Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance
Intracellular potassium homeostasis is a prerequisite for the optimal operation of plant metabolic machinery and plant's overall performance. It is controlled by K⁺ uptake, efflux and intracellular and long‐distance relocation, mediated by a large number of K⁺‐selective and non‐selective channe...
Saved in:
Published in | Physiologia plantarum Vol. 151; no. 3; pp. 257 - 279 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.07.2014
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Intracellular potassium homeostasis is a prerequisite for the optimal operation of plant metabolic machinery and plant's overall performance. It is controlled by K⁺ uptake, efflux and intracellular and long‐distance relocation, mediated by a large number of K⁺‐selective and non‐selective channels and transporters located at both plasma and vacuolar membranes. All abiotic and biotic stresses result in a significant disturbance to intracellular potassium homeostasis. In this work, we discuss molecular mechanisms and messengers mediating potassium transport and homeostasis focusing on four major environmental stresses: salinity, drought, flooding and biotic factors. We argue that cytosolic K⁺ content may be considered as one of the ‘master switches’ enabling plant transition from the normal metabolism to ‘hibernated state’ during first hours after the stress exposure and then to a recovery phase. We show that all these stresses trigger substantial disturbance to K⁺ homeostasis and provoke a feedback control on K⁺ channels and transporters expression and post‐translational regulation of their activity, optimizing K⁺ absorption and usage, and, at the extreme end, assisting the programmed cell death. We discuss specific modes of regulation of the activity of K⁺ channels and transporters by membrane voltage, intracellular Ca²⁺, reactive oxygen species, polyamines, phytohormones and gasotransmitters, and link this regulation with plant‐adaptive responses to hostile environments. |
---|---|
AbstractList | Intracellular potassium homeostasis is a prerequisite for the optimal operation of plant metabolic machinery and plant's overall performance. It is controlled by K⁺ uptake, efflux and intracellular and long‐distance relocation, mediated by a large number of K⁺‐selective and non‐selective channels and transporters located at both plasma and vacuolar membranes. All abiotic and biotic stresses result in a significant disturbance to intracellular potassium homeostasis. In this work, we discuss molecular mechanisms and messengers mediating potassium transport and homeostasis focusing on four major environmental stresses: salinity, drought, flooding and biotic factors. We argue that cytosolic K⁺ content may be considered as one of the ‘master switches’ enabling plant transition from the normal metabolism to ‘hibernated state’ during first hours after the stress exposure and then to a recovery phase. We show that all these stresses trigger substantial disturbance to K⁺ homeostasis and provoke a feedback control on K⁺ channels and transporters expression and post‐translational regulation of their activity, optimizing K⁺ absorption and usage, and, at the extreme end, assisting the programmed cell death. We discuss specific modes of regulation of the activity of K⁺ channels and transporters by membrane voltage, intracellular Ca²⁺, reactive oxygen species, polyamines, phytohormones and gasotransmitters, and link this regulation with plant‐adaptive responses to hostile environments. Intracellular potassium homeostasis is a prerequisite for the optimal operation of plant metabolic machinery and plant's overall performance. It is controlled by K(+) uptake, efflux and intracellular and long-distance relocation, mediated by a large number of K(+) -selective and non-selective channels and transporters located at both plasma and vacuolar membranes. All abiotic and biotic stresses result in a significant disturbance to intracellular potassium homeostasis. In this work, we discuss molecular mechanisms and messengers mediating potassium transport and homeostasis focusing on four major environmental stresses: salinity, drought, flooding and biotic factors. We argue that cytosolic K(+) content may be considered as one of the 'master switches' enabling plant transition from the normal metabolism to 'hibernated state' during first hours after the stress exposure and then to a recovery phase. We show that all these stresses trigger substantial disturbance to K(+) homeostasis and provoke a feedback control on K(+) channels and transporters expression and post-translational regulation of their activity, optimizing K(+) absorption and usage, and, at the extreme end, assisting the programmed cell death. We discuss specific modes of regulation of the activity of K(+) channels and transporters by membrane voltage, intracellular Ca(2+) , reactive oxygen species, polyamines, phytohormones and gasotransmitters, and link this regulation with plant-adaptive responses to hostile environments. Intracellular potassium homeostasis is a prerequisite for the optimal operation of plant metabolic machinery and plant's overall performance. It is controlled by K(+) uptake, efflux and intracellular and long-distance relocation, mediated by a large number of K(+) -selective and non-selective channels and transporters located at both plasma and vacuolar membranes. All abiotic and biotic stresses result in a significant disturbance to intracellular potassium homeostasis. In this work, we discuss molecular mechanisms and messengers mediating potassium transport and homeostasis focusing on four major environmental stresses: salinity, drought, flooding and biotic factors. We argue that cytosolic K(+) content may be considered as one of the 'master switches' enabling plant transition from the normal metabolism to 'hibernated state' during first hours after the stress exposure and then to a recovery phase. We show that all these stresses trigger substantial disturbance to K(+) homeostasis and provoke a feedback control on K(+) channels and transporters expression and post-translational regulation of their activity, optimizing K(+) absorption and usage, and, at the extreme end, assisting the programmed cell death. We discuss specific modes of regulation of the activity of K(+) channels and transporters by membrane voltage, intracellular Ca(2+) , reactive oxygen species, polyamines, phytohormones and gasotransmitters, and link this regulation with plant-adaptive responses to hostile environments.Intracellular potassium homeostasis is a prerequisite for the optimal operation of plant metabolic machinery and plant's overall performance. It is controlled by K(+) uptake, efflux and intracellular and long-distance relocation, mediated by a large number of K(+) -selective and non-selective channels and transporters located at both plasma and vacuolar membranes. All abiotic and biotic stresses result in a significant disturbance to intracellular potassium homeostasis. In this work, we discuss molecular mechanisms and messengers mediating potassium transport and homeostasis focusing on four major environmental stresses: salinity, drought, flooding and biotic factors. We argue that cytosolic K(+) content may be considered as one of the 'master switches' enabling plant transition from the normal metabolism to 'hibernated state' during first hours after the stress exposure and then to a recovery phase. We show that all these stresses trigger substantial disturbance to K(+) homeostasis and provoke a feedback control on K(+) channels and transporters expression and post-translational regulation of their activity, optimizing K(+) absorption and usage, and, at the extreme end, assisting the programmed cell death. We discuss specific modes of regulation of the activity of K(+) channels and transporters by membrane voltage, intracellular Ca(2+) , reactive oxygen species, polyamines, phytohormones and gasotransmitters, and link this regulation with plant-adaptive responses to hostile environments. Intracellular potassium homeostasis is a prerequisite for the optimal operation of plant metabolic machinery and plant's overall performance. It is controlled by K+ uptake, efflux and intracellular and long-distance relocation, mediated by a large number of K+-selective and non-selective channels and transporters located at both plasma and vacuolar membranes. All abiotic and biotic stresses result in a significant disturbance to intracellular potassium homeostasis. In this work, we discuss molecular mechanisms and messengers mediating potassium transport and homeostasis focusing on four major environmental stresses: salinity, drought, flooding and biotic factors. We argue that cytosolic K+ content may be considered as one of the 'master switches' enabling plant transition from the normal metabolism to 'hibernated state' during first hours after the stress exposure and then to a recovery phase. We show that all these stresses trigger substantial disturbance to K+ homeostasis and provoke a feedback control on K+ channels and transporters expression and post-translational regulation of their activity, optimizing K+ absorption and usage, and, at the extreme end, assisting the programmed cell death. We discuss specific modes of regulation of the activity of K+ channels and transporters by membrane voltage, intracellular Ca2+, reactive oxygen species, polyamines, phytohormones and gasotransmitters, and link this regulation with plant-adaptive responses to hostile environments. [PUBLICATION ABSTRACT] Intracellular potassium homeostasis is a prerequisite for the optimal operation of plant metabolic machinery and plant's overall performance. It is controlled by K + uptake, efflux and intracellular and long‐distance relocation, mediated by a large number of K + ‐selective and non‐selective channels and transporters located at both plasma and vacuolar membranes. All abiotic and biotic stresses result in a significant disturbance to intracellular potassium homeostasis. In this work, we discuss molecular mechanisms and messengers mediating potassium transport and homeostasis focusing on four major environmental stresses: salinity, drought, flooding and biotic factors. We argue that cytosolic K + content may be considered as one of the ‘master switches’ enabling plant transition from the normal metabolism to ‘hibernated state’ during first hours after the stress exposure and then to a recovery phase. We show that all these stresses trigger substantial disturbance to K + homeostasis and provoke a feedback control on K + channels and transporters expression and post‐translational regulation of their activity, optimizing K + absorption and usage, and, at the extreme end, assisting the programmed cell death. We discuss specific modes of regulation of the activity of K + channels and transporters by membrane voltage, intracellular Ca 2+ , reactive oxygen species, polyamines, phytohormones and gasotransmitters, and link this regulation with plant‐adaptive responses to hostile environments. Intracellular potassium homeostasis is a prerequisite for the optimal operation of plant metabolic machinery and plant's overall performance. It is controlled by K+ uptake, efflux and intracellular and long‐distance relocation, mediated by a large number of K+‐selective and non‐selective channels and transporters located at both plasma and vacuolar membranes. All abiotic and biotic stresses result in a significant disturbance to intracellular potassium homeostasis. In this work, we discuss molecular mechanisms and messengers mediating potassium transport and homeostasis focusing on four major environmental stresses: salinity, drought, flooding and biotic factors. We argue that cytosolic K+ content may be considered as one of the ‘master switches’ enabling plant transition from the normal metabolism to ‘hibernated state’ during first hours after the stress exposure and then to a recovery phase. We show that all these stresses trigger substantial disturbance to K+ homeostasis and provoke a feedback control on K+ channels and transporters expression and post‐translational regulation of their activity, optimizing K+ absorption and usage, and, at the extreme end, assisting the programmed cell death. We discuss specific modes of regulation of the activity of K+ channels and transporters by membrane voltage, intracellular Ca2+, reactive oxygen species, polyamines, phytohormones and gasotransmitters, and link this regulation with plant‐adaptive responses to hostile environments. |
Author | Shabala, Sergey Pottosin, Igor |
Author_xml | – sequence: 1 fullname: Shabala, Sergey – sequence: 2 fullname: Pottosin, Igor |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24506225$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktv1DAUhS1URKeFBX8ALLGBRVq_PekOTaGARlAeVZeWx3GKSxIHX0dQfj3uPFhUIO7CtuTvHOn4-ADtDXHwCD2m5IiWOR7H7ogyquQ9NKO8ritOpNhDM0I4rWpO9T46ALgmhCpF2QO0z4QkijE5Q78--aupsznEAccWjzFbgDD1OCc7wBhTxmHAY2eHDHgaGp_w1wg5dB67ODThVggnOPRjF9zaBnAbE7arEHNw2A4N3h4hJw-Ac-x88Xb-Ibrf2g78o-1-iC5ev_qyeFMtP5y9XbxcVk5SIStFtLWcMK9XXDhd8rKmocI71mrhNWmslHPm9JyWRZRbz_W8Fb6mLW81UfwQPd_4jil-nzxk0wdwviuZfJzA0LqMqHnN_o9KLhXjSoqCPruDXscpDSXImqKK1ZQU6smWmla9b8yYQm_TjdkVUIDjDeBSBEi-NS7k9TuWAkJnKDG3FZtSsVlXXBQv7ih2pn9jt-4_SmE3_wbN-flyp6g2igDZ__yjsOmbUZpraS7fn5lTdbrQ9buP5rLwTzd8a6OxVymAufjMCBXlsxGiBOW_ASilzX4 |
CitedBy_id | crossref_primary_10_1007_s13580_021_00362_x crossref_primary_10_1002_ird_2479 crossref_primary_10_1080_11263504_2020_1756975 crossref_primary_10_1007_s00344_020_10235_9 crossref_primary_10_1111_mec_13859 crossref_primary_10_1016_j_envexpbot_2022_104908 crossref_primary_10_15835_nbha50112654 crossref_primary_10_3390_ijms232314961 crossref_primary_10_1071_FP17054 crossref_primary_10_3390_su15086962 crossref_primary_10_17221_329_2017_PSE crossref_primary_10_1016_j_ecoenv_2025_118012 crossref_primary_10_3390_atmos12111489 crossref_primary_10_1016_j_plaphy_2016_10_011 crossref_primary_10_3390_molecules26237361 crossref_primary_10_1016_j_envexpbot_2019_103808 crossref_primary_10_1016_j_sjbs_2019_12_034 crossref_primary_10_3389_fpls_2019_01361 crossref_primary_10_5194_bg_12_6529_2015 crossref_primary_10_1186_s12284_021_00535_3 crossref_primary_10_1071_FP19362 crossref_primary_10_3390_horticulturae7080244 crossref_primary_10_1093_treephys_tpaa142 crossref_primary_10_1111_nph_16480 crossref_primary_10_1007_s11738_017_2359_z crossref_primary_10_1016_j_ecoenv_2020_111358 crossref_primary_10_1007_s10343_022_00673_8 crossref_primary_10_1038_s41598_022_26039_8 crossref_primary_10_1093_aob_mcu130 crossref_primary_10_1016_j_plantsci_2018_12_002 crossref_primary_10_1002_fsn3_4755 crossref_primary_10_1016_j_envexpbot_2019_103812 crossref_primary_10_1016_j_indcrop_2022_116177 crossref_primary_10_1093_jxb_erab515 crossref_primary_10_3390_agronomy15010148 crossref_primary_10_3389_fpls_2020_01009 crossref_primary_10_3389_fpls_2019_00281 crossref_primary_10_1007_s00344_020_10115_2 crossref_primary_10_1007_s11240_020_01983_3 crossref_primary_10_1016_j_plaphy_2020_11_025 crossref_primary_10_3390_ijms21010148 crossref_primary_10_1007_s10725_022_00942_6 crossref_primary_10_35208_ert_1026602 crossref_primary_10_15446_abc_v23n1_63513 crossref_primary_10_1016_j_scienta_2021_110762 crossref_primary_10_3390_plants12142646 crossref_primary_10_3389_fpls_2022_1054821 crossref_primary_10_3390_biom13040607 crossref_primary_10_3389_fenvs_2017_00042 crossref_primary_10_3389_fphys_2017_00509 crossref_primary_10_1080_07388551_2019_1616669 crossref_primary_10_1038_s41598_019_51178_w crossref_primary_10_1071_FP16187 crossref_primary_10_5322_JESI_2018_27_4_251 crossref_primary_10_3390_plants10061189 crossref_primary_10_3389_fpls_2016_01980 crossref_primary_10_1007_s00425_023_04275_0 crossref_primary_10_1080_00103624_2024_2419991 crossref_primary_10_3389_fpls_2014_00154 crossref_primary_10_1111_pbi_13332 crossref_primary_10_1093_jxb_erv528 crossref_primary_10_1042_BJ20141063 crossref_primary_10_1016_j_ecoleng_2016_10_008 crossref_primary_10_1093_hr_uhae262 crossref_primary_10_1111_ppl_12656 crossref_primary_10_1111_pce_13450 crossref_primary_10_1080_00103624_2020_1869761 crossref_primary_10_3390_horticulturae9101137 crossref_primary_10_1016_j_envexpbot_2021_104663 crossref_primary_10_1007_s00299_020_02549_5 crossref_primary_10_1007_s00344_021_10361_y crossref_primary_10_1007_s12298_020_00768_4 crossref_primary_10_1016_S1002_0160_21_60070_X crossref_primary_10_1093_jxb_eraa354 crossref_primary_10_1093_jxb_erab440 crossref_primary_10_3389_fpls_2021_750805 crossref_primary_10_3390_plants11030263 crossref_primary_10_1093_jxb_erv453 crossref_primary_10_1016_j_scienta_2021_110742 crossref_primary_10_1111_ppl_12820 crossref_primary_10_1007_s10722_024_02056_6 crossref_primary_10_3389_fpls_2020_00247 crossref_primary_10_3389_fpls_2016_00351 crossref_primary_10_1007_s00299_019_02382_5 crossref_primary_10_1093_jxb_erv465 crossref_primary_10_1007_s41207_024_00496_1 crossref_primary_10_1016_j_xplc_2021_100188 crossref_primary_10_1007_s11104_015_2767_z crossref_primary_10_3389_fpls_2016_01787 crossref_primary_10_1016_j_heliyon_2024_e27814 crossref_primary_10_1111_ppl_12827 crossref_primary_10_1016_j_scitotenv_2018_05_049 crossref_primary_10_1111_pce_12339 crossref_primary_10_3390_agriculture15030254 crossref_primary_10_1016_j_sajb_2016_11_004 crossref_primary_10_3390_agriculture11070608 crossref_primary_10_1007_s00425_015_2317_1 crossref_primary_10_3389_fmicb_2022_763014 crossref_primary_10_1016_j_envexpbot_2022_105076 crossref_primary_10_1016_j_xinn_2020_100017 crossref_primary_10_3390_agronomy12020379 crossref_primary_10_1016_j_sjbs_2023_103655 crossref_primary_10_1007_s42729_022_00854_4 crossref_primary_10_2139_ssrn_4123254 crossref_primary_10_1016_j_envexpbot_2021_104689 crossref_primary_10_1007_s40502_022_00691_8 crossref_primary_10_1038_s41598_018_25839_1 crossref_primary_10_3390_plants10081704 crossref_primary_10_1111_pce_13759 crossref_primary_10_1111_pbr_12934 crossref_primary_10_1016_j_plaphy_2017_04_017 crossref_primary_10_1071_FP21336 crossref_primary_10_1016_j_ecoenv_2018_09_059 crossref_primary_10_3389_fpls_2019_00080 crossref_primary_10_3389_fpls_2018_01755 crossref_primary_10_3390_ijms241914762 crossref_primary_10_17221_155_2015_CJGPB crossref_primary_10_1002_tpg2_20521 crossref_primary_10_3389_fpls_2014_00337 crossref_primary_10_3390_plants12132519 crossref_primary_10_1007_s10725_020_00662_9 crossref_primary_10_32604_phyton_2021_014156 crossref_primary_10_1093_pcp_pcx026 crossref_primary_10_1093_pcp_pcz205 crossref_primary_10_3390_genes14122203 crossref_primary_10_1093_jxb_eraa004 crossref_primary_10_1002_npp2_22 crossref_primary_10_1111_pce_13769 crossref_primary_10_3390_ijms252111360 crossref_primary_10_3390_ijms20030699 crossref_primary_10_1016_j_stress_2025_100768 crossref_primary_10_3389_fpls_2018_00417 crossref_primary_10_1080_00103624_2019_1678633 crossref_primary_10_1111_ppl_13702 crossref_primary_10_1016_j_scienta_2019_02_071 crossref_primary_10_3389_fpls_2022_881039 crossref_primary_10_32615_bp_2021_044 crossref_primary_10_1155_2017_2568706 crossref_primary_10_1186_s12284_020_00395_3 crossref_primary_10_1002_bab_2458 crossref_primary_10_3390_plants13091244 crossref_primary_10_1080_15592324_2015_1013793 crossref_primary_10_3390_ijms19030702 crossref_primary_10_1071_FP15391 crossref_primary_10_3390_ijms20030715 crossref_primary_10_1186_s12870_024_04811_4 crossref_primary_10_1111_pce_14943 crossref_primary_10_1186_s12870_022_03832_1 crossref_primary_10_1071_FP16120 crossref_primary_10_1080_01904167_2019_1676907 crossref_primary_10_1007_s11240_021_02131_1 crossref_primary_10_3390_plants11141894 crossref_primary_10_1016_j_jplph_2019_01_011 crossref_primary_10_1016_j_envexpbot_2022_104973 crossref_primary_10_1093_jxb_erw236 crossref_primary_10_1016_j_envexpbot_2021_104452 crossref_primary_10_1007_s00344_023_11070_4 crossref_primary_10_1016_j_plaphy_2019_09_022 crossref_primary_10_1016_j_envexpbot_2019_05_020 crossref_primary_10_3389_fpls_2016_00379 crossref_primary_10_1016_j_ecoenv_2024_116768 crossref_primary_10_1038_srep11391 crossref_primary_10_15252_embj_2019103256 crossref_primary_10_1007_s10725_024_01257_4 crossref_primary_10_1111_pce_12422 crossref_primary_10_1016_j_molp_2018_03_017 crossref_primary_10_1071_FP16135 crossref_primary_10_1007_s00344_019_09917_w crossref_primary_10_1007_s40502_023_00720_0 crossref_primary_10_1071_FP15284 crossref_primary_10_1111_ppl_13449 crossref_primary_10_1134_S1021443719030075 crossref_primary_10_1016_j_envexpbot_2021_104448 crossref_primary_10_3390_agronomy12092123 crossref_primary_10_3389_fpls_2016_01471 crossref_primary_10_3390_antiox12030558 crossref_primary_10_1007_s00344_021_10489_x crossref_primary_10_1007_s11240_024_02916_0 crossref_primary_10_1016_j_scitotenv_2022_153271 crossref_primary_10_1002_agj2_20013 crossref_primary_10_1007_s10725_016_0157_z crossref_primary_10_1111_pce_12995 crossref_primary_10_1007_s11273_021_09814_8 crossref_primary_10_3390_plants10102173 crossref_primary_10_3390_plants8100435 crossref_primary_10_3390_cells10051244 crossref_primary_10_1007_s11240_016_0940_6 crossref_primary_10_15406_jabb_2021_08_00260 crossref_primary_10_1007_s00709_020_01493_1 crossref_primary_10_1007_s11738_014_1716_4 crossref_primary_10_1007_s11104_018_3793_4 crossref_primary_10_1007_s11738_015_1881_0 crossref_primary_10_3390_ijms23179900 crossref_primary_10_1093_jxb_erx429 crossref_primary_10_1111_ppl_13589 crossref_primary_10_3389_fpls_2019_01418 crossref_primary_10_3389_fpls_2023_1135943 crossref_primary_10_1016_j_jplph_2019_01_009 crossref_primary_10_3390_horticulturae8020119 crossref_primary_10_47115_bsagriculture_1457295 crossref_primary_10_1016_j_scienta_2019_05_059 crossref_primary_10_3390_plants9060672 crossref_primary_10_1007_s12155_017_9846_3 crossref_primary_10_1007_s13562_021_00741_6 crossref_primary_10_1002_jpln_202000007 crossref_primary_10_1093_jxb_ery201 crossref_primary_10_1016_j_jhazmat_2022_128217 crossref_primary_10_1016_j_scitotenv_2021_145112 crossref_primary_10_1007_s12298_020_00847_6 crossref_primary_10_1186_s12870_025_06078_9 crossref_primary_10_1016_j_envexpbot_2021_104708 crossref_primary_10_1007_s11104_020_04777_w crossref_primary_10_1071_BT17100 crossref_primary_10_1080_02648725_2022_2143317 crossref_primary_10_1590_1678_4499_20210245 crossref_primary_10_1016_j_envexpbot_2016_07_007 crossref_primary_10_1080_14786419_2020_1795653 crossref_primary_10_3389_fpls_2019_00217 crossref_primary_10_1016_j_plaphy_2024_109136 crossref_primary_10_4236_ajps_2019_1012162 crossref_primary_10_1007_s11104_018_3770_y crossref_primary_10_1093_jxb_erw034 crossref_primary_10_1111_jipb_12238 crossref_primary_10_3390_plants10081513 crossref_primary_10_1016_j_plaphy_2022_11_032 crossref_primary_10_3390_plants13162311 crossref_primary_10_1186_s40659_015_0055_2 crossref_primary_10_1007_s11738_017_2379_8 crossref_primary_10_3390_plants14060911 crossref_primary_10_1093_jxb_ery461 crossref_primary_10_3389_fpls_2022_869423 crossref_primary_10_1016_j_indcrop_2021_113886 crossref_primary_10_1016_j_jplph_2016_12_012 crossref_primary_10_1016_j_plaphy_2020_01_025 crossref_primary_10_1016_j_sajb_2023_05_016 crossref_primary_10_3389_fpls_2021_734430 crossref_primary_10_1093_jxb_eraa508 crossref_primary_10_1007_s42729_020_00224_y crossref_primary_10_3390_plants11060739 crossref_primary_10_1016_j_scienta_2023_112788 crossref_primary_10_1016_j_jplph_2016_06_010 crossref_primary_10_3390_agriculture14122353 crossref_primary_10_1186_s12870_025_06374_4 crossref_primary_10_3390_antiox11102005 crossref_primary_10_1002_sae2_12065 crossref_primary_10_1371_journal_pone_0193394 crossref_primary_10_1111_plb_13216 crossref_primary_10_1111_ppl_12447 crossref_primary_10_1016_j_ecoenv_2020_110593 crossref_primary_10_1111_ppl_12325 crossref_primary_10_3389_fpls_2024_1376427 crossref_primary_10_1071_FP16385 crossref_primary_10_3390_f9120782 crossref_primary_10_1016_j_fcr_2017_05_018 crossref_primary_10_1111_jac_12126 crossref_primary_10_1093_jxb_erw378 crossref_primary_10_1016_j_plaphy_2025_109574 crossref_primary_10_36610_j_jsab_2020_080200110x crossref_primary_10_1007_s00709_016_1037_0 crossref_primary_10_3390_genes12050784 crossref_primary_10_1007_s00299_022_02899_2 crossref_primary_10_3390_metabo13111162 crossref_primary_10_1016_j_cj_2024_03_001 crossref_primary_10_4236_ajps_2020_117071 crossref_primary_10_3389_fpls_2018_00256 crossref_primary_10_1016_j_envexpbot_2020_104328 crossref_primary_10_1111_jac_12477 crossref_primary_10_1016_j_scienta_2018_04_023 crossref_primary_10_1093_pcp_pcu105 crossref_primary_10_1007_s11540_019_09431_2 crossref_primary_10_1016_j_scitotenv_2019_02_281 crossref_primary_10_1590_2447_536x_v27i2_2246 crossref_primary_10_1071_FP15312 crossref_primary_10_1016_j_plaphy_2021_09_031 crossref_primary_10_1016_j_chemosphere_2022_136911 crossref_primary_10_1080_01904167_2020_1862202 crossref_primary_10_3389_fpls_2015_00581 crossref_primary_10_1093_jxb_ery251 crossref_primary_10_1371_journal_pone_0124032 crossref_primary_10_1007_s00425_023_04082_7 crossref_primary_10_1111_nph_15605 crossref_primary_10_3390_plants10081693 crossref_primary_10_1515_opag_2019_0035 crossref_primary_10_3389_fpls_2020_573564 crossref_primary_10_1007_s42976_022_00291_0 crossref_primary_10_1007_s00709_020_01533_w crossref_primary_10_1016_j_envexpbot_2015_11_010 crossref_primary_10_3390_plants10071401 crossref_primary_10_1007_s10725_015_0063_9 crossref_primary_10_1080_03650340_2017_1346373 crossref_primary_10_7717_peerj_14804 crossref_primary_10_1111_jipb_13642 crossref_primary_10_1016_j_plaphy_2018_10_025 crossref_primary_10_1111_ppl_13166 crossref_primary_10_3390_plants10081560 crossref_primary_10_1016_j_pbi_2016_01_005 crossref_primary_10_1021_acs_jafc_0c05628 crossref_primary_10_3390_agronomy11050926 crossref_primary_10_1016_j_envexpbot_2018_08_029 crossref_primary_10_1080_11263504_2024_2446790 crossref_primary_10_3389_fpls_2017_01941 crossref_primary_10_1016_j_envexpbot_2016_04_005 crossref_primary_10_1007_s42729_022_00916_7 crossref_primary_10_1007_s11032_020_1100_6 crossref_primary_10_1016_j_etap_2024_104586 crossref_primary_10_1016_j_scienta_2019_109037 crossref_primary_10_3389_fmicb_2018_01339 crossref_primary_10_1093_jxb_erz328 crossref_primary_10_1007_s42729_021_00635_5 crossref_primary_10_3389_fpls_2023_1143963 crossref_primary_10_3390_ijms21041516 crossref_primary_10_1007_s12298_018_00640_6 crossref_primary_10_1016_j_tplants_2019_12_012 crossref_primary_10_54033_cadpedv21n9_051 crossref_primary_10_1080_01904167_2023_2222132 crossref_primary_10_1007_s00425_024_04353_x crossref_primary_10_59324_ejtas_2023_1_6__91 crossref_primary_10_3389_fpls_2016_01296 crossref_primary_10_1007_s11103_023_01335_7 crossref_primary_10_1016_j_cj_2022_03_004 crossref_primary_10_1016_j_molp_2015_10_006 crossref_primary_10_1007_s00344_024_11605_3 crossref_primary_10_36610_j_jsab_2020_080200110 crossref_primary_10_1590_1678_4499_2016_264 crossref_primary_10_1016_j_jplph_2021_153432 crossref_primary_10_3389_fpls_2017_01766 crossref_primary_10_1016_j_scitotenv_2023_166978 crossref_primary_10_3390_plants9010065 crossref_primary_10_1016_j_envexpbot_2017_07_003 crossref_primary_10_1088_1755_1315_1060_1_012106 crossref_primary_10_3390_plants12203559 crossref_primary_10_3389_fpls_2023_1137211 crossref_primary_10_1021_acs_jproteome_8b00521 crossref_primary_10_1007_s10750_024_05489_3 crossref_primary_10_1093_plphys_kiab217 crossref_primary_10_1515_intag_2016_0028 crossref_primary_10_1080_00380768_2017_1381573 crossref_primary_10_3389_fpls_2015_00427 crossref_primary_10_1111_jac_12290 crossref_primary_10_2323_jgam_2020_08_003 crossref_primary_10_3390_ijms221910398 crossref_primary_10_1016_j_jbiotec_2021_02_007 crossref_primary_10_1016_j_plantsci_2021_110891 crossref_primary_10_1016_j_cpb_2019_100105 crossref_primary_10_1016_j_plantsci_2024_112337 crossref_primary_10_3390_antiox11020401 crossref_primary_10_1007_s11356_020_09453_1 crossref_primary_10_1080_01904167_2020_1729801 crossref_primary_10_1007_s10705_018_9954_2 crossref_primary_10_3390_agriculture12020183 crossref_primary_10_3390_plants12030472 crossref_primary_10_1186_s13007_019_0397_9 crossref_primary_10_1007_s11103_014_0278_6 crossref_primary_10_1016_j_ijbiomac_2025_141680 crossref_primary_10_1016_j_plaphy_2019_02_004 crossref_primary_10_11623_frj_2023_31_4_21 crossref_primary_10_3390_ijms23095130 crossref_primary_10_3389_fpls_2017_01629 crossref_primary_10_1007_s00299_021_02731_3 crossref_primary_10_1111_jac_70047 crossref_primary_10_3390_ijms24043388 crossref_primary_10_1080_09064710_2021_1988138 crossref_primary_10_1007_s11033_022_08064_y crossref_primary_10_1007_s00425_015_2366_5 crossref_primary_10_1007_s40502_024_00809_0 crossref_primary_10_1007_s11738_024_03757_2 crossref_primary_10_1016_j_plaphy_2021_01_010 crossref_primary_10_1080_09670262_2015_1070437 crossref_primary_10_1007_s00344_020_10145_w crossref_primary_10_1155_2016_8231873 crossref_primary_10_3390_ijms19092636 crossref_primary_10_1093_treephys_tpv090 crossref_primary_10_1371_journal_pone_0219799 crossref_primary_10_3390_horticulturae7060140 crossref_primary_10_1007_s10725_020_00659_4 crossref_primary_10_1016_j_sajb_2022_11_001 crossref_primary_10_1016_j_envexpbot_2019_02_021 crossref_primary_10_1111_pce_14189 crossref_primary_10_1111_nph_15852 crossref_primary_10_1016_j_fcr_2022_108461 crossref_primary_10_1016_j_plaphy_2021_01_021 crossref_primary_10_1016_j_flora_2018_03_003 crossref_primary_10_3389_fpls_2015_00977 crossref_primary_10_1007_s00425_018_2907_9 crossref_primary_10_1016_j_hpj_2018_10_001 crossref_primary_10_1007_s12298_017_0462_7 crossref_primary_10_1016_j_stress_2023_100317 crossref_primary_10_1111_pce_14279 crossref_primary_10_3390_ijms24010002 crossref_primary_10_1016_j_plaphy_2023_108235 crossref_primary_10_3389_fpls_2020_00323 crossref_primary_10_3389_fpls_2019_01086 crossref_primary_10_1016_j_envexpbot_2024_105706 crossref_primary_10_3390_genes10090638 crossref_primary_10_1002_saj2_20438 crossref_primary_10_1016_j_plaphy_2024_108768 crossref_primary_10_3390_agronomy10070938 crossref_primary_10_1016_j_sajb_2024_03_042 crossref_primary_10_1002_jsfa_9107 crossref_primary_10_3389_fpls_2014_00787 crossref_primary_10_1134_S1995425522010061 crossref_primary_10_3390_ijms25115648 crossref_primary_10_1016_j_algal_2019_101526 crossref_primary_10_1071_FP20167 crossref_primary_10_3389_fpls_2023_1241736 crossref_primary_10_1007_s13205_024_03979_8 crossref_primary_10_1016_j_jplph_2016_03_001 crossref_primary_10_1080_15226514_2021_1874289 crossref_primary_10_1007_s00425_016_2605_4 crossref_primary_10_1186_s12870_023_04613_0 crossref_primary_10_1016_j_ijbiomac_2023_123503 crossref_primary_10_3390_ijms25063432 crossref_primary_10_3923_ajps_2020_508_514 crossref_primary_10_1007_s11356_018_3571_0 crossref_primary_10_1016_j_plaphy_2022_01_016 crossref_primary_10_3390_su142315514 crossref_primary_10_1093_jxb_erz042 crossref_primary_10_1016_j_envexpbot_2023_105427 crossref_primary_10_1016_j_sajb_2017_09_007 crossref_primary_10_1093_pcp_pcab022 crossref_primary_10_1016_j_envexpbot_2020_104098 crossref_primary_10_3390_agriculture12111867 crossref_primary_10_3390_agronomy11061193 crossref_primary_10_1016_j_indcrop_2021_114190 crossref_primary_10_3390_plants10020314 crossref_primary_10_1071_FP22117 crossref_primary_10_1016_j_jplph_2015_01_005 crossref_primary_10_1093_treephys_tpu081 crossref_primary_10_1007_s11738_023_03539_2 crossref_primary_10_3390_ijms21155292 crossref_primary_10_1186_s12864_016_3380_0 crossref_primary_10_1007_s10725_015_0028_z crossref_primary_10_1007_s12298_019_00654_8 crossref_primary_10_3390_soilsystems8040104 crossref_primary_10_3390_plants12061260 crossref_primary_10_1093_jxb_erab043 crossref_primary_10_1016_j_rsci_2023_02_001 crossref_primary_10_1007_s12892_022_00153_5 crossref_primary_10_1007_s40415_018_0500_x crossref_primary_10_1016_j_plaphy_2023_108313 crossref_primary_10_1111_nph_13173 crossref_primary_10_1016_j_cj_2021_02_010 crossref_primary_10_1007_s12892_018_0108_0 crossref_primary_10_1016_j_jenvman_2022_116434 crossref_primary_10_1371_journal_pone_0218528 crossref_primary_10_1071_FP23266 crossref_primary_10_3390_agronomy11040691 crossref_primary_10_3390_plants10020419 crossref_primary_10_1093_aob_mcu219 crossref_primary_10_1007_s10725_019_00519_w crossref_primary_10_1007_s12298_017_0483_2 crossref_primary_10_3390_agronomy13092198 crossref_primary_10_1007_s13562_021_00694_w crossref_primary_10_18036_estubtdc_1224531 crossref_primary_10_1007_s00344_024_11523_4 crossref_primary_10_1007_s11104_024_07101_y crossref_primary_10_3389_fpls_2014_00605 crossref_primary_10_1016_j_plaphy_2023_02_020 crossref_primary_10_3390_biology9070144 crossref_primary_10_1007_s11738_018_2616_9 crossref_primary_10_1590_1983_21252021v34n318rc crossref_primary_10_1016_j_scienta_2024_113356 crossref_primary_10_1111_tpj_16549 crossref_primary_10_3389_fpls_2016_00609 crossref_primary_10_1016_j_plantsci_2015_10_003 crossref_primary_10_1016_j_plaphy_2019_05_016 crossref_primary_10_1371_journal_pone_0229513 crossref_primary_10_3390_microorganisms11122910 crossref_primary_10_3390_horticulturae8010075 crossref_primary_10_3390_plants10112328 crossref_primary_10_3390_ijms23084072 crossref_primary_10_3390_ijms24043549 crossref_primary_10_1016_j_eti_2021_101808 crossref_primary_10_3390_agronomy11112329 crossref_primary_10_1093_plphys_kiab028 |
Cites_doi | 10.1016/j.plantsci.2011.04.002 10.1111/pce.12109 10.4161/psb.3.6.5429 10.1073/pnas.0702595104 10.1093/jxb/ers343 10.1007/s00425-002-0829-y 10.1016/B978-0-12-387692-8.00005-9 10.1023/A:1015182310754 10.1080/07352689.2010.524517 10.1111/j.1399-3054.2010.01373.x 10.1093/jxb/48.Special_Issue.451 10.1074/jbc.M508490200 10.1016/j.envexpbot.2012.12.005 10.1104/pp.113.216572 10.1046/j.1439-037x.2000.00422.x 10.1104/pp.106.082388 10.1093/pcp/pcr194 10.1104/pp.104.046482 10.1111/j.1365-313X.2007.03236.x 10.1016/j.plaphy.2010.09.016 10.1074/jbc.M604781200 10.1038/35021067 10.1111/j.1399-3054.2008.01168.x 10.1016/S0065-2571(98)00010-7 10.1016/j.cub.2007.07.020 10.2307/3870106 10.1104/pp.111.179671 10.1016/j.cell.2006.06.011 10.1104/pp.111.4.1077 10.1093/jxb/eri229 10.1126/science.1152505 10.1074/jbc.M708213200 10.1111/j.1365-3040.2005.01364.x 10.1006/pmpp.1997.0129 10.1111/pce.12180 10.1016/j.jplph.2010.05.021 10.1093/jxb/erp013 10.1046/j.1469-8137.1999.00395.x 10.1007/s00425-006-0297-x 10.1111/j.1365-3040.2005.01486.x 10.1080/01904169909365729 10.1093/mp/ssp121 10.1126/science.280.5365.918 10.1111/j.1399-3054.2006.00709.x 10.1111/j.1399-3054.2007.01008.x 10.1007/s00425-010-1213-y 10.1146/annurev-arplant-050312-120153 10.1007/s11104-004-1082-x 10.1371/journal.pone.0047797 10.1093/pcp/41.6.785 10.1073/pnas.0504437102 10.1038/cr.2011.50 10.1073/pnas.0733970100 10.1055/s-2006-923965 10.1046/j.1365-313x.1998.00274.x 10.1105/tpc.112.097881 10.1016/j.abb.2007.01.020 10.1111/j.1438-8677.2011.00526.x 10.1113/expphysiol.2010.055244 10.1242/jcs.00201 10.1104/pp.125.1.406 10.1002/jpln.200420516 10.1105/tpc.112.105700 10.1105/tpc.108.063099 10.1006/anbo.1996.0003 10.1071/CP11071 10.1073/pnas.0401707101 10.1104/pp.85.4.1040 10.2307/3869871 10.1007/s004250050532 10.1146/annurev-arplant-042809-112226 10.1007/BF00195686 10.1111/j.1399-3054.1993.tb05274.x 10.1007/s11240-012-0207-9 10.1007/s11104-010-0520-1 10.1093/jxb/ern225 10.1111/j.1438-8677.2010.00353.x 10.1051/agro:2008021 10.1071/FP06158 10.1007/s11103-008-9380-y 10.1016/j.febslet.2007.03.050 10.1046/j.1365-313X.1997.11051059.x 10.1111/j.1365-313X.2007.03342.x 10.1096/fj.02-0211hyp 10.1073/pnas.96.21.12186 10.1093/aob/mct205 10.1093/jxb/erq074 10.1093/jxb/erg067 10.1007/BF00223692 10.1111/j.1365-313X.2011.04579.x 10.1007/s002490050237 10.1016/j.febslet.2007.04.014 10.1093/treephys/tpq017 10.1093/jxb/erm370 10.1007/s00122-003-1421-y 10.1371/journal.pone.0013935 10.1093/jxb/ern128 10.1093/jxb/39.3.279 10.4161/psb.3.6.5374 10.1007/BF00202963 10.1046/j.0028-646X.2001.00318.x 10.1007/s00232-005-0766-3 10.1105/tpc.113.110353 10.1080/01904169909365710 10.1007/s11099-011-0043-x 10.1038/nature03381 10.1016/j.plantsci.2009.06.004 10.1111/pce.12073 10.1089/ars.2011.4359 10.1073/pnas.1434381100 10.1105/tpc.111.095273 10.1016/j.tplants.2011.03.007 10.1071/AR03097 10.1111/pce.12020 10.1093/pcp/pcr061 10.1071/FP10233 10.1071/FP04111 10.1111/j.1399-3054.2008.01067.x 10.1007/BF00216815 10.1101/gad.1953910 10.1111/j.1469-8137.2008.02461.x 10.1146/annurev.pp.28.060177.000513 10.1046/j.1365-2958.2003.03800.x 10.1093/jxb/erj050 10.1111/j.1469-8137.2011.03664.x 10.2478/s11535-011-0065-1 10.1186/1471-2229-12-161 10.1093/jxb/erg072 10.1016/S0014-5793(00)01093-0 10.1111/j.1365-313X.2011.04697.x 10.1111/j.1365-313X.2009.04073.x 10.1093/pcp/pcq007 10.1007/s11738-013-1239-4 10.1242/jcs.064352 10.1093/pcp/pce004 10.1104/pp.124.3.1315 10.1111/j.1469-8137.2010.03465.x 10.1111/jipb.12038 10.1080/01904167.2012.754032 10.1007/s00425-007-0561-8 10.1038/90824 10.1104/pp.020005 10.1071/FP09269 10.1093/treephys/tpq115 10.1042/BJ20091221 10.1094/MPMI-19-0711 10.1111/j.1469-8137.2006.01777.x 10.1007/978-3-540-68964-5_2 10.1007/978-3-642-10305-6_2 10.1046/j.1365-313X.2000.00844.x 10.1093/pcp/pcj007 10.1093/jxb/erm293 10.1111/j.1469-8137.1987.tb00860.x 10.1093/pcp/pce085 10.1093/jxb/erq271 10.1006/anbo.1999.0912 10.1038/sj.cr.7290086 10.1016/j.pbi.2009.04.003 10.1126/science.285.5431.1256 10.1111/j.1365-3040.2011.02426.x 10.1007/BF00027184 10.1111/j.1399-3054.2008.01075.x 10.1146/annurev.arplant.55.031903.141701 10.1111/j.1365-3040.2008.01888.x 10.1093/aob/mci207 10.1104/pp.115.4.1707 10.1104/pp.125.3.1459 10.1111/j.1469-8137.2008.02531.x 10.1016/S0176-1617(97)80320-3 10.1146/annurev.arplant.54.031902.134831 10.1007/s002329900477 10.1126/science.1057175 10.1016/S0014-5793(03)01118-9 10.1093/jxb/eri138 10.1046/j.1365-313X.1999.00423.x 10.1074/jbc.M110.141176 10.1104/pp.107.105882 10.1073/pnas.0912021106 10.1093/jxb/erq422 10.1016/j.plantsci.2011.12.007 10.1002/jpln.200900316 10.1016/S0176-1617(89)80248-2 10.1074/jbc.M603761200 10.1111/j.1365-313X.2004.02230.x 10.1007/s00425-010-1106-0 10.1007/s10658-008-9302-5 10.1046/j.0016-8025.2003.01116.x 10.1105/tpc.105.035626 10.1007/s11103-008-9388-3 10.1093/jxb/erm035 10.1093/mp/ssr017 10.1007/s00425-008-0855-5 10.1071/PP9740491 10.1111/j.1365-313X.2004.02273.x 10.1104/pp.107.110262 10.1007/s00425-010-1130-0 10.1111/j.1469-8137.2010.03564.x 10.1105/tpc.111.086751 10.4161/psb.6.11.17797 10.1074/jbc.M309084200 10.1016/j.bbamcr.2011.09.011 10.1093/jxb/25.6.1104 10.1023/B:RUPP.0000003284.25827.95 10.1104/pp.104.039255 10.1081/PLN-120030371 10.4161/psb.21185 10.1007/s0023200100073 10.1111/j.1469-8137.2010.03575.x 10.1016/j.plaphy.2012.09.002 10.1080/01904160802043122 10.1111/j.1365-3040.2009.02060.x 10.1111/j.1469-8137.2008.02431.x 10.1111/j.1469-8137.1984.tb04103.x 10.1111/j.1469-8137.2005.01460.x 10.1007/s00425-007-0606-z 10.1071/FP08030 10.1093/jxb/erm284 10.1007/PL00013998 10.1093/jxb/50.339.1547 10.1089/ars.2009.2657 10.1093/jxb/erq261 10.4161/psb.23425 10.1071/FP03016 10.1104/pp.85.3.655 10.1007/s00726-011-1012-1 10.1016/j.febslet.2009.02.009 10.1016/j.virol.2007.10.024 10.1002/jpln.200420485 10.1071/PP01154 10.1104/pp.112.206896 10.1080/11263500802633626 10.2135/cropsci2012.05.0284 10.1007/s00425-009-0946-y 10.1007/s00425-004-1293-7 10.1093/jexbot/51.350.1585 |
ContentType | Journal Article |
Copyright | 2014 Scandinavian Plant Physiology Society 2014 Scandinavian Plant Physiology Society. |
Copyright_xml | – notice: 2014 Scandinavian Plant Physiology Society – notice: 2014 Scandinavian Plant Physiology Society. |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7ST 8FD C1K FR3 P64 RC3 SOI 7X8 7S9 L.6 |
DOI | 10.1111/ppl.12165 |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Engineering Research Database Ecology Abstracts Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic Genetics Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1399-3054 |
EndPage | 279 |
ExternalDocumentID | 3332604511 24506225 10_1111_ppl_12165 PPL12165 ark_67375_WNG_D6DC79JQ_W US201400100641 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Australian Research Council and Grain Research Development Corporation |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29O 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABHUG ABJNI ABPTK ABPVW ACAHQ ACBTR ACBWZ ACCFJ ACCZN ACGFS ACNCT ACPOU ACPRK ACSCC ACSMX ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AETEA AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHEFC AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ H~9 IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OHT P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 TWZ UB1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT ZCG ZZTAW ~02 ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7SN 7ST 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 RC3 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c5145-607aa302e7b34c71112dd14ec2f74e70da5582c7812c74112e378f4e91f3f7063 |
IEDL.DBID | DR2 |
ISSN | 0031-9317 1399-3054 |
IngestDate | Fri Jul 11 18:32:40 EDT 2025 Fri Jul 11 05:21:10 EDT 2025 Fri Jul 25 12:17:35 EDT 2025 Thu Apr 03 07:07:16 EDT 2025 Tue Jul 01 03:00:41 EDT 2025 Thu Apr 24 23:11:08 EDT 2025 Wed Jan 22 16:46:59 EST 2025 Wed Oct 30 09:53:48 EDT 2024 Wed Dec 27 19:16:16 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | 2014 Scandinavian Plant Physiology Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5145-607aa302e7b34c71112dd14ec2f74e70da5582c7812c74112e378f4e91f3f7063 |
Notes | http://dx.doi.org/10.1111/ppl.12165 Australian Research Council and Grain Research Development Corporation ArticleID:PPL12165 istex:6EB7B4BF9A2AEAE00C1ED5F3C28D0C4CD80B78B4 ark:/67375/WNG-D6DC79JQ-W ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PMID | 24506225 |
PQID | 1535162910 |
PQPubID | 1096353 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_1999949392 proquest_miscellaneous_1535623654 proquest_journals_1535162910 pubmed_primary_24506225 crossref_citationtrail_10_1111_ppl_12165 crossref_primary_10_1111_ppl_12165 wiley_primary_10_1111_ppl_12165_PPL12165 istex_primary_ark_67375_WNG_D6DC79JQ_W fao_agris_US201400100641 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2014 |
PublicationDateYYYYMMDD | 2014-07-01 |
PublicationDate_xml | – month: 07 year: 2014 text: July 2014 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Denmark – name: Malden |
PublicationTitle | Physiologia plantarum |
PublicationTitleAlternate | Physiol Plantarum |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Shin R, Schachtman DP (2004) Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci USA 101: 8827-8832 Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285: 1256-1258 Held K, Pascaud F, Eckert C, Gajdanowicz P, Hashimoto K, Coratge-Faillie C, Offenborn JN, Lacombe B, Dreyer I, Thibaud JB, Kudla J (2011) Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex. Cell Res 21: 1116-1130 Ou LJ, Dai XZ, Zhang ZQ, Zou XX (2011) Responses of pepper to waterlogging stress. Photosynthetica 49: 339-345 Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231: 1237-1249 Huertas R, Rubio L, Cagnac O, Garcia-Sanchez MJ, Alche JD, Venema K, Fernandez JA, Rodriguez-Rosales MP (2013) The K+/H+ antiporter LeNHX2 increases salt tolerance by improving K+ homeostasis in transgenic tomato. Plant Cell Environ 36: 2135-2149 Ling TF, Zhang B, Cui WT, Wu MZ, Lin JS, Zhou WT, Huang JJ, Shen WB (2009) Carbon monoxide mitigates salt-induced inhibition of root growth and suppresses programmed cell death in wheat primary roots by inhibiting superoxide anion overproduction. Plant Sci 177: 331-340 Xuan W, Xu S, Yuan X, Shen W (2008) Carbon monoxide. A novel and pivotal signal molecule in plants? Plant Signal Behav 3: 381-382 Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK (2011) Additive effects of Na+ and Cl- ions on barley growth under salinity stress. J Exp Bot 62: 2189-2203 Bose J, Shabala L, Pottosin I, Zeng F, Velarde-Buendía AM, Massart A, Poschenrieder C, Hariadi Y, Shabala S (2014) Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K+-permeable channels to reactive oxygen species: physiological traits that differentiate salinity tolerance between pea and barley. Plant Cell Environ 37: 589-600 Flowers TJ, Troke PF, Yeo AR (1977) Mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol Plant Mol Biol 28: 89-121 Rodrigo-Moreno A, Poschenrieder C, Shabala S (2013b) Transition metals: a double edge sword in ROS generation and signaling. Plant Signal Behav 8: e23421-e23425 Brüggemann LI, Pottosin II, Schönknecht G (1999b) Cytoplasmic magnesium regulates the fast activating vacuolar cation channel. J Exp Bot 50: 1547-1552 Jiang MY, Zhang JH (2002) Involvement of plasma-membrane NADPH oxidase in abscisic acid- and water stress-induced antioxidant defense in leaves of maize seedlings. Planta 215: 1022-1030 Yannarelli GG, Noriega GO, Batlle A, Tomaro ML (2006) Heme oxygenase up-regulation in ultraviolet-B irradiated soybean plants involves reactive oxygen species. Planta 224: 1154-1162 Kajimura M, Fukuda R, Bateman RM, Yamamoto T, Suematsu M (2010) Interactions of multiple gas-transducing systems: hallmarks and uncertainties of CO, NO, and H2S gas biology. Antioxid Redox Signal 13: 157-192 Peers C, Bauer CC, Boyle JP, Scragg JL, Dallas ML (2012) Modulation of ion channels by hydrogen sulfide. Antioxid Redox Signal 17: 95-105 Zwieniecki MA, Melcher PJ, Holbrook NM (2001) Hydrogel control of xylem hydraulic resistance in plants. Science 291: 1059-1062 Ashraf M, Rehman H (1999) Mineral nutrient status of corn in relation to nitrate and long-term waterlogging. J Plant Nutr 22: 1253-1268 Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci-Z Pflanzenernahr Bodenkd 168: 521-530 Dubcovsky J, Maria GS, Epstein E, Luo MC, Dvorak J (1996) Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor Appl Genet 92: 448-454 Srivastava N, Gonugunta VK, Puli MR, Raghavendra AS (2009) Nitric oxide production occurs downstream of reactive oxygen species in guard cells during stomatal closure induced by chitosan in abaxial epidermis of Pisum sativum. Planta 229: 757-765 Sutter JU, Sieben C, Hartel A, Eisenach C, Thiel G, Blatt MR (2007) Abscisic acid triggers the endocytosis of the Arabidopsis KAT1 K+ channel and its recycling to the plasma membrane. Curr Biol 17: 1396-1402 Zhao F, Song CP, He J, Zhu H (2007) Polyamines improve K+/Na+ homeostasis in barley seedlings by regulating root ion channel activities. Plant Physiol 145: 1061-1072 Felle HH (2005) pH regulation in anoxic plants. Ann Bot 96: 519-532 Walker DJ, Leigh RA, Miller AJ (1996) Potassium homeostasis in vacuolate plant cells. Proc Natl Acad Sci USA 93: 10510-10514 Oria-Hernandez J, Cabrera N, Perez-Montfort R, Ramirez-Silva L (2005) Pyruvate kinase revisited - the activating effect of K+. J Biol Chem 280: 37924-37929 Voelker C, Gomes-Porras JL, Becker D, Hamamoto S, Uozumi N, Gambale F, Mueller-Roeber B, Czemspinski K, Dreyer I (2010) Roles of tandem-pore K+ channels in plants - a puzzle still to be solved. Plant Biol 12: 56-63 Pezeshki SR, DeLaune RD, Anderson PH (1999) Effect of flooding on elemental uptake and biomass allocation in seedlings of three bottomland tree species. J Plant Nutr 22: 1481-1494 Sirichandra C, Davanture M, Turk BE, Zivy M, Valot B, Leung J, Merlot S (2010) The Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover. PLoS One 5: e13935 Wery J, Silim SN, Knights EJ, Malhotra RS, Cousin R (1994) Screening techniques and sources of tolerance to extremes of moisture and air temperature in cool season food legumes. Euphytica 73: 73-83 Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 581: 2204-2214 Oddo E, Inzerillo S, La Bella F, Grisafi F, Salleo S, Nardini A (2011) Short-term effects of potassium fertilization on the hydraulic conductance of Laurus nobilis L. Tree Physiol 31: 131-138 Wu M, Huang J, Xu S, Ling T, Xie Y, Shen W (2011b) Haem oxygenase delays programmed cell death in wheat aleurone layers by modulation of hydrogen peroxide metabolism. J Exp Bot 62: 235-248 Thiel G, Weise R (1999) Auxin augments conductance of K+ inward rectifier in maize coleoptile protoplasts. Planta 208: 38-45 Noriega GO, Yannarelli GG, Balestrasse KB, Batlle A, Tomaro ML (2007) The effect of nitric oxide on heme oxygenase gene expression in soybean leaves. Planta 226: 1155-1163 Shabala S (2011) Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance. New Phytol 190: 289-298 Wang P, Song CP (2008) Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytol 178: 703-718 Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 123: 1468-1479 Ranf S, Wünnenberg P, Lee J, Becker D, Dunkel M, Hedrich R, Scheel D, Dietrich P (2008) Loss of the vacuolar cation channel, AtTPC1, does not impair Ca2+ signals induced by abiotic and biotic stresses. Plant J 53: 287-299 Dadacz-Narloch B, Beyhl D, Larisch C, Lopez-Sanjurjo EJ, Reski R, Kuchitsu K, Mueller TD, Becker D, Schönknecht G, Hedrich R (2011) A novel calcium binding site in the slow vacuolar cation channel TPC1 senses luminal calcium levels. Plant Cell 23: 2696-2707 Britto DT, Kronzucker HJ (2008) Cellular mechanisms of potassium transport in plants. Physiol Plant 133: 637-650 Shabala SN, Lew RR (2002) Turgor regulation in osmotically stressed Arabidopsis epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements. Plant Physiol 129: 290-299 Cuin TA, Zhou M, Parsons D, Shabala S (2011) Genetic behaviour of physiological traits conferring cytosolic K+/Na+ homeostasis in wheat. Plant Biol 14: 438-446 Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, Poree F, Boucherez J, Lebaudy A, Bouchez D, Very AA, Simonneau T, Thibaud JB, Sentenac H (2003) The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci USA 100: 5549-5554 Pottosin I, Velarde-Buendía AM, Zepeda-Jazo I, Dobrovinskaya O, Shabala S (2012) Synergism between polyamines and ROS in the induction of Ca2+ and K+ fluxes in roots. Plant Signal Behav 7: 1084-1087 Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48: 251-275 Smethurst CF, Garnett T, Shabala S (2005) Nutritional and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging and subsequent recovery. Plant Soil 270: 31-45 Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel in plant nutrition. Science 280: 918-921 Crawford NM (2006) Mechanisms for nitric oxide synthesis in plants. J Exp Bot 57: 471-478 Roberts SK, Snowman BN (2000) The effects of ABA on channel-mediated K+ transport across higher plant roots. Journal of Experimental Botany 51: 1585-1594 Schulze C, Sticht H, Meyerhoff P, Dietrich P (2011) Differential contribution of EF-hands to the Ca2+-dependent activation in the plant two-pore channel TPC1. Plant J 68: 424-432 Marschner H (1995) Mineral Nutrition of Higher Plants. Academic Press, London Pang JY, Newman I, Mendham N, Zhou M, Shabala S (2006) Microelectrode ion and O2 fluxes measurements reveal differential sensitivity of barley root tissues to hypoxia. Plant Cell Environ 29: 1107-1121 Rodrigo-Moreno A, Andreas-Colas N, Poschenrieder C, Gunse B, Pellarrubia L, Shabala S (2013a) Calcium- and potassium-permeable plasma membrane transporters are activated by copper in Arabidopsis root tips: Linking copper transport with cytosolic hydroxyl radical production. Plant Cell Environ 36: 844-855 Bonales-Alatorre E, Shabala S, Chen ZH, Pottosin I (2013) Reduced tonoplast fast-activating and slow-activati 1998; 280 2011a; 189 1987; 105 2004; 27 1999a; 50 2013; 64 2010; 188 1974; 1 2008; 35 2012; 17 2008; 31 2012; 12 2001; 42 1996; 77 1999; 208 1998; 16 1991; 185 2004; 31 2013; 55 2013; 53 2000; 406 2013; 112 2004; 219 2012; 24 2010; 5 2007; 17 2012; 184 2007; 19 2009; 69 2004; 40 2007; 282 1989; 134 2013; 89 2009; 60 2010; 167 2008; 59 2009; 177 1996; 93 1999; 22 1999a; 167 2010; 285 1996; 92 2008; 53 2011; 4 2012; 35 2011; 6 2008; 121 2004; 55 2009; 191 1999; 39 2005; 96 2000; 185 1996; 111 2010; 173 2010b; 61 2001; 39 1993; 191 2008; 134 2008; 133 2008; 372 2012; 42 2010a; 3 2006; 224 2007; 145 2013; 25 2008; 3 2007; 34 2010; 61 1987; 85 1999; 18 2008; 319 2001; 19 2008; 68 2006; 128 2006; 125 2011b; 62 1993; 89 2005; 270 2001a; 125 2010 1992; 188 2010; 123 1999; 142 2007 2006; 19 2002; 215 2007; 52 2001; 125 2007; 58 1974; 25 2005; 280 2013; 36 2002; 29 2007a; 58 2013; 35 2005; 167 2005; 168 2010; 139 2006; 141 2001; 114 2010; 95 2009; 424 2010; 12 2002; 16 2007; 104 2008a; 3 2013; 4 2007; 226 2010; 13 2007; 227 2002; 153 1997; 150 1977; 28 2007; 462 1997; 48 2007; 581 2011; 62 2011; 61 1999; 285 2011; 52 2011; 57 2011; 191 2011; 190 2006; 171 2009; 230 2003; 554 2003; 50 2003; 54 2009; 12 1997; 51 1999b; 28 2010; 24 2000; 124 2010; 29 2005; 102 2010; 231 2010; 232 2006; 29 2011; 68 2011; 67 1998; 94 2006; 281 2010; 30 1994; 73 2010; 33 2010; 37 2006; 57 2013a; 36 1995 2003; 30 1999 1995; 7 2010; 48 2004; 279 2000; 466 2010; 335 2006; 47 2013b; 8 2009; 583 2014; 37 2002; 129 2009; 229 2003; 100 2010; 51 2009; 106 2012; 61 1997; 115 2011; 157 2003; 116 2001; 181 2000; 41 1988; 39 2000; 51 2013; 162 2007b; 145 1999; 84 2011; 14 2011; 16 2005; 28 2013; 161 2012; 53 1984; 97 2004; 136 2004; 135 1997; 11 2001; 291 2011; 21 2011; 23 1999; 96 1994; 32 2004; 101 2009; 21 2012; 1823 2000; 24 2005; 434 2011; 31 2006; 8 2005; 41 2004; 108 2011; 38 2008; 283 2009; 29 2008b; 9 2005; 205 2009; 143 2011; 181 2001b; 11 2008; 179 2008; 178 1999b; 50 2012; 7 2011; 49 2005; 56 1994; 6 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_191_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_142_1 e_1_2_7_165_1 e_1_2_7_188_1 e_1_2_7_202_1 e_1_2_7_225_1 e_1_2_7_240_1 e_1_2_7_116_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_180_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_56_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_237_1 e_1_2_7_177_1 e_1_2_7_214_1 Brüggemann LI (e_1_2_7_31_1) 1999; 50 e_1_2_7_139_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_192_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_67_1 e_1_2_7_143_1 e_1_2_7_189_1 e_1_2_7_29_1 e_1_2_7_203_1 e_1_2_7_226_1 e_1_2_7_166_1 e_1_2_7_241_1 e_1_2_7_117_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_181_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_78_1 e_1_2_7_193_1 e_1_2_7_238_1 e_1_2_7_132_1 e_1_2_7_155_1 e_1_2_7_178_1 e_1_2_7_215_1 e_1_2_7_230_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_170_1 e_1_2_7_227_1 e_1_2_7_89_1 e_1_2_7_182_1 e_1_2_7_28_1 e_1_2_7_144_1 e_1_2_7_167_1 e_1_2_7_204_1 e_1_2_7_242_1 e_1_2_7_118_1 e_1_2_7_110_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_171_1 e_1_2_7_216_1 e_1_2_7_194_1 e_1_2_7_239_1 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_156_1 e_1_2_7_179_1 e_1_2_7_231_1 e_1_2_7_107_1 e_1_2_7_80_1 Prabhu AS (e_1_2_7_161_1) 2007 e_1_2_7_122_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_205_1 e_1_2_7_228_1 e_1_2_7_160_1 e_1_2_7_183_1 e_1_2_7_27_1 e_1_2_7_145_1 e_1_2_7_220_1 e_1_2_7_243_1 e_1_2_7_168_1 e_1_2_7_119_1 e_1_2_7_91_1 Kuiper PJC (e_1_2_7_100_1) 1994; 32 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 Cakmak I (e_1_2_7_35_1) 1999 e_1_2_7_172_1 e_1_2_7_195_1 e_1_2_7_217_1 e_1_2_7_38_1 e_1_2_7_134_1 e_1_2_7_232_1 e_1_2_7_157_1 e_1_2_7_108_1 e_1_2_7_7_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_184_1 e_1_2_7_206_1 e_1_2_7_26_1 e_1_2_7_229_1 e_1_2_7_49_1 e_1_2_7_146_1 e_1_2_7_169_1 e_1_2_7_244_1 e_1_2_7_221_1 e_1_2_7_90_1 e_1_2_7_112_1 Marschner H (e_1_2_7_126_1) 1995 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_75_1 e_1_2_7_150_1 e_1_2_7_196_1 e_1_2_7_37_1 e_1_2_7_173_1 e_1_2_7_218_1 e_1_2_7_135_1 e_1_2_7_158_1 e_1_2_7_233_1 e_1_2_7_210_1 e_1_2_7_109_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_63_1 e_1_2_7_86_1 e_1_2_7_185_1 e_1_2_7_207_1 e_1_2_7_48_1 e_1_2_7_162_1 e_1_2_7_245_1 e_1_2_7_147_1 e_1_2_7_222_1 e_1_2_7_113_1 Zepeda‐Jazo I (e_1_2_7_236_1) 2008; 9 e_1_2_7_51_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_151_1 e_1_2_7_174_1 e_1_2_7_197_1 e_1_2_7_136_1 e_1_2_7_211_1 e_1_2_7_159_1 e_1_2_7_5_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_85_1 Zeng F (e_1_2_7_234_1) 2013; 4 e_1_2_7_47_1 e_1_2_7_140_1 e_1_2_7_163_1 e_1_2_7_208_1 e_1_2_7_223_1 e_1_2_7_186_1 e_1_2_7_148_1 e_1_2_7_200_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_175_1 e_1_2_7_212_1 e_1_2_7_198_1 e_1_2_7_235_1 e_1_2_7_137_1 e_1_2_7_6_1 Waraich EA (e_1_2_7_219_1) 2011; 61 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_209_1 e_1_2_7_190_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_201_1 e_1_2_7_224_1 e_1_2_7_164_1 e_1_2_7_187_1 e_1_2_7_149_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_153_1 e_1_2_7_176_1 e_1_2_7_199_1 e_1_2_7_213_1 e_1_2_7_138_1 |
References_xml | – reference: Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A (2006) Early signaling events induced by elicitors of plant defenses. Mol Plant Microbe Interact 19: 711-724 – reference: Roeflsema MRG, Hedrich R (2005) In the light of stomata opening: new insights into 'the Watergate'. New Phytol 167: 665-691 – reference: Shabala S, Shabala L, Van Volkenburgh E, Newman I (2005) Effect of divalent cations on ion fluxes and leaf photochemistry in salinized barley leaves. J Exp Bot 56: 1369-1378 – reference: Lisjak M, Teklic T, Wilson ID, Whiteman M, Hancock JT (2013) Hydrogene sulfide: environmental factor or signaling molecule? Plant Cell Environ 36: 1607-1616 – reference: Pier PA, Berkowitz GA (1987) Modulation of water-stress effects on photosynthesis by altered leaf K+. Plant Physiol 85: 655-661 – reference: Close DC, Davidson NJ (2003) Long-term waterlogging: nutrient, gas exchange, photochemical and pigment characteristics of Eucalyptus nitens saplings. Russ J Plant Physiol 50: 843-847 – reference: Zhao X, Qiao X, Yan J, Ma X, Zhang X (2012) Nitric oxide inhibits blue light-induced stomatal opening by regulating the K+ influx in guard cells. Plant Sci 184: 29-35 – reference: Yannarelli GG, Noriega GO, Batlle A, Tomaro ML (2006) Heme oxygenase up-regulation in ultraviolet-B irradiated soybean plants involves reactive oxygen species. Planta 224: 1154-1162 – reference: Colmer TD, Greenway H (2011) Ion transport in seminal and adventitious roots of cereals during O2 deficiency. J Exp Bot 62: 39-57 – reference: Yamaguchi T, Aharin GA, Sottosanto JB, Blumwald E (2005) Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+- and pH-dependent manner. Proc Natl Acad Sci USA 102: 16107-16112 – reference: Xu J, Li HD, Chen LQ, Wang Y, Liu LL, He L, Wu H (2006) A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125: 1347-1360 – reference: Held K, Pascaud F, Eckert C, Gajdanowicz P, Hashimoto K, Coratge-Faillie C, Offenborn JN, Lacombe B, Dreyer I, Thibaud JB, Kudla J (2011) Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex. Cell Res 21: 1116-1130 – reference: Wang H, Liang X, Wan Q, Wang X, Bi Y (2009) Ethylene and nitric oxide are involved in maintaining ion homeostasis in Arabidopsis callus under salt stress. Planta 230: 293-307 – reference: Wang R (2002) Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16: 1792-1798 – reference: Tazawa M, Sutou E, Shibasaka M (2001) Onion root water transport sensitive to water channel and K+ channel inhibitors. Plant Cell Physiol 42: 28-36 – reference: Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133: 651-669 – reference: Xuan W, Xu S, Yuan X, Shen W (2008) Carbon monoxide. A novel and pivotal signal molecule in plants? Plant Signal Behav 3: 381-382 – reference: Cuin TA, Miller AJ, Laurie SA, Leigh RA (2003) Potassium activities in cell compartments of salt-grown barley leaves. J Exp Bot 54: 657-661 – reference: Maathuis FJM, Sanders D (1997) Regulation of K+ absorption in plant root cells by external K+: interplay of different plasma membrane K+ transporters. J Exp Bot 48: 451-458 – reference: Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112: 1209-1221 – reference: Hawker JS, Marschner H, Downton WJS (1974) Effects of sodium and potassium on starch synthesis in leaves. Aust J Plant Physiol 1: 491-501 – reference: Hedrich R, Marten I (2011) TPC1-SV channels gain shape. Mol Plant 4: 428-441 – reference: Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48: 251-275 – reference: Wu JY, Qu HY, Shang ZL, Tao ST, Xu GH, Wu J, Wu HQ, Zhang SL (2011a) Reciprocal regulation of Ca2+-activated outward K+ channels of Pyrus pyrifolia pollen by heme and carbon monoxide. New Phytol 189: 1060-1068 – reference: Jiang MY, Zhang JH (2002) Involvement of plasma-membrane NADPH oxidase in abscisic acid- and water stress-induced antioxidant defense in leaves of maize seedlings. Planta 215: 1022-1030 – reference: Shabala S (2011) Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance. New Phytol 190: 289-298 – reference: Lisjak M, Srivastava N, Teklic T, Civale L, Lewandowski K, Wilson I, Wood ME, Whiteman M, Hancock JT (2010) A novel hydrogen sulphide donor causes stomatal opening and reduces nitric oxide accumulation. Plant Physiol Biochem 48: 931-935 – reference: Nieves-Cordones M, Miller AJ, Aleman F, Martinez V, Rubio F (2008) A putative role for the plasma membrane potential in the control of the expression of the gene encoding the tomato high-affinity potassium transporter HAK5. Plant Mol Biol 68: 521-532 – reference: Lee SC, Luan S (2012) ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ 35: 53-60 – reference: Shabala S, Shabala L, Van Volkenburgh E (2003) Effect of calcium on root development and root ion fluxes in salinised barley seedlings. Funct Plant Biol 30: 507-514 – reference: Brault M, Amiar Z, Pennarum AM, Monestiez M, Zhang Z, Cornel D, Dellis O, Knight H, Bouteau F, Rona JP (2004) Plasma membrane depolarization induced by abscisic acid in Arabidopsis suspension cells involves reduction of proton pumping in addition to anion channel activation, which are both Ca2+ dependent. Plant Physiol 135: 231-243 – reference: Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581: 2247-2254 – reference: Ashraf M, Rehman H (1999) Mineral nutrient status of corn in relation to nitrate and long-term waterlogging. J Plant Nutr 22: 1253-1268 – reference: Rodriguez-Rosales MP, Jiang XY, Galvez FJ, Aranda MN, Cubero B, Venema K (2008) Overexpression of the tomato K+/H+ antiporter LeNHX2 confers salt tolerance by improving potassium compartmentalization. New Phytol 179: 366-377 – reference: Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vanderpoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16: 300-309 – reference: Osakabe Y, Arinaga N, Umezawa T, Katsura S, Nagamachi K, Tanaka H, Ohiraki H, Yamada K, Seo SU, Abo M, Yoshimura E, Shinozaki K, Yamaguchi-Shinozaki K (2013) Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis. Plant Cell 25: 609-624 – reference: Brüggemann LI, Pottosin II, Schönknecht G (1999a) Selectivity of the fast activating vacuolar cation channel. J Exp Bot 50: 873-876 – reference: Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, Poree F, Boucherez J, Lebaudy A, Bouchez D, Very AA, Simonneau T, Thibaud JB, Sentenac H (2003) The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci USA 100: 5549-5554 – reference: Wegner LH, de Boer AH (1997) Properties of two outward-rectifying channels in root xylem parenchyma cells suggest a role in KCl homeostasis and long-distance signaling. Plant Physiol 115: 1707-1719 – reference: Wang F, Deng S, Ding M, Sun J, Wang M, Zhu H, Han Y, Shen Z, Jing X, Zhang F, Hu Y, Chen S (2013) Overexpression of a poplar two-pore K+ channel enhances salinity tolerance in tobacco cells. Plant Cell Tissue Organ Cult 112: 19-31 – reference: Pottosin I, Velarde-Buendía AM, Zepeda-Jazo I, Dobrovinskaya O, Shabala S (2012) Synergism between polyamines and ROS in the induction of Ca2+ and K+ fluxes in roots. Plant Signal Behav 7: 1084-1087 – reference: Peers C, Bauer CC, Boyle JP, Scragg JL, Dallas ML (2012) Modulation of ion channels by hydrogen sulfide. Antioxid Redox Signal 17: 95-105 – reference: Ruan CJ, da Silva JAT, Mopper S, Qin P, Lutts S (2010) Halophyte improvement for a salinized world. Crit Rev Plant Sci 29: 329-359 – reference: Pottosin I, Martínez-Estévez M, Dobrovinskaya O, Muñiz J, Schönknecht G (2004) Mechanism of luminal Ca2+ and Mg2+ action on the vacuolar slowly activating channels. Planta 219: 1057-1070 – reference: Kuiper PJC, Walton CS, Greenway H (1994) Effect of hypoxia on ion uptake by nodal and seminal wheat roots. Plant Physiol Biochem 32: 267-276 – reference: Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Develop 29: 185-212 – reference: Remy E, Cabrito TR, Baster P, Batista RA, Teixeira MC, Friml J, Sá-Correia I, Duque P (2013) A Major Facilitator Superfamily transporter plays a dual role in polar auxin transport and drought stress tolerance in Arabidopsis. Plant Cell 25: 901-926 – reference: Brüggemann LI, Pottosin II, Schönknecht G (1999b) Cytoplasmic magnesium regulates the fast activating vacuolar cation channel. J Exp Bot 50: 1547-1552 – reference: Jackson MB, Davies WJ, Else MA (1996) Pressure-flow relationships, xylem solutes and root hydraulic conductance in flooded tomato plants. Ann Bot 77: 17-24 – reference: Shabala S, Mackay A (2011) Ion transport in halophytes. Adv Bot Res 57: 151-199 – reference: Dadacz-Narloch B, Beyhl D, Larisch C, Lopez-Sanjurjo EJ, Reski R, Kuchitsu K, Mueller TD, Becker D, Schönknecht G, Hedrich R (2011) A novel calcium binding site in the slow vacuolar cation channel TPC1 senses luminal calcium levels. Plant Cell 23: 2696-2707 – reference: Demidchik V, Shabala SN, Coutts KB, Tester MA, Davies JM (2003) Free oxygen radicals regulate plasma membrane Ca2+- and K+- permeable channels in plant root cells. J Cell Sci 116: 81-88 – reference: Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L (2008) Local positive feedback regulation determines cell shape in root hair cells. Science 319: 1241-1244 – reference: Ma TL, Wu WH, Wang Y (2012) Transcriptome analysis of rice root responses to potassium deficiency. BMC Plant Biol 12: 161 – reference: Rubio F, Nieves-Cordones M, Alemán F, Martínez V (2008) Relative contribution of AtHAK5 and AtAKT1 to K+ uptake in the high- affinity range of concentrations. Physiol Plant 134: 598-608 – reference: Véry AA, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol 54: 575-603 – reference: Dubcovsky J, Maria GS, Epstein E, Luo MC, Dvorak J (1996) Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor Appl Genet 92: 448-454 – reference: Romheld V, Kirkby EA (2010) Research on potassium in agriculture: needs and prospects. Plant Soil 335: 155-180 – reference: Bohmer M, Schroeder JI (2011) Quantitative transcriptomic analysis of abscisic acid-induced and reactive oxygen species-dependent expression changes and proteomic profiling in Arabidopsis suspension cells. Plant J 67: 105-118 – reference: Kimura S, Kaya H, Kawazaraki T, Hiraoka G, Senzaki E, Michikawa M, Kuchitsu K (2012) Protein phosphorylation is a prerequisite for the Ca2+-dependent activation of Arabidopsis NADPH oxidases and may function as a trigger for the positive feedback regulation of Ca2+ and reactive oxygen species. Biochim Biophys Acta 1823: 398-405 – reference: Sato A, Sato Y, Fukao Y, Fujiwara M, Umezawa T, Shinozaki K, Hibi T, Taniquchi M, Miyake H, Goto DB, Uozumi N (2009) Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochem J 424: 439-448 – reference: Leidi EO, Barragan V, Rubio L, El-Hamdaoui A, Ruiz MT, Cubero B, Fernandez JA, Bressan RA, Hasegawa PM, Quintero FJ, Pardo JM (2010) The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. Plant J 61: 495-506 – reference: Waraich EA, Ahmad R, Ashraf MY, Saifullah AM (2011) Improving agricultural water use efficiency by nutrient management in crop plants. Acta Agric Scand B Soil Plant Sci 61: 291-304 – reference: Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Michaux-Ferrière N, Thibaud JB, Sentenac H (1998) Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Cell 94: 647-655 – reference: Umar S, Diva I, Anjum NA, Iqbal M, Ahmad I, Pereira E (2011) Potassium-induced alleviation of salinity stress in Brassica campestris L. Cent Eur J Biol 6: 1054-1063 – reference: Voelker C, Gomes-Porras JL, Becker D, Hamamoto S, Uozumi N, Gambale F, Mueller-Roeber B, Czemspinski K, Dreyer I (2010) Roles of tandem-pore K+ channels in plants - a puzzle still to be solved. Plant Biol 12: 56-63 – reference: Bose J, Xie Z, Shen W, Shabala S (2013) Haem oxygenase modifies salinity tolerance in Arabidopsis by controlling K+ retention via regulation of the plasma membrane H+-ATPase and by altering SOS1 transcript levels in roots. J Exp Bot 64: 471-481 – reference: Marschner H, Cakmak I (1989) High light-intensity enhances chlorosis and necrosis in leaves of zinc, potassium, and magnesium deficient bean (Phaseolus vulgaris) plants. J Plant Physiol 134: 308-315 – reference: Teakle NL, Tyerman SD (2010) Mechanisms of Cl- transport contributing to salt tolerance. Plant Cell Environ 33: 566-589 – reference: Kim TH, Böhmer M, Hu H, Nishimura N, Schroeder JI (2010b) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61: 561-591 – reference: Zhao F, Song CP, He J, Zhu H (2007) Polyamines improve K+/Na+ homeostasis in barley seedlings by regulating root ion channel activities. Plant Physiol 145: 1061-1072 – reference: Vicente-Agullo F, Rigas S, Desbrosses G, Dolan L, Hatzopoulos P, Grabov A (2004) Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots. Plant J 40: 523-535 – reference: Kinoshita T, Nishimura M, Shimazaki K (1995) Cytosolic concentration of Ca2+ regulates the plasma membrane H+-ATPase in guard cells of fava bean. Plant Cell 7: 1333-1342 – reference: Bauer CS, Hoth S, Haga K, Philippar K, Aoki N, Hedrich R (2000) Differential expression and regulation of K+ channels in the maize coleoptile: molecular and biophysical analysis of cells isolated from cortex and vasculature. Plant J 24: 139-145 – reference: Zepeda-Jazo I, Velarde-Buendía AM, Enríquez-Figueroa R, Bose J, Shabala S, Muñiz-Murguía J, Pottosin II (2011) Polyamines interact with hydroxyl radicals in activating Ca2+ and K+ transport across the root epidermal plasma membranes. Plant Physiol 157: 2167-2180 – reference: Pei ZM, Murata Y, Benning G, Thomine S, Klüsener BG, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406: 731-734 – reference: Rodrigo-Moreno A, Poschenrieder C, Shabala S (2013b) Transition metals: a double edge sword in ROS generation and signaling. Plant Signal Behav 8: e23421-e23425 – reference: Barragan V, Leidi EO, Andres Z, Rubio L, De Luca A, Fernandez JA, Cubero B, Pardo JM (2012) Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell 24: 1127-1142 – reference: Neupartl M, Meyer C, Woll I, Frohns F, Kang M, Van Etten JL, Kramer D, Hertel B, Moroni A, Thiel G (2008) Chlorella viruses evoke a rapid release of K+ from host cells during the early phase of infection. Virology 372: 340-348 – reference: Pezeshki SR, DeLaune RD, Anderson PH (1999) Effect of flooding on elemental uptake and biomass allocation in seedlings of three bottomland tree species. J Plant Nutr 22: 1481-1494 – reference: Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285: 1256-1258 – reference: Shetty NP, Jørgensen HJL, Jensen JD, Collinge DB, Shetty HS (2008) Roles of reactive oxygen species in interactions between plants and pathogens. Eur J Plant Pathol 121: 267-280 – reference: Dobrovinskaya OR, Muñiz J, Pottosin II (1999a) Inhibition of vacuolar ion channels by polyamines. J Membr Biol 167: 127-140 – reference: Becker D, Hoth S, Ache P, Wenkel S, Roelfsema MRG, Meyerhoff O, Hartung W, Hedrich R (2003) Regulation of the ABA-sensitive Arabidopsis potassium channel gene GORK in response to water stress. FEBS Lett 554: 119-126 – reference: Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA, Hu XH, Ren ZH, Chao DY (2004) QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet 108: 253-260 – reference: Roberts SK, Snowman BN (2000) The effects of ABA on channel-mediated K+ transport across higher plant roots. Journal of Experimental Botany 51: 1585-1594 – reference: Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179: 945-963 – reference: Gupta K, Dey A, Gupta B (2013) Plant polyamines in abiotic stress responses. Acta Physiol Plant 35: 2015-2036 – reference: Mancuso S, Marras AM (2006) Adaptative response of Vitis root to anoxia. Plant Cell Physiol 47: 401-409 – reference: Marschner H (1995) Mineral Nutrition of Higher Plants. Academic Press, London – reference: Hager A, Debus G, Edel HG, Stransky H, Serrano R (1991) Auxin induces exocytosis and the rapid synthesis of a high-turnover pool of plasma-membrane proton ATPase. Planta 185: 527-537 – reference: Rubio V, Bustos R, Irigoyen ML, Cardona-López X, Rojas-Triana M, Paz-Ares J (2009) Plant hormones and nutrient signaling. Plant Mol Biol 69: 361-373 – reference: Hamamoto S, Marui J, Matsuoka K, Higashi K, Igarashi K, Nakagawa T, Kuroda T, Mori Y, Murata Y, Nakanishi Y, Maeshima M, Yabe I, Uozumi N (2008) Characterization of a tobacco TPK- type K+ channel as a novel tonoplast K+ channel using yeast tonoplasts. J Biol Chem 283: 1911-1920 – reference: Chen Z, Pottosin II, Cuin TA, Fuglsang AT, Tester M, Jha D, Zepeda-Jazo I, Zhou M, Palmgren MG, Newman IA, Shabala S (2007b) Root plasma membrane transporters controlling K+/Na+ homeostasis in salt stressed barley. Plant Physiol 145: 1714-1725 – reference: Malik AI, Colmer TD, Lambers H, Setter TL, Schortemeyer M (2002) Short-term waterlogging has long-term effects on the growth and physiology of wheat. New Phytol 153: 225-236 – reference: Aziz I, Khan MA (2001) Effect of seawater on the growth, ion content and water potential of Rhizophora mucronata Lam. J Plant Res 114: 369-373 – reference: Gilliham M, Athman A, Tyerman SD, Conn SJ (2011) Cell-specific compartmentation of mineral nutrients is an essential mechanism for optimal plant productivity - another role for TPC1? Plant Signal Behav 6: 1656-1661 – reference: Nieves-Cordones M, Caballero F, Martinez V, Rubio F (2012) Disruption of the Arabidopsis thaliana inward-rectifier K+ channel AKT1 improves plant responses to water stress. Plant Cell Physiol 53: 423-432 – reference: Zwieniecki MA, Melcher PJ, Holbrook NM (2001) Hydrogel control of xylem hydraulic resistance in plants. Science 291: 1059-1062 – reference: van den Wijngaard PWJ, Sinnige MP, Roobeek I, Reumer A, Schoonheim PJ, Mol JNM, Wang M, De Boer AH (2005) Abscisic acid and 14-3-3 proteins control K+ channel activity in barley embryonic root. Plant J 41: 43-55 – reference: Jung JY, Shin R, Schachtman DP (2009) Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis. Plant Cell 21: 607-621 – reference: Polacik KA, Maricle BR (2013) Effects of flooding on photosynthesis and root respiration in saltcedar (Tamarix ramosissima), an invasive riparian shrub. Environ Exp Bot 89: 19-27 – reference: Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK (2011) Additive effects of Na+ and Cl- ions on barley growth under salinity stress. J Exp Bot 62: 2189-2203 – reference: Bose J, Shabala L, Pottosin I, Zeng F, Velarde-Buendía AM, Massart A, Poschenrieder C, Hariadi Y, Shabala S (2014) Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K+-permeable channels to reactive oxygen species: physiological traits that differentiate salinity tolerance between pea and barley. Plant Cell Environ 37: 589-600 – reference: Pandolfi C, Pottosin I, Cuin T, Mancuso S, Shabala S (2010) Specificity of polyamine effects on NaCl-induced ion flux kinetics and salt stress amelioration in plants. Plant Cell Physiol 51: 422-434 – reference: Crawford NM (2006) Mechanisms for nitric oxide synthesis in plants. J Exp Bot 57: 471-478 – reference: Armstrong W, Beckett PM (1987) Internal aeration and the development of stelar anoxia in submerged roots - a multishelled mathematical-model combining axial diffusion of oxygen in the cortex with radial losses to the stele, the wall layers and the rhizosphere. New Phytol 105: 221-245 – reference: Cuin TA, Betts SA, Chalmandrier R, Shabala S (2008) A root's ability to retain K+ correlates with salt tolerance in wheat. J Exp Bot 59: 2697-2706 – reference: Derbyshire ER, Marletta MA (2009) Biochemistry of soluble guanylate cyclase. Handb Exp Pharmacol 191: 17-31 – reference: Armengaud P, Breitling R, Amtmann A (2004) The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol 136: 2556-2576 – reference: Koyama ML, Levesley A, Koebner RMD, Flowers TJ, Yeo AR (2001) Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiol 125: 406-422 – reference: Trifilo P, Nardini A, Raimondo F, Lo Gullo MA, Salleo S (2011) Ion-mediated compensation for drought-induced loss of xylem hydraulic conductivity in field-growing plants of Laurus nobilis. Funct Plant Biol 38: 606-613 – reference: Smethurst CF, Rix K, Garnett T, Auricht G, Bayart A, Lane P, Wilson SJ, Shabala S (2008) Multiple traits associated with salt tolerance in lucerne: revealing the underlying cellular mechanisms. Funct Plant Biol 35: 640-650 – reference: Pottosin II, Martínez-Estévez M, Dobrovinskaya OR, Muñiz J (2005) Regulation of the slow vacuolar channel by luminal potassium: role of surface charge. J Membr Biol 205: 103-111 – reference: Xie YJ, Ling TF, Han Y, Liu KL, Zheng QS, Huang LQ, Yuan X, Xe Z, Hu B, Fang L, Shen Z, Yang Q, Shen W (2008) Carbon monoxide enhances salt tolerance by nitric oxide-mediated maintenance of ion homeostasis and up-regulation of antioxidant defense in wheat seedling roots. Plant Cell Environ 31: 1864-1881 – reference: Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA (2006) Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol 141: 1653-1665 – reference: Brüggemann LI, Pottosin II, Schönknecht G (1998) Cytoplasmic polyamines block the fast-activating vacuolar cation channel. Plant J 16: 101-106 – reference: Peiter E, Maathuis FJ, Mills LN, Knight H, Pelloux J, Hetherington AM, Sanders D (2005) The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 434: 404-408 – reference: Siringam K, Juntawong N, Cha-um S, Kirdmanee C (2013) Exogenous application of potassium nitrate to alleviate salt stress in rice seedlings. J Plant Nutr 36: 607-616 – reference: Cheng NH, Pittman JK, Zhu JK, Hirschi K (2004) The protein kinase SOS2 activates the Arabidopsis H+/Ca2+ antiporters CAX1 to integrate calcium transport and salt tolerance. J Biol Chem 279: 2922-2926 – reference: Christian M, Steffens B, Schneck D, Burmester S, Böttger M, Lüthen H (2006) How does auxin enhance cell elongation? Roles of auxin-binding proteins and potassium channels in growth control. Plant Biol 8: 346-352 – reference: Fuglsang AT, Guo Y, Cuin TA, Qiu Q, Song CP, Kristiansen KA, Bych K, Schulz A, Shabala S, Schumaker KS, Palmgren MG, Zhu JK (2007) Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein. Plant Cell 19: 1617-1634 – reference: Jeannette E, Rona JP, Bardat F, Cornel D, Sotta B, Miginiac E (1999) Induction of RAB18 gene expression and activation of K+ outward rectifying channels depend on an extracellular perception of ABA in Arabidopsis thaliana suspension cells. Plant J 18: 13-22 – reference: Pottosin II, Schönknecht G (2007) Vacuolar calcium channels. J Exp Bot 58: 1559-1569 – reference: Teakle NL, Amtmann A, Real D, Colmer TD (2010) Lotus tenuis tolerates combined salinity and waterlogging: maintaining O2 transport to roots and expression of an NHX1-like gene contribute to regulation of Na+ transport. Physiol Plant 139: 358-374 – reference: Gobert A, Isayenkov S, Voelker C, Czempinski K, Maathuis FJM (2007) The two-pore channel TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis. Proc Natl Acad Sci USA 104: 10726-10731 – reference: Zepeda-Jazo I, Chen Z, Shabala S, Pottosin II (2008a) Na+-K+ transport in roots under salt stress. Plant Signal Behav 3: 401-403 – reference: Oria-Hernandez J, Cabrera N, Perez-Montfort R, Ramirez-Silva L (2005) Pyruvate kinase revisited - the activating effect of K+. J Biol Chem 280: 37924-37929 – reference: Tavaldoraki P, Cona A, Federico R, Tempera G, Viceconte N, Saccoccio S, Battaglia V, Toninello A, Agostinelli E (2012) Polyamine catabolism: target for antiproliferative therapies in animals and stress tolerance strategies in plants. Amino Acids 42: 411-426 – reference: Board JE (2008) Waterlogging effects on plant nutrient concentrations in soybean. J Plant Nutr 31: 828-838 – reference: Zepeda-Jazo I, Velarde-Buendía AM, Dobrovinskaya OR, Muñiz J, Pottosin II (2008b) Polyamines as regulators of ionic transport in plants. Curr Top Plant Biol 9: 87-99 – reference: Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci-Z Pflanzenernahr Bodenkd 168: 521-530 – reference: Hughes FM, Cidlowski JA (1999) Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo. Adv Enzyme Reg 39: 157-171 – reference: Sangakkara UR, Frehner M, Nosberger J (2000) Effect of soil moisture and potassium fertilizer on shoot water potential, photosynthesis and partitioning of carbon in mungbean and cowpea. J Agron Crop Sci 185: 201-207 – reference: Cuin TA, Zhou M, Parsons D, Shabala S (2011) Genetic behaviour of physiological traits conferring cytosolic K+/Na+ homeostasis in wheat. Plant Biol 14: 438-446 – reference: Pottosin I, Wherrett T, Shabala S (2009) SV channels dominate the vacuolar Ca2+ release during intracellular signaling. FEBS Lett 583: 921-926 – reference: Srivastava N, Gonugunta VK, Puli MR, Raghavendra AS (2009) Nitric oxide production occurs downstream of reactive oxygen species in guard cells during stomatal closure induced by chitosan in abaxial epidermis of Pisum sativum. Planta 229: 757-765 – reference: Lindsay MP, Lagudah ES, Hare RA, Munns R (2004) A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Funct Plant Biol 31: 1105-1114 – reference: Lacombe B, Pilot G, Gaymard F, Sentenac H, Thibaud JB (2000) pH control of the plant outwardly-rectifying potassium channel SKOR. FEBS Lett 466: 351-354 – reference: Shabala S (2009) Salinity and programmed cell death: unravelling mechanisms for ion specific signalling. J Exp Bot 60: 709-711 – reference: Shabala S, Babourina O, Rengel Z, Nemchinov LG (2010) Non-invasive microelectrode potassium flux measurements as a potential tool for early recognition of virus-host compatibility in plants. Planta 232: 807-815 – reference: Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Riberio D, Wilson I (2008) Nitric oxide, stomatal closure and abiotic stress. J Exp Bot 59: 165-176 – reference: Zhang WH, Tyerman SD (1997) Effect of low oxygen concentration on the electrical properties of cortical cells of wheat roots. J Plant Physiol 150: 567-572 – reference: Morard P, Lacoste L, Silvestre J (2004) Effect of oxygen deficiency on mineral nutrition of excised tomato roots. J Plant Nutr 27: 613-626 – reference: Laohavisit A, Shang Z, Rubio L, Cuin TA, Véry AA, Wang A, Mortimer JC, Macpherson N, Coxon KM, Battey NH, Brownlee C, Park OK, Sentenac H, Shabala S, Webb AAR, Davies JM (2012) Arabidopsis annexin1 mediates the radical-activated plasma membrane Ca2+-and K+-permeable conductance in root cells. Plant Cell 24: 1522-1533 – reference: Felle HH (2005) pH regulation in anoxic plants. Ann Bot 96: 519-532 – reference: Zhang X, Miao YC, An GY, Zhou Y, Shang Guan ZP, Gao JF, Song CP (2001b) K+ channels inhibited by hydrogen peroxide mediate abscisic acid signaling in Vicia faba guard cells. Cell Res 11: 195-202 – reference: Shabala SN, Lew RR (2002) Turgor regulation in osmotically stressed Arabidopsis epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements. Plant Physiol 129: 290-299 – reference: Chen Z, Cuin TA, Zhou M, Twomey A, Naidu BP, Shabala S (2007a) Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot 58: 4245-4255 – reference: Dobrovinskaya OR, Muñiz J, Pottosin II (1999b) Asymmetric block of the plant vacuolar Ca2+-permeable channel by organic cations. Eur Biophys J 28: 552-563 – reference: Chen Z, Newman I, Zhou M, Mendham N, Zhang G, Shabala S (2005) Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant Cell Environ 28: 1230-1246 – reference: Pang JY, Zhou MX, Mendham N, Shabala S (2004) Growth and physiological responses of six barley genotypes to waterlogging and subsequent recovery. Aust J Agric Res 55: 895-906 – reference: Sirichandra C, Davanture M, Turk BE, Zivy M, Valot B, Leung J, Merlot S (2010) The Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover. PLoS One 5: e13935 – reference: Leigh R, Wyn Jones RG (1984) A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytol 97: 1-13 – reference: Noriega GO, Yannarelli GG, Balestrasse KB, Batlle A, Tomaro ML (2007) The effect of nitric oxide on heme oxygenase gene expression in soybean leaves. Planta 226: 1155-1163 – reference: Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19: 765-768 – reference: Pottosin II, Martínez-Estévez M, Dobrovinskaya OR, Muñiz J (2003) Potassium-selective channel in the red beet vacuolar membrane. J Exp Bot 54: 663-667 – reference: Liu YH, Xu S, Ling TF, Xu LL, Shen WB (2010) Heme oxygenase/carbon monoxide system participates in regulating wheat seed germination under osmotic stress involving the nitric oxide pathway. J Plant Physiol 167: 1371-1379 – reference: Maathuis FJM (2009) Physiological functions of mineral macronutrients. Curr Opin Plant Biol 12: 250-258 – reference: Damon PM, Ma QF, Rengel Z (2011) Wheat genotypes differ in potassium accumulation and osmotic adjustment under drought stress. Crop Pasture Sci 62: 550-555 – reference: Shabala S, Cuin TA, Prismall L, Nemchinov LG (2007) Expression of animal CED-9 anti-apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress. Planta 227: 189-197 – reference: Glass ADM (1974) Influence of phenolic acids upon ion uptake. 3. Inhibition of potassium absorption. J Exp Bot 25: 1104-1113 – reference: Hu LX, Wang ZL, Huang BR (2013) Effects of cytokinin and potassium on stomatal and photosynthetic recovery of Kentucky bluegrass from drought stress. Crop Sci 53: 221-231 – reference: Maathuis FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios. Ann Bot 84: 123-133 – reference: Schulze C, Sticht H, Meyerhoff P, Dietrich P (2011) Differential contribution of EF-hands to the Ca2+-dependent activation in the plant two-pore channel TPC1. Plant J 68: 424-432 – reference: Garthwaite AJ, von Bothmer R, Colmer TD (2005) Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl- into the shoots. J Exp Bot 56: 2365-2378 – reference: Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 123: 1468-1479 – reference: Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55: 373-399 – reference: Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel in plant nutrition. Science 280: 918-921 – reference: Geiger D, Scherzer S, Mumm P, Stange A, Marten I, Bauer H, Ache P, Matschi S, Liese A, Al-Rasheied KAS, Romeis T, Hedrich R (2009) Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc Natl Acad Sci USA 106: 21425-21430 – reference: Hu YC, Schmidhalter U (2005) Drought and salinity: A comparison of their effects on mineral nutrition of plants. J Plant Nutr Soil Sci-Z Pflanzenernahr Bodenkd 168: 541-549 – reference: Liu LL, Ren HM, Chen LQ, Wang Y, Wu WH (2013) A protein kinase CIPK9 interacts with calcium sensor CBL3 and regulates K+ homeostasis under low-K+ stress in Arabidopsis. Plant Physiol 161: 266-277 – reference: Garcia-Mata C, Gay R, Sokolovski S, Hills A, Lamattina L, Blatt MR (2003) Nitric oxide regulates K+ and Cl− channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc Natl Acad Sci USA 100: 11116-11121 – reference: Ashraf M, Ahmad A, McNeilly T (2001) Growth and photosynthetic characteristics in pearl millet under water stress and different potassium supply. Photosynthetica 39: 389-394 – reference: Nardini A, Grego F, Trifilò P, Salleo S (2010) Changes of xylem sap ionic content and stem hydraulics in response to irradiance in Laurus nobilis. Tree Physiol 30: 628-635 – reference: Wu M, Huang J, Xu S, Ling T, Xie Y, Shen W (2011b) Haem oxygenase delays programmed cell death in wheat aleurone layers by modulation of hydrogen peroxide metabolism. J Exp Bot 62: 235-248 – reference: Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231: 1237-1249 – reference: Watson MB, Malmberg RL (1996) Regulation of Arabidopsis thaliana (L.) Heynh arginine decarboxylase by potassium deficiency stress. Plant Physiol 111: 1077-1083 – reference: Lecourieux D, Ranjeva R, Pugin A (2006) Calcium in plant defence-signalling pathways. New Phytol 171: 249-269 – reference: Bonales-Alatorre E, Shabala S, Chen ZH, Pottosin I (2013) Reduced tonoplast fast-activating and slow-activating channel activity is essential for conferring salinity tolerance in a facultative halophyte, quinoa. Plant Physiol 162: 940-952 – reference: Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 581: 2204-2214 – reference: Zhao X, Li YY, Xiao H, Xu CS, Zhang X (2013) Nitric oxide blocks blue light-induced K+ influx by elevating the cytosolic Ca2+ concentration in Vicia faba L. guard cells. J Integr Plant Biol 55: 527-536 – reference: Pang JY, Ross J, Zhou MX, Mendham N, Shabala S (2007) Amelioration of detrimental effects of waterlogging by foliar nutrient sprays in barley. Funct Plant Biol 34: 221-227 – reference: Smart LB, Moskal WA, Cameron KD, Bennett AB (2001) MIP genes are down-regulated under drought stress in Nicotiana glauca. Plant Cell Physiol 42: 686-693 – reference: Kajimura M, Fukuda R, Bateman RM, Yamamoto T, Suematsu M (2010) Interactions of multiple gas-transducing systems: hallmarks and uncertainties of CO, NO, and H2S gas biology. Antioxid Redox Signal 13: 157-192 – reference: Pang JY, Newman I, Mendham N, Zhou M, Shabala S (2006) Microelectrode ion and O2 fluxes measurements reveal differential sensitivity of barley root tissues to hypoxia. Plant Cell Environ 29: 1107-1121 – reference: Shekhawat GS, Verma K (2010) Haem oxygenase (HO): an overlooked enzyme of plant metabolism and defence. J Exp Bot 61: 2255-2270 – reference: Garg N, Manchanda G (2009) ROS generation in plants: Boon or bane? Plant Biosyst 143: 81-96 – reference: Maathuis FJM, Sanders D (1993) Energization of potassium uptake in Arabidopsis thaliana. Planta 191: 302-307 – reference: Buch-Pedersen MJ, Rudashevskaya EL, Berner TS, Venema K, Palmgren MG (2006) Potassium as an intrinsic uncoupler of the plasma membrane H+-ATPase. J Biol Chem 281: 38285-38292 – reference: Bortner CD, Cidlowski JA (2007) Cell shrinkage and monovalent cation fluxes: role in apoptosis. Arch Biochem Biophys 462: 176-188 – reference: Maathuis FJM (2011) Vacuolar two-pore K+ channels act as vacuolar osmosensors. New Phytol 191: 84-91 – reference: Wang P, Song CP (2008) Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytol 178: 703-718 – reference: Oddo E, Inzerillo S, La Bella F, Grisafi F, Salleo S, Nardini A (2011) Short-term effects of potassium fertilization on the hydraulic conductance of Laurus nobilis L. Tree Physiol 31: 131-138 – reference: Britto DT, Kronzucker HJ (2008) Cellular mechanisms of potassium transport in plants. Physiol Plant 133: 637-650 – reference: Cheong YH, Pandey GK, Grant JJ, Batistič O, Li L, Kim BG, Lee SC, Kudla J, Luan S (2007) Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J 52: 223-239 – reference: Wang Y, Wu WH (2013) Potassium transport and signaling in higher plants. Annu Rev Plant Biol 64: 451-476 – reference: Liu K, Fu H, Bei Q, Luan S (2000) Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiol 124: 1315-1325 – reference: Wimalasekera R, Tebart F, Scherer GFE (2011) Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Sci 181: 593-603 – reference: An Z, Jing W, Liu Y, Zhang W (2008) Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba. J Exp Bot 59: 815-825 – reference: Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37: 604-612 – reference: Flowers TJ, Troke PF, Yeo AR (1977) Mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol Plant Mol Biol 28: 89-121 – reference: Shin R, Schachtman DP (2004) Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci USA 101: 8827-8832 – reference: Velarde-Buendía AM, Shabala S, Cvikrova M, Dobrovinskaya O, Pottosin I (2012) Salt-sensitive and salt-tolerant barley varieties differ in the extent of potentiation of the ROS-induced K+ efflux by polyamines. Plant Physiol Biochem 61: 18-23 – reference: Ward JM, Schroeder JI (1994) Calcium-activated K+ channels and calcium-induced calcium-release by slow vacuolar ion channels in guard-cell vacuoles implicated in the control of stomatal closure. Plant Cell 6: 669-683 – reference: García-Mata C, Lamattina L (2010) Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling. New Phytol 188: 977-984 – reference: Bienert GP, Moller ALB, Kristiansen KA, Schulz A, Moller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282: 1183-1192 – reference: Boron WF (2010) Sharpey-Schafer lecture. Gas channels. J Exp Physiol 95: 1107-1130 – reference: Philippar K, Fuchs I, Lüthen H, Hoth S, Bauer C, Haga K, Thiel G, Ljung K, Sandberg G, Böttger M, Becker D, Hedrich R (1999) Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism. Proc Natl Acad Sci USA 96: 12186-12191 – reference: Walker DJ, Leigh RA, Miller AJ (1996) Potassium homeostasis in vacuolate plant cells. Proc Natl Acad Sci USA 93: 10510-10514 – reference: Huertas R, Rubio L, Cagnac O, Garcia-Sanchez MJ, Alche JD, Venema K, Fernandez JA, Rodriguez-Rosales MP (2013) The K+/H+ antiporter LeNHX2 increases salt tolerance by improving K+ homeostasis in transgenic tomato. Plant Cell Environ 36: 2135-2149 – reference: Rivelli AR, James RA, Munns R, Condon AG (2002) Effect of salinity on water relations and growth of wheat genotypes with contrasting sodium uptake. Funct Plant Biol 29: 1065-1074 – reference: Zeng F, Shabala L, Zhou M, Zhang GP, Shabala S (2013) Barley responses to combined waterlogging and salinity stress: separating effects of oxygen deprivation and elemental toxicity. Front Plant Physiol 4: 313 – reference: Thiel G, Weise R (1999) Auxin augments conductance of K+ inward rectifier in maize coleoptile protoplasts. Planta 208: 38-45 – reference: Wery J, Silim SN, Knights EJ, Malhotra RS, Cousin R (1994) Screening techniques and sources of tolerance to extremes of moisture and air temperature in cool season food legumes. Euphytica 73: 73-83 – reference: Mugnai S, Marras AM, Mancuso S (2011) Effect of hypoxic acclimation on anoxia tolerance in Vitis roots: response of metabolic activity and K+ fluxes. Plant Cell Physiol 52: 1107-1116 – reference: Zandonadi DB, Santos MP, Dobbss LB, Olivares FL, Canellas LP, Binzel ML, Okorokova-Façanha AL, Façanha AR (2010) Nitric oxide mediates humic acids-induced root development and plasma membrane H+-ATPase activation. Planta 231: 1025-1036 – reference: Pottosin II, Dobrovinskaya OR, Muñiz J (2001) Conduction of monovalent and divalent cations in the slow vacuolar channel. J Membr Biol 181: 55-65 – reference: Ling TF, Zhang B, Cui WT, Wu MZ, Lin JS, Zhou WT, Huang JJ, Shen WB (2009) Carbon monoxide mitigates salt-induced inhibition of root growth and suppresses programmed cell death in wheat primary roots by inhibiting superoxide anion overproduction. Plant Sci 177: 331-340 – reference: Zhang WH, Ryan PR, Tyerman SD (2001a) Malate-permeable channels and cation channels activated by aluminum in the apical cells of wheat roots. Plant Physiol 125: 1459-1472 – reference: Nam YJ, Phan Tran LS, Kojima M, Sakakibara H, Nishiyama R, Shin R (2012) Regulatory roles of cytokinins and cytokinin signaling in response to potassium deficiency in Arabidopsis. PLoS ONE 7: e47797 – reference: Sen Gupta A, Berkowitz GA (1987) Osmotic adjustment, symplast volume, and non-stomatally mediated water stress inhibition of photosynthesis in wheat. Plant Physiol 85: 1040-1047 – reference: Rodrigo-Moreno A, Andreas-Colas N, Poschenrieder C, Gunse B, Pellarrubia L, Shabala S (2013a) Calcium- and potassium-permeable plasma membrane transporters are activated by copper in Arabidopsis root tips: Linking copper transport with cytosolic hydroxyl radical production. Plant Cell Environ 36: 844-855 – reference: Khabaz-Saberi H, Rengel Z (2010) Aluminum, manganese, and iron tolerance improves performance of wheat genotypes in waterlogged acidic soils. J Plant Nutr Soil Sci 173: 461-468 – reference: Berkowitz G, Zhang X, Mercier R, Leng Q, Lawton M (2000) Co-expression of calcium-dependent protein kinase with the inward rectified guard cell K+ channel KAT1 alters current parameters in Xenopus laevis oocytes. Plant Cell Physiol 41: 785-790 – reference: Lohse G, Hedrich R (1992) Characterization of the plasma membrane proton ATPase from Vicia faba guard cells: modulation by extracellular factors and seasonal changes. Planta 188: 206-214 – reference: Tikhonova LI, Pottosin II, Dietz KJ, Schönknecht G (1997) Fast-activating cation channel in barley mesophyll vacuoles. Inhibition by calcium. Plant J 11: 1059-1070 – reference: Smethurst CF, Garnett T, Shabala S (2005) Nutritional and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging and subsequent recovery. Plant Soil 270: 31-45 – reference: Aurisano N, Bertani A, Mattana M, Reggiani R (1993) Abscisic acid induced stress-like polyamine pattern in wheat seedlings, and its reversal by potassium ions. Physiol Plant 89: 687-692 – reference: Bolwell GP, Wojtaszek P (1997) Mechanisms for the generation of reactive oxygen species in plant defence - a broad perspective. Physiol Mol Plant Pathol 51: 347-366 – reference: Hajibagheri MA, Flowers TJ, Collins JC, Yeo AR (1988) A comparison of the methods of X-ray-microanalysis, compartmental analysis and longitudinal ion profiles to estimate cytoplasmic ion concentrations in two maize varieties. J Exp Bot 39: 279-290 – reference: Ou LJ, Dai XZ, Zhang ZQ, Zou XX (2011) Responses of pepper to waterlogging stress. Photosynthetica 49: 339-345 – reference: Pérez V, Wherrett T, Shabala S, Muñiz J, Dobrovinskaya O, Pottosin I (2008) Homeostatic control of slow vacuolar channels by luminal cations and evaluation of the channel-mediated tonoplast Ca2+ fluxes in situ. J Exp Bot 59: 3845-3855 – reference: Armstrong J, Armstrong W (1999) Phragmites die-back: toxic effects of propionic, butyric and caproic acids in relation to pH. New Phytol 142: 201-217 – reference: Garcia-Mata C, Wang J, Gajdanowicz P, Gonzalez W, Hills A, Donald N, Riedelsberger J, Amtmann A, Dreyer I, Blatt MR (2010) A minimal cysteine motif required to activate the SKOR K+ channel of Arabidopsis by the reactive oxygen species H2O2. J Biol Chem 285: 29286-29294 – reference: Amtmann A, Troufflard S, Armengaud P (2008) The effect of potassium nutrition on pest and disease resistance in plants. Physiol Plant 133: 682-691 – reference: Ranf S, Wünnenberg P, Lee J, Becker D, Dunkel M, Hedrich R, Scheel D, Dietrich P (2008) Loss of the vacuolar cation channel, AtTPC1, does not impair Ca2+ signals induced by abiotic and biotic stresses. Plant J 53: 287-299 – reference: Sutter JU, Sieben C, Hartel A, Eisenach C, Thiel G, Blatt MR (2007) Abscisic acid triggers the endocytosis of the Arabidopsis KAT1 K+ channel and its recycling to the plasma membrane. Curr Biol 17: 1396-1402 – reference: Kim MJ, Ciani S, Schachtman DP (2010a) A peroxidase contributes to ROS production during Arabidopsis root response to potassium deficiency. Mol Plant 3: 420-427 – reference: Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI (2010) Early abscisic acid signal transduction mehanisms: newly discovered components and newly emerging questions. Genes Dev 24: 1695-1708 – reference: Liu HY, Sun WN, Su WA, Tang ZC (2006) Co-regulation of water channels and potassium channels in rice. Physiol Plant 128: 58-69 – volume: 462 start-page: 176 year: 2007 end-page: 188 article-title: Cell shrinkage and monovalent cation fluxes: role in apoptosis publication-title: Arch Biochem Biophys – volume: 100 start-page: 11116 year: 2003 end-page: 11121 article-title: Nitric oxide regulates K and Cl channels in guard cells through a subset of abscisic acid‐evoked signaling pathways publication-title: Proc Natl Acad Sci USA – volume: 31 start-page: 131 year: 2011 end-page: 138 article-title: Short‐term effects of potassium fertilization on the hydraulic conductance of L publication-title: Tree Physiol – volume: 230 start-page: 293 year: 2009 end-page: 307 article-title: Ethylene and nitric oxide are involved in maintaining ion homeostasis in callus under salt stress publication-title: Planta – volume: 139 start-page: 358 year: 2010 end-page: 374 article-title: tolerates combined salinity and waterlogging: maintaining O transport to roots and expression of an NHX1‐like gene contribute to regulation of Na transport publication-title: Physiol Plant – volume: 37 start-page: 604 year: 2010 end-page: 612 article-title: Evolution of halophytes: multiple origins of salt tolerance in land plants publication-title: Funct Plant Biol – volume: 29 start-page: 329 year: 2010 end-page: 359 article-title: Halophyte improvement for a salinized world publication-title: Crit Rev Plant Sci – volume: 48 start-page: 931 year: 2010 end-page: 935 article-title: A novel hydrogen sulphide donor causes stomatal opening and reduces nitric oxide accumulation publication-title: Plant Physiol Biochem – volume: 129 start-page: 290 year: 2002 end-page: 299 article-title: Turgor regulation in osmotically stressed epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements publication-title: Plant Physiol – volume: 205 start-page: 103 year: 2005 end-page: 111 article-title: Regulation of the slow vacuolar channel by luminal potassium: role of surface charge publication-title: J Membr Biol – volume: 57 start-page: 151 year: 2011 end-page: 199 article-title: Ion transport in halophytes publication-title: Adv Bot Res – volume: 208 start-page: 38 year: 1999 end-page: 45 article-title: Auxin augments conductance of K inward rectifier in maize coleoptile protoplasts publication-title: Planta – volume: 116 start-page: 81 year: 2003 end-page: 88 article-title: Free oxygen radicals regulate plasma membrane Ca ‐ and K ‐ permeable channels in plant root cells publication-title: J Cell Sci – volume: 39 start-page: 389 year: 2001 end-page: 394 article-title: Growth and photosynthetic characteristics in pearl millet under water stress and different potassium supply publication-title: Photosynthetica – volume: 57 start-page: 471 year: 2006 end-page: 478 article-title: Mechanisms for nitric oxide synthesis in plants publication-title: J Exp Bot – volume: 85 start-page: 1040 year: 1987 end-page: 1047 article-title: Osmotic adjustment, symplast volume, and non‐stomatally mediated water stress inhibition of photosynthesis in wheat publication-title: Plant Physiol – volume: 41 start-page: 785 year: 2000 end-page: 790 article-title: Co‐expression of calcium‐dependent protein kinase with the inward rectified guard cell K channel KAT1 alters current parameters in oocytes publication-title: Plant Cell Physiol – volume: 191 start-page: 302 year: 1993 end-page: 307 article-title: Energization of potassium uptake in publication-title: Planta – volume: 185 start-page: 201 year: 2000 end-page: 207 article-title: Effect of soil moisture and potassium fertilizer on shoot water potential, photosynthesis and partitioning of carbon in mungbean and cowpea publication-title: J Agron Crop Sci – volume: 18 start-page: 13 year: 1999 end-page: 22 article-title: Induction of RAB18 gene expression and activation of K outward rectifying channels depend on an extracellular perception of ABA in suspension cells publication-title: Plant J – volume: 5 start-page: e13935 year: 2010 article-title: The ABA‐activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14‐3‐3 binding site involved in its turnover publication-title: PLoS One – volume: 29 start-page: 1107 year: 2006 end-page: 1121 article-title: Microelectrode ion and O fluxes measurements reveal differential sensitivity of barley root tissues to hypoxia publication-title: Plant Cell Environ – volume: 61 start-page: 561 year: 2010b end-page: 591 article-title: Guard cell signal transduction network: advances in understanding abscisic acid, CO , and Ca signaling publication-title: Annu Rev Plant Biol – volume: 30 start-page: 628 year: 2010 end-page: 635 article-title: Changes of xylem sap ionic content and stem hydraulics in response to irradiance in publication-title: Tree Physiol – volume: 424 start-page: 439 year: 2009 end-page: 448 article-title: Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA‐activated SnRK2/OST1/SnRK2.6 protein kinase publication-title: Biochem J – volume: 279 start-page: 2922 year: 2004 end-page: 2926 article-title: The protein kinase SOS2 activates the H /Ca antiporters CAX1 to integrate calcium transport and salt tolerance publication-title: J Biol Chem – volume: 55 start-page: 373 year: 2004 end-page: 399 article-title: Reactive oxygen species: metabolism, oxidative stress, and signal transduction publication-title: Annu Rev Plant Biol – volume: 145 start-page: 1061 year: 2007 end-page: 1072 article-title: Polyamines improve K /Na homeostasis in barley seedlings by regulating root ion channel activities publication-title: Plant Physiol – volume: 28 start-page: 89 year: 1977 end-page: 121 article-title: Mechanism of salt tolerance in halophytes publication-title: Annu Rev Plant Physiol Plant Mol Biol – volume: 34 start-page: 221 year: 2007 end-page: 227 article-title: Amelioration of detrimental effects of waterlogging by foliar nutrient sprays in barley publication-title: Funct Plant Biol – volume: 40 start-page: 523 year: 2004 end-page: 535 article-title: Potassium carrier TRH1 is required for auxin transport in roots publication-title: Plant J – volume: 285 start-page: 1256 year: 1999 end-page: 1258 article-title: Salt tolerance conferred by overexpression of a vacuolar Na /H antiport in publication-title: Science – volume: 100 start-page: 5549 year: 2003 end-page: 5554 article-title: The outward K channel GORK is involved in regulation of stomatal movements and plant transpiration publication-title: Proc Natl Acad Sci USA – volume: 39 start-page: 157 year: 1999 end-page: 171 article-title: Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo publication-title: Adv Enzyme Reg – volume: 112 start-page: 19 year: 2013 end-page: 31 article-title: Overexpression of a poplar two‐pore K channel enhances salinity tolerance in tobacco cells publication-title: Plant Cell Tissue Organ Cult – volume: 291 start-page: 1059 year: 2001 end-page: 1062 article-title: Hydrogel control of xylem hydraulic resistance in plants publication-title: Science – volume: 55 start-page: 527 year: 2013 end-page: 536 article-title: Nitric oxide blocks blue light‐induced K influx by elevating the cytosolic Ca concentration in L. guard cells publication-title: J Integr Plant Biol – volume: 12 start-page: 250 year: 2009 end-page: 258 article-title: Physiological functions of mineral macronutrients publication-title: Curr Opin Plant Biol – volume: 59 start-page: 2697 year: 2008 end-page: 2706 article-title: A root's ability to retain K correlates with salt tolerance in wheat publication-title: J Exp Bot – volume: 319 start-page: 1241 year: 2008 end-page: 1244 article-title: Local positive feedback regulation determines cell shape in root hair cells publication-title: Science – volume: 36 start-page: 607 year: 2013 end-page: 616 article-title: Exogenous application of potassium nitrate to alleviate salt stress in rice seedlings publication-title: J Plant Nutr – volume: 188 start-page: 977 year: 2010 end-page: 984 article-title: Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling publication-title: New Phytol – volume: 581 start-page: 2204 year: 2007 end-page: 2214 article-title: Plant proton pumps publication-title: FEBS Lett – volume: 32 start-page: 267 year: 1994 end-page: 276 article-title: Effect of hypoxia on ion uptake by nodal and seminal wheat roots publication-title: Plant Physiol Biochem – volume: 173 start-page: 461 year: 2010 end-page: 468 article-title: Aluminum, manganese, and iron tolerance improves performance of wheat genotypes in waterlogged acidic soils publication-title: J Plant Nutr Soil Sci – volume: 121 start-page: 267 year: 2008 end-page: 280 article-title: Roles of reactive oxygen species in interactions between plants and pathogens publication-title: Eur J Plant Pathol – volume: 77 start-page: 17 year: 1996 end-page: 24 article-title: Pressure‐flow relationships, xylem solutes and root hydraulic conductance in flooded tomato plants publication-title: Ann Bot – year: 1995 – volume: 14 start-page: 438 year: 2011 end-page: 446 article-title: Genetic behaviour of physiological traits conferring cytosolic K /Na homeostasis in wheat publication-title: Plant Biol – volume: 133 start-page: 637 year: 2008 end-page: 650 article-title: Cellular mechanisms of potassium transport in plants publication-title: Physiol Plant – volume: 62 start-page: 550 year: 2011 end-page: 555 article-title: Wheat genotypes differ in potassium accumulation and osmotic adjustment under drought stress publication-title: Crop Pasture Sci – volume: 335 start-page: 155 year: 2010 end-page: 180 article-title: Research on potassium in agriculture: needs and prospects publication-title: Plant Soil – volume: 167 start-page: 665 year: 2005 end-page: 691 article-title: In the light of stomata opening: new insights into ‘the Watergate’ publication-title: New Phytol – volume: 224 start-page: 1154 year: 2006 end-page: 1162 article-title: Heme oxygenase up‐regulation in ultraviolet‐B irradiated soybean plants involves reactive oxygen species publication-title: Planta – volume: 136 start-page: 2556 year: 2004 end-page: 2576 article-title: The potassium‐dependent transcriptome of reveals a prominent role of jasmonic acid in nutrient signaling publication-title: Plant Physiol – volume: 53 start-page: 221 year: 2013 end-page: 231 article-title: Effects of cytokinin and potassium on stomatal and photosynthetic recovery of Kentucky bluegrass from drought stress publication-title: Crop Sci – volume: 1 start-page: 491 year: 1974 end-page: 501 article-title: Effects of sodium and potassium on starch synthesis in leaves publication-title: Aust J Plant Physiol – volume: 554 start-page: 119 year: 2003 end-page: 126 article-title: Regulation of the ABA‐sensitive potassium channel gene GORK in response to water stress publication-title: FEBS Lett – volume: 50 start-page: 873 year: 1999a end-page: 876 article-title: Selectivity of the fast activating vacuolar cation channel publication-title: J Exp Bot – volume: 4 start-page: 313 year: 2013 article-title: Barley responses to combined waterlogging and salinity stress: separating effects of oxygen deprivation and elemental toxicity publication-title: Front Plant Physiol – volume: 282 start-page: 1183 year: 2007 end-page: 1192 article-title: Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes publication-title: J Biol Chem – volume: 42 start-page: 411 year: 2012 end-page: 426 article-title: Polyamine catabolism: target for antiproliferative therapies in animals and stress tolerance strategies in plants publication-title: Amino Acids – volume: 17 start-page: 95 year: 2012 end-page: 105 article-title: Modulation of ion channels by hydrogen sulfide publication-title: Antioxid Redox Signal – volume: 53 start-page: 287 year: 2008 end-page: 299 article-title: Loss of the vacuolar cation channel, AtTPC1, does not impair Ca signals induced by abiotic and biotic stresses publication-title: Plant J – volume: 281 start-page: 38285 year: 2006 end-page: 38292 article-title: Potassium as an intrinsic uncoupler of the plasma membrane H ‐ATPase publication-title: J Biol Chem – volume: 68 start-page: 424 year: 2011 end-page: 432 article-title: Differential contribution of EF‐hands to the Ca ‐dependent activation in the plant two‐pore channel TPC1 publication-title: Plant J – volume: 229 start-page: 757 year: 2009 end-page: 765 article-title: Nitric oxide production occurs downstream of reactive oxygen species in guard cells during stomatal closure induced by chitosan in abaxial epidermis of publication-title: Planta – volume: 25 start-page: 1104 year: 1974 end-page: 1113 article-title: Influence of phenolic acids upon ion uptake. 3. Inhibition of potassium absorption publication-title: J Exp Bot – volume: 3 start-page: 420 year: 2010a end-page: 427 article-title: A peroxidase contributes to ROS production during root response to potassium deficiency publication-title: Mol Plant – volume: 181 start-page: 593 year: 2011 end-page: 603 article-title: Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses publication-title: Plant Sci – volume: 35 start-page: 2015 year: 2013 end-page: 2036 article-title: Plant polyamines in abiotic stress responses publication-title: Acta Physiol Plant – volume: 16 start-page: 1792 year: 2002 end-page: 1798 article-title: Two's company, three's a crowd: can H S be the third endogenous gaseous transmitter? publication-title: FASEB J – volume: 7 start-page: 1084 year: 2012 end-page: 1087 article-title: Synergism between polyamines and ROS in the induction of Ca and K fluxes in roots publication-title: Plant Signal Behav – volume: 61 start-page: 18 year: 2012 end-page: 23 article-title: Salt‐sensitive and salt‐tolerant barley varieties differ in the extent of potentiation of the ROS‐induced K efflux by polyamines publication-title: Plant Physiol Biochem – volume: 104 start-page: 10726 year: 2007 end-page: 10731 article-title: The two‐pore channel TPK1 gene encodes the vacuolar K conductance and plays a role in K homeostasis publication-title: Proc Natl Acad Sci USA – volume: 67 start-page: 105 year: 2011 end-page: 118 article-title: Quantitative transcriptomic analysis of abscisic acid‐induced and reactive oxygen species‐dependent expression changes and proteomic profiling in suspension cells publication-title: Plant J – volume: 42 start-page: 686 year: 2001 end-page: 693 article-title: MIP genes are down‐regulated under drought stress in publication-title: Plant Cell Physiol – volume: 31 start-page: 1864 year: 2008 end-page: 1881 article-title: Carbon monoxide enhances salt tolerance by nitric oxide‐mediated maintenance of ion homeostasis and up‐regulation of antioxidant defense in wheat seedling roots publication-title: Plant Cell Environ – volume: 48 start-page: 451 year: 1997 end-page: 458 article-title: Regulation of K absorption in plant root cells by external K : interplay of different plasma membrane K transporters publication-title: J Exp Bot – volume: 125 start-page: 1347 year: 2006 end-page: 1360 article-title: A protein kinase, interacting with two calcineurin B‐like proteins, regulates K transporter AKT1 in publication-title: Cell – volume: 84 start-page: 123 year: 1999 end-page: 133 article-title: K nutrition and Na toxicity: The basis of cellular K /Na ratios publication-title: Ann Bot – volume: 134 start-page: 308 year: 1989 end-page: 315 article-title: High light‐intensity enhances chlorosis and necrosis in leaves of zinc, potassium, and magnesium deficient bean ( ) plants publication-title: J Plant Physiol – volume: 89 start-page: 19 year: 2013 end-page: 27 article-title: Effects of flooding on photosynthesis and root respiration in saltcedar ( ), an invasive riparian shrub publication-title: Environ Exp Bot – volume: 42 start-page: 28 year: 2001 end-page: 36 article-title: Onion root water transport sensitive to water channel and K channel inhibitors publication-title: Plant Cell Physiol – volume: 50 start-page: 843 year: 2003 end-page: 847 article-title: Long‐term waterlogging: nutrient, gas exchange, photochemical and pigment characteristics of saplings publication-title: Russ J Plant Physiol – volume: 142 start-page: 201 year: 1999 end-page: 217 article-title: Phragmites die‐back: toxic effects of propionic, butyric and caproic acids in relation to pH publication-title: New Phytol – volume: 583 start-page: 921 year: 2009 end-page: 926 article-title: SV channels dominate the vacuolar Ca release during intracellular signaling publication-title: FEBS Lett – volume: 188 start-page: 206 year: 1992 end-page: 214 article-title: Characterization of the plasma membrane proton ATPase from guard cells: modulation by extracellular factors and seasonal changes publication-title: Planta – volume: 8 start-page: e23421 year: 2013b end-page: e23425 article-title: Transition metals: a double edge sword in ROS generation and signaling publication-title: Plant Signal Behav – volume: 29 start-page: 1065 year: 2002 end-page: 1074 article-title: Effect of salinity on water relations and growth of wheat genotypes with contrasting sodium uptake publication-title: Funct Plant Biol – volume: 168 start-page: 521 year: 2005 end-page: 530 article-title: The role of potassium in alleviating detrimental effects of abiotic stresses in plants publication-title: J Plant Nutr Soil Sci‐Z Pflanzenernahr Bodenkd – volume: 133 start-page: 651 year: 2008 end-page: 669 article-title: Potassium transport and plant salt tolerance publication-title: Physiol Plant – volume: 1823 start-page: 398 year: 2012 end-page: 405 article-title: Protein phosphorylation is a prerequisite for the Ca ‐dependent activation of NADPH oxidases and may function as a trigger for the positive feedback regulation of Ca and reactive oxygen species publication-title: Biochim Biophys Acta – volume: 191 start-page: 84 year: 2011 end-page: 91 article-title: Vacuolar two‐pore K channels act as vacuolar osmosensors publication-title: New Phytol – volume: 134 start-page: 598 year: 2008 end-page: 608 article-title: Relative contribution of HAK5 and AKT1 to K uptake in the high‐ affinity range of concentrations publication-title: Physiol Plant – volume: 16 start-page: 300 year: 2011 end-page: 309 article-title: ROS signaling: the new wave? publication-title: Trends Plant Sci – volume: 54 start-page: 657 year: 2003 end-page: 661 article-title: Potassium activities in cell compartments of salt‐grown barley leaves publication-title: J Exp Bot – volume: 7 start-page: e47797 year: 2012 article-title: Regulatory roles of cytokinins and cytokinin signaling in response to potassium deficiency in publication-title: PLoS ONE – volume: 48 start-page: 251 year: 1997 end-page: 275 article-title: The oxidative burst in plant disease resistance publication-title: Annu Rev Plant Physiol Plant Mol Biol – volume: 434 start-page: 404 year: 2005 end-page: 408 article-title: The vacuolar Ca ‐activated channel TPC1 regulates germination and stomatal movement publication-title: Nature – volume: 29 start-page: 185 year: 2009 end-page: 212 article-title: Plant drought stress: effects, mechanisms and management publication-title: Agron Sustain Develop – volume: 115 start-page: 1707 year: 1997 end-page: 1719 article-title: Properties of two outward‐rectifying channels in root xylem parenchyma cells suggest a role in KCl homeostasis and long‐distance signaling publication-title: Plant Physiol – volume: 56 start-page: 2365 year: 2005 end-page: 2378 article-title: Salt tolerance in wild species is associated with restricted entry of Na and Cl into the shoots publication-title: J Exp Bot – volume: 106 start-page: 21425 year: 2009 end-page: 21430 article-title: Activity of guard cell anion channel SLAC1 is controlled by drought‐stress signaling kinase‐phosphatase pair publication-title: Proc Natl Acad Sci USA – volume: 73 start-page: 73 year: 1994 end-page: 83 article-title: Screening techniques and sources of tolerance to extremes of moisture and air temperature in cool season food legumes publication-title: Euphytica – volume: 62 start-page: 39 year: 2011 end-page: 57 article-title: Ion transport in seminal and adventitious roots of cereals during O deficiency publication-title: J Exp Bot – volume: 23 start-page: 2696 year: 2011 end-page: 2707 article-title: A novel calcium binding site in the slow vacuolar cation channel TPC1 senses luminal calcium levels publication-title: Plant Cell – volume: 191 start-page: 17 year: 2009 end-page: 31 article-title: Biochemistry of soluble guanylate cyclase publication-title: Handb Exp Pharmacol – volume: 125 start-page: 1459 year: 2001a end-page: 1472 article-title: Malate‐permeable channels and cation channels activated by aluminum in the apical cells of wheat roots publication-title: Plant Physiol – volume: 62 start-page: 2189 year: 2011 end-page: 2203 article-title: Additive effects of Na and Cl ions on barley growth under salinity stress publication-title: J Exp Bot – volume: 27 start-page: 613 year: 2004 end-page: 626 article-title: Effect of oxygen deficiency on mineral nutrition of excised tomato roots publication-title: J Plant Nutr – volume: 24 start-page: 1127 year: 2012 end-page: 1142 article-title: Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in publication-title: Plant Cell – volume: 157 start-page: 2167 year: 2011 end-page: 2180 article-title: Polyamines interact with hydroxyl radicals in activating Ca and K transport across the root epidermal plasma membranes publication-title: Plant Physiol – volume: 372 start-page: 340 year: 2008 end-page: 348 article-title: Chlorella viruses evoke a rapid release of K from host cells during the early phase of infection publication-title: Virology – volume: 128 start-page: 58 year: 2006 end-page: 69 article-title: Co‐regulation of water channels and potassium channels in rice publication-title: Physiol Plant – volume: 25 start-page: 609 year: 2013 end-page: 624 article-title: Osmotic stress responses and plant growth controlled by potassium transporters in publication-title: Plant Cell – volume: 54 start-page: 663 year: 2003 end-page: 667 article-title: Potassium‐selective channel in the red beet vacuolar membrane publication-title: J Exp Bot – volume: 124 start-page: 1315 year: 2000 end-page: 1325 article-title: Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements publication-title: Plant Physiol – volume: 58 start-page: 4245 year: 2007a end-page: 4255 article-title: Compatible solute accumulation and stress‐mitigating effects in barley genotypes contrasting in their salt tolerance publication-title: J Exp Bot – volume: 280 start-page: 918 year: 1998 end-page: 921 article-title: A role for the AKT1 potassium channel in plant nutrition publication-title: Science – volume: 190 start-page: 289 year: 2011 end-page: 298 article-title: Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance publication-title: New Phytol – volume: 41 start-page: 43 year: 2005 end-page: 55 article-title: Abscisic acid and 14‐3‐3 proteins control K channel activity in barley embryonic root publication-title: Plant J – volume: 21 start-page: 1116 year: 2011 end-page: 1130 article-title: Calcium‐dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex publication-title: Cell Res – volume: 145 start-page: 1714 year: 2007b end-page: 1725 article-title: Root plasma membrane transporters controlling K /Na homeostasis in salt stressed barley publication-title: Plant Physiol – volume: 62 start-page: 235 year: 2011b end-page: 248 article-title: Haem oxygenase delays programmed cell death in wheat aleurone layers by modulation of hydrogen peroxide metabolism publication-title: J Exp Bot – volume: 55 start-page: 895 year: 2004 end-page: 906 article-title: Growth and physiological responses of six barley genotypes to waterlogging and subsequent recovery publication-title: Aust J Agric Res – volume: 161 start-page: 266 year: 2013 end-page: 277 article-title: A protein kinase CIPK9 interacts with calcium sensor CBL3 and regulates K homeostasis under low‐K stress in publication-title: Plant Physiol – volume: 52 start-page: 1107 year: 2011 end-page: 1116 article-title: Effect of hypoxic acclimation on anoxia tolerance in roots: response of metabolic activity and K fluxes publication-title: Plant Cell Physiol – volume: 168 start-page: 541 year: 2005 end-page: 549 article-title: Drought and salinity: A comparison of their effects on mineral nutrition of plants publication-title: J Plant Nutr Soil Sci‐Z Pflanzenernahr Bodenkd – volume: 89 start-page: 687 year: 1993 end-page: 692 article-title: Abscisic acid induced stress‐like polyamine pattern in wheat seedlings, and its reversal by potassium ions publication-title: Physiol Plant – volume: 7 start-page: 1333 year: 1995 end-page: 1342 article-title: Cytosolic concentration of Ca regulates the plasma membrane H ‐ATPase in guard cells of fava bean publication-title: Plant Cell – volume: 125 start-page: 406 year: 2001 end-page: 422 article-title: Quantitative trait loci for component physiological traits determining salt tolerance in rice publication-title: Plant Physiol – volume: 3 start-page: 381 year: 2008 end-page: 382 article-title: Carbon monoxide. A novel and pivotal signal molecule in plants? publication-title: Plant Signal Behav – volume: 112 start-page: 1209 year: 2013 end-page: 1221 article-title: Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops publication-title: Ann Bot – volume: 184 start-page: 29 year: 2012 end-page: 35 article-title: Nitric oxide inhibits blue light‐induced stomatal opening by regulating the K influx in guard cells publication-title: Plant Sci – volume: 64 start-page: 471 year: 2013 end-page: 481 article-title: Haem oxygenase modifies salinity tolerance in by controlling K retention via regulation of the plasma membrane H ‐ATPase and by altering SOS1 transcript levels in roots publication-title: J Exp Bot – volume: 13 start-page: 157 year: 2010 end-page: 192 article-title: Interactions of multiple gas‐transducing systems: hallmarks and uncertainties of CO, NO, and H S gas biology publication-title: Antioxid Redox Signal – volume: 12 start-page: 56 year: 2010 end-page: 63 article-title: Roles of tandem‐pore K channels in plants – a puzzle still to be solved publication-title: Plant Biol – volume: 185 start-page: 527 year: 1991 end-page: 537 article-title: Auxin induces exocytosis and the rapid synthesis of a high‐turnover pool of plasma‐membrane proton ATPase publication-title: Planta – volume: 466 start-page: 351 year: 2000 end-page: 354 article-title: pH control of the plant outwardly‐rectifying potassium channel SKOR publication-title: FEBS Lett – volume: 50 start-page: 1547 year: 1999b end-page: 1552 article-title: Cytoplasmic magnesium regulates the fast activating vacuolar cation channel publication-title: J Exp Bot – volume: 28 start-page: 552 year: 1999b end-page: 563 article-title: Asymmetric block of the plant vacuolar Ca ‐permeable channel by organic cations publication-title: Eur Biophys J – volume: 59 start-page: 815 year: 2008 end-page: 825 article-title: Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid‐induced stomatal closure in publication-title: J Exp Bot – volume: 69 start-page: 361 year: 2009 end-page: 373 article-title: Plant hormones and nutrient signaling publication-title: Plant Mol Biol – volume: 35 start-page: 640 year: 2008 end-page: 650 article-title: Multiple traits associated with salt tolerance in lucerne: revealing the underlying cellular mechanisms publication-title: Funct Plant Biol – volume: 179 start-page: 366 year: 2008 end-page: 377 article-title: Overexpression of the tomato K /H antiporter LeNHX2 confers salt tolerance by improving potassium compartmentalization publication-title: New Phytol – volume: 85 start-page: 655 year: 1987 end-page: 661 article-title: Modulation of water‐stress effects on photosynthesis by altered leaf K publication-title: Plant Physiol – volume: 92 start-page: 448 year: 1996 end-page: 454 article-title: Mapping of the K /Na discrimination locus Kna1 in wheat publication-title: Theor Appl Genet – volume: 47 start-page: 401 year: 2006 end-page: 409 article-title: Adaptative response of root to anoxia publication-title: Plant Cell Physiol – volume: 270 start-page: 31 year: 2005 end-page: 45 article-title: Nutritional and chlorophyll fluorescence responses of lucerne ( ) to waterlogging and subsequent recovery publication-title: Plant Soil – volume: 95 start-page: 1107 year: 2010 end-page: 1130 article-title: Sharpey‐Schafer lecture. Gas channels publication-title: J Exp Physiol – volume: 181 start-page: 55 year: 2001 end-page: 65 article-title: Conduction of monovalent and divalent cations in the slow vacuolar channel publication-title: J Membr Biol – volume: 31 start-page: 828 year: 2008 end-page: 838 article-title: Waterlogging effects on plant nutrient concentrations in soybean publication-title: J Plant Nutr – volume: 17 start-page: 1396 year: 2007 end-page: 1402 article-title: Abscisic acid triggers the endocytosis of the KAT1 K channel and its recycling to the plasma membrane publication-title: Curr Biol – volume: 54 start-page: 575 year: 2003 end-page: 603 article-title: Molecular mechanisms and regulation of K transport in higher plants publication-title: Annu Rev Plant Biol – volume: 58 start-page: 1559 year: 2007 end-page: 1569 article-title: Vacuolar calcium channels publication-title: J Exp Bot – volume: 6 start-page: 669 year: 1994 end-page: 683 article-title: Calcium‐activated K channels and calcium‐induced calcium‐release by slow vacuolar ion channels in guard‐cell vacuoles implicated in the control of stomatal closure publication-title: Plant Cell – volume: 51 start-page: 1585 year: 2000 end-page: 1594 article-title: The effects of ABA on channel‐mediated K transport across higher plant roots publication-title: Journal of Experimental Botany – volume: 61 start-page: 495 year: 2010 end-page: 506 article-title: The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato publication-title: Plant J – volume: 231 start-page: 1025 year: 2010 end-page: 1036 article-title: Nitric oxide mediates humic acids‐induced root development and plasma membrane H ‐ATPase activation publication-title: Planta – volume: 3 start-page: 401 year: 2008a end-page: 403 article-title: Na ‐K transport in roots under salt stress publication-title: Plant Signal Behav – volume: 11 start-page: 195 year: 2001b end-page: 202 article-title: K channels inhibited by hydrogen peroxide mediate abscisic acid signaling in guard cells publication-title: Cell Res – volume: 581 start-page: 2247 year: 2007 end-page: 2254 article-title: Na transport in plants publication-title: FEBS Lett – volume: 36 start-page: 2135 year: 2013 end-page: 2149 article-title: The K /H antiporter LeNHX2 increases salt tolerance by improving K homeostasis in transgenic tomato publication-title: Plant Cell Environ – volume: 167 start-page: 1371 year: 2010 end-page: 1379 article-title: Heme oxygenase/carbon monoxide system participates in regulating wheat seed germination under osmotic stress involving the nitric oxide pathway publication-title: J Plant Physiol – volume: 232 start-page: 807 year: 2010 end-page: 815 article-title: Non‐invasive microelectrode potassium flux measurements as a potential tool for early recognition of virus–host compatibility in plants publication-title: Planta – volume: 96 start-page: 519 year: 2005 end-page: 532 article-title: pH regulation in anoxic plants publication-title: Ann Bot – volume: 219 start-page: 1057 year: 2004 end-page: 1070 article-title: Mechanism of luminal Ca and Mg action on the vacuolar slowly activating channels publication-title: Planta – volume: 38 start-page: 606 year: 2011 end-page: 613 article-title: Ion‐mediated compensation for drought‐induced loss of xylem hydraulic conductivity in field‐growing plants of publication-title: Funct Plant Biol – volume: 167 start-page: 127 year: 1999a end-page: 140 article-title: Inhibition of vacuolar ion channels by polyamines publication-title: J Membr Biol – volume: 37 start-page: 589 year: 2014 end-page: 600 article-title: Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K ‐permeable channels to reactive oxygen species: physiological traits that differentiate salinity tolerance between pea and barley publication-title: Plant Cell Environ – volume: 141 start-page: 1653 year: 2006 end-page: 1665 article-title: Extracellular Ca ameliorates NaCl‐induced K loss from root and leaf cells by controlling plasma membrane K ‐permeable channels publication-title: Plant Physiol – volume: 19 start-page: 1617 year: 2007 end-page: 1634 article-title: protein kinase PKS5 inhibits the plasma membrane H ‐ATPase by preventing interaction with 14‐3‐3 protein publication-title: Plant Cell – start-page: 141 year: 1999 end-page: 168 – volume: 12 start-page: 161 year: 2012 article-title: Transcriptome analysis of rice root responses to potassium deficiency publication-title: BMC Plant Biol – volume: 60 start-page: 709 year: 2009 end-page: 711 article-title: Salinity and programmed cell death: unravelling mechanisms for ion specific signalling publication-title: J Exp Bot – volume: 61 start-page: 291 year: 2011 end-page: 304 article-title: Improving agricultural water use efficiency by nutrient management in crop plants publication-title: Acta Agric Scand B Soil Plant Sci – volume: 406 start-page: 731 year: 2000 end-page: 734 article-title: Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells publication-title: Nature – volume: 30 start-page: 507 year: 2003 end-page: 514 article-title: Effect of calcium on root development and root ion fluxes in salinised barley seedlings publication-title: Funct Plant Biol – start-page: 57 year: 2007 end-page: 78 – volume: 19 start-page: 765 year: 2001 end-page: 768 article-title: Transgenic salt‐tolerant tomato plants accumulate salt in foliage but not in fruit publication-title: Nat Biotechnol – volume: 226 start-page: 1155 year: 2007 end-page: 1163 article-title: The effect of nitric oxide on heme oxygenase gene expression in soybean leaves publication-title: Planta – volume: 283 start-page: 1911 year: 2008 end-page: 1920 article-title: Characterization of a tobacco TPK‐ type K channel as a novel tonoplast K channel using yeast tonoplasts publication-title: J Biol Chem – volume: 153 start-page: 225 year: 2002 end-page: 236 article-title: Short‐term waterlogging has long‐term effects on the growth and physiology of wheat publication-title: New Phytol – volume: 64 start-page: 451 year: 2013 end-page: 476 article-title: Potassium transport and signaling in higher plants publication-title: Annu Rev Plant Biol – volume: 28 start-page: 1230 year: 2005 end-page: 1246 article-title: Screening plants for salt tolerance by measuring K flux: a case study for barley publication-title: Plant Cell Environ – volume: 94 start-page: 647 year: 1998 end-page: 655 article-title: Identification and disruption of a plant shaker‐like outward channel involved in K release into the xylem sap publication-title: Cell – volume: 51 start-page: 347 year: 1997 end-page: 366 article-title: Mechanisms for the generation of reactive oxygen species in plant defence – a broad perspective publication-title: Physiol Mol Plant Pathol – volume: 215 start-page: 1022 year: 2002 end-page: 1030 article-title: Involvement of plasma‐membrane NADPH oxidase in abscisic acid‐ and water stress‐induced antioxidant defense in leaves of maize seedlings publication-title: Planta – volume: 24 start-page: 139 year: 2000 end-page: 145 article-title: Differential expression and regulation of K channels in the maize coleoptile: molecular and biophysical analysis of cells isolated from cortex and vasculature publication-title: Plant J – volume: 111 start-page: 1077 year: 1996 end-page: 1083 article-title: Regulation of (L.) Heynh arginine decarboxylase by potassium deficiency stress publication-title: Plant Physiol – volume: 24 start-page: 1522 year: 2012 end-page: 1533 article-title: annexin1 mediates the radical‐activated plasma membrane Ca ‐and K ‐permeable conductance in root cells publication-title: Plant Cell – volume: 59 start-page: 165 year: 2008 end-page: 176 article-title: Nitric oxide, stomatal closure and abiotic stress publication-title: J Exp Bot – volume: 97 start-page: 1 year: 1984 end-page: 13 article-title: A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell publication-title: New Phytol – volume: 177 start-page: 331 year: 2009 end-page: 340 article-title: Carbon monoxide mitigates salt‐induced inhibition of root growth and suppresses programmed cell death in wheat primary roots by inhibiting superoxide anion overproduction publication-title: Plant Sci – volume: 21 start-page: 607 year: 2009 end-page: 621 article-title: Ethylene mediates response and tolerance to potassium deprivation in publication-title: Plant Cell – volume: 52 start-page: 223 year: 2007 end-page: 239 article-title: Two calcineurin B‐like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in publication-title: Plant J – volume: 162 start-page: 940 year: 2013 end-page: 952 article-title: Reduced tonoplast fast‐activating and slow‐activating channel activity is essential for conferring salinity tolerance in a facultative halophyte, quinoa publication-title: Plant Physiol – volume: 35 start-page: 53 year: 2012 end-page: 60 article-title: ABA signal transduction at the crossroad of biotic and abiotic stress responses publication-title: Plant Cell Environ – volume: 285 start-page: 29286 year: 2010 end-page: 29294 article-title: A minimal cysteine motif required to activate the SKOR K channel of by the reactive oxygen species H O publication-title: J Biol Chem – volume: 39 start-page: 279 year: 1988 end-page: 290 article-title: A comparison of the methods of X‐ray‐microanalysis, compartmental analysis and longitudinal ion profiles to estimate cytoplasmic ion concentrations in two maize varieties publication-title: J Exp Bot – volume: 51 start-page: 422 year: 2010 end-page: 434 article-title: Specificity of polyamine effects on NaCl‐induced ion flux kinetics and salt stress amelioration in plants publication-title: Plant Cell Physiol – volume: 108 start-page: 253 year: 2004 end-page: 260 article-title: QTLs for Na and K uptake of the shoots and roots controlling rice salt tolerance publication-title: Theor Appl Genet – volume: 49 start-page: 339 year: 2011 end-page: 345 article-title: Responses of pepper to waterlogging stress publication-title: Photosynthetica – volume: 33 start-page: 566 year: 2010 end-page: 589 article-title: Mechanisms of Cl transport contributing to salt tolerance publication-title: Plant Cell Environ – volume: 68 start-page: 521 year: 2008 end-page: 532 article-title: A putative role for the plasma membrane potential in the control of the expression of the gene encoding the tomato high‐affinity potassium transporter HAK5 publication-title: Plant Mol Biol – volume: 16 start-page: 101 year: 1998 end-page: 106 article-title: Cytoplasmic polyamines block the fast‐activating vacuolar cation channel publication-title: Plant J – volume: 31 start-page: 1105 year: 2004 end-page: 1114 article-title: A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat publication-title: Funct Plant Biol – volume: 59 start-page: 3845 year: 2008 end-page: 3855 article-title: Homeostatic control of slow vacuolar channels by luminal cations and evaluation of the channel‐mediated tonoplast Ca fluxes publication-title: J Exp Bot – volume: 53 start-page: 423 year: 2012 end-page: 432 article-title: Disruption of the inward‐rectifier K channel AKT1 improves plant responses to water stress publication-title: Plant Cell Physiol – volume: 227 start-page: 189 year: 2007 end-page: 197 article-title: Expression of animal CED‐9 anti‐apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress publication-title: Planta – volume: 178 start-page: 703 year: 2008 end-page: 718 article-title: Guard‐cell signalling for hydrogen peroxide and abscisic acid publication-title: New Phytol – volume: 231 start-page: 1237 year: 2010 end-page: 1249 article-title: Polyamines: molecules with regulatory functions in plant abiotic stress tolerance publication-title: Planta – volume: 96 start-page: 12186 year: 1999 end-page: 12191 article-title: Auxin‐induced K channel expression represents an essential step in coleoptile growth and gravitropism publication-title: Proc Natl Acad Sci USA – volume: 102 start-page: 16107 year: 2005 end-page: 16112 article-title: Vacuolar Na /H antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca ‐ and pH‐dependent manner publication-title: Proc Natl Acad Sci USA – volume: 105 start-page: 221 year: 1987 end-page: 245 article-title: Internal aeration and the development of stelar anoxia in submerged roots – a multishelled mathematical‐model combining axial diffusion of oxygen in the cortex with radial losses to the stele, the wall layers and the rhizosphere publication-title: New Phytol – volume: 22 start-page: 1253 year: 1999 end-page: 1268 article-title: Mineral nutrient status of corn in relation to nitrate and long‐term waterlogging publication-title: J Plant Nutr – volume: 61 start-page: 2255 year: 2010 end-page: 2270 article-title: Haem oxygenase (HO): an overlooked enzyme of plant metabolism and defence publication-title: J Exp Bot – volume: 56 start-page: 1369 year: 2005 end-page: 1378 article-title: Effect of divalent cations on ion fluxes and leaf photochemistry in salinized barley leaves publication-title: J Exp Bot – volume: 101 start-page: 8827 year: 2004 end-page: 8832 article-title: Hydrogen peroxide mediates plant root cell response to nutrient deprivation publication-title: Proc Natl Acad Sci USA – volume: 123 start-page: 1468 year: 2010 end-page: 1479 article-title: root K ‐efflux conductance activated by hydroxyl radicals: single‐channel properties, genetic basis and involvement in stress‐induced cell death publication-title: J Cell Sci – volume: 179 start-page: 945 year: 2008 end-page: 963 article-title: Salinity tolerance in halophytes publication-title: New Phytol – volume: 280 start-page: 37924 year: 2005 end-page: 37929 article-title: Pyruvate kinase revisited ‐ the activating effect of K publication-title: J Biol Chem – volume: 133 start-page: 682 year: 2008 end-page: 691 article-title: The effect of potassium nutrition on pest and disease resistance in plants publication-title: Physiol Plant – volume: 4 start-page: 428 year: 2011 end-page: 441 article-title: TPC1‐SV channels gain shape publication-title: Mol Plant – volume: 6 start-page: 1054 year: 2011 end-page: 1063 article-title: Potassium‐induced alleviation of salinity stress in L publication-title: Cent Eur J Biol – volume: 36 start-page: 1607 year: 2013 end-page: 1616 article-title: Hydrogene sulfide: environmental factor or signaling molecule? publication-title: Plant Cell Environ – volume: 22 start-page: 1481 year: 1999 end-page: 1494 article-title: Effect of flooding on elemental uptake and biomass allocation in seedlings of three bottomland tree species publication-title: J Plant Nutr – volume: 24 start-page: 1695 year: 2010 end-page: 1708 article-title: Early abscisic acid signal transduction mehanisms: newly discovered components and newly emerging questions publication-title: Genes Dev – volume: 114 start-page: 369 year: 2001 end-page: 373 article-title: Effect of seawater on the growth, ion content and water potential of Lam publication-title: J Plant Res – volume: 189 start-page: 1060 year: 2011a end-page: 1068 article-title: Reciprocal regulation of Ca ‐activated outward K channels of pollen by heme and carbon monoxide publication-title: New Phytol – volume: 171 start-page: 249 year: 2006 end-page: 269 article-title: Calcium in plant defence‐signalling pathways publication-title: New Phytol – volume: 8 start-page: 346 year: 2006 end-page: 352 article-title: How does auxin enhance cell elongation? Roles of auxin‐binding proteins and potassium channels in growth control publication-title: Plant Biol – volume: 19 start-page: 711 year: 2006 end-page: 724 article-title: Early signaling events induced by elicitors of plant defenses publication-title: Mol Plant Microbe Interact – volume: 93 start-page: 10510 year: 1996 end-page: 10514 article-title: Potassium homeostasis in vacuolate plant cells publication-title: Proc Natl Acad Sci USA – start-page: 23 year: 2010 end-page: 35 – volume: 6 start-page: 1656 year: 2011 end-page: 1661 article-title: Cell‐specific compartmentation of mineral nutrients is an essential mechanism for optimal plant productivity – another role for ? publication-title: Plant Signal Behav – volume: 36 start-page: 844 year: 2013a end-page: 855 article-title: Calcium‐ and potassium‐permeable plasma membrane transporters are activated by copper in root tips: Linking copper transport with cytosolic hydroxyl radical production publication-title: Plant Cell Environ – volume: 150 start-page: 567 year: 1997 end-page: 572 article-title: Effect of low oxygen concentration on the electrical properties of cortical cells of wheat roots publication-title: J Plant Physiol – volume: 143 start-page: 81 year: 2009 end-page: 96 article-title: ROS generation in plants: Boon or bane? publication-title: Plant Biosyst – volume: 11 start-page: 1059 year: 1997 end-page: 1070 article-title: Fast‐activating cation channel in barley mesophyll vacuoles. Inhibition by calcium publication-title: Plant J – volume: 25 start-page: 901 year: 2013 end-page: 926 article-title: A Major Facilitator Superfamily transporter plays a dual role in polar auxin transport and drought stress tolerance in publication-title: Plant Cell – volume: 135 start-page: 231 year: 2004 end-page: 243 article-title: Plasma membrane depolarization induced by abscisic acid in suspension cells involves reduction of proton pumping in addition to anion channel activation, which are both Ca dependent publication-title: Plant Physiol – volume: 9 start-page: 87 year: 2008b end-page: 99 article-title: Polyamines as regulators of ionic transport in plants publication-title: Curr Top Plant Biol – ident: e_1_2_7_225_1 doi: 10.1016/j.plantsci.2011.04.002 – ident: e_1_2_7_87_1 doi: 10.1111/pce.12109 – ident: e_1_2_7_235_1 doi: 10.4161/psb.3.6.5429 – ident: e_1_2_7_74_1 doi: 10.1073/pnas.0702595104 – ident: e_1_2_7_26_1 doi: 10.1093/jxb/ers343 – ident: e_1_2_7_91_1 doi: 10.1007/s00425-002-0829-y – ident: e_1_2_7_183_1 doi: 10.1016/B978-0-12-387692-8.00005-9 – ident: e_1_2_7_12_1 doi: 10.1023/A:1015182310754 – ident: e_1_2_7_171_1 doi: 10.1080/07352689.2010.524517 – ident: e_1_2_7_204_1 doi: 10.1111/j.1399-3054.2010.01373.x – ident: e_1_2_7_123_1 doi: 10.1093/jxb/48.Special_Issue.451 – ident: e_1_2_7_139_1 doi: 10.1074/jbc.M508490200 – ident: e_1_2_7_153_1 doi: 10.1016/j.envexpbot.2012.12.005 – ident: e_1_2_7_23_1 doi: 10.1104/pp.113.216572 – ident: e_1_2_7_174_1 doi: 10.1046/j.1439-037x.2000.00422.x – ident: e_1_2_7_186_1 doi: 10.1104/pp.106.082388 – ident: e_1_2_7_136_1 doi: 10.1093/pcp/pcr194 – ident: e_1_2_7_8_1 doi: 10.1104/pp.104.046482 – ident: e_1_2_7_40_1 doi: 10.1111/j.1365-313X.2007.03236.x – ident: e_1_2_7_111_1 doi: 10.1016/j.plaphy.2010.09.016 – ident: e_1_2_7_33_1 doi: 10.1074/jbc.M604781200 – ident: e_1_2_7_147_1 doi: 10.1038/35021067 – ident: e_1_2_7_172_1 doi: 10.1111/j.1399-3054.2008.01168.x – ident: e_1_2_7_88_1 doi: 10.1016/S0065-2571(98)00010-7 – ident: e_1_2_7_198_1 doi: 10.1016/j.cub.2007.07.020 – ident: e_1_2_7_98_1 doi: 10.2307/3870106 – ident: e_1_2_7_237_1 doi: 10.1104/pp.111.179671 – ident: e_1_2_7_229_1 doi: 10.1016/j.cell.2006.06.011 – ident: e_1_2_7_221_1 doi: 10.1104/pp.111.4.1077 – ident: e_1_2_7_68_1 doi: 10.1093/jxb/eri229 – ident: e_1_2_7_199_1 doi: 10.1126/science.1152505 – ident: e_1_2_7_78_1 doi: 10.1074/jbc.M708213200 – ident: e_1_2_7_36_1 doi: 10.1111/j.1365-3040.2005.01364.x – ident: e_1_2_7_22_1 doi: 10.1006/pmpp.1997.0129 – ident: e_1_2_7_27_1 doi: 10.1111/pce.12180 – ident: e_1_2_7_115_1 doi: 10.1016/j.jplph.2010.05.021 – ident: e_1_2_7_178_1 doi: 10.1093/jxb/erp013 – ident: e_1_2_7_9_1 doi: 10.1046/j.1469-8137.1999.00395.x – ident: e_1_2_7_232_1 doi: 10.1007/s00425-006-0297-x – ident: e_1_2_7_144_1 doi: 10.1111/j.1365-3040.2005.01486.x – ident: e_1_2_7_150_1 doi: 10.1080/01904169909365729 – ident: e_1_2_7_95_1 doi: 10.1093/mp/ssp121 – ident: e_1_2_7_82_1 doi: 10.1126/science.280.5365.918 – volume: 9 start-page: 87 year: 2008 ident: e_1_2_7_236_1 article-title: Polyamines as regulators of ionic transport in plants publication-title: Curr Top Plant Biol – ident: e_1_2_7_114_1 doi: 10.1111/j.1399-3054.2006.00709.x – ident: e_1_2_7_181_1 doi: 10.1111/j.1399-3054.2007.01008.x – ident: e_1_2_7_188_1 doi: 10.1007/s00425-010-1213-y – ident: e_1_2_7_216_1 doi: 10.1146/annurev-arplant-050312-120153 – ident: e_1_2_7_195_1 doi: 10.1007/s11104-004-1082-x – ident: e_1_2_7_131_1 doi: 10.1371/journal.pone.0047797 – ident: e_1_2_7_18_1 doi: 10.1093/pcp/41.6.785 – ident: e_1_2_7_231_1 doi: 10.1073/pnas.0504437102 – ident: e_1_2_7_81_1 doi: 10.1038/cr.2011.50 – ident: e_1_2_7_83_1 doi: 10.1073/pnas.0733970100 – ident: e_1_2_7_41_1 doi: 10.1055/s-2006-923965 – ident: e_1_2_7_30_1 doi: 10.1046/j.1365-313x.1998.00274.x – ident: e_1_2_7_103_1 doi: 10.1105/tpc.112.097881 – ident: e_1_2_7_25_1 doi: 10.1016/j.abb.2007.01.020 – ident: e_1_2_7_47_1 doi: 10.1111/j.1438-8677.2011.00526.x – ident: e_1_2_7_24_1 doi: 10.1113/expphysiol.2010.055244 – ident: e_1_2_7_50_1 doi: 10.1242/jcs.00201 – ident: e_1_2_7_99_1 doi: 10.1104/pp.125.1.406 – ident: e_1_2_7_84_1 doi: 10.1002/jpln.200420516 – ident: e_1_2_7_140_1 doi: 10.1105/tpc.112.105700 – ident: e_1_2_7_92_1 doi: 10.1105/tpc.108.063099 – ident: e_1_2_7_89_1 doi: 10.1006/anbo.1996.0003 – ident: e_1_2_7_49_1 doi: 10.1071/CP11071 – ident: e_1_2_7_191_1 doi: 10.1073/pnas.0401707101 – ident: e_1_2_7_177_1 doi: 10.1104/pp.85.4.1040 – ident: e_1_2_7_220_1 doi: 10.2307/3869871 – ident: e_1_2_7_205_1 doi: 10.1007/s004250050532 – ident: e_1_2_7_96_1 doi: 10.1146/annurev-arplant-042809-112226 – ident: e_1_2_7_122_1 doi: 10.1007/BF00195686 – ident: e_1_2_7_13_1 doi: 10.1111/j.1399-3054.1993.tb05274.x – volume: 32 start-page: 267 year: 1994 ident: e_1_2_7_100_1 article-title: Effect of hypoxia on ion uptake by nodal and seminal wheat roots publication-title: Plant Physiol Biochem – ident: e_1_2_7_218_1 doi: 10.1007/s11240-012-0207-9 – ident: e_1_2_7_170_1 doi: 10.1007/s11104-010-0520-1 – ident: e_1_2_7_149_1 doi: 10.1093/jxb/ern225 – ident: e_1_2_7_212_1 doi: 10.1111/j.1438-8677.2010.00353.x – ident: e_1_2_7_57_1 doi: 10.1051/agro:2008021 – ident: e_1_2_7_145_1 doi: 10.1071/FP06158 – ident: e_1_2_7_173_1 doi: 10.1007/s11103-008-9380-y – ident: e_1_2_7_69_1 doi: 10.1016/j.febslet.2007.03.050 – ident: e_1_2_7_206_1 doi: 10.1046/j.1365-313X.1997.11051059.x – ident: e_1_2_7_162_1 doi: 10.1111/j.1365-313X.2007.03342.x – ident: e_1_2_7_214_1 doi: 10.1096/fj.02-0211hyp – ident: e_1_2_7_151_1 doi: 10.1073/pnas.96.21.12186 – ident: e_1_2_7_180_1 doi: 10.1093/aob/mct205 – ident: e_1_2_7_189_1 doi: 10.1093/jxb/erq074 – ident: e_1_2_7_156_1 doi: 10.1093/jxb/erg067 – ident: e_1_2_7_55_1 doi: 10.1007/BF00223692 – ident: e_1_2_7_21_1 doi: 10.1111/j.1365-313X.2011.04579.x – ident: e_1_2_7_54_1 doi: 10.1007/s002490050237 – ident: e_1_2_7_6_1 doi: 10.1016/j.febslet.2007.04.014 – ident: e_1_2_7_132_1 doi: 10.1093/treephys/tpq017 – ident: e_1_2_7_4_1 doi: 10.1093/jxb/erm370 – ident: e_1_2_7_108_1 doi: 10.1007/s00122-003-1421-y – ident: e_1_2_7_192_1 doi: 10.1371/journal.pone.0013935 – ident: e_1_2_7_46_1 doi: 10.1093/jxb/ern128 – ident: e_1_2_7_77_1 doi: 10.1093/jxb/39.3.279 – ident: e_1_2_7_230_1 doi: 10.4161/psb.3.6.5374 – ident: e_1_2_7_76_1 doi: 10.1007/BF00202963 – ident: e_1_2_7_124_1 doi: 10.1046/j.0028-646X.2001.00318.x – ident: e_1_2_7_158_1 doi: 10.1007/s00232-005-0766-3 – ident: e_1_2_7_163_1 doi: 10.1105/tpc.113.110353 – ident: e_1_2_7_11_1 doi: 10.1080/01904169909365710 – ident: e_1_2_7_141_1 doi: 10.1007/s11099-011-0043-x – ident: e_1_2_7_148_1 doi: 10.1038/nature03381 – ident: e_1_2_7_110_1 doi: 10.1016/j.plantsci.2009.06.004 – ident: e_1_2_7_112_1 doi: 10.1111/pce.12073 – ident: e_1_2_7_146_1 doi: 10.1089/ars.2011.4359 – ident: e_1_2_7_65_1 doi: 10.1073/pnas.1434381100 – ident: e_1_2_7_15_1 doi: 10.1105/tpc.111.095273 – ident: e_1_2_7_128_1 doi: 10.1016/j.tplants.2011.03.007 – ident: e_1_2_7_143_1 doi: 10.1071/AR03097 – ident: e_1_2_7_166_1 doi: 10.1111/pce.12020 – ident: e_1_2_7_130_1 doi: 10.1093/pcp/pcr061 – ident: e_1_2_7_207_1 doi: 10.1071/FP10233 – volume: 61 start-page: 291 year: 2011 ident: e_1_2_7_219_1 article-title: Improving agricultural water use efficiency by nutrient management in crop plants publication-title: Acta Agric Scand B Soil Plant Sci – ident: e_1_2_7_109_1 doi: 10.1071/FP04111 – ident: e_1_2_7_29_1 doi: 10.1111/j.1399-3054.2008.01067.x – ident: e_1_2_7_117_1 doi: 10.1007/BF00216815 – ident: e_1_2_7_86_1 doi: 10.1101/gad.1953910 – ident: e_1_2_7_168_1 doi: 10.1111/j.1469-8137.2008.02461.x – ident: e_1_2_7_60_1 doi: 10.1146/annurev.pp.28.060177.000513 – ident: e_1_2_7_102_1 doi: 10.1046/j.1365-2958.2003.03800.x – ident: e_1_2_7_44_1 doi: 10.1093/jxb/erj050 – ident: e_1_2_7_120_1 doi: 10.1111/j.1469-8137.2011.03664.x – ident: e_1_2_7_208_1 doi: 10.2478/s11535-011-0065-1 – ident: e_1_2_7_118_1 doi: 10.1186/1471-2229-12-161 – ident: e_1_2_7_45_1 doi: 10.1093/jxb/erg072 – ident: e_1_2_7_101_1 doi: 10.1016/S0014-5793(00)01093-0 – ident: e_1_2_7_176_1 doi: 10.1111/j.1365-313X.2011.04697.x – ident: e_1_2_7_106_1 doi: 10.1111/j.1365-313X.2009.04073.x – ident: e_1_2_7_142_1 doi: 10.1093/pcp/pcq007 – ident: e_1_2_7_75_1 doi: 10.1007/s11738-013-1239-4 – ident: e_1_2_7_51_1 doi: 10.1242/jcs.064352 – ident: e_1_2_7_202_1 doi: 10.1093/pcp/pce004 – ident: e_1_2_7_113_1 doi: 10.1104/pp.124.3.1315 – ident: e_1_2_7_64_1 doi: 10.1111/j.1469-8137.2010.03465.x – ident: e_1_2_7_244_1 doi: 10.1111/jipb.12038 – ident: e_1_2_7_193_1 doi: 10.1080/01904167.2012.754032 – ident: e_1_2_7_137_1 doi: 10.1007/s00425-007-0561-8 – ident: e_1_2_7_238_1 doi: 10.1038/90824 – ident: e_1_2_7_182_1 doi: 10.1104/pp.020005 – ident: e_1_2_7_61_1 doi: 10.1071/FP09269 – ident: e_1_2_7_138_1 doi: 10.1093/treephys/tpq115 – ident: e_1_2_7_175_1 doi: 10.1042/BJ20091221 – ident: e_1_2_7_63_1 doi: 10.1094/MPMI-19-0711 – ident: e_1_2_7_104_1 doi: 10.1111/j.1469-8137.2006.01777.x – ident: e_1_2_7_52_1 doi: 10.1007/978-3-540-68964-5_2 – volume-title: Mineral Nutrition of Higher Plants year: 1995 ident: e_1_2_7_126_1 – ident: e_1_2_7_56_1 doi: 10.1007/978-3-642-10305-6_2 – ident: e_1_2_7_16_1 doi: 10.1046/j.1365-313X.2000.00844.x – ident: e_1_2_7_125_1 doi: 10.1093/pcp/pcj007 – ident: e_1_2_7_133_1 doi: 10.1093/jxb/erm293 – ident: e_1_2_7_10_1 doi: 10.1111/j.1469-8137.1987.tb00860.x – ident: e_1_2_7_194_1 doi: 10.1093/pcp/pce085 – ident: e_1_2_7_43_1 doi: 10.1093/jxb/erq271 – ident: e_1_2_7_121_1 doi: 10.1006/anbo.1999.0912 – ident: e_1_2_7_241_1 doi: 10.1038/sj.cr.7290086 – ident: e_1_2_7_119_1 doi: 10.1016/j.pbi.2009.04.003 – ident: e_1_2_7_7_1 doi: 10.1126/science.285.5431.1256 – volume: 50 start-page: 873 year: 1999 ident: e_1_2_7_31_1 article-title: Selectivity of the fast activating vacuolar cation channel publication-title: J Exp Bot – ident: e_1_2_7_105_1 doi: 10.1111/j.1365-3040.2011.02426.x – ident: e_1_2_7_223_1 doi: 10.1007/BF00027184 – ident: e_1_2_7_3_1 doi: 10.1111/j.1399-3054.2008.01075.x – ident: e_1_2_7_5_1 doi: 10.1146/annurev.arplant.55.031903.141701 – ident: e_1_2_7_228_1 doi: 10.1111/j.1365-3040.2008.01888.x – ident: e_1_2_7_58_1 doi: 10.1093/aob/mci207 – ident: e_1_2_7_222_1 doi: 10.1104/pp.115.4.1707 – ident: e_1_2_7_240_1 doi: 10.1104/pp.125.3.1459 – ident: e_1_2_7_59_1 doi: 10.1111/j.1469-8137.2008.02531.x – ident: e_1_2_7_239_1 doi: 10.1016/S0176-1617(97)80320-3 – ident: e_1_2_7_210_1 doi: 10.1146/annurev.arplant.54.031902.134831 – ident: e_1_2_7_53_1 doi: 10.1007/s002329900477 – ident: e_1_2_7_245_1 doi: 10.1126/science.1057175 – ident: e_1_2_7_17_1 doi: 10.1016/S0014-5793(03)01118-9 – ident: e_1_2_7_185_1 doi: 10.1093/jxb/eri138 – ident: e_1_2_7_90_1 doi: 10.1046/j.1365-313X.1999.00423.x – ident: e_1_2_7_66_1 doi: 10.1074/jbc.M110.141176 – ident: e_1_2_7_242_1 doi: 10.1104/pp.107.105882 – ident: e_1_2_7_71_1 doi: 10.1073/pnas.0912021106 – ident: e_1_2_7_200_1 doi: 10.1093/jxb/erq422 – ident: e_1_2_7_243_1 doi: 10.1016/j.plantsci.2011.12.007 – ident: e_1_2_7_94_1 doi: 10.1002/jpln.200900316 – ident: e_1_2_7_127_1 doi: 10.1016/S0176-1617(89)80248-2 – ident: e_1_2_7_19_1 doi: 10.1074/jbc.M603761200 – ident: e_1_2_7_211_1 doi: 10.1111/j.1365-313X.2004.02230.x – ident: e_1_2_7_233_1 doi: 10.1007/s00425-010-1106-0 – volume: 4 start-page: 313 year: 2013 ident: e_1_2_7_234_1 article-title: Barley responses to combined waterlogging and salinity stress: separating effects of oxygen deprivation and elemental toxicity publication-title: Front Plant Physiol – ident: e_1_2_7_190_1 doi: 10.1007/s10658-008-9302-5 – ident: e_1_2_7_213_1 doi: 10.1046/j.0016-8025.2003.01116.x – ident: e_1_2_7_62_1 doi: 10.1105/tpc.105.035626 – ident: e_1_2_7_135_1 doi: 10.1007/s11103-008-9388-3 – ident: e_1_2_7_154_1 doi: 10.1093/jxb/erm035 – ident: e_1_2_7_80_1 doi: 10.1093/mp/ssr017 – ident: e_1_2_7_197_1 doi: 10.1007/s00425-008-0855-5 – ident: e_1_2_7_79_1 doi: 10.1071/PP9740491 – ident: e_1_2_7_224_1 doi: 10.1111/j.1365-313X.2004.02273.x – ident: e_1_2_7_38_1 doi: 10.1104/pp.107.110262 – ident: e_1_2_7_2_1 doi: 10.1007/s00425-010-1130-0 – ident: e_1_2_7_226_1 doi: 10.1111/j.1469-8137.2010.03564.x – ident: e_1_2_7_48_1 doi: 10.1105/tpc.111.086751 – ident: e_1_2_7_72_1 doi: 10.4161/psb.6.11.17797 – start-page: 57 volume-title: Mineral Nutrition and Plant Disease year: 2007 ident: e_1_2_7_161_1 – ident: e_1_2_7_39_1 doi: 10.1074/jbc.M309084200 – ident: e_1_2_7_97_1 doi: 10.1016/j.bbamcr.2011.09.011 – ident: e_1_2_7_73_1 doi: 10.1093/jxb/25.6.1104 – ident: e_1_2_7_42_1 doi: 10.1023/B:RUPP.0000003284.25827.95 – ident: e_1_2_7_28_1 doi: 10.1104/pp.104.039255 – ident: e_1_2_7_129_1 doi: 10.1081/PLN-120030371 – ident: e_1_2_7_160_1 doi: 10.4161/psb.21185 – ident: e_1_2_7_155_1 doi: 10.1007/s0023200100073 – ident: e_1_2_7_70_1 doi: 10.1016/j.febslet.2007.03.050 – ident: e_1_2_7_179_1 doi: 10.1111/j.1469-8137.2010.03575.x – ident: e_1_2_7_209_1 doi: 10.1016/j.plaphy.2012.09.002 – ident: e_1_2_7_20_1 doi: 10.1080/01904160802043122 – ident: e_1_2_7_203_1 doi: 10.1111/j.1365-3040.2009.02060.x – ident: e_1_2_7_215_1 doi: 10.1111/j.1469-8137.2008.02431.x – ident: e_1_2_7_107_1 doi: 10.1111/j.1469-8137.1984.tb04103.x – start-page: 141 volume-title: Mineral Nutrition of Crops: Mechanisms and Implications year: 1999 ident: e_1_2_7_35_1 – ident: e_1_2_7_169_1 doi: 10.1111/j.1469-8137.2005.01460.x – ident: e_1_2_7_187_1 doi: 10.1007/s00425-007-0606-z – ident: e_1_2_7_196_1 doi: 10.1071/FP08030 – ident: e_1_2_7_37_1 doi: 10.1093/jxb/erm284 – ident: e_1_2_7_14_1 doi: 10.1007/PL00013998 – ident: e_1_2_7_32_1 doi: 10.1093/jxb/50.339.1547 – ident: e_1_2_7_93_1 doi: 10.1089/ars.2009.2657 – ident: e_1_2_7_227_1 doi: 10.1093/jxb/erq261 – ident: e_1_2_7_167_1 doi: 10.4161/psb.23425 – ident: e_1_2_7_184_1 doi: 10.1071/FP03016 – ident: e_1_2_7_152_1 doi: 10.1104/pp.85.3.655 – ident: e_1_2_7_201_1 doi: 10.1007/s00726-011-1012-1 – ident: e_1_2_7_159_1 doi: 10.1016/j.febslet.2009.02.009 – ident: e_1_2_7_134_1 doi: 10.1016/j.virol.2007.10.024 – ident: e_1_2_7_34_1 doi: 10.1002/jpln.200420485 – ident: e_1_2_7_164_1 doi: 10.1071/PP01154 – ident: e_1_2_7_116_1 doi: 10.1104/pp.112.206896 – ident: e_1_2_7_67_1 doi: 10.1080/11263500802633626 – ident: e_1_2_7_85_1 doi: 10.2135/cropsci2012.05.0284 – ident: e_1_2_7_217_1 doi: 10.1007/s00425-009-0946-y – ident: e_1_2_7_157_1 doi: 10.1007/s00425-004-1293-7 – ident: e_1_2_7_165_1 doi: 10.1093/jexbot/51.350.1585 |
SSID | ssj0016612 |
Score | 2.6010404 |
SecondaryResourceType | review_article |
Snippet | Intracellular potassium homeostasis is a prerequisite for the optimal operation of plant metabolic machinery and plant's overall performance. It is controlled... |
SourceID | proquest pubmed crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 257 |
SubjectTerms | absorption Adaptation, Physiological - physiology apoptosis Biotic factors biotic stress calcium Calcium - metabolism Drought Environmental stress Homeostasis Homeostasis - physiology Ion Transport metabolism Models, Biological Plants - metabolism Polyamines Potassium Potassium - metabolism Potassium Channels - physiology Potassium-Hydrogen Antiporters - physiology reactive oxygen species Relocation salinity stress tolerance Stress, Physiological - physiology transporters |
Title | Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance |
URI | https://api.istex.fr/ark:/67375/WNG-D6DC79JQ-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fppl.12165 https://www.ncbi.nlm.nih.gov/pubmed/24506225 https://www.proquest.com/docview/1535162910 https://www.proquest.com/docview/1535623654 https://www.proquest.com/docview/1999949392 |
Volume | 151 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3dT9RAEMAnSHzwRfGTAprVGMNLSbvd7l71CUEkRAmiF3gw2Wy3W3PhaC9HL1H-ema6bQMGjfGtuZum3e3Mzm_amVmA1yqxIo8kD11hRCgsMpzJZBGiayx5ZE1kLb2H_Hwo98fi4DQ9XYJ3fS2M7w8xvHAjy2jXazJwk19cM3KENGqNIKnAnHK1CIiOh9ZRMfod3yk8icMMnWTXVYiyeIYzb_iiO6WpkVBpcn_ehps36bV1P3sP4Ht_4z7r5Gxr0eRb9vK3no7_ObIVuN9hKdv2evQQllz1CO6-rxEdfz2Gy2O_Yz0-Q1aXbIY_oyktzlnTt0Znk4rNppRTw6gqbc6oeAQvzjDcLnxW2Fs2uZa9zhCWmcknNV6Qmapg3aGvXWFNPXW05Yd7AuO9D9929sNu04bQInuloYyUMUnEncoTYRWOiBdFLJzlpRJORYVJ0xG3CsHCIs3E3CVqVAqXxWVSKgSmp7Bc1ZVbBcYLYRJRGsttKpzjmaCvvrwYYRDJpbUBbPaPT9uuozltrDHVfWSDM6nbmQzg1SA68208bhNaRR3Q5gcur3r8lVPwieEqQlscwJtWMYaTzfyMUuJUqk8OP-pdubujsoMv-iSAjV5zdLcaXGj0KmksOZJZAC-Hv9GO6eOMqVy98DKIojIVf5FBms9EhkgbwDOvlcMNcZGiyXEcxGarW38epj46-tQerP276Drco-nwecobsNzMF-450liTv2jN7gpt5C2t |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD7aBhK8jDsLDDAI0F4yJY4TN0g8wMrotq4a26rtzbiOM1XrkqprBdtv4q_wnzgnN21oIF72wFvUnCaxfS7fsY8_A7yWgREDL-KuTbRwhUEMp-MocTE0ptwz2jOG5iG3e1GnLzYPw8M5-FHvhSn5IZoJN7KMwl-TgdOE9AUrR5RG3AhRXVK5Zc--YcJ2-n6jjaP7hvP1T_trHbc6U8A1CA1CN_Kk1oHHrRwEwkh8Ek8SX1jDUyms9BIdhi1uJMY9g8HW5zaQrVTY2E-DVGI8x-fOww06QZyY-tu7DVmVj5Gu5CYPfDfGsFzxGFHdUPOpl6LffKpzxMQ0nN-vAriX8XIR8NbvwM-6q8o6l-PV2XSwas5_Y5H8X_ryLixWyJt9KE3lHszZ7D7c_JgjOj57AOe79qg6yYzlKRvjz-gtZidsWrO_s2HGxiMqG2K08W7CaH8MtpaZnJb9yXzfseGFAn2G-QDTg2GOL2Q6S1h1WW7PYdN8ZOlUE_sQ-tfS7kewkOWZXQLGE6EDkWrDTSis5bGghW2etDBP5pExDqzU-qJMRdpOZ4eMVJ284cipYuQceNWIjkumkquEllDplD7CCKL6e5zya8zIEZf6DrwtNLH5s54cU9WfDNVB77NqR-01GW9-UQcOLNeqqiqHd6owcIZ-xBF8OvCyuY2uitafdGbzWSmDaDsKxV9kMGGJRYyo3YHHpRk0H8RFiF6FYyNWCmX-czPVzk63uHjy76Iv4FZnf7uruhu9radwm7qmLMtehoXpZGafIficDp4XNs_g63Ubxi8EVYiA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BSEuvKGBAgYB6iVV4jj2BokDNCx9sVpaVu3NOI5Trbokq21W0P4l_go_inFealFBXHrgFu3OZmN7Zr5v4vEMwAsRaJZ4nLomVcxlGjmcinjqIjRm1NPK09q-h_w44BsjtnUQHizAj_YsTF0fonvhZi2j8tfWwKdpdsbIkaTZ0gi8zajcNiffMF47frMZ4-K-pLT__vP6htu0FHA1MoPQ5Z5QKvCoEUnAtMA70TT1mdE0E8wIL1Vh2KNaIOxpxFqfmkD0MmYiPwsygXCO912EK4x7ke0TEe92tap8BLq6NHnguxGiclPGyKYNdY96DvwWM1UgJbar-f0ifnueLld4178JP9uZqtNcjtbmZbKmT38rIvmfTOUtuNHwbvK2NpTbsGDyO3D1XYHc-OQunO6aw6aPGSkyMsWP0VfMv5Kyrf1OxjmZTmzSELHH7mbEno7BwRJd2E1_a7yvyfhMej7BaICoZFzgHxKVp6S5rA_nkLKYGNvTxNyD0aWM-z4s5UVuloHQlKmAZUpTHTJjaMTstjZNexglU661A6utukjdlGy3nUMmsg3dcOVktXIOPO9Ep3WdkouEllHnpDpE_JCjPWqja4zHkZX6DryqFLH7sZod2Zw_Ecr9wQcZ83hdRFuf5L4DK62mysbdHUuEzdDnFKmnA8-6r9FR2d0nlZtiXssg1-Yh-4sMhisRi5CzO_CgtoLugSgL0adQHMRqpct_HqYcDneqi4f_LvoUrg3jvtzZHGw_gut2Zuqc7BVYKmdz8xiZZ5k8qSyewJfLtotfxD2HLw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+potassium+transport+in+plants+under+hostile+conditions%3A+implications+for+abiotic+and+biotic+stress+tolerance&rft.jtitle=Physiologia+plantarum&rft.au=Shabala%2C+Sergey&rft.au=Pottosin%2C+Igor&rft.date=2014-07-01&rft.issn=0031-9317&rft.eissn=1399-3054&rft.volume=151&rft.issue=3&rft.spage=257&rft.epage=279&rft_id=info:doi/10.1111%2Fppl.12165&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_ppl_12165 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9317&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9317&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9317&client=summon |