Model‐Informed Pediatric Dose Selection for Dapagliflozin by Incorporating Developmental Changes

This analysis reports a quantitative modeling and simulation approach for oral dapagliflozin, a primarily uridine diphosphate‐glucuronosyltransferase (UGT)–metabolized human sodium‐glucose cotransporter 2 selective inhibitor. A mechanistic dapagliflozin physiologically based pharmacokinetic (PBPK) m...

Full description

Saved in:
Bibliographic Details
Published inCPT: pharmacometrics and systems pharmacology Vol. 10; no. 2; pp. 108 - 118
Main Authors Jo, Heeseung, Pilla Reddy, Venkatesh, Parkinson, Joanna, Boulton, David W., Tang, Weifeng
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.02.2021
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This analysis reports a quantitative modeling and simulation approach for oral dapagliflozin, a primarily uridine diphosphate‐glucuronosyltransferase (UGT)–metabolized human sodium‐glucose cotransporter 2 selective inhibitor. A mechanistic dapagliflozin physiologically based pharmacokinetic (PBPK) model was developed using in vitro metabolism and clinical pharmacokinetic (PK) data and verified for context of use (e.g., exposure predictions in pediatric subjects aged 1 month to 18 years). Dapagliflozin exposure is challenging to predict in pediatric populations owing to differences in UGT1A9 ontogeny maturation and paucity of clinical PK data in younger age groups. Based on the exposure–response relationship of dapagliflozin, twofold acceptance criteria were applied between model‐predicted and observed drug exposures and PK parameters (area under the curve and maximum drug concentration) in various scenarios, including monotherapy in healthy adults (single/multiple dose), monotherapy in hepatically or renally impaired patients, and drug–drug interactions with UGT1A9 modulators, such as mefenamic acid and rifampin. The PBPK model captured the observed exposure within twofold of the observed monotherapy data in adults and adolescents and in special population. As a guide to determining dosing regimens in pediatric studies, the verified PBPK model, along with UGT enzyme ontogeny maturation understanding, was used for predictions of dapagliflozin monotherapy exposures in pediatric subjects aged 1 month to 18 years that best matched exposure in adult patients with a 10‐mg single dose of dapagliflozin.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
VPR and HJ are joint first authors.
ISSN:2163-8306
2163-8306
DOI:10.1002/psp4.12577