sparse‐coding for improving the image quality of magnified images in chest radiographs publication-title: Open J Med Imaging – volume: 80 start-page: 1189 issue: 3 year: 2018 end-page: 1205 article-title: Deep learning with domain adaptation for accelerated projection‐reconstruction MR publication-title: Magn Reson Med – volume: 14 issue: 10 year: 2019 article-title: Attenuation correction using 3D deep convolutional neural network for brain 18F‐FDG PET/MR: Comparison with atlas, ZTE and CT based attenuation correction publication-title: PLoS One – volume: 29 start-page: 86 issue: 2 year: 2019 end-page: 101 article-title: A gentle introduction to deep learning in medical image processing publication-title: Z Med Phys – volume: 55 start-page: 136 year: 2019 end-page: 147 article-title: Automatic CNN‐based detection of cardiac MR motion artefacts using k space data augmentation and curriculum learning publication-title: Med Image Anal – volume: 13 start-page: 600 issue: 4 year: 2004 end-page: 612 article-title: Image quality assessment: From error visibility to structural similarity publication-title: IEEE Trans Image Process – volume: 47 start-page: 1202 issue: 6 year: 2002 end-page: 1210 article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA) publication-title: Magn Reson Med – volume: 07 start-page: 180 issue: 04 year: 2017 end-page: 195 article-title: Super‐resolution imaging of mammograms based on the super‐resolution convolutional neural network publication-title: Open J Med Imaging – volume: 38 start-page: 295 issue: 2 year: 2016 end-page: 307 article-title: Image super‐resolution using deep convolutional networks publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 38 start-page: 591 issue: 4 year: 1997 end-page: 603 article-title: Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays publication-title: Magn Reson Med – volume: 63 issue: 12 year: 2018 article-title: Attenuation correction for brain PET imaging using deep neural network based on Dixon and ZTE MR images publication-title: Phys Med Biol – volume: 38 start-page: 280 issue: 1 year: 2018 end-page: 290 article-title: Convolutional recurrent neural networks for dynamic MR image reconstruction publication-title: IEEE Trans Med Imaging – volume: 63 issue: 13 year: 2018 article-title: Deep learning for undersampled MRI reconstruction publication-title: Phys Med Biol – volume: 5 start-page: 17 year: 2005 end-page: 19 article-title: Computer aided detection (CAD): An overview publication-title: Cancer Imaging – volume: 38 start-page: 394 issue: 2 year: 2019 end-page: 405 article-title: MoDL: Model‐based deep learning architecture for inverse problems publication-title: IEEE Trans Med Imaging – volume: 37 start-page: 491 issue: 2 year: 2018 end-page: 503 article-title: A deep cascade of convolutional neural networks for dynamic MR image reconstruction publication-title: IEEE Trans Med Imaging – volume: 64 issue: 7 year: 2019 article-title: Joint correction of attenuation and scatter in image space using deep convolutional neural networks for dedicated brain (18)F‐FDG PET publication-title: Phys Med Biol – volume: 37 start-page: 1488 issue: 6 year: 2018 end-page: 1497 article-title: Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss publication-title: IEEE Trans Med Imaging – volume: 37 start-page: 1289 issue: 6 year: 2018 end-page: 1296 article-title: Image reconstruction is a new frontier of machine learning publication-title: IEEE Trans Med Imaging – volume: 289 start-page: 366 issue: 2 year: 2018 end-page: 373 article-title: Variable‐density single‐shot fast spin‐echo MRI with deep learning reconstruction by using variational networks publication-title: Radiology – volume: 39 start-page: 1776 issue: 10 year: 2018 end-page: 1784 article-title: Deep learning in neuroradiology publication-title: AJNR Am J Neuroradiol – volume: 81 start-page: 116 issue: 1 year: 2019 end-page: 128 article-title: Assessment of the generalization of learned image reconstruction and the potential for transfer learning publication-title: Magn Reson Med – start-page: 1636 year: 2019 end-page: 1640 – volume: 290 start-page: 590 issue: 3 year: 2019 end-page: 606 article-title: Convolutional neural networks for radiologic images: A radiologist's guide publication-title: Radiology – volume: 10 start-page: 869 year: 2019 article-title: Applications of deep learning to neuro‐imaging techniques publication-title: Front Neurol – volume: 37 start-page: 73 issue: 1 year: 2019 end-page: 80 article-title: Improvement of image quality at CT and MRI using deep learning publication-title: Jpn J Radiol – volume: 42 start-page: 952 issue: 5 year: 1999 end-page: 962 article-title: SENSE: Sensitivity encoding for fast MRI publication-title: Magn Reson Med – volume: 37 start-page: 2113 issue: 7 year: 2017 end-page: 2131 article-title: Deep learning: A primer for radiologists publication-title: Radiographics – volume: 38 start-page: 167 issue: 1 year: 2019 end-page: 179 article-title: Deep generative adversarial neural networks for compressive sensing MRI publication-title: IEEE Trans Med Imaging – start-page: 514 year: 2016 end-page: 517 – volume: 286 start-page: 676 issue: 2 year: 2018 end-page: 684 article-title: Deep learning MR imaging‐based attenuation correction for PET/MR imaging publication-title: Radiology – ident: e_1_2_11_41_1 doi: 10.1002/mrm.27771 – ident: e_1_2_11_35_1 doi: 10.1109/TMI.2018.2820120 – ident: e_1_2_11_48_1 doi: 10.1371/journal.pone.0223141 – ident: e_1_2_11_14_1 doi: 10.1109/TMI.2018.2858752 – ident: e_1_2_11_11_1 doi: 10.1148/radiol.2018180445 – ident: e_1_2_11_27_1 doi: 10.1002/mrm.1910380414 – ident: e_1_2_11_8_1 doi: 10.1109/TMI.2018.2833635 – ident: e_1_2_11_28_1 doi: 10.1002/mrm.21391 – ident: e_1_2_11_40_1 doi: 10.1016/j.media.2019.04.009 – ident: e_1_2_11_58_1 doi: 10.1002/mrm.27178 – ident: e_1_2_11_7_1 doi: 10.3174/ajnr.A5543 – ident: e_1_2_11_52_1 doi: 10.1088/1361-6560/ab0606 – ident: e_1_2_11_26_1 doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S – ident: e_1_2_11_50_1 doi: 10.1148/radiol.2017170700 – ident: e_1_2_11_30_1 doi: 10.1109/TMI.2018.2865356 – start-page: 10 year: 2016 ident: e_1_2_11_9_1 article-title: ADMM‐net for compressive sensing MRI publication-title: Adv Neural Inf Process Syst – ident: e_1_2_11_17_1 doi: 10.1002/jmri.26534 – ident: e_1_2_11_20_1 doi: 10.1016/j.zemedi.2018.12.003 – ident: e_1_2_11_38_1 doi: 10.1109/TMI.2017.2760978 – ident: e_1_2_11_10_1 doi: 10.1109/ISBI.2016.7493320 – ident: e_1_2_11_25_1 doi: 10.1002/mrm.10171 – ident: e_1_2_11_34_1 doi: 10.1002/mrm.27420 – ident: e_1_2_11_4_1 doi: 10.1102/1470-7330.2005.0018 – ident: e_1_2_11_42_1 doi: 10.1002/mrm.27896 – ident: e_1_2_11_61_1 doi: 10.1109/TIP.2003.819861 – ident: e_1_2_11_2_1 doi: 10.1118/1.596065 – ident: e_1_2_11_57_1 doi: 10.4236/ojmi.2017.74018 – volume-title: Proceedings of Cognitiva year: 1985 ident: e_1_2_11_19_1 – year: 2019 ident: e_1_2_11_32_1 article-title: Data‐driven self‐calibration and reconstruction for non‐Cartesian wave‐encoded single‐shot fast spin echo using deep learning publication-title: J Magn Reson Imaging – ident: e_1_2_11_60_1 doi: 10.1002/mrm.27106 – ident: e_1_2_11_53_1 doi: 10.1109/CVPR.2009.5206848 – ident: e_1_2_11_13_1 doi: 10.1002/mrm.27201 – ident: e_1_2_11_21_1 doi: 10.3389/fneur.2019.00869 – ident: e_1_2_11_31_1 doi: 10.1109/TMI.2018.2887072 – ident: e_1_2_11_44_1 doi: 10.2967/jnumed.117.198051 – ident: e_1_2_11_22_1 doi: 10.1109/TMI.2016.2551324 – ident: e_1_2_11_23_1 doi: 10.1088/1361-6560/aac71a – ident: e_1_2_11_3_1 doi: 10.1097/00005382-199001000-00011 – ident: e_1_2_11_43_1 doi: 10.1002/mrm.27134 – start-page: 1636 volume-title: 52nd Asilomar conference on signals, systems and computers year: 2019 ident: e_1_2_11_62_1 – ident: e_1_2_11_18_1 doi: 10.1148/rg.2017170077 – ident: e_1_2_11_56_1 doi: 10.4236/ojmi.2017.73010 – ident: e_1_2_11_49_1 doi: 10.1088/1361-6560/aac763 – volume-title: A variational neural network for accelerating free‐breathing whole‐heart coronary MR angiography year: 2019 ident: e_1_2_11_33_1 – ident: e_1_2_11_16_1 doi: 10.1148/radiol.2018180547 – ident: e_1_2_11_6_1 doi: 10.1016/j.acra.2018.02.018 – ident: e_1_2_11_47_1 doi: 10.1007/s00259-019-04374-9 – ident: e_1_2_11_36_1 doi: 10.1109/TMI.2017.2785879 – ident: e_1_2_11_39_1 doi: 10.1109/TMI.2018.2863670 – ident: e_1_2_11_37_1 doi: 10.1038/nature25988 – volume: 5 start-page: 24 issue: 1 year: 2018 ident: e_1_2_11_51_1 article-title: A deep learning approach for (18)F‐FDG PET attenuation correction publication-title: Eur J Nucl Med Mol Imaging Phys – start-page: 6687 volume-title: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) year: 2018 ident: e_1_2_11_54_1 – ident: e_1_2_11_12_1 doi: 10.1002/mrm.27355 – ident: e_1_2_11_46_1 doi: 10.1088/0031-9155/60/20/8047 – ident: e_1_2_11_15_1 doi: 10.1038/nature14539 – volume-title: J Magn Reson Imaging year: 2019 ident: e_1_2_11_59_1 – ident: e_1_2_11_55_1 doi: 10.1109/TPAMI.2015.2439281 – ident: e_1_2_11_29_1 doi: 10.1002/mrm.26977 – ident: e_1_2_11_45_1 doi: 10.1002/mp.12122 – ident: e_1_2_11_5_1 doi: 10.1038/s41568-018-0016-5 – ident: e_1_2_11_24_1 doi: 10.1007/s11604-018-0796-2 |
SSID | ssj0009945 |
Score | 2.6536345 |
SecondaryResourceType | review_article |
Snippet | Artificial intelligence (AI) shows tremendous promise in the field of medical imaging, with recent breakthroughs applying deep‐learning models for data... Artificial intelligence (AI) shows tremendous promise in the field of medical imaging, with recent breakthroughs applying deep-learning models for data... Artificial intelligence (AI) shows tremendous promise in the field of medical imaging with recent breakthroughs applying deep learning models for data... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1015 |
SubjectTerms | Algorithms Artificial Intelligence Computational neuroscience Data acquisition Deep learning Humans Image acquisition Image classification Image processing Image Processing, Computer-Assisted Image quality Image reconstruction Image segmentation Learning algorithms Machine learning Magnetic resonance imaging Medical imaging MRI Neuroimaging Radiography Therapeutic applications |
Title | Artificial Intelligence for MR Image Reconstruction: An Overview for Clinicians |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.27078 https://www.ncbi.nlm.nih.gov/pubmed/32048372 https://www.proquest.com/docview/2501868242 https://www.proquest.com/docview/2354151386 https://pubmed.ncbi.nlm.nih.gov/PMC7423636 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fS-QwEMcH8UF8ufPn3eoqkfNFoatN2qQrvogorrAnLAq-HCVNE_xZxXUV_OudSbtdV0U43wqZ9Fdmpt82008A1k3kFE90EiieywD1vwqyzISBE6HLtcl5rukH5-5feXQWHZ_H5xOwO_wXpuRD1B_cKDJ8vqYA11l_awQNvbp9uGxxgtVgAqZiLVJEvRE7qt32KxSjfhBBmGyrmk3Kt0Zdx59GHyTmx0rJtwrWP4IOf8K_4cmXlSfXrcFj1jIv77iO3726GfhRaVO2VzrTLEzYYg6mutXs-zycUEtJnGCdNyhPhsKXdXusc4vJidEL7QhLu8P2CnbyRBnJPnvDkkSKXtlfgLPDg9P9o6BakCEwMX14RDGhtp02Spo2rUyupOSJlcbgcHNr8e0oD53DlOBspGLDLabhLNJEcOfCCCsWYbK4K-xvYNqZqG00qkfrCPCTYK88j6PMcC0TnjdgYzgwqalo5bRoxk1acpZ5Snco9XeoAX9q2_uS0fGpVXM4vmkVp_2UE88QjxfxBqzVzRhhNG2iC3s3QBsRo8oJRSIb8Kt0h_owgnskP_ZWY45SGxC9e7yluLzwFG-aIpcC97np_eCLM0-Pu72O31r6H-NlmOZUgOPLjJowiQNvV1BBPWarPlJeAfKvGHE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fT9swEMdPwKTBC2xjQPk1T9sLSCnETuyUN4RALSMgVSDxFjmOrTEgIMoPib-eOyekdCCk7a2Sz00b3zlf25fPAfw0kVM80UmgeCED1P8qyHMTBk6ErtCm4IWmF5zTQ9k9ifZP49M6N4fehan4EM2GG0WGn68pwGlDemNIDf1zeXPW5kSrGYcPVNLbr6j6Q3pUp-NrFKOCEEGYbKqGTso3hn1Hn0evRObrXMmXGtY_hPZmqkqrA88upNyT8_bdbd42j3-RHf_7_32C6Vqesu3Knz7DmC2_wMe0PoCfhSNqqaATrPeC5slQ-7K0z3qXOD8xWtMOybRbbLtkR_c0KdkHb1jBSNExB1_hZG_3eKcb1DUZAhPT3iPqCbXptFHSdKg4uZKSJ1YagyPOrcUFUhE6h7OCs5GKDbc4E-eRJog7F0ZYMQcT5VVpF4BpZ6KO0SggrSPGT4K9iiKOcsO1THjRgrXnkclMDSynuhkXWYVa5hndoczfoRb8aGyvK0zHm1bLzwOc1aE6yDghDfF6EW_B96YZg4xOTnRpr-7QRsQodEKRyBbMV_7QXEZwT-XH3mrEUxoDAniPtpRnvz3Im07JpcDvXPeO8M4vz_bTfs9_WvwX428w2T1OD7KD3uGvJZjilI_js46WYQKdwK6goLrNV33YPAFesRyM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fT9swEMdPrJPQXjYG-9GNbUbwskkpjZ3Y6bQXNFZRoDBVQ-Jlihz_ELA1oAGbxF-_OydNKUyT4C2Sz3ES352_iZ2PAdZM4hXPdBYpbmWE-l9FRWHiyIvYW20st5p-cB7uya2DZPswPZyDT5N_YSo-RPPBjSIj5GsK8DPr16fQ0JPxr-MOJ1jNA3iYyG5GPr05msKjer2wRTEKCBHFWVc1cFK-Pq07Oxzd0pi3l0pel7BhDOo_ge-Tq6-WnvzoXF4UHXN1A-x439tbgMe1OGUblTc9hTlXLsL8sJ5-X4J9KqmQE2xwjeXJUPmy4YgNxpidGL3RTrm0H9lGyfZ_U0pyf4JhhSJFtzx_Bgf9L98-b0X1jgyRSenLI6oJ1fXaKGl6tDW5kpJnThqD_c2dw9cjG3uPOcG7RKWGO8zDRaIJ4c6FEU48h1Z5WrqXwLQ3Sc9olI_OE-Enw1rWpklhuJYZt214P-mY3NS4cto142degZZ5Tk8oD0-oDauN7VkF6fin1fKkf_M6UM9zTkBDbC_hbVhpijHEaN5El-70Em1EijInFplsw4vKHZpmBA9MfqytZhylMSB892xJeXwUMN40Ry4FnvND8IP_XHm-PRwNwtGruxi_g_mvm_18d7C38xoecVqME5YcLUMLfcC9QTV1UbwNQfMXGFYbRA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+for+MR+Image+Reconstruction%3A+An+Overview+for+Clinicians&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Lin%2C+Dana+J.&rft.au=Johnson%2C+Patricia+M.&rft.au=Knoll%2C+Florian&rft.au=Lui%2C+Yvonne+W.&rft.date=2021-04-01&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=53&rft.issue=4&rft.spage=1015&rft.epage=1028&rft_id=info:doi/10.1002%2Fjmri.27078&rft_id=info%3Apmid%2F32048372&rft.externalDocID=PMC7423636 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |