Survivability and fracture resistance of monolithic and multi‐yttria‐layered zirconia crowns as a function of yttria content: A mastication simulation study

Objective To compare four different types of monolithic zirconia crowns in terms of survival rate and fracture resistance after thermocycling and/or thermo‐mechanical loading in a chewing simulator. Methods Partially stabilized zirconia (PSZ) crowns with fiber‐reinforced resin die assemblies (n = 80...

Full description

Saved in:
Bibliographic Details
Published inJournal of esthetic and restorative dentistry Vol. 34; no. 4; pp. 633 - 640
Main Authors Badr, Zaid, Culp, Lee, Duqum, Ibrahim, Lim, Chek Hai, Zhang, Yu, A. Sulaiman, Taiseer
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.06.2022
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN1496-4155
1708-8240
1708-8240
DOI10.1111/jerd.12907

Cover

Abstract Objective To compare four different types of monolithic zirconia crowns in terms of survival rate and fracture resistance after thermocycling and/or thermo‐mechanical loading in a chewing simulator. Methods Partially stabilized zirconia (PSZ) crowns with fiber‐reinforced resin die assemblies (n = 80) were fabricated using: multi‐yttria‐layered 5Y‐PSZ/3Y‐PSZ, multi‐yttria‐layered 5Y‐PSZ/4Y‐PSZ, monolithic 4Y‐PSZ, and monolithic 3Y‐PSZ as control (n = 20). Half of the samples in each group were subjected to thermo‐mechanical loading under 110 N, 1.4 Hz, 1.2 million cycles with simultaneous thermocycling (10,000 cycles, 5–55°C). The other half were subjected to thermocycling alone. The samples were loaded to failure to measure their fracture resistance. The data were analyzed using by two‐way ANOVA and Tukey's HSD post‐hoc test (α = 0.05). Results All specimens survived the aging protocols. The yttria content significantly affected the fracture resistance of the crowns (p < 0.0001). The mean fracture resistance, from highest to lowest: 3Y‐PSZ, 4Y‐PSZ, followed by the two multi‐yttria‐layered systems. The mean difference between the two multi‐yttria‐layered systems were not statistically significant (p = 0.98). The mechanical loading protocol did not affect the mean fracture resistance within each group (p = 0.18). Conclusions Within each group, there was no difference in fracture resistance after thermocycling alone and thermo‐mechanical loading. However, increasing the yttria concentration at the occlusal third of the crown decreased its fracture resistance. Clinical Significance The term “monolithic zirconia” alone without specifying the actual yttria content is misleading. This term represents different materials with different mechanical properties. The yttria content has an inverse relationship with the fracture resistance of zirconia crowns. The fracture resistance of multi‐layer zirconia crowns is determined by the amount of the weaker zirconia phase at the occlusal part of the restoration rather than enforced by the stronger zirconia at the cervical part of the crown.
AbstractList Objective To compare four different types of monolithic zirconia crowns in terms of survival rate and fracture resistance after thermocycling and/or thermo‐mechanical loading in a chewing simulator. Methods Partially stabilized zirconia (PSZ) crowns with fiber‐reinforced resin die assemblies (n = 80) were fabricated using: multi‐yttria‐layered 5Y‐PSZ/3Y‐PSZ, multi‐yttria‐layered 5Y‐PSZ/4Y‐PSZ, monolithic 4Y‐PSZ, and monolithic 3Y‐PSZ as control (n = 20). Half of the samples in each group were subjected to thermo‐mechanical loading under 110 N, 1.4 Hz, 1.2 million cycles with simultaneous thermocycling (10,000 cycles, 5–55°C). The other half were subjected to thermocycling alone. The samples were loaded to failure to measure their fracture resistance. The data were analyzed using by two‐way ANOVA and Tukey's HSD post‐hoc test (α = 0.05). Results All specimens survived the aging protocols. The yttria content significantly affected the fracture resistance of the crowns (p < 0.0001). The mean fracture resistance, from highest to lowest: 3Y‐PSZ, 4Y‐PSZ, followed by the two multi‐yttria‐layered systems. The mean difference between the two multi‐yttria‐layered systems were not statistically significant (p = 0.98). The mechanical loading protocol did not affect the mean fracture resistance within each group (p = 0.18). Conclusions Within each group, there was no difference in fracture resistance after thermocycling alone and thermo‐mechanical loading. However, increasing the yttria concentration at the occlusal third of the crown decreased its fracture resistance. Clinical Significance The term “monolithic zirconia” alone without specifying the actual yttria content is misleading. This term represents different materials with different mechanical properties. The yttria content has an inverse relationship with the fracture resistance of zirconia crowns. The fracture resistance of multi‐layer zirconia crowns is determined by the amount of the weaker zirconia phase at the occlusal part of the restoration rather than enforced by the stronger zirconia at the cervical part of the crown.
To compare four different types of monolithic zirconia crowns in terms of survival rate and fracture resistance after thermocycling and/or thermo-mechanical loading in a chewing simulator.OBJECTIVETo compare four different types of monolithic zirconia crowns in terms of survival rate and fracture resistance after thermocycling and/or thermo-mechanical loading in a chewing simulator.Partially stabilized zirconia (PSZ) crowns with fiber-reinforced resin die assemblies (n = 80) were fabricated using: multi-yttria-layered 5Y-PSZ/3Y-PSZ, multi-yttria-layered 5Y-PSZ/4Y-PSZ, monolithic 4Y-PSZ, and monolithic 3Y-PSZ as control (n = 20). Half of the samples in each group were subjected to thermo-mechanical loading under 110 N, 1.4 Hz, 1.2 million cycles with simultaneous thermocycling (10,000 cycles, 5-55°C). The other half were subjected to thermocycling alone. The samples were loaded to failure to measure their fracture resistance. The data were analyzed using by two-way ANOVA and Tukey's HSD post-hoc test (α = 0.05).METHODSPartially stabilized zirconia (PSZ) crowns with fiber-reinforced resin die assemblies (n = 80) were fabricated using: multi-yttria-layered 5Y-PSZ/3Y-PSZ, multi-yttria-layered 5Y-PSZ/4Y-PSZ, monolithic 4Y-PSZ, and monolithic 3Y-PSZ as control (n = 20). Half of the samples in each group were subjected to thermo-mechanical loading under 110 N, 1.4 Hz, 1.2 million cycles with simultaneous thermocycling (10,000 cycles, 5-55°C). The other half were subjected to thermocycling alone. The samples were loaded to failure to measure their fracture resistance. The data were analyzed using by two-way ANOVA and Tukey's HSD post-hoc test (α = 0.05).All specimens survived the aging protocols. The yttria content significantly affected the fracture resistance of the crowns (p < 0.0001). The mean fracture resistance, from highest to lowest: 3Y-PSZ, 4Y-PSZ, followed by the two multi-yttria-layered systems. The mean difference between the two multi-yttria-layered systems were not statistically significant (p = 0.98). The mechanical loading protocol did not affect the mean fracture resistance within each group (p = 0.18).RESULTSAll specimens survived the aging protocols. The yttria content significantly affected the fracture resistance of the crowns (p < 0.0001). The mean fracture resistance, from highest to lowest: 3Y-PSZ, 4Y-PSZ, followed by the two multi-yttria-layered systems. The mean difference between the two multi-yttria-layered systems were not statistically significant (p = 0.98). The mechanical loading protocol did not affect the mean fracture resistance within each group (p = 0.18).Within each group, there was no difference in fracture resistance after thermocycling alone and thermo-mechanical loading. However, increasing the yttria concentration at the occlusal third of the crown decreased its fracture resistance.CONCLUSIONSWithin each group, there was no difference in fracture resistance after thermocycling alone and thermo-mechanical loading. However, increasing the yttria concentration at the occlusal third of the crown decreased its fracture resistance.The term "monolithic zirconia" alone without specifying the actual yttria content is misleading. This term represents different materials with different mechanical properties. The yttria content has an inverse relationship with the fracture resistance of zirconia crowns. The fracture resistance of multi-layer zirconia crowns is determined by the amount of the weaker zirconia phase at the occlusal part of the restoration rather than enforced by the stronger zirconia at the cervical part of the crown.CLINICAL SIGNIFICANCEThe term "monolithic zirconia" alone without specifying the actual yttria content is misleading. This term represents different materials with different mechanical properties. The yttria content has an inverse relationship with the fracture resistance of zirconia crowns. The fracture resistance of multi-layer zirconia crowns is determined by the amount of the weaker zirconia phase at the occlusal part of the restoration rather than enforced by the stronger zirconia at the cervical part of the crown.
To compare four different types of monolithic zirconia crowns in terms of survival rate and fracture resistance after thermocycling and/or thermo-mechanical loading in a chewing simulator. Partially stabilized zirconia (PSZ) crowns with fiber-reinforced resin die assemblies (n = 80) were fabricated using: multi-yttria-layered 5Y-PSZ/3Y-PSZ, multi-yttria-layered 5Y-PSZ/4Y-PSZ, monolithic 4Y-PSZ, and monolithic 3Y-PSZ as control (n = 20). Half of the samples in each group were subjected to thermo-mechanical loading under 110 N, 1.4 Hz, 1.2 million cycles with simultaneous thermocycling (10,000 cycles, 5-55°C). The other half were subjected to thermocycling alone. The samples were loaded to failure to measure their fracture resistance. The data were analyzed using by two-way ANOVA and Tukey's HSD post-hoc test (α = 0.05). All specimens survived the aging protocols. The yttria content significantly affected the fracture resistance of the crowns (p < 0.0001). The mean fracture resistance, from highest to lowest: 3Y-PSZ, 4Y-PSZ, followed by the two multi-yttria-layered systems. The mean difference between the two multi-yttria-layered systems were not statistically significant (p = 0.98). The mechanical loading protocol did not affect the mean fracture resistance within each group (p = 0.18). Within each group, there was no difference in fracture resistance after thermocycling alone and thermo-mechanical loading. However, increasing the yttria concentration at the occlusal third of the crown decreased its fracture resistance. The term "monolithic zirconia" alone without specifying the actual yttria content is misleading. This term represents different materials with different mechanical properties. The yttria content has an inverse relationship with the fracture resistance of zirconia crowns. The fracture resistance of multi-layer zirconia crowns is determined by the amount of the weaker zirconia phase at the occlusal part of the restoration rather than enforced by the stronger zirconia at the cervical part of the crown.
ObjectiveTo compare four different types of monolithic zirconia crowns in terms of survival rate and fracture resistance after thermocycling and/or thermo‐mechanical loading in a chewing simulator.MethodsPartially stabilized zirconia (PSZ) crowns with fiber‐reinforced resin die assemblies (n = 80) were fabricated using: multi‐yttria‐layered 5Y‐PSZ/3Y‐PSZ, multi‐yttria‐layered 5Y‐PSZ/4Y‐PSZ, monolithic 4Y‐PSZ, and monolithic 3Y‐PSZ as control (n = 20). Half of the samples in each group were subjected to thermo‐mechanical loading under 110 N, 1.4 Hz, 1.2 million cycles with simultaneous thermocycling (10,000 cycles, 5–55°C). The other half were subjected to thermocycling alone. The samples were loaded to failure to measure their fracture resistance. The data were analyzed using by two‐way ANOVA and Tukey's HSD post‐hoc test (α = 0.05).ResultsAll specimens survived the aging protocols. The yttria content significantly affected the fracture resistance of the crowns (p < 0.0001). The mean fracture resistance, from highest to lowest: 3Y‐PSZ, 4Y‐PSZ, followed by the two multi‐yttria‐layered systems. The mean difference between the two multi‐yttria‐layered systems were not statistically significant (p = 0.98). The mechanical loading protocol did not affect the mean fracture resistance within each group (p = 0.18).ConclusionsWithin each group, there was no difference in fracture resistance after thermocycling alone and thermo‐mechanical loading. However, increasing the yttria concentration at the occlusal third of the crown decreased its fracture resistance.Clinical SignificanceThe term “monolithic zirconia” alone without specifying the actual yttria content is misleading. This term represents different materials with different mechanical properties. The yttria content has an inverse relationship with the fracture resistance of zirconia crowns. The fracture resistance of multi‐layer zirconia crowns is determined by the amount of the weaker zirconia phase at the occlusal part of the restoration rather than enforced by the stronger zirconia at the cervical part of the crown.
Author Badr, Zaid
A. Sulaiman, Taiseer
Culp, Lee
Lim, Chek Hai
Zhang, Yu
Duqum, Ibrahim
AuthorAffiliation d Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
b Sculpture Studios, Cary, NC 27513
e Department of Preventive and Restorative Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104
c Division of Comprehensive Oral Health, University of North Carolina at Chapel Hill Adams School of Dentistry, Chapel Hill, NC 27599
a Department of Adult Restorative Dentistry, University of Nebraska Medical Center, College of Dentistry, Lincoln, NE 68538
f Division of Comprehensive Oral Health, University of North Carolina at Chapel Hill Adams School of Dentistry, Chapel Hill, NC 27599. Phone: 919-537-3251
AuthorAffiliation_xml – name: a Department of Adult Restorative Dentistry, University of Nebraska Medical Center, College of Dentistry, Lincoln, NE 68538
– name: c Division of Comprehensive Oral Health, University of North Carolina at Chapel Hill Adams School of Dentistry, Chapel Hill, NC 27599
– name: d Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
– name: b Sculpture Studios, Cary, NC 27513
– name: f Division of Comprehensive Oral Health, University of North Carolina at Chapel Hill Adams School of Dentistry, Chapel Hill, NC 27599. Phone: 919-537-3251
– name: e Department of Preventive and Restorative Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104
Author_xml – sequence: 1
  givenname: Zaid
  orcidid: 0000-0002-5638-3288
  surname: Badr
  fullname: Badr, Zaid
  organization: University of Nebraska Medical Center, College of Dentistry
– sequence: 2
  givenname: Lee
  surname: Culp
  fullname: Culp, Lee
  organization: Sculpture Studios
– sequence: 3
  givenname: Ibrahim
  surname: Duqum
  fullname: Duqum, Ibrahim
  organization: University of North Carolina at Chapel Hill Adams School of Dentistry
– sequence: 4
  givenname: Chek Hai
  surname: Lim
  fullname: Lim, Chek Hai
  organization: University of Pennsylvania
– sequence: 5
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  organization: University of Pennsylvania
– sequence: 6
  givenname: Taiseer
  orcidid: 0000-0002-3826-316X
  surname: A. Sulaiman
  fullname: A. Sulaiman, Taiseer
  email: sulaiman@unc.edu
  organization: University of North Carolina at Chapel Hill Adams School of Dentistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35312154$$D View this record in MEDLINE/PubMed
BookMark eNp9kttqFTEUhoNU7EFvfAAJeCPC1CSTmcl4IZRaTxQED9chk0lsNjNJm2R2Ga98BB_BZ_NJXHvPtmgRQyAL8v0_63SI9nzwBqGHlBxTOM9WJvbHlLWkuYMOaENEIRgnexDzti44rap9dJjSihBaNW1zD-2XVUkZrfgB-vFximu3Vp0bXJ6x8j22Uek8RYOjSS5l5bXBweIx-ADMhdNbapyG7H5--z7nHJ2CYFCziabHX13UwTuFdQzXPmEFF9vJ6-yC3xgtCgxQNj4_xyd4VCk7rbZAcuC8C_PUz_fRXauGZB7s3iP0-dXZp9M3xfn7129PT84LXVHeFFZUrOsqoi3lgqlaadrYjhlNO9WWTVdyUvKaMGaJMV1LrKiZJqBstRYtbcsj9GLxvZy60fQaUotqkJfRjSrOMign__7x7kJ-CWvZEkEZ52DwZGcQw9VkUpajS9oMg_ImTEmyGiZBBSEloI9voaswRQ_lAQVJUlHWAqhHf2Z0k8rv4QHwdAGg0ylFY28QSuRmM-RmM-R2MwAmt2Dt8rbPUI0b_i2hi-TaDWb-j7l8d_bh5aL5BTdn0ao
CitedBy_id crossref_primary_10_1007_s40496_023_00344_1
crossref_primary_10_1016_j_jdent_2024_105023
crossref_primary_10_1016_j_dental_2024_06_011
crossref_primary_10_1016_j_dental_2024_12_013
crossref_primary_10_1111_jerd_13409
crossref_primary_10_3390_ma16247541
crossref_primary_10_1016_j_jdent_2024_104866
crossref_primary_10_1038_s41405_024_00214_7
crossref_primary_10_1111_jerd_13243
crossref_primary_10_1016_j_dental_2023_03_012
crossref_primary_10_1111_jerd_13151
crossref_primary_10_17816_dent340839
crossref_primary_10_3390_jfb15080228
crossref_primary_10_1111_jerd_13319
crossref_primary_10_1111_jerd_13048
crossref_primary_10_4012_dmj_2023_225
Cites_doi 10.1557/JMR.2005.0335
10.1177/0022034517737483
10.1111/jopr.12376
10.1177/0022034511408427
10.1016/j.dental.2019.07.001
10.1016/j.prosdent.2018.10.024
10.1111/jopr.12730
10.1111/jopr.13242
10.1177/00220345980770030601
10.1016/j.prosdent.2019.05.012
10.1177/0022034510391795
10.1177/154405910708601105
10.1016/j.dental.2013.11.001
10.1016/j.dental.2020.10.019
10.1016/j.archoralbio.2006.04.012
10.1557/JMR.2005.0276
10.1111/jopr.13287
10.1016/j.actbio.2014.03.004
10.12968/denu.2018.45.6.541
10.1016/j.dental.2018.08.291
10.1177/0022034514524228
10.1016/j.dental.2020.08.015
10.1016/j.jdent.2008.09.001
10.1016/j.dental.2007.05.007
10.1016/j.jmbbm.2018.08.023
10.1016/j.jdent.2013.10.007
10.1590/2179-10742017v16i2808
10.1016/j.jmbbm.2020.103977
ContentType Journal Article
Copyright 2022 Wiley Periodicals LLC.
Copyright_xml – notice: 2022 Wiley Periodicals LLC.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
K9.
7X8
5PM
DOI 10.1111/jerd.12907
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Dentistry
EISSN 1708-8240
EndPage 640
ExternalDocumentID PMC9081244
35312154
10_1111_jerd_12907
JERD12907
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: U.S. National Institutes of Health/National Institute of Dental and Craniofacial Research
  funderid: R01DE026772; R01DE026279
– fundername: U.S. National Institutes of Health/National Institute of Dental and Craniofacial Research
  grantid: R01DE026772
– fundername: NIDCR NIH HHS
  grantid: R01 DE026772
– fundername: NIDCR NIH HHS
  grantid: R01 DE026279
– fundername: U.S. National Institutes of Health/National Institute of Dental and Craniofacial Research
  grantid: R01DE026279
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29K
31~
33P
34H
3SF
3V.
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
8FE
8FH
8FI
8FJ
8FQ
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABQWH
ABUWG
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFKRA
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BMXJE
BPHCQ
BROTX
BRXPI
BVXVI
BY8
C45
CAG
CCPQU
COF
CS3
CWXXS
D-E
D-F
D-I
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DWQXO
EBD
EBS
EJD
F00
F01
F04
FEDTE
FUBAC
FYUFA
FZ0
G-S
G.N
GODZA
H.T
H.X
HCIFZ
HF~
HGLYW
HMCUK
HVGLF
HZ~
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M3C
M3G
M7P
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
PROAC
PSQYO
Q.N
Q11
Q2X
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UKHRP
V8K
W8V
W99
WBKPD
WBNRW
WIH
WIJ
WIK
WOHZO
WPGGZ
WQJ
WRC
WXSBR
XG1
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7QP
K9.
7X8
5PM
ID FETCH-LOGICAL-c5147-f852bb50cf1482a6ac17fb2ec1ba937b340346022f0eeb90f862c01479cc89193
IEDL.DBID DR2
ISSN 1496-4155
1708-8240
IngestDate Thu Aug 21 18:37:15 EDT 2025
Fri Sep 05 08:09:10 EDT 2025
Fri Jul 25 19:41:16 EDT 2025
Mon Jul 21 05:58:36 EDT 2025
Thu Apr 24 23:00:05 EDT 2025
Tue Jul 01 01:18:54 EDT 2025
Wed Jan 22 16:25:48 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords fatigue
monolithic zirconia
fracture load
zirconia crowns
yttria concentration
gradient zirconia
mastication simulation
multi-yttria-layered zirconia
Language English
License 2022 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5147-f852bb50cf1482a6ac17fb2ec1ba937b340346022f0eeb90f862c01479cc89193
Notes Funding information
U.S. National Institutes of Health/National Institute of Dental and Craniofacial Research, Grant/Award Numbers: R01DE026772, R01DE026279
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3826-316X
0000-0002-5638-3288
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9081244
PMID 35312154
PQID 2660218368
PQPubID 26445
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9081244
proquest_miscellaneous_2641518003
proquest_journals_2660218368
pubmed_primary_35312154
crossref_primary_10_1111_jerd_12907
crossref_citationtrail_10_1111_jerd_12907
wiley_primary_10_1111_jerd_12907_JERD12907
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2022
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: England
– name: Oxford
PublicationTitle Journal of esthetic and restorative dentistry
PublicationTitleAlternate J Esthet Restor Dent
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Blackwell Publishing Ltd
Publisher_xml – name: John Wiley & Sons, Inc
– name: Blackwell Publishing Ltd
References 2006; 51
2019; 35
2013; 41
2008; 36
1988; 11
2005; 20
2020; 36
2020; 123
2018; 45
2018; 88
2021; 30
2016; 37
1992; 12
2027; 86
2021; 37
1998; 19
1990; 258
2011; 90
2017; 16
2000; 13
2019; 28
2008; 24
2020; 111
2014; 30
2018; 97
2014; 93
2016; 25
1998; 77
2014; 10
1994; 7
2020; 29
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_26_1
Blatz MB (e_1_2_8_5_1) 2016; 37
e_1_2_8_27_1
Dumfahrt H (e_1_2_8_33_1) 2000; 13
Friedman MJ (e_1_2_8_32_1) 1998; 19
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
Garvie RC (e_1_2_8_28_1) 1990; 258
Yoshinari M (e_1_2_8_23_1) 1994; 7
Ferrari M (e_1_2_8_20_1) 1992; 12
Sobrinho LC (e_1_2_8_24_1) 1988; 11
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_30_1
References_xml – volume: 37
  start-page: 158
  issue: 1
  year: 2021
  end-page: 167
  article-title: Damage sensitivity of dental zirconias to simulated occlusal contact
  publication-title: Dent Mater
– volume: 13
  start-page: 9
  issue: 1
  year: 2000
  end-page: 18
  article-title: Porcelain laminate veneers. A retrospective evaluation after 1 to 10 years of service: part II–clinical results
  publication-title: Int J Prosthodont
– volume: 111
  issue: 1
  year: 2020
  article-title: Comparison between novel strength‐gradient and color‐gradient multilayered zirconia using conventional and high‐speed sintering
  publication-title: J Mech Behav Biomed Mater
– volume: 19
  start-page: 625
  issue: 6
  year: 1998
  end-page: 632
  article-title: A 15‐year review of porcelain veneer failure – a clinician's observations
  publication-title: Compend Contin Educ Dent
– volume: 93
  start-page: 329
  issue: 4
  year: 2014
  end-page: 334
  article-title: Meta‐analysis of bonding effectiveness to zirconia ceramics
  publication-title: J Dent Res
– volume: 10
  start-page: 3243
  issue: 7
  year: 2014
  end-page: 3253
  article-title: Sliding contact fracture of dental ceramics: principles and validation
  publication-title: Acta Biomater
– volume: 12
  start-page: 407
  issue: 5
  year: 1992
  end-page: 413
  article-title: Measurement of enamel thickness in relation to reduction for etched laminate veneers
  publication-title: Int J Periodonti Restorat Dent
– volume: 11
  start-page: 255
  issue: 3
  year: 1988
  end-page: 262
  article-title: Investigation of the dry and wet fatigue properties of three all‐ceramic crown systems
  publication-title: Int J Posthodont
– volume: 123
  start-page: 128
  issue: 1
  year: 2020
  end-page: 134
  article-title: Effect of different CAD‐CAM materials on the marginal and internal adaptation of endocrown restorations: an in vitro study
  publication-title: J Prosthet Dent
– volume: 88
  start-page: 170
  year: 2018
  end-page: 175
  article-title: Load‐bearing capacity of lithium disilicate and ultra‐translucent zirconias
  publication-title: J Mech Behav Biomed Mater
– volume: 36
  start-page: 1048
  issue: 12
  year: 2008
  end-page: 1053
  article-title: Approach for evaluating the significance of laboratory simulation
  publication-title: J Dent
– volume: 123
  start-page: 635
  issue: 4
  year: 2020
  end-page: 640
  article-title: Fracture load of two thicknesses of different zirconia types after fatiguing and thermocycling
  publication-title: J Prosthet Dent
– volume: 16
  start-page: 434
  issue: 1
  year: 2017
  end-page: 444
  article-title: The force magnitude of a human bite measured at the molar intercuspidation using fiber Bragg gratings
  publication-title: J Microw Optoelectron Electromagn Appl
– volume: 90
  start-page: 937
  issue: 8
  year: 2011
  end-page: 952
  article-title: Performance of dental ceramics: challenges for improvements
  publication-title: J Dent Res
– volume: 86
  start-page: 1046
  issue: 11
  year: 2027
  end-page: 1050
  article-title: Sliding contact fatigue damage in layered ceramic structures
  publication-title: J Dent Res
– volume: 90
  start-page: 1026
  issue: 8
  year: 2011
  end-page: 1030
  article-title: Improving fatigue damage resistance of alumina through surface grading
  publication-title: J Dent Res
– volume: 41
  start-page: 1135
  issue: 12
  year: 2013
  end-page: 1147
  article-title: Fatigue of dental ceramics
  publication-title: J Dent
– volume: 258
  start-page: 253
  issue: 5537
  year: 1990
  end-page: 257
  article-title: Ceramic steel?
  publication-title: Nature
– volume: 35
  start-page: 1351
  issue: 10
  year: 2019
  end-page: 1359
  article-title: Influence of bonding surface and bonding methods on the fracture resistance and survival rate of full‐coverage occlusal veneers made from lithium disilicate ceramic after cyclic loading
  publication-title: Dent Mater
– volume: 29
  start-page: 787
  issue: 9
  year: 2020
  end-page: 791
  article-title: Fracture load of different zirconia types: a mastication simulation study
  publication-title: J Prosthodont
– volume: 7
  start-page: 329
  issue: 4
  year: 1994
  end-page: 338
  article-title: Fracture strength of all‐ceramic crowns
  publication-title: Int J Prosthodont
– volume: 28
  start-page: e279
  issue: 1
  year: 2019
  end-page: e284
  article-title: Optical and mechanical properties of newly developed monolithic multilayer zirconia
  publication-title: J Prosthodont
– volume: 77
  start-page: 472
  issue: 3
  year: 1998
  end-page: 480
  article-title: Indentation damage and mechanical properties of human enamel and dentin
  publication-title: J Dent Res
– volume: 20
  start-page: 2792
  issue: 10
  year: 2005
  end-page: 2800
  article-title: Competing fracture modes in brittle materials subject to concentrated cyclic loading in liquid environments: bilayer structures
  publication-title: J Mater Res
– volume: 30
  start-page: 164
  issue: 2
  year: 2014
  end-page: 171
  article-title: Influence of veneer and cyclic loading on failure behavior of lithium disilicate glass‐ceramic molar crowns
  publication-title: Dent Mater
– volume: 35
  start-page: 15
  issue: 1
  year: 2019
  end-page: 23
  article-title: Evaluating dental zirconia
  publication-title: Dent Mater
– volume: 97
  start-page: 140
  issue: 2
  year: 2018
  end-page: 147
  article-title: Novel zirconia materials in dentistry
  publication-title: J Dent Res
– volume: 24
  start-page: 299
  issue: 3
  year: 2008
  end-page: 307
  article-title: State of the art of zirconia for dental applications
  publication-title: Dent Mater
– volume: 30
  start-page: 76
  issue: 1
  year: 2021
  end-page: 82
  article-title: Monolithic zirconia partial coverage restorations: an in vitro mastication simulation study
  publication-title: J Prosthodont
– volume: 25
  start-page: 116
  issue: 2
  year: 2016
  end-page: 126
  article-title: Lithium disilicate restorations fatigue testing parameters: a systematic review
  publication-title: J Prosthodont
– volume: 37
  start-page: 611
  issue: 9
  year: 2016
  end-page: 616
  article-title: How to bond zirconia: the APC concept
  publication-title: Compend Contin Educ Dent
– volume: 36
  start-page: 1407
  issue: 11
  year: 2020
  end-page: 1417
  article-title: Wear behavior and microstructural characterization of translucent multilayer zirconia
  publication-title: Dent Mater
– volume: 45
  start-page: 541
  issue: 6
  year: 2018
  end-page: 546
  article-title: An evidence‐based evaluation of contemporary dental ceramics
  publication-title: Dental Update
– volume: 20
  start-page: 2021
  issue: 8
  year: 2005
  end-page: 2029
  article-title: Competing fracture modes in brittle materials subject to concentrated cyclic loading in liquid environments: monoliths
  publication-title: J Mater Res
– volume: 51
  start-page: 974
  issue: 11
  year: 2006
  end-page: 995
  article-title: Modern human molar enamel thickness and enamel‐dentine junction shape
  publication-title: Arch Oral Biol
– volume: 11
  start-page: 255
  issue: 3
  year: 1988
  ident: e_1_2_8_24_1
  article-title: Investigation of the dry and wet fatigue properties of three all‐ceramic crown systems
  publication-title: Int J Posthodont
– volume: 13
  start-page: 9
  issue: 1
  year: 2000
  ident: e_1_2_8_33_1
  article-title: Porcelain laminate veneers. A retrospective evaluation after 1 to 10 years of service: part II–clinical results
  publication-title: Int J Prosthodont
– ident: e_1_2_8_11_1
  doi: 10.1557/JMR.2005.0335
– ident: e_1_2_8_29_1
  doi: 10.1177/0022034517737483
– ident: e_1_2_8_14_1
  doi: 10.1111/jopr.12376
– ident: e_1_2_8_22_1
  doi: 10.1177/0022034511408427
– volume: 258
  start-page: 253
  issue: 5537
  year: 1990
  ident: e_1_2_8_28_1
  article-title: Ceramic steel?
  publication-title: Nature
– ident: e_1_2_8_31_1
  doi: 10.1016/j.dental.2019.07.001
– ident: e_1_2_8_16_1
  doi: 10.1016/j.prosdent.2018.10.024
– ident: e_1_2_8_36_1
  doi: 10.1111/jopr.12730
– ident: e_1_2_8_8_1
  doi: 10.1111/jopr.13242
– volume: 19
  start-page: 625
  issue: 6
  year: 1998
  ident: e_1_2_8_32_1
  article-title: A 15‐year review of porcelain veneer failure – a clinician's observations
  publication-title: Compend Contin Educ Dent
– ident: e_1_2_8_17_1
  doi: 10.1177/00220345980770030601
– ident: e_1_2_8_7_1
  doi: 10.1016/j.prosdent.2019.05.012
– volume: 12
  start-page: 407
  issue: 5
  year: 1992
  ident: e_1_2_8_20_1
  article-title: Measurement of enamel thickness in relation to reduction for etched laminate veneers
  publication-title: Int J Periodonti Restorat Dent
– ident: e_1_2_8_10_1
  doi: 10.1177/0022034510391795
– ident: e_1_2_8_26_1
  doi: 10.1177/154405910708601105
– ident: e_1_2_8_6_1
  doi: 10.1016/j.dental.2013.11.001
– ident: e_1_2_8_27_1
  doi: 10.1016/j.dental.2020.10.019
– ident: e_1_2_8_19_1
  doi: 10.1016/j.archoralbio.2006.04.012
– ident: e_1_2_8_12_1
  doi: 10.1557/JMR.2005.0276
– ident: e_1_2_8_30_1
  doi: 10.1111/jopr.13287
– ident: e_1_2_8_21_1
  doi: 10.1016/j.actbio.2014.03.004
– ident: e_1_2_8_4_1
  doi: 10.12968/denu.2018.45.6.541
– volume: 37
  start-page: 611
  issue: 9
  year: 2016
  ident: e_1_2_8_5_1
  article-title: How to bond zirconia: the APC concept
  publication-title: Compend Contin Educ Dent
– ident: e_1_2_8_9_1
  doi: 10.1016/j.dental.2018.08.291
– ident: e_1_2_8_34_1
  doi: 10.1177/0022034514524228
– ident: e_1_2_8_2_1
  doi: 10.1016/j.dental.2020.08.015
– volume: 7
  start-page: 329
  issue: 4
  year: 1994
  ident: e_1_2_8_23_1
  article-title: Fracture strength of all‐ceramic crowns
  publication-title: Int J Prosthodont
– ident: e_1_2_8_13_1
  doi: 10.1016/j.jdent.2008.09.001
– ident: e_1_2_8_35_1
  doi: 10.1016/j.dental.2007.05.007
– ident: e_1_2_8_18_1
  doi: 10.1016/j.jmbbm.2018.08.023
– ident: e_1_2_8_25_1
  doi: 10.1016/j.jdent.2013.10.007
– ident: e_1_2_8_15_1
  doi: 10.1590/2179-10742017v16i2808
– ident: e_1_2_8_3_1
  doi: 10.1016/j.jmbbm.2020.103977
SSID ssj0015797
Score 2.403943
Snippet Objective To compare four different types of monolithic zirconia crowns in terms of survival rate and fracture resistance after thermocycling and/or...
To compare four different types of monolithic zirconia crowns in terms of survival rate and fracture resistance after thermocycling and/or thermo-mechanical...
ObjectiveTo compare four different types of monolithic zirconia crowns in terms of survival rate and fracture resistance after thermocycling and/or...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 633
SubjectTerms Aging
Crowns
Dental crowns
Dental Porcelain
Dental Restoration Failure
Dental Stress Analysis
fatigue
fracture load
gradient zirconia
Mastication
mastication simulation
Materials Testing
Mechanical loading
Mechanical properties
monolithic zirconia
multi‐yttria‐layered zirconia
Statistical analysis
yttria concentration
Yttrium
Zirconia
zirconia crowns
Zirconium
Title Survivability and fracture resistance of monolithic and multi‐yttria‐layered zirconia crowns as a function of yttria content: A mastication simulation study
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjerd.12907
https://www.ncbi.nlm.nih.gov/pubmed/35312154
https://www.proquest.com/docview/2660218368
https://www.proquest.com/docview/2641518003
https://pubmed.ncbi.nlm.nih.gov/PMC9081244
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTttAEB4hLvRCaQutKUWLygUkR7Z3_Yd6iQgIIbUHfiQulbW7Xgur4FRJXCmc-gg8As_GkzCzdqykoEqtlIMlj52N_c3Ot5uZbwB2jVJ5iFO_i9gVrkgMd5MoD1yJwYKnYaJSQ9XIX79FJ5fi9Cq8WoIvs1qYRh-i23Ajz7DzNTm4VON5JzejvEe7KFRK7vOIhPMHZ512lB_GTWcVkUYuRc1Wm9Sm8XSXLkajZxTzeabkPIO1Iej4NXyfDb7JPPnRqyeqp-_-0HX831-3BqstN2X9BkxvYMlUb2FlQPlE1BLuHTyc1ziz_GqkvadMVjkrqMqqHhmGy3aiooghNiwYgpsS665Lba1s2uLj7_vphLqE4MGNnFKTUHZXjnBBXkqmaTtgzCR-GMVawgvdqLmCUUY9juOA9dmtJGlpCyg2Lm_b9mPM6uSuw-Xx0cXhidu2eHA1MrXYLZIwUCr0dEF6pDKS2o8LFRjtK4nESXHhcREhzyg8Y1TqFbgA07iqi1OtkxTJ5wYsV8PKfACWCJ7zQJlCCSUkhtxUCa29WIfCN57kDuzNXnWmW_1zasNxk3XrIHzmmX3mDnzubH82qh8vWm3NEJO1nj_OkPBY2hklDux0p9Fn6Y8YWZlhTTYISB-pOg7qfQOw7ms4TopIw4QD8QL0OgPSA188U5XXVhc89Sxbc2DfIusvI89Oj84G9mjzX4w_wquAqj_sJtQWLE9GtfmEnGyitq3vPQGBpzny
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTttAEB5RONBLCxRatxS2KheQHPln_ccNNaBAgQM_Ejdrd71WrIJTJXGlcOoj8Ag8W5-kM2tjEUBIIOVgyWNnY3-z881m9huADS1lFuDUbyN2uc1j7dtxmHm2wGDhJ0EsE027kY-Ow945P7gILpraHNoLU-tDtAtu5BlmviYHpwXp-16uh1mHllGiNzDHkWlQ7tU9adWj3CCqe6vwJLQpbjbqpKaQp712Oh49IpmPayXvc1gThPbe151WR0a7kGpPfnWqseyo6wfKjq_-fQvwrqGnbKfG0yLM6HIJ5rtUUkRd4T7A7WmFk8ufWt17wkSZsZw2WlVDzTBzJzaKMGKDnCG-qbauXyhjZSoX__29mYypUQgeXIoJ9Qll18UQc_JCMEUrAiMm8MMo3BJk6Eb1FYyK6nEc22yHXQlSlzaYYqPiqulAxoxU7jKc7-2e_ejZTZcHWyFZi-w8DjwpA0flJEkqQqHcKJeeVq4UyJ2kzx2fh0g1ckdrmTg55mAKE7soUSpOkH-uwGw5KPUnYDH3M9-TOpdccoFRN5FcKSdSAXe1I3wLNu_edaoaCXTqxHGZtqkQPvPUPHMLvre2v2vhjyetVu8gkzbOP0qR8xjmGcYWfGtPo9vSfzGi1IOKbBCRLrJ1HNTHGmHt1_g4LyIT4xZEU9hrDUgSfPpMWfSNNHjiGMJmwZaB1jMjTw92T7rm6PNLjNdhvnd2dJge7h___AJvPdoMYtakVmF2PKz0V6RoY7lmHPE_7Cc-EQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTtRAFD5BSJQbBX-wCjhGbzTppj_TP8MNYdkAKjEoCTemmZnOhEbokt2tyXLlI_gIPptPwjnTbsOCMdFkL5r0dHe2_c6c70zPfAfgtZayiHDqdxG73OWpDt00LgJXYLAIsyiVmabdyB8P471jfnASnSzA1mwvTKMP0S24kWfY-Zoc_KIw151cj4oeraIkd2CJx0gliBIddeJRfpQ0rVV4FrsUNltxUlvH0107H45ucczbpZLXKayNQYMH8HU2-qb05Fuvnsieurwh7Pi_f28F7rfklG03aFqFBV09hHt9KiiinnCP4NfnGqeW742295SJqmCGtlnVI80wbycuiiBiQ8MQ3VRZd1oqa2XrFn__-DmdUJsQPDgTU-oSyi7LEWbkpWCK1gPGTOCHUbAlwNAXNVcwKqnHcbxj2-xckLa0RRQbl-dt_zFmhXIfw_Fg98vOntv2eHAVUrXENWkUSBl5ypAgqYiF8hMjA618KZA5yZB7IT7cIDCe1jLzDGZgCtO6JFMqzZB9PoHFaljpp8BSHhZhILWRXHKBMTeTXCkvURH3tSdCB97MHnWuWgF06sNxlneJEN7z3N5zB151theN7McfrdZniMlb1x_nyHgs74xTB152p9Fp6U2MqPSwJhsEpI9cHQe11gCs-5kQZ0XkYdyBZA56nQEJgs-fqcpTKwyeeZauOfDWIusvI88Pdo_69ujZvxi_gLuf-oP8w_7h--ewHNBOELsgtQ6Lk1GtN5CfTeSmdcMrGvQ8wA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Survivability+and+fracture+resistance+of+monolithic+and+multi%E2%80%90yttria%E2%80%90layered+zirconia+crowns+as+a+function+of+yttria+content%3A+A+mastication+simulation+study&rft.jtitle=Journal+of+esthetic+and+restorative+dentistry&rft.au=Badr%2C+Zaid&rft.au=Culp%2C+Lee&rft.au=Duqum%2C+Ibrahim&rft.au=Lim%2C+Chek+Hai&rft.date=2022-06-01&rft.issn=1496-4155&rft.eissn=1708-8240&rft.volume=34&rft.issue=4&rft.spage=633&rft.epage=640&rft_id=info:doi/10.1111%2Fjerd.12907&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_jerd_12907
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1496-4155&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1496-4155&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1496-4155&client=summon