Artificial Intelligence for MR Image Reconstruction: An Overview for Clinicians

Artificial intelligence (AI) shows tremendous promise in the field of medical imaging, with recent breakthroughs applying deep‐learning models for data acquisition, classification problems, segmentation, image synthesis, and image reconstruction. With an eye towards clinical applications, we summari...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 53; no. 4; pp. 1015 - 1028
Main Authors Lin, Dana J., Johnson, Patricia M., Knoll, Florian, Lui, Yvonne W.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.04.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Artificial intelligence (AI) shows tremendous promise in the field of medical imaging, with recent breakthroughs applying deep‐learning models for data acquisition, classification problems, segmentation, image synthesis, and image reconstruction. With an eye towards clinical applications, we summarize the active field of deep‐learning‐based MR image reconstruction. We review the basic concepts of how deep‐learning algorithms aid in the transformation of raw k‐space data to image data, and specifically examine accelerated imaging and artifact suppression. Recent efforts in these areas show that deep‐learning‐based algorithms can match and, in some cases, eclipse conventional reconstruction methods in terms of image quality and computational efficiency across a host of clinical imaging applications, including musculoskeletal, abdominal, cardiac, and brain imaging. This article is an introductory overview aimed at clinical radiologists with no experience in deep‐learning‐based MR image reconstruction and should enable them to understand the basic concepts and current clinical applications of this rapidly growing area of research across multiple organ systems.
AbstractList Artificial intelligence (AI) shows tremendous promise in the field of medical imaging, with recent breakthroughs applying deep-learning models for data acquisition, classification problems, segmentation, image synthesis, and image reconstruction. With an eye towards clinical applications, we summarize the active field of deep-learning-based MR image reconstruction. We review the basic concepts of how deep-learning algorithms aid in the transformation of raw k-space data to image data, and specifically examine accelerated imaging and artifact suppression. Recent efforts in these areas show that deep-learning-based algorithms can match and, in some cases, eclipse conventional reconstruction methods in terms of image quality and computational efficiency across a host of clinical imaging applications, including musculoskeletal, abdominal, cardiac, and brain imaging. This article is an introductory overview aimed at clinical radiologists with no experience in deep-learning-based MR image reconstruction and should enable them to understand the basic concepts and current clinical applications of this rapidly growing area of research across multiple organ systems.
Artificial intelligence (AI) shows tremendous promise in the field of medical imaging with recent breakthroughs applying deep learning models for data acquisition, classification problems, segmentation, image synthesis and image reconstruction. With an eye towards clinical applications, we summarize the active field of deep learning-based MR image reconstruction. We will review the basic concepts of how deep learning algorithms aid in the transformation of raw k-space data to image data and specifically examine accelerated imaging and artifact suppression. Recent efforts in these areas show that deep learning-based algorithms can match and, in some cases, eclipse conventional reconstruction methods in terms of image quality and computational efficiency across a host of clinical imaging applications including musculoskeletal, abdominal, cardiac, and brain imaging. This article is an introductory overview aimed at clinical radiologists with no experience in deep learning-based MR image reconstruction and should enable them to understand the basic concepts and current clinical applications of this rapidly growing area of research across multiple organ systems.
Artificial intelligence (AI) shows tremendous promise in the field of medical imaging, with recent breakthroughs applying deep‐learning models for data acquisition, classification problems, segmentation, image synthesis, and image reconstruction. With an eye towards clinical applications, we summarize the active field of deep‐learning‐based MR image reconstruction. We review the basic concepts of how deep‐learning algorithms aid in the transformation of raw k‐ space data to image data, and specifically examine accelerated imaging and artifact suppression. Recent efforts in these areas show that deep‐learning‐based algorithms can match and, in some cases, eclipse conventional reconstruction methods in terms of image quality and computational efficiency across a host of clinical imaging applications, including musculoskeletal, abdominal, cardiac, and brain imaging. This article is an introductory overview aimed at clinical radiologists with no experience in deep‐learning‐based MR image reconstruction and should enable them to understand the basic concepts and current clinical applications of this rapidly growing area of research across multiple organ systems.
Artificial intelligence (AI) shows tremendous promise in the field of medical imaging, with recent breakthroughs applying deep-learning models for data acquisition, classification problems, segmentation, image synthesis, and image reconstruction. With an eye towards clinical applications, we summarize the active field of deep-learning-based MR image reconstruction. We review the basic concepts of how deep-learning algorithms aid in the transformation of raw k-space data to image data, and specifically examine accelerated imaging and artifact suppression. Recent efforts in these areas show that deep-learning-based algorithms can match and, in some cases, eclipse conventional reconstruction methods in terms of image quality and computational efficiency across a host of clinical imaging applications, including musculoskeletal, abdominal, cardiac, and brain imaging. This article is an introductory overview aimed at clinical radiologists with no experience in deep-learning-based MR image reconstruction and should enable them to understand the basic concepts and current clinical applications of this rapidly growing area of research across multiple organ systems.Artificial intelligence (AI) shows tremendous promise in the field of medical imaging, with recent breakthroughs applying deep-learning models for data acquisition, classification problems, segmentation, image synthesis, and image reconstruction. With an eye towards clinical applications, we summarize the active field of deep-learning-based MR image reconstruction. We review the basic concepts of how deep-learning algorithms aid in the transformation of raw k-space data to image data, and specifically examine accelerated imaging and artifact suppression. Recent efforts in these areas show that deep-learning-based algorithms can match and, in some cases, eclipse conventional reconstruction methods in terms of image quality and computational efficiency across a host of clinical imaging applications, including musculoskeletal, abdominal, cardiac, and brain imaging. This article is an introductory overview aimed at clinical radiologists with no experience in deep-learning-based MR image reconstruction and should enable them to understand the basic concepts and current clinical applications of this rapidly growing area of research across multiple organ systems.
Author Knoll, Florian
Lin, Dana J.
Johnson, Patricia M.
Lui, Yvonne W.
AuthorAffiliation 1 Department of Radiology, NYU School of Medicine / NYU Langone Health
2 New York University School of Medicine, Center for Biomedical Imaging
AuthorAffiliation_xml – name: 1 Department of Radiology, NYU School of Medicine / NYU Langone Health
– name: 2 New York University School of Medicine, Center for Biomedical Imaging
Author_xml – sequence: 1
  givenname: Dana J.
  surname: Lin
  fullname: Lin, Dana J.
  organization: NYU School of Medicine/NYU Langone Health
– sequence: 2
  givenname: Patricia M.
  surname: Johnson
  fullname: Johnson, Patricia M.
  organization: New York University School of Medicine
– sequence: 3
  givenname: Florian
  surname: Knoll
  fullname: Knoll, Florian
  organization: New York University School of Medicine
– sequence: 4
  givenname: Yvonne W.
  orcidid: 0000-0002-9984-9164
  surname: Lui
  fullname: Lui, Yvonne W.
  email: yvonne.lui@nyulangone.org
  organization: NYU School of Medicine/NYU Langone Health
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32048372$$D View this record in MEDLINE/PubMed
BookMark eNp9kd1rFDEUxYNUbLv64h8gA76IMDW5mXysD8Ky-LHSsrDoc0jTO2uWmaQmM1v635vp1qJFJA8J5HcO59x7So5CDEjIS0bPGKXwbtcnfwaKKv2EnDABUIPQ8qi8qeA101Qdk9Ocd5TS-bwRz8gxB9poruCErBdp8K133nbVKgzYdX6LwWHVxlRdbKpVb7dYbdDFkIc0usHH8L5ahGq9x7T3eHMHLjsfJo-Qn5Onre0yvri_Z-T7p4_fll_q8_Xn1XJxXjvBGl1rKHlb65R0cwFyrqQEjdI5BRoQqZZXrG0brVtslHCArJGXjeVCaOCOI5-RDwff6_GyxyuHYUi2M9fJ9zbdmmi9-fsn-B9mG_dGNcBlOTPy5t4gxZ8j5sH0PrvS3waMYzbARcME43pCXz9Cd3FModQzICjTUkMxnZFXfyZ6iPJ71gV4ewBcijknbB8QRs20SDMt0twtssD0Eez8YKfplza--7eEHSQ3vsPb_5ibrxeb1UHzC9oTr2s
CitedBy_id crossref_primary_10_1007_s10334_023_01127_6
crossref_primary_10_1038_s41598_024_71893_3
crossref_primary_10_1007_s11604_025_01756_y
crossref_primary_10_3348_jksr_2022_0156
crossref_primary_10_1148_radiol_212922
crossref_primary_10_1148_rg_220133
crossref_primary_10_1016_j_neucom_2022_10_061
crossref_primary_10_12998_wjcc_v11_i7_1477
crossref_primary_10_1002_mrm_29033
crossref_primary_10_1038_s41598_024_79348_5
crossref_primary_10_1097_RCT_0000000000001556
crossref_primary_10_1002_gamm_202470014
crossref_primary_10_1016_j_bspc_2022_103610
crossref_primary_10_3348_kjr_2024_0653
crossref_primary_10_2214_AJR_23_29933
crossref_primary_10_3390_diagnostics11081484
crossref_primary_10_1007_s10278_023_00816_x
crossref_primary_10_1080_17476348_2023_2241355
crossref_primary_10_13104_imri_2022_1102
crossref_primary_10_1016_j_ejrad_2022_110648
crossref_primary_10_1109_TMI_2023_3323215
crossref_primary_10_1186_s12880_023_01157_5
crossref_primary_10_6009_jjrt_2023_2260
crossref_primary_10_1007_s12194_024_00832_8
crossref_primary_10_1016_j_mri_2024_03_022
crossref_primary_10_1016_j_commatsci_2024_112846
crossref_primary_10_1002_mrm_29261
crossref_primary_10_1007_s00381_023_06041_9
crossref_primary_10_1097_RLI_0000000000000928
crossref_primary_10_1016_j_compag_2023_108051
crossref_primary_10_1097_01_CDR_0001007292_00100_cc
crossref_primary_10_1007_s11547_024_01947_z
crossref_primary_10_1007_s00247_021_05086_9
crossref_primary_10_1007_s10489_021_02604_y
crossref_primary_10_1155_2022_3688797
crossref_primary_10_3390_tomography9050152
crossref_primary_10_3390_s23063062
crossref_primary_10_1002_jmri_29038
crossref_primary_10_3390_bioengineering10010022
crossref_primary_10_1111_jon_13187
crossref_primary_10_1016_j_acra_2022_07_018
crossref_primary_10_3390_cancers15092573
crossref_primary_10_1007_s12312_024_01374_1
crossref_primary_10_1186_s41747_025_00562_5
crossref_primary_10_1055_a_1800_8789
crossref_primary_10_1002_jmri_28462
crossref_primary_10_1016_j_acra_2022_06_003
crossref_primary_10_1148_radiol_221822
crossref_primary_10_1038_s41467_021_27317_1
crossref_primary_10_1063_5_0152815
crossref_primary_10_14245_ns_2448388_194
crossref_primary_10_1259_dmfr_20230024
crossref_primary_10_1007_s00256_024_04723_2
crossref_primary_10_1007_s10554_024_03234_4
crossref_primary_10_2463_mrms_mp_2024_0025
crossref_primary_10_1016_j_semradonc_2023_10_008
crossref_primary_10_3390_bioengineering10121373
crossref_primary_10_1002_mrm_28911
crossref_primary_10_1016_j_canrad_2023_11_004
crossref_primary_10_1016_j_media_2024_103398
crossref_primary_10_1002_jmri_28573
crossref_primary_10_1016_j_jocmr_2025_101873
crossref_primary_10_1002_jmri_27485
crossref_primary_10_3390_diagnostics15060689
crossref_primary_10_1038_s41598_020_70551_8
crossref_primary_10_1053_j_ro_2022_10_002
crossref_primary_10_1111_1754_9485_13276
crossref_primary_10_1007_s10334_023_01129_4
crossref_primary_10_1007_s11548_021_02399_w
crossref_primary_10_1177_14727978251319398
crossref_primary_10_1007_s00247_022_05529_x
crossref_primary_10_1007_s11936_020_00828_8
crossref_primary_10_1053_j_ro_2023_02_003
crossref_primary_10_1002_jmri_29294
crossref_primary_10_1002_mp_15936
crossref_primary_10_1148_rycan_230077
crossref_primary_10_1007_s10334_024_01173_8
crossref_primary_10_1055_s_0041_1730401
crossref_primary_10_1016_j_metrad_2024_100124
crossref_primary_10_1186_s12938_024_01281_5
crossref_primary_10_1177_02841851231192786
crossref_primary_10_3390_bioengineering10091012
crossref_primary_10_1016_j_radcr_2024_07_135
crossref_primary_10_1088_1402_4896_ad203c
crossref_primary_10_1109_TMI_2023_3234968
crossref_primary_10_31159_ksmrt_2023_33_4_41
crossref_primary_10_1259_bjr_20210527
crossref_primary_10_3390_cancers16101827
crossref_primary_10_1002_mrm_29625
crossref_primary_10_1016_S1470_2045_24_00036_6
crossref_primary_10_1097_RLI_0000000000000847
crossref_primary_10_1055_a_1718_4128
crossref_primary_10_1097_RLI_0000000000001114
crossref_primary_10_1016_j_mri_2024_02_006
crossref_primary_10_3390_diagnostics13172747
crossref_primary_10_1002_mp_16256
crossref_primary_10_1002_ird3_108
crossref_primary_10_1038_s41598_023_41545_z
crossref_primary_10_1093_eurheartj_ehad775
crossref_primary_10_1088_1361_6560_acc0cd
crossref_primary_10_1097_BSD_0000000000001677
crossref_primary_10_1148_ryct_230177
crossref_primary_10_1186_s12880_024_01229_0
crossref_primary_10_1002_jmri_28663
crossref_primary_10_1016_j_crad_2023_12_018
crossref_primary_10_1038_s41598_025_85209_6
crossref_primary_10_1016_j_nic_2020_08_008
crossref_primary_10_1093_bjrai_ubae013
crossref_primary_10_3389_fcvm_2021_682924
crossref_primary_10_1038_s44222_023_00086_w
crossref_primary_10_1002_mrm_29642
crossref_primary_10_1177_20584601211023939
crossref_primary_10_2463_mrms_mp_2021_0103
crossref_primary_10_3390_diagnostics14040388
crossref_primary_10_1002_jmri_28899
crossref_primary_10_1002_jmri_27848
crossref_primary_10_1016_j_ejro_2024_100588
crossref_primary_10_1016_j_ijcard_2021_09_012
crossref_primary_10_3390_ijms24043151
crossref_primary_10_1016_j_acra_2025_01_004
crossref_primary_10_1016_j_crad_2022_08_127
crossref_primary_10_1016_j_jmir_2022_04_048
crossref_primary_10_1136_bcr_2023_259006
crossref_primary_10_1016_j_clon_2021_11_008
crossref_primary_10_1007_s00261_024_04599_9
crossref_primary_10_1109_TVCG_2022_3219248
crossref_primary_10_1148_radiol_240516
crossref_primary_10_1162_imag_a_00313
crossref_primary_10_47102_annals_acadmedsg_202360
crossref_primary_10_1007_s00330_023_09742_6
crossref_primary_10_1055_a_2157_6670
crossref_primary_10_2463_mrms_rev_2023_0047
Cites_doi 10.1002/mrm.27771
10.1109/TMI.2018.2820120
10.1371/journal.pone.0223141
10.1109/TMI.2018.2858752
10.1148/radiol.2018180445
10.1002/mrm.1910380414
10.1109/TMI.2018.2833635
10.1002/mrm.21391
10.1016/j.media.2019.04.009
10.1002/mrm.27178
10.3174/ajnr.A5543
10.1088/1361-6560/ab0606
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1148/radiol.2017170700
10.1109/TMI.2018.2865356
10.1002/jmri.26534
10.1016/j.zemedi.2018.12.003
10.1109/TMI.2017.2760978
10.1109/ISBI.2016.7493320
10.1002/mrm.10171
10.1002/mrm.27420
10.1102/1470-7330.2005.0018
10.1002/mrm.27896
10.1109/TIP.2003.819861
10.1118/1.596065
10.4236/ojmi.2017.74018
10.1002/mrm.27106
10.1109/CVPR.2009.5206848
10.1002/mrm.27201
10.3389/fneur.2019.00869
10.1109/TMI.2018.2887072
10.2967/jnumed.117.198051
10.1109/TMI.2016.2551324
10.1088/1361-6560/aac71a
10.1097/00005382-199001000-00011
10.1002/mrm.27134
10.1148/rg.2017170077
10.4236/ojmi.2017.73010
10.1088/1361-6560/aac763
10.1148/radiol.2018180547
10.1016/j.acra.2018.02.018
10.1007/s00259-019-04374-9
10.1109/TMI.2017.2785879
10.1109/TMI.2018.2863670
10.1038/nature25988
10.1002/mrm.27355
10.1088/0031-9155/60/20/8047
10.1038/nature14539
10.1109/TPAMI.2015.2439281
10.1002/mrm.26977
10.1002/mp.12122
10.1038/s41568-018-0016-5
10.1007/s11604-018-0796-2
ContentType Journal Article
Copyright 2020 International Society for Magnetic Resonance in Medicine
2020 International Society for Magnetic Resonance in Medicine.
2021 International Society for Magnetic Resonance in Medicine
Copyright_xml – notice: 2020 International Society for Magnetic Resonance in Medicine
– notice: 2020 International Society for Magnetic Resonance in Medicine.
– notice: 2021 International Society for Magnetic Resonance in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
5PM
DOI 10.1002/jmri.27078
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

ProQuest Health & Medical Complete (Alumni)
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 1028
ExternalDocumentID PMC7423636
32048372
10_1002_jmri_27078
JMRI27078
Genre reviewArticle
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  funderid: P41EB017183; R01EB023532; R21EB027241
– fundername: NIBIB NIH HHS
  grantid: R21 EB027241
– fundername: NIBIB NIH HHS
  grantid: P41 EB027061
– fundername: NIH HHS
  grantid: P41EB017183
– fundername: NIBIB NIH HHS
  grantid: R01 EB024532
– fundername: NIBIB NIH HHS
  grantid: P41 EB017183
– fundername: NIBIB NIH HHS
  grantid: P41 EB015894
– fundername: NHLBI NIH HHS
  grantid: R00 HL111410
– fundername: NIH HHS
  grantid: R21EB027241
– fundername: NIH HHS
  grantid: R01EB023532
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c5148-82270fac76c9526976628e6cc7282ee086d1ff488fe475c2e146b4a355823c3e3
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Thu Aug 21 14:33:12 EDT 2025
Fri Jul 11 11:32:38 EDT 2025
Fri Jul 25 12:09:46 EDT 2025
Mon Jul 21 06:01:19 EDT 2025
Tue Jul 01 03:56:44 EDT 2025
Thu Apr 24 23:10:56 EDT 2025
Wed Jan 22 16:29:51 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords deep learning
MRI
image reconstruction
Language English
License 2020 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5148-82270fac76c9526976628e6cc7282ee086d1ff488fe475c2e146b4a355823c3e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-9984-9164
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7423636
PMID 32048372
PQID 2501868242
PQPubID 1006400
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7423636
proquest_miscellaneous_2354151386
proquest_journals_2501868242
pubmed_primary_32048372
crossref_primary_10_1002_jmri_27078
crossref_citationtrail_10_1002_jmri_27078
wiley_primary_10_1002_jmri_27078_JMRI27078
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2021
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Nashville
PublicationSubtitle JMRI
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J Magn Reson Imaging
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 1987; 14
2018; 286
2019; 290
2015; 521
2019; 55
2019; 10
2018; 289
2017; 44
2019; 37
2019; 14
2009
2018; 80
2019; 38
2018; 63
1999; 42
2017; 07
2016; 38
2016; 35
2007; 58
2018; 25
2018; 18
2002; 47
2018; 39
2019; 82
2019; 81
2018; 5
2017; 37
2015; 60
2019; 64
2019; 46
2018; 555
2004; 13
2005; 5
2019; 49
2019
1985
2018
2019; 29
1997; 38
2016
2018; 38
2018; 37
2018; 59
1990; 5
2018; 79
Liu F (e_1_2_11_51_1) 2018; 5
e_1_2_11_55_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
Lecun Y (e_1_2_11_19_1) 1985
e_1_2_11_60_1
e_1_2_11_20_1
e_1_2_11_45_1
Fuin N (e_1_2_11_33_1) 2019
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_17_1
e_1_2_11_15_1
Zhang C (e_1_2_11_62_1) 2019
e_1_2_11_38_1
Sun J (e_1_2_11_9_1) 2016
e_1_2_11_50_1
e_1_2_11_10_1
Chen F (e_1_2_11_32_1) 2019
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_58_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_12_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
Chaudhari AS (e_1_2_11_59_1) 2019
e_1_2_11_61_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_46_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
Kobler E (e_1_2_11_54_1) 2018
References_xml – year: 1985
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– volume: 80
  start-page: 2139
  issue: 5
  year: 2018
  end-page: 2154
  article-title: Super‐resolution musculoskeletal MRI using deep learning
  publication-title: Magn Reson Med
– start-page: 10
  year: 2016
  end-page: 18
  article-title: ADMM‐net for compressive sensing MRI
  publication-title: Adv Neural Inf Process Syst
– volume: 5
  issue: 1
  year: 2018
  article-title: A deep learning approach for (18)F‐FDG PET attenuation correction
  publication-title: Eur J Nucl Med Mol Imaging Phys
– volume: 46
  start-page: 2700
  issue: 13
  year: 2019
  end-page: 2707
  article-title: Next generation research applications for hybrid PET/MR and PET/CT imaging using deep learning
  publication-title: Eur J Nucl Med Mol Imaging
– volume: 49
  start-page: 939
  issue: 4
  year: 2019
  end-page: 954
  article-title: Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI
  publication-title: J Magn Reson Imaging
– volume: 44
  start-page: 902
  issue: 3
  year: 2017
  end-page: 913
  article-title: Hybrid ZTE/Dixon MR‐based attenuation correction for quantitative uptake estimation of pelvic lesions in PET/MRI
  publication-title: Med Phys
– volume: 25
  start-page: 1472
  issue: 11
  year: 2018
  end-page: 1480
  article-title: Deep learning in radiology
  publication-title: Acad Radiol
– start-page: 248
  year: 2009
  end-page: 255
– volume: 82
  start-page: 2299
  issue: 6
  year: 2019
  end-page: 2313
  article-title: K‐space deep learning for reference‐free EPI ghost correction
  publication-title: Magn Reson Med
– volume: 35
  start-page: 1344
  issue: 5
  year: 2016
  end-page: 1351
  article-title: Q‐space deep learning: Twelve‐fold shorter and model‐free diffusion MRI scans
  publication-title: IEEE Trans Med Imaging
– volume: 82
  start-page: 1452
  issue: 4
  year: 2019
  end-page: 1461
  article-title: Network accelerated motion estimation and reduction (NAMER): Convolutional neural network guided retrospective motion correction using a separable motion model
  publication-title: Magn Reson Med
– volume: 38
  start-page: 1633
  issue: 7
  year: 2019
  end-page: 1642
  article-title: MR image reconstruction using deep density priors
  publication-title: IEEE Trans Med Imaging
– volume: 81
  start-page: 439
  issue: 1
  year: 2019
  end-page: 453
  article-title: Scan‐specific robust artificial‐neural‐networks for space interpolation (RAKI) reconstruction: Database‐free deep learning for fast imaging
  publication-title: Magn Reson Med
– volume: 59
  start-page: 852
  issue: 5
  year: 2018
  end-page: 858
  article-title: Zero‐echo‐time and Dixon deep pseudo‐CT (ZeDD CT): Direct generation of pseudo‐CT images for pelvic PET/MRI attenuation correction using deep convolutional neural networks with multiparametric MRI
  publication-title: J Nucl Med
– volume: 79
  start-page: 3055
  issue: 6
  year: 2018
  end-page: 3071
  article-title: Learning a variational network for reconstruction of accelerated MRI data
  publication-title: Magn Reson Med
– volume: 5
  start-page: 67
  issue: 1
  year: 1990
  end-page: 76
  article-title: Computer‐aided diagnosis in chest radiology
  publication-title: J Thorac Imaging
– year: 2019
  article-title: Data‐driven self‐calibration and reconstruction for non‐Cartesian wave‐encoded single‐shot fast spin echo using deep learning
  publication-title: J Magn Reson Imaging
– start-page: 6687
  year: 2018
  end-page: 6691
– volume: 80
  start-page: 2188
  issue: 5
  year: 2018
  end-page: 2201
  article-title: KIKI‐net: Cross‐domain convolutional neural networks for reconstructing undersampled magnetic resonance images
  publication-title: Magn Reson Med
– volume: 60
  start-page: 8047
  issue: 20
  year: 2015
  end-page: 8065
  article-title: Region specific optimization of continuous linear attenuation coefficients based on UTE (RESOLUTE): Application to PET/MR brain imaging
  publication-title: Phys Med Biol
– volume: 80
  start-page: 1440
  issue: 4
  year: 2018
  end-page: 1451
  article-title: Zero TE‐based pseudo‐CT image conversion in the head and its application in PET/MR attenuation correction and MR‐guided radiation therapy planning
  publication-title: Magn Reson Med
– volume: 555
  start-page: 487
  issue: 7697
  year: 2018
  end-page: 492
  article-title: Image reconstruction by domain‐transform manifold learning
  publication-title: Nature
– year: 2019
– volume: 58
  start-page: 1182
  issue: 6
  year: 2007
  end-page: 1195
  article-title: Sparse MRI: The application of compressed sensing for rapid MR imaging
  publication-title: Magn Reson Med
– volume: 18
  start-page: 500
  issue: 8
  year: 2018
  end-page: 510
  article-title: Artificial intelligence in radiology
  publication-title: Nat Rev Cancer
– volume: 14
  start-page: 538
  issue: 4
  year: 1987
  end-page: 548
  article-title: Image feature analysis and computer‐aided diagnosis in digital radiography. I. Automated detection of microcalcifications in mammography
  publication-title: Med Phys
– volume: 37
  start-page: 1310
  issue: 6
  year: 2018
  end-page: 1321
  article-title: DAGAN: Deep de‐aliasing generative adversarial networks for fast compressed sensing MRI reconstruction
  publication-title: IEEE Trans Med Imaging
– volume: 07
  start-page: 100
  issue: 03
  year: 2017
  end-page: 111
  article-title: Performance evaluation of super‐resolution methods using deep‐learning and sparse‐coding for improving the image quality of magnified images in chest radiographs
  publication-title: Open J Med Imaging
– volume: 80
  start-page: 1189
  issue: 3
  year: 2018
  end-page: 1205
  article-title: Deep learning with domain adaptation for accelerated projection‐reconstruction MR
  publication-title: Magn Reson Med
– volume: 14
  issue: 10
  year: 2019
  article-title: Attenuation correction using 3D deep convolutional neural network for brain 18F‐FDG PET/MR: Comparison with atlas, ZTE and CT based attenuation correction
  publication-title: PLoS One
– volume: 29
  start-page: 86
  issue: 2
  year: 2019
  end-page: 101
  article-title: A gentle introduction to deep learning in medical image processing
  publication-title: Z Med Phys
– volume: 55
  start-page: 136
  year: 2019
  end-page: 147
  article-title: Automatic CNN‐based detection of cardiac MR motion artefacts using k space data augmentation and curriculum learning
  publication-title: Med Image Anal
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  end-page: 612
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Trans Image Process
– volume: 47
  start-page: 1202
  issue: 6
  year: 2002
  end-page: 1210
  article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA)
  publication-title: Magn Reson Med
– volume: 07
  start-page: 180
  issue: 04
  year: 2017
  end-page: 195
  article-title: Super‐resolution imaging of mammograms based on the super‐resolution convolutional neural network
  publication-title: Open J Med Imaging
– volume: 38
  start-page: 295
  issue: 2
  year: 2016
  end-page: 307
  article-title: Image super‐resolution using deep convolutional networks
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 38
  start-page: 591
  issue: 4
  year: 1997
  end-page: 603
  article-title: Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays
  publication-title: Magn Reson Med
– volume: 63
  issue: 12
  year: 2018
  article-title: Attenuation correction for brain PET imaging using deep neural network based on Dixon and ZTE MR images
  publication-title: Phys Med Biol
– volume: 38
  start-page: 280
  issue: 1
  year: 2018
  end-page: 290
  article-title: Convolutional recurrent neural networks for dynamic MR image reconstruction
  publication-title: IEEE Trans Med Imaging
– volume: 63
  issue: 13
  year: 2018
  article-title: Deep learning for undersampled MRI reconstruction
  publication-title: Phys Med Biol
– volume: 5
  start-page: 17
  year: 2005
  end-page: 19
  article-title: Computer aided detection (CAD): An overview
  publication-title: Cancer Imaging
– volume: 38
  start-page: 394
  issue: 2
  year: 2019
  end-page: 405
  article-title: MoDL: Model‐based deep learning architecture for inverse problems
  publication-title: IEEE Trans Med Imaging
– volume: 37
  start-page: 491
  issue: 2
  year: 2018
  end-page: 503
  article-title: A deep cascade of convolutional neural networks for dynamic MR image reconstruction
  publication-title: IEEE Trans Med Imaging
– volume: 64
  issue: 7
  year: 2019
  article-title: Joint correction of attenuation and scatter in image space using deep convolutional neural networks for dedicated brain (18)F‐FDG PET
  publication-title: Phys Med Biol
– volume: 37
  start-page: 1488
  issue: 6
  year: 2018
  end-page: 1497
  article-title: Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss
  publication-title: IEEE Trans Med Imaging
– volume: 37
  start-page: 1289
  issue: 6
  year: 2018
  end-page: 1296
  article-title: Image reconstruction is a new frontier of machine learning
  publication-title: IEEE Trans Med Imaging
– volume: 289
  start-page: 366
  issue: 2
  year: 2018
  end-page: 373
  article-title: Variable‐density single‐shot fast spin‐echo MRI with deep learning reconstruction by using variational networks
  publication-title: Radiology
– volume: 39
  start-page: 1776
  issue: 10
  year: 2018
  end-page: 1784
  article-title: Deep learning in neuroradiology
  publication-title: AJNR Am J Neuroradiol
– volume: 81
  start-page: 116
  issue: 1
  year: 2019
  end-page: 128
  article-title: Assessment of the generalization of learned image reconstruction and the potential for transfer learning
  publication-title: Magn Reson Med
– start-page: 1636
  year: 2019
  end-page: 1640
– volume: 290
  start-page: 590
  issue: 3
  year: 2019
  end-page: 606
  article-title: Convolutional neural networks for radiologic images: A radiologist's guide
  publication-title: Radiology
– volume: 10
  start-page: 869
  year: 2019
  article-title: Applications of deep learning to neuro‐imaging techniques
  publication-title: Front Neurol
– volume: 37
  start-page: 73
  issue: 1
  year: 2019
  end-page: 80
  article-title: Improvement of image quality at CT and MRI using deep learning
  publication-title: Jpn J Radiol
– volume: 42
  start-page: 952
  issue: 5
  year: 1999
  end-page: 962
  article-title: SENSE: Sensitivity encoding for fast MRI
  publication-title: Magn Reson Med
– volume: 37
  start-page: 2113
  issue: 7
  year: 2017
  end-page: 2131
  article-title: Deep learning: A primer for radiologists
  publication-title: Radiographics
– volume: 38
  start-page: 167
  issue: 1
  year: 2019
  end-page: 179
  article-title: Deep generative adversarial neural networks for compressive sensing MRI
  publication-title: IEEE Trans Med Imaging
– start-page: 514
  year: 2016
  end-page: 517
– volume: 286
  start-page: 676
  issue: 2
  year: 2018
  end-page: 684
  article-title: Deep learning MR imaging‐based attenuation correction for PET/MR imaging
  publication-title: Radiology
– ident: e_1_2_11_41_1
  doi: 10.1002/mrm.27771
– ident: e_1_2_11_35_1
  doi: 10.1109/TMI.2018.2820120
– ident: e_1_2_11_48_1
  doi: 10.1371/journal.pone.0223141
– ident: e_1_2_11_14_1
  doi: 10.1109/TMI.2018.2858752
– ident: e_1_2_11_11_1
  doi: 10.1148/radiol.2018180445
– ident: e_1_2_11_27_1
  doi: 10.1002/mrm.1910380414
– ident: e_1_2_11_8_1
  doi: 10.1109/TMI.2018.2833635
– ident: e_1_2_11_28_1
  doi: 10.1002/mrm.21391
– ident: e_1_2_11_40_1
  doi: 10.1016/j.media.2019.04.009
– ident: e_1_2_11_58_1
  doi: 10.1002/mrm.27178
– ident: e_1_2_11_7_1
  doi: 10.3174/ajnr.A5543
– ident: e_1_2_11_52_1
  doi: 10.1088/1361-6560/ab0606
– ident: e_1_2_11_26_1
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– ident: e_1_2_11_50_1
  doi: 10.1148/radiol.2017170700
– ident: e_1_2_11_30_1
  doi: 10.1109/TMI.2018.2865356
– start-page: 10
  year: 2016
  ident: e_1_2_11_9_1
  article-title: ADMM‐net for compressive sensing MRI
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_2_11_17_1
  doi: 10.1002/jmri.26534
– ident: e_1_2_11_20_1
  doi: 10.1016/j.zemedi.2018.12.003
– ident: e_1_2_11_38_1
  doi: 10.1109/TMI.2017.2760978
– ident: e_1_2_11_10_1
  doi: 10.1109/ISBI.2016.7493320
– ident: e_1_2_11_25_1
  doi: 10.1002/mrm.10171
– ident: e_1_2_11_34_1
  doi: 10.1002/mrm.27420
– ident: e_1_2_11_4_1
  doi: 10.1102/1470-7330.2005.0018
– ident: e_1_2_11_42_1
  doi: 10.1002/mrm.27896
– ident: e_1_2_11_61_1
  doi: 10.1109/TIP.2003.819861
– ident: e_1_2_11_2_1
  doi: 10.1118/1.596065
– ident: e_1_2_11_57_1
  doi: 10.4236/ojmi.2017.74018
– volume-title: Proceedings of Cognitiva
  year: 1985
  ident: e_1_2_11_19_1
– year: 2019
  ident: e_1_2_11_32_1
  article-title: Data‐driven self‐calibration and reconstruction for non‐Cartesian wave‐encoded single‐shot fast spin echo using deep learning
  publication-title: J Magn Reson Imaging
– ident: e_1_2_11_60_1
  doi: 10.1002/mrm.27106
– ident: e_1_2_11_53_1
  doi: 10.1109/CVPR.2009.5206848
– ident: e_1_2_11_13_1
  doi: 10.1002/mrm.27201
– ident: e_1_2_11_21_1
  doi: 10.3389/fneur.2019.00869
– ident: e_1_2_11_31_1
  doi: 10.1109/TMI.2018.2887072
– ident: e_1_2_11_44_1
  doi: 10.2967/jnumed.117.198051
– ident: e_1_2_11_22_1
  doi: 10.1109/TMI.2016.2551324
– ident: e_1_2_11_23_1
  doi: 10.1088/1361-6560/aac71a
– ident: e_1_2_11_3_1
  doi: 10.1097/00005382-199001000-00011
– ident: e_1_2_11_43_1
  doi: 10.1002/mrm.27134
– start-page: 1636
  volume-title: 52nd Asilomar conference on signals, systems and computers
  year: 2019
  ident: e_1_2_11_62_1
– ident: e_1_2_11_18_1
  doi: 10.1148/rg.2017170077
– ident: e_1_2_11_56_1
  doi: 10.4236/ojmi.2017.73010
– ident: e_1_2_11_49_1
  doi: 10.1088/1361-6560/aac763
– volume-title: A variational neural network for accelerating free‐breathing whole‐heart coronary MR angiography
  year: 2019
  ident: e_1_2_11_33_1
– ident: e_1_2_11_16_1
  doi: 10.1148/radiol.2018180547
– ident: e_1_2_11_6_1
  doi: 10.1016/j.acra.2018.02.018
– ident: e_1_2_11_47_1
  doi: 10.1007/s00259-019-04374-9
– ident: e_1_2_11_36_1
  doi: 10.1109/TMI.2017.2785879
– ident: e_1_2_11_39_1
  doi: 10.1109/TMI.2018.2863670
– ident: e_1_2_11_37_1
  doi: 10.1038/nature25988
– volume: 5
  start-page: 24
  issue: 1
  year: 2018
  ident: e_1_2_11_51_1
  article-title: A deep learning approach for (18)F‐FDG PET attenuation correction
  publication-title: Eur J Nucl Med Mol Imaging Phys
– start-page: 6687
  volume-title: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
  year: 2018
  ident: e_1_2_11_54_1
– ident: e_1_2_11_12_1
  doi: 10.1002/mrm.27355
– ident: e_1_2_11_46_1
  doi: 10.1088/0031-9155/60/20/8047
– ident: e_1_2_11_15_1
  doi: 10.1038/nature14539
– volume-title: J Magn Reson Imaging
  year: 2019
  ident: e_1_2_11_59_1
– ident: e_1_2_11_55_1
  doi: 10.1109/TPAMI.2015.2439281
– ident: e_1_2_11_29_1
  doi: 10.1002/mrm.26977
– ident: e_1_2_11_45_1
  doi: 10.1002/mp.12122
– ident: e_1_2_11_5_1
  doi: 10.1038/s41568-018-0016-5
– ident: e_1_2_11_24_1
  doi: 10.1007/s11604-018-0796-2
SSID ssj0009945
Score 2.6536345
SecondaryResourceType review_article
Snippet Artificial intelligence (AI) shows tremendous promise in the field of medical imaging, with recent breakthroughs applying deep‐learning models for data...
Artificial intelligence (AI) shows tremendous promise in the field of medical imaging, with recent breakthroughs applying deep-learning models for data...
Artificial intelligence (AI) shows tremendous promise in the field of medical imaging with recent breakthroughs applying deep learning models for data...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1015
SubjectTerms Algorithms
Artificial Intelligence
Computational neuroscience
Data acquisition
Deep learning
Humans
Image acquisition
Image classification
Image processing
Image Processing, Computer-Assisted
Image quality
Image reconstruction
Image segmentation
Learning algorithms
Machine learning
Magnetic resonance imaging
Medical imaging
MRI
Neuroimaging
Radiography
Therapeutic applications
Title Artificial Intelligence for MR Image Reconstruction: An Overview for Clinicians
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.27078
https://www.ncbi.nlm.nih.gov/pubmed/32048372
https://www.proquest.com/docview/2501868242
https://www.proquest.com/docview/2354151386
https://pubmed.ncbi.nlm.nih.gov/PMC7423636
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fS-QwEMcH8UF8ufPn3eoqkfNFoatN2qQrvogorrAnLAq-HCVNE_xZxXUV_OudSbtdV0U43wqZ9Fdmpt82008A1k3kFE90EiieywD1vwqyzISBE6HLtcl5rukH5-5feXQWHZ_H5xOwO_wXpuRD1B_cKDJ8vqYA11l_awQNvbp9uGxxgtVgAqZiLVJEvRE7qt32KxSjfhBBmGyrmk3Kt0Zdx59GHyTmx0rJtwrWP4IOf8K_4cmXlSfXrcFj1jIv77iO3726GfhRaVO2VzrTLEzYYg6mutXs-zycUEtJnGCdNyhPhsKXdXusc4vJidEL7QhLu8P2CnbyRBnJPnvDkkSKXtlfgLPDg9P9o6BakCEwMX14RDGhtp02Spo2rUyupOSJlcbgcHNr8e0oD53DlOBspGLDLabhLNJEcOfCCCsWYbK4K-xvYNqZqG00qkfrCPCTYK88j6PMcC0TnjdgYzgwqalo5bRoxk1acpZ5Snco9XeoAX9q2_uS0fGpVXM4vmkVp_2UE88QjxfxBqzVzRhhNG2iC3s3QBsRo8oJRSIb8Kt0h_owgnskP_ZWY45SGxC9e7yluLzwFG-aIpcC97np_eCLM0-Pu72O31r6H-NlmOZUgOPLjJowiQNvV1BBPWarPlJeAfKvGHE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fT9swEMdPwKTBC2xjQPk1T9sLSCnETuyUN4RALSMgVSDxFjmOrTEgIMoPib-eOyekdCCk7a2Sz00b3zlf25fPAfw0kVM80UmgeCED1P8qyHMTBk6ErtCm4IWmF5zTQ9k9ifZP49M6N4fehan4EM2GG0WGn68pwGlDemNIDf1zeXPW5kSrGYcPVNLbr6j6Q3pUp-NrFKOCEEGYbKqGTso3hn1Hn0evRObrXMmXGtY_hPZmqkqrA88upNyT8_bdbd42j3-RHf_7_32C6Vqesu3Knz7DmC2_wMe0PoCfhSNqqaATrPeC5slQ-7K0z3qXOD8xWtMOybRbbLtkR_c0KdkHb1jBSNExB1_hZG_3eKcb1DUZAhPT3iPqCbXptFHSdKg4uZKSJ1YagyPOrcUFUhE6h7OCs5GKDbc4E-eRJog7F0ZYMQcT5VVpF4BpZ6KO0SggrSPGT4K9iiKOcsO1THjRgrXnkclMDSynuhkXWYVa5hndoczfoRb8aGyvK0zHm1bLzwOc1aE6yDghDfF6EW_B96YZg4xOTnRpr-7QRsQodEKRyBbMV_7QXEZwT-XH3mrEUxoDAniPtpRnvz3Im07JpcDvXPeO8M4vz_bTfs9_WvwX428w2T1OD7KD3uGvJZjilI_js46WYQKdwK6goLrNV33YPAFesRyM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fT9swEMdPrJPQXjYG-9GNbUbwskkpjZ3Y6bQXNFZRoDBVQ-Jlihz_ELA1oAGbxF-_OydNKUyT4C2Sz3ES352_iZ2PAdZM4hXPdBYpbmWE-l9FRWHiyIvYW20st5p-cB7uya2DZPswPZyDT5N_YSo-RPPBjSIj5GsK8DPr16fQ0JPxr-MOJ1jNA3iYyG5GPr05msKjer2wRTEKCBHFWVc1cFK-Pq07Oxzd0pi3l0pel7BhDOo_ge-Tq6-WnvzoXF4UHXN1A-x439tbgMe1OGUblTc9hTlXLsL8sJ5-X4J9KqmQE2xwjeXJUPmy4YgNxpidGL3RTrm0H9lGyfZ_U0pyf4JhhSJFtzx_Bgf9L98-b0X1jgyRSenLI6oJ1fXaKGl6tDW5kpJnThqD_c2dw9cjG3uPOcG7RKWGO8zDRaIJ4c6FEU48h1Z5WrqXwLQ3Sc9olI_OE-Enw1rWpklhuJYZt214P-mY3NS4cto142degZZ5Tk8oD0-oDauN7VkF6fin1fKkf_M6UM9zTkBDbC_hbVhpijHEaN5El-70Em1EijInFplsw4vKHZpmBA9MfqytZhylMSB892xJeXwUMN40Ry4FnvND8IP_XHm-PRwNwtGruxi_g_mvm_18d7C38xoecVqME5YcLUMLfcC9QTV1UbwNQfMXGFYbRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+for+MR+Image+Reconstruction%3A+An+Overview+for+Clinicians&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Lin%2C+Dana+J.&rft.au=Johnson%2C+Patricia+M.&rft.au=Knoll%2C+Florian&rft.au=Lui%2C+Yvonne+W.&rft.date=2021-04-01&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=53&rft.issue=4&rft.spage=1015&rft.epage=1028&rft_id=info:doi/10.1002%2Fjmri.27078&rft_id=info%3Apmid%2F32048372&rft.externalDocID=PMC7423636
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon