Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance

Intracellular potassium homeostasis is a prerequisite for the optimal operation of plant metabolic machinery and plant's overall performance. It is controlled by K⁺ uptake, efflux and intracellular and long‐distance relocation, mediated by a large number of K⁺‐selective and non‐selective channe...

Full description

Saved in:
Bibliographic Details
Published inPhysiologia plantarum Vol. 151; no. 3; pp. 257 - 279
Main Authors Shabala, Sergey, Pottosin, Igor
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.07.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Intracellular potassium homeostasis is a prerequisite for the optimal operation of plant metabolic machinery and plant's overall performance. It is controlled by K⁺ uptake, efflux and intracellular and long‐distance relocation, mediated by a large number of K⁺‐selective and non‐selective channels and transporters located at both plasma and vacuolar membranes. All abiotic and biotic stresses result in a significant disturbance to intracellular potassium homeostasis. In this work, we discuss molecular mechanisms and messengers mediating potassium transport and homeostasis focusing on four major environmental stresses: salinity, drought, flooding and biotic factors. We argue that cytosolic K⁺ content may be considered as one of the ‘master switches’ enabling plant transition from the normal metabolism to ‘hibernated state’ during first hours after the stress exposure and then to a recovery phase. We show that all these stresses trigger substantial disturbance to K⁺ homeostasis and provoke a feedback control on K⁺ channels and transporters expression and post‐translational regulation of their activity, optimizing K⁺ absorption and usage, and, at the extreme end, assisting the programmed cell death. We discuss specific modes of regulation of the activity of K⁺ channels and transporters by membrane voltage, intracellular Ca²⁺, reactive oxygen species, polyamines, phytohormones and gasotransmitters, and link this regulation with plant‐adaptive responses to hostile environments.
AbstractList Intracellular potassium homeostasis is a prerequisite for the optimal operation of plant metabolic machinery and plant's overall performance. It is controlled by K⁺ uptake, efflux and intracellular and long‐distance relocation, mediated by a large number of K⁺‐selective and non‐selective channels and transporters located at both plasma and vacuolar membranes. All abiotic and biotic stresses result in a significant disturbance to intracellular potassium homeostasis. In this work, we discuss molecular mechanisms and messengers mediating potassium transport and homeostasis focusing on four major environmental stresses: salinity, drought, flooding and biotic factors. We argue that cytosolic K⁺ content may be considered as one of the ‘master switches’ enabling plant transition from the normal metabolism to ‘hibernated state’ during first hours after the stress exposure and then to a recovery phase. We show that all these stresses trigger substantial disturbance to K⁺ homeostasis and provoke a feedback control on K⁺ channels and transporters expression and post‐translational regulation of their activity, optimizing K⁺ absorption and usage, and, at the extreme end, assisting the programmed cell death. We discuss specific modes of regulation of the activity of K⁺ channels and transporters by membrane voltage, intracellular Ca²⁺, reactive oxygen species, polyamines, phytohormones and gasotransmitters, and link this regulation with plant‐adaptive responses to hostile environments.
Intracellular potassium homeostasis is a prerequisite for the optimal operation of plant metabolic machinery and plant's overall performance. It is controlled by K(+) uptake, efflux and intracellular and long-distance relocation, mediated by a large number of K(+) -selective and non-selective channels and transporters located at both plasma and vacuolar membranes. All abiotic and biotic stresses result in a significant disturbance to intracellular potassium homeostasis. In this work, we discuss molecular mechanisms and messengers mediating potassium transport and homeostasis focusing on four major environmental stresses: salinity, drought, flooding and biotic factors. We argue that cytosolic K(+) content may be considered as one of the 'master switches' enabling plant transition from the normal metabolism to 'hibernated state' during first hours after the stress exposure and then to a recovery phase. We show that all these stresses trigger substantial disturbance to K(+) homeostasis and provoke a feedback control on K(+) channels and transporters expression and post-translational regulation of their activity, optimizing K(+) absorption and usage, and, at the extreme end, assisting the programmed cell death. We discuss specific modes of regulation of the activity of K(+) channels and transporters by membrane voltage, intracellular Ca(2+) , reactive oxygen species, polyamines, phytohormones and gasotransmitters, and link this regulation with plant-adaptive responses to hostile environments.
Intracellular potassium homeostasis is a prerequisite for the optimal operation of plant metabolic machinery and plant's overall performance. It is controlled by K(+) uptake, efflux and intracellular and long-distance relocation, mediated by a large number of K(+) -selective and non-selective channels and transporters located at both plasma and vacuolar membranes. All abiotic and biotic stresses result in a significant disturbance to intracellular potassium homeostasis. In this work, we discuss molecular mechanisms and messengers mediating potassium transport and homeostasis focusing on four major environmental stresses: salinity, drought, flooding and biotic factors. We argue that cytosolic K(+) content may be considered as one of the 'master switches' enabling plant transition from the normal metabolism to 'hibernated state' during first hours after the stress exposure and then to a recovery phase. We show that all these stresses trigger substantial disturbance to K(+) homeostasis and provoke a feedback control on K(+) channels and transporters expression and post-translational regulation of their activity, optimizing K(+) absorption and usage, and, at the extreme end, assisting the programmed cell death. We discuss specific modes of regulation of the activity of K(+) channels and transporters by membrane voltage, intracellular Ca(2+) , reactive oxygen species, polyamines, phytohormones and gasotransmitters, and link this regulation with plant-adaptive responses to hostile environments.Intracellular potassium homeostasis is a prerequisite for the optimal operation of plant metabolic machinery and plant's overall performance. It is controlled by K(+) uptake, efflux and intracellular and long-distance relocation, mediated by a large number of K(+) -selective and non-selective channels and transporters located at both plasma and vacuolar membranes. All abiotic and biotic stresses result in a significant disturbance to intracellular potassium homeostasis. In this work, we discuss molecular mechanisms and messengers mediating potassium transport and homeostasis focusing on four major environmental stresses: salinity, drought, flooding and biotic factors. We argue that cytosolic K(+) content may be considered as one of the 'master switches' enabling plant transition from the normal metabolism to 'hibernated state' during first hours after the stress exposure and then to a recovery phase. We show that all these stresses trigger substantial disturbance to K(+) homeostasis and provoke a feedback control on K(+) channels and transporters expression and post-translational regulation of their activity, optimizing K(+) absorption and usage, and, at the extreme end, assisting the programmed cell death. We discuss specific modes of regulation of the activity of K(+) channels and transporters by membrane voltage, intracellular Ca(2+) , reactive oxygen species, polyamines, phytohormones and gasotransmitters, and link this regulation with plant-adaptive responses to hostile environments.
Intracellular potassium homeostasis is a prerequisite for the optimal operation of plant metabolic machinery and plant's overall performance. It is controlled by K+ uptake, efflux and intracellular and long-distance relocation, mediated by a large number of K+-selective and non-selective channels and transporters located at both plasma and vacuolar membranes. All abiotic and biotic stresses result in a significant disturbance to intracellular potassium homeostasis. In this work, we discuss molecular mechanisms and messengers mediating potassium transport and homeostasis focusing on four major environmental stresses: salinity, drought, flooding and biotic factors. We argue that cytosolic K+ content may be considered as one of the 'master switches' enabling plant transition from the normal metabolism to 'hibernated state' during first hours after the stress exposure and then to a recovery phase. We show that all these stresses trigger substantial disturbance to K+ homeostasis and provoke a feedback control on K+ channels and transporters expression and post-translational regulation of their activity, optimizing K+ absorption and usage, and, at the extreme end, assisting the programmed cell death. We discuss specific modes of regulation of the activity of K+ channels and transporters by membrane voltage, intracellular Ca2+, reactive oxygen species, polyamines, phytohormones and gasotransmitters, and link this regulation with plant-adaptive responses to hostile environments. [PUBLICATION ABSTRACT]
Intracellular potassium homeostasis is a prerequisite for the optimal operation of plant metabolic machinery and plant's overall performance. It is controlled by K + uptake, efflux and intracellular and long‐distance relocation, mediated by a large number of K + ‐selective and non‐selective channels and transporters located at both plasma and vacuolar membranes. All abiotic and biotic stresses result in a significant disturbance to intracellular potassium homeostasis. In this work, we discuss molecular mechanisms and messengers mediating potassium transport and homeostasis focusing on four major environmental stresses: salinity, drought, flooding and biotic factors. We argue that cytosolic K + content may be considered as one of the ‘master switches’ enabling plant transition from the normal metabolism to ‘hibernated state’ during first hours after the stress exposure and then to a recovery phase. We show that all these stresses trigger substantial disturbance to K + homeostasis and provoke a feedback control on K + channels and transporters expression and post‐translational regulation of their activity, optimizing K + absorption and usage, and, at the extreme end, assisting the programmed cell death. We discuss specific modes of regulation of the activity of K + channels and transporters by membrane voltage, intracellular Ca 2+ , reactive oxygen species, polyamines, phytohormones and gasotransmitters, and link this regulation with plant‐adaptive responses to hostile environments.
Intracellular potassium homeostasis is a prerequisite for the optimal operation of plant metabolic machinery and plant's overall performance. It is controlled by K+ uptake, efflux and intracellular and long‐distance relocation, mediated by a large number of K+‐selective and non‐selective channels and transporters located at both plasma and vacuolar membranes. All abiotic and biotic stresses result in a significant disturbance to intracellular potassium homeostasis. In this work, we discuss molecular mechanisms and messengers mediating potassium transport and homeostasis focusing on four major environmental stresses: salinity, drought, flooding and biotic factors. We argue that cytosolic K+ content may be considered as one of the ‘master switches’ enabling plant transition from the normal metabolism to ‘hibernated state’ during first hours after the stress exposure and then to a recovery phase. We show that all these stresses trigger substantial disturbance to K+ homeostasis and provoke a feedback control on K+ channels and transporters expression and post‐translational regulation of their activity, optimizing K+ absorption and usage, and, at the extreme end, assisting the programmed cell death. We discuss specific modes of regulation of the activity of K+ channels and transporters by membrane voltage, intracellular Ca2+, reactive oxygen species, polyamines, phytohormones and gasotransmitters, and link this regulation with plant‐adaptive responses to hostile environments.
Author Shabala, Sergey
Pottosin, Igor
Author_xml – sequence: 1
  fullname: Shabala, Sergey
– sequence: 2
  fullname: Pottosin, Igor
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24506225$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAUhS1URKeFBX8ALLGBRVq_PekOTaGARlAeVZeWx3GKSxIHX0dQfj3uPFhUIO7CtuTvHOn4-ADtDXHwCD2m5IiWOR7H7ogyquQ9NKO8ritOpNhDM0I4rWpO9T46ALgmhCpF2QO0z4QkijE5Q78--aupsznEAccWjzFbgDD1OCc7wBhTxmHAY2eHDHgaGp_w1wg5dB67ODThVggnOPRjF9zaBnAbE7arEHNw2A4N3h4hJw-Ac-x88Xb-Ibrf2g78o-1-iC5ev_qyeFMtP5y9XbxcVk5SIStFtLWcMK9XXDhd8rKmocI71mrhNWmslHPm9JyWRZRbz_W8Fb6mLW81UfwQPd_4jil-nzxk0wdwviuZfJzA0LqMqHnN_o9KLhXjSoqCPruDXscpDSXImqKK1ZQU6smWmla9b8yYQm_TjdkVUIDjDeBSBEi-NS7k9TuWAkJnKDG3FZtSsVlXXBQv7ih2pn9jt-4_SmE3_wbN-flyp6g2igDZ__yjsOmbUZpraS7fn5lTdbrQ9buP5rLwTzd8a6OxVymAufjMCBXlsxGiBOW_ASilzX4
CitedBy_id crossref_primary_10_1007_s13580_021_00362_x
crossref_primary_10_1002_ird_2479
crossref_primary_10_1080_11263504_2020_1756975
crossref_primary_10_1007_s00344_020_10235_9
crossref_primary_10_1111_mec_13859
crossref_primary_10_1016_j_envexpbot_2022_104908
crossref_primary_10_15835_nbha50112654
crossref_primary_10_3390_ijms232314961
crossref_primary_10_1071_FP17054
crossref_primary_10_3390_su15086962
crossref_primary_10_17221_329_2017_PSE
crossref_primary_10_1016_j_ecoenv_2025_118012
crossref_primary_10_3390_atmos12111489
crossref_primary_10_1016_j_plaphy_2016_10_011
crossref_primary_10_3390_molecules26237361
crossref_primary_10_1016_j_envexpbot_2019_103808
crossref_primary_10_1016_j_sjbs_2019_12_034
crossref_primary_10_3389_fpls_2019_01361
crossref_primary_10_5194_bg_12_6529_2015
crossref_primary_10_1186_s12284_021_00535_3
crossref_primary_10_1071_FP19362
crossref_primary_10_3390_horticulturae7080244
crossref_primary_10_1093_treephys_tpaa142
crossref_primary_10_1111_nph_16480
crossref_primary_10_1007_s11738_017_2359_z
crossref_primary_10_1016_j_ecoenv_2020_111358
crossref_primary_10_1007_s10343_022_00673_8
crossref_primary_10_1038_s41598_022_26039_8
crossref_primary_10_1093_aob_mcu130
crossref_primary_10_1016_j_plantsci_2018_12_002
crossref_primary_10_1002_fsn3_4755
crossref_primary_10_1016_j_envexpbot_2019_103812
crossref_primary_10_1016_j_indcrop_2022_116177
crossref_primary_10_1093_jxb_erab515
crossref_primary_10_3390_agronomy15010148
crossref_primary_10_3389_fpls_2020_01009
crossref_primary_10_3389_fpls_2019_00281
crossref_primary_10_1007_s00344_020_10115_2
crossref_primary_10_1007_s11240_020_01983_3
crossref_primary_10_1016_j_plaphy_2020_11_025
crossref_primary_10_3390_ijms21010148
crossref_primary_10_1007_s10725_022_00942_6
crossref_primary_10_35208_ert_1026602
crossref_primary_10_15446_abc_v23n1_63513
crossref_primary_10_1016_j_scienta_2021_110762
crossref_primary_10_3390_plants12142646
crossref_primary_10_3389_fpls_2022_1054821
crossref_primary_10_3390_biom13040607
crossref_primary_10_3389_fenvs_2017_00042
crossref_primary_10_3389_fphys_2017_00509
crossref_primary_10_1080_07388551_2019_1616669
crossref_primary_10_1038_s41598_019_51178_w
crossref_primary_10_1071_FP16187
crossref_primary_10_5322_JESI_2018_27_4_251
crossref_primary_10_3390_plants10061189
crossref_primary_10_3389_fpls_2016_01980
crossref_primary_10_1007_s00425_023_04275_0
crossref_primary_10_1080_00103624_2024_2419991
crossref_primary_10_3389_fpls_2014_00154
crossref_primary_10_1111_pbi_13332
crossref_primary_10_1093_jxb_erv528
crossref_primary_10_1042_BJ20141063
crossref_primary_10_1016_j_ecoleng_2016_10_008
crossref_primary_10_1093_hr_uhae262
crossref_primary_10_1111_ppl_12656
crossref_primary_10_1111_pce_13450
crossref_primary_10_1080_00103624_2020_1869761
crossref_primary_10_3390_horticulturae9101137
crossref_primary_10_1016_j_envexpbot_2021_104663
crossref_primary_10_1007_s00299_020_02549_5
crossref_primary_10_1007_s00344_021_10361_y
crossref_primary_10_1007_s12298_020_00768_4
crossref_primary_10_1016_S1002_0160_21_60070_X
crossref_primary_10_1093_jxb_eraa354
crossref_primary_10_1093_jxb_erab440
crossref_primary_10_3389_fpls_2021_750805
crossref_primary_10_3390_plants11030263
crossref_primary_10_1093_jxb_erv453
crossref_primary_10_1016_j_scienta_2021_110742
crossref_primary_10_1111_ppl_12820
crossref_primary_10_1007_s10722_024_02056_6
crossref_primary_10_3389_fpls_2020_00247
crossref_primary_10_3389_fpls_2016_00351
crossref_primary_10_1007_s00299_019_02382_5
crossref_primary_10_1093_jxb_erv465
crossref_primary_10_1007_s41207_024_00496_1
crossref_primary_10_1016_j_xplc_2021_100188
crossref_primary_10_1007_s11104_015_2767_z
crossref_primary_10_3389_fpls_2016_01787
crossref_primary_10_1016_j_heliyon_2024_e27814
crossref_primary_10_1111_ppl_12827
crossref_primary_10_1016_j_scitotenv_2018_05_049
crossref_primary_10_1111_pce_12339
crossref_primary_10_3390_agriculture15030254
crossref_primary_10_1016_j_sajb_2016_11_004
crossref_primary_10_3390_agriculture11070608
crossref_primary_10_1007_s00425_015_2317_1
crossref_primary_10_3389_fmicb_2022_763014
crossref_primary_10_1016_j_envexpbot_2022_105076
crossref_primary_10_1016_j_xinn_2020_100017
crossref_primary_10_3390_agronomy12020379
crossref_primary_10_1016_j_sjbs_2023_103655
crossref_primary_10_1007_s42729_022_00854_4
crossref_primary_10_2139_ssrn_4123254
crossref_primary_10_1016_j_envexpbot_2021_104689
crossref_primary_10_1007_s40502_022_00691_8
crossref_primary_10_1038_s41598_018_25839_1
crossref_primary_10_3390_plants10081704
crossref_primary_10_1111_pce_13759
crossref_primary_10_1111_pbr_12934
crossref_primary_10_1016_j_plaphy_2017_04_017
crossref_primary_10_1071_FP21336
crossref_primary_10_1016_j_ecoenv_2018_09_059
crossref_primary_10_3389_fpls_2019_00080
crossref_primary_10_3389_fpls_2018_01755
crossref_primary_10_3390_ijms241914762
crossref_primary_10_17221_155_2015_CJGPB
crossref_primary_10_1002_tpg2_20521
crossref_primary_10_3389_fpls_2014_00337
crossref_primary_10_3390_plants12132519
crossref_primary_10_1007_s10725_020_00662_9
crossref_primary_10_32604_phyton_2021_014156
crossref_primary_10_1093_pcp_pcx026
crossref_primary_10_1093_pcp_pcz205
crossref_primary_10_3390_genes14122203
crossref_primary_10_1093_jxb_eraa004
crossref_primary_10_1002_npp2_22
crossref_primary_10_1111_pce_13769
crossref_primary_10_3390_ijms252111360
crossref_primary_10_3390_ijms20030699
crossref_primary_10_1016_j_stress_2025_100768
crossref_primary_10_3389_fpls_2018_00417
crossref_primary_10_1080_00103624_2019_1678633
crossref_primary_10_1111_ppl_13702
crossref_primary_10_1016_j_scienta_2019_02_071
crossref_primary_10_3389_fpls_2022_881039
crossref_primary_10_32615_bp_2021_044
crossref_primary_10_1155_2017_2568706
crossref_primary_10_1186_s12284_020_00395_3
crossref_primary_10_1002_bab_2458
crossref_primary_10_3390_plants13091244
crossref_primary_10_1080_15592324_2015_1013793
crossref_primary_10_3390_ijms19030702
crossref_primary_10_1071_FP15391
crossref_primary_10_3390_ijms20030715
crossref_primary_10_1186_s12870_024_04811_4
crossref_primary_10_1111_pce_14943
crossref_primary_10_1186_s12870_022_03832_1
crossref_primary_10_1071_FP16120
crossref_primary_10_1080_01904167_2019_1676907
crossref_primary_10_1007_s11240_021_02131_1
crossref_primary_10_3390_plants11141894
crossref_primary_10_1016_j_jplph_2019_01_011
crossref_primary_10_1016_j_envexpbot_2022_104973
crossref_primary_10_1093_jxb_erw236
crossref_primary_10_1016_j_envexpbot_2021_104452
crossref_primary_10_1007_s00344_023_11070_4
crossref_primary_10_1016_j_plaphy_2019_09_022
crossref_primary_10_1016_j_envexpbot_2019_05_020
crossref_primary_10_3389_fpls_2016_00379
crossref_primary_10_1016_j_ecoenv_2024_116768
crossref_primary_10_1038_srep11391
crossref_primary_10_15252_embj_2019103256
crossref_primary_10_1007_s10725_024_01257_4
crossref_primary_10_1111_pce_12422
crossref_primary_10_1016_j_molp_2018_03_017
crossref_primary_10_1071_FP16135
crossref_primary_10_1007_s00344_019_09917_w
crossref_primary_10_1007_s40502_023_00720_0
crossref_primary_10_1071_FP15284
crossref_primary_10_1111_ppl_13449
crossref_primary_10_1134_S1021443719030075
crossref_primary_10_1016_j_envexpbot_2021_104448
crossref_primary_10_3390_agronomy12092123
crossref_primary_10_3389_fpls_2016_01471
crossref_primary_10_3390_antiox12030558
crossref_primary_10_1007_s00344_021_10489_x
crossref_primary_10_1007_s11240_024_02916_0
crossref_primary_10_1016_j_scitotenv_2022_153271
crossref_primary_10_1002_agj2_20013
crossref_primary_10_1007_s10725_016_0157_z
crossref_primary_10_1111_pce_12995
crossref_primary_10_1007_s11273_021_09814_8
crossref_primary_10_3390_plants10102173
crossref_primary_10_3390_plants8100435
crossref_primary_10_3390_cells10051244
crossref_primary_10_1007_s11240_016_0940_6
crossref_primary_10_15406_jabb_2021_08_00260
crossref_primary_10_1007_s00709_020_01493_1
crossref_primary_10_1007_s11738_014_1716_4
crossref_primary_10_1007_s11104_018_3793_4
crossref_primary_10_1007_s11738_015_1881_0
crossref_primary_10_3390_ijms23179900
crossref_primary_10_1093_jxb_erx429
crossref_primary_10_1111_ppl_13589
crossref_primary_10_3389_fpls_2019_01418
crossref_primary_10_3389_fpls_2023_1135943
crossref_primary_10_1016_j_jplph_2019_01_009
crossref_primary_10_3390_horticulturae8020119
crossref_primary_10_47115_bsagriculture_1457295
crossref_primary_10_1016_j_scienta_2019_05_059
crossref_primary_10_3390_plants9060672
crossref_primary_10_1007_s12155_017_9846_3
crossref_primary_10_1007_s13562_021_00741_6
crossref_primary_10_1002_jpln_202000007
crossref_primary_10_1093_jxb_ery201
crossref_primary_10_1016_j_jhazmat_2022_128217
crossref_primary_10_1016_j_scitotenv_2021_145112
crossref_primary_10_1007_s12298_020_00847_6
crossref_primary_10_1186_s12870_025_06078_9
crossref_primary_10_1016_j_envexpbot_2021_104708
crossref_primary_10_1007_s11104_020_04777_w
crossref_primary_10_1071_BT17100
crossref_primary_10_1080_02648725_2022_2143317
crossref_primary_10_1590_1678_4499_20210245
crossref_primary_10_1016_j_envexpbot_2016_07_007
crossref_primary_10_1080_14786419_2020_1795653
crossref_primary_10_3389_fpls_2019_00217
crossref_primary_10_1016_j_plaphy_2024_109136
crossref_primary_10_4236_ajps_2019_1012162
crossref_primary_10_1007_s11104_018_3770_y
crossref_primary_10_1093_jxb_erw034
crossref_primary_10_1111_jipb_12238
crossref_primary_10_3390_plants10081513
crossref_primary_10_1016_j_plaphy_2022_11_032
crossref_primary_10_3390_plants13162311
crossref_primary_10_1186_s40659_015_0055_2
crossref_primary_10_1007_s11738_017_2379_8
crossref_primary_10_3390_plants14060911
crossref_primary_10_1093_jxb_ery461
crossref_primary_10_3389_fpls_2022_869423
crossref_primary_10_1016_j_indcrop_2021_113886
crossref_primary_10_1016_j_jplph_2016_12_012
crossref_primary_10_1016_j_plaphy_2020_01_025
crossref_primary_10_1016_j_sajb_2023_05_016
crossref_primary_10_3389_fpls_2021_734430
crossref_primary_10_1093_jxb_eraa508
crossref_primary_10_1007_s42729_020_00224_y
crossref_primary_10_3390_plants11060739
crossref_primary_10_1016_j_scienta_2023_112788
crossref_primary_10_1016_j_jplph_2016_06_010
crossref_primary_10_3390_agriculture14122353
crossref_primary_10_1186_s12870_025_06374_4
crossref_primary_10_3390_antiox11102005
crossref_primary_10_1002_sae2_12065
crossref_primary_10_1371_journal_pone_0193394
crossref_primary_10_1111_plb_13216
crossref_primary_10_1111_ppl_12447
crossref_primary_10_1016_j_ecoenv_2020_110593
crossref_primary_10_1111_ppl_12325
crossref_primary_10_3389_fpls_2024_1376427
crossref_primary_10_1071_FP16385
crossref_primary_10_3390_f9120782
crossref_primary_10_1016_j_fcr_2017_05_018
crossref_primary_10_1111_jac_12126
crossref_primary_10_1093_jxb_erw378
crossref_primary_10_1016_j_plaphy_2025_109574
crossref_primary_10_36610_j_jsab_2020_080200110x
crossref_primary_10_1007_s00709_016_1037_0
crossref_primary_10_3390_genes12050784
crossref_primary_10_1007_s00299_022_02899_2
crossref_primary_10_3390_metabo13111162
crossref_primary_10_1016_j_cj_2024_03_001
crossref_primary_10_4236_ajps_2020_117071
crossref_primary_10_3389_fpls_2018_00256
crossref_primary_10_1016_j_envexpbot_2020_104328
crossref_primary_10_1111_jac_12477
crossref_primary_10_1016_j_scienta_2018_04_023
crossref_primary_10_1093_pcp_pcu105
crossref_primary_10_1007_s11540_019_09431_2
crossref_primary_10_1016_j_scitotenv_2019_02_281
crossref_primary_10_1590_2447_536x_v27i2_2246
crossref_primary_10_1071_FP15312
crossref_primary_10_1016_j_plaphy_2021_09_031
crossref_primary_10_1016_j_chemosphere_2022_136911
crossref_primary_10_1080_01904167_2020_1862202
crossref_primary_10_3389_fpls_2015_00581
crossref_primary_10_1093_jxb_ery251
crossref_primary_10_1371_journal_pone_0124032
crossref_primary_10_1007_s00425_023_04082_7
crossref_primary_10_1111_nph_15605
crossref_primary_10_3390_plants10081693
crossref_primary_10_1515_opag_2019_0035
crossref_primary_10_3389_fpls_2020_573564
crossref_primary_10_1007_s42976_022_00291_0
crossref_primary_10_1007_s00709_020_01533_w
crossref_primary_10_1016_j_envexpbot_2015_11_010
crossref_primary_10_3390_plants10071401
crossref_primary_10_1007_s10725_015_0063_9
crossref_primary_10_1080_03650340_2017_1346373
crossref_primary_10_7717_peerj_14804
crossref_primary_10_1111_jipb_13642
crossref_primary_10_1016_j_plaphy_2018_10_025
crossref_primary_10_1111_ppl_13166
crossref_primary_10_3390_plants10081560
crossref_primary_10_1016_j_pbi_2016_01_005
crossref_primary_10_1021_acs_jafc_0c05628
crossref_primary_10_3390_agronomy11050926
crossref_primary_10_1016_j_envexpbot_2018_08_029
crossref_primary_10_1080_11263504_2024_2446790
crossref_primary_10_3389_fpls_2017_01941
crossref_primary_10_1016_j_envexpbot_2016_04_005
crossref_primary_10_1007_s42729_022_00916_7
crossref_primary_10_1007_s11032_020_1100_6
crossref_primary_10_1016_j_etap_2024_104586
crossref_primary_10_1016_j_scienta_2019_109037
crossref_primary_10_3389_fmicb_2018_01339
crossref_primary_10_1093_jxb_erz328
crossref_primary_10_1007_s42729_021_00635_5
crossref_primary_10_3389_fpls_2023_1143963
crossref_primary_10_3390_ijms21041516
crossref_primary_10_1007_s12298_018_00640_6
crossref_primary_10_1016_j_tplants_2019_12_012
crossref_primary_10_54033_cadpedv21n9_051
crossref_primary_10_1080_01904167_2023_2222132
crossref_primary_10_1007_s00425_024_04353_x
crossref_primary_10_59324_ejtas_2023_1_6__91
crossref_primary_10_3389_fpls_2016_01296
crossref_primary_10_1007_s11103_023_01335_7
crossref_primary_10_1016_j_cj_2022_03_004
crossref_primary_10_1016_j_molp_2015_10_006
crossref_primary_10_1007_s00344_024_11605_3
crossref_primary_10_36610_j_jsab_2020_080200110
crossref_primary_10_1590_1678_4499_2016_264
crossref_primary_10_1016_j_jplph_2021_153432
crossref_primary_10_3389_fpls_2017_01766
crossref_primary_10_1016_j_scitotenv_2023_166978
crossref_primary_10_3390_plants9010065
crossref_primary_10_1016_j_envexpbot_2017_07_003
crossref_primary_10_1088_1755_1315_1060_1_012106
crossref_primary_10_3390_plants12203559
crossref_primary_10_3389_fpls_2023_1137211
crossref_primary_10_1021_acs_jproteome_8b00521
crossref_primary_10_1007_s10750_024_05489_3
crossref_primary_10_1093_plphys_kiab217
crossref_primary_10_1515_intag_2016_0028
crossref_primary_10_1080_00380768_2017_1381573
crossref_primary_10_3389_fpls_2015_00427
crossref_primary_10_1111_jac_12290
crossref_primary_10_2323_jgam_2020_08_003
crossref_primary_10_3390_ijms221910398
crossref_primary_10_1016_j_jbiotec_2021_02_007
crossref_primary_10_1016_j_plantsci_2021_110891
crossref_primary_10_1016_j_cpb_2019_100105
crossref_primary_10_1016_j_plantsci_2024_112337
crossref_primary_10_3390_antiox11020401
crossref_primary_10_1007_s11356_020_09453_1
crossref_primary_10_1080_01904167_2020_1729801
crossref_primary_10_1007_s10705_018_9954_2
crossref_primary_10_3390_agriculture12020183
crossref_primary_10_3390_plants12030472
crossref_primary_10_1186_s13007_019_0397_9
crossref_primary_10_1007_s11103_014_0278_6
crossref_primary_10_1016_j_ijbiomac_2025_141680
crossref_primary_10_1016_j_plaphy_2019_02_004
crossref_primary_10_11623_frj_2023_31_4_21
crossref_primary_10_3390_ijms23095130
crossref_primary_10_3389_fpls_2017_01629
crossref_primary_10_1007_s00299_021_02731_3
crossref_primary_10_1111_jac_70047
crossref_primary_10_3390_ijms24043388
crossref_primary_10_1080_09064710_2021_1988138
crossref_primary_10_1007_s11033_022_08064_y
crossref_primary_10_1007_s00425_015_2366_5
crossref_primary_10_1007_s40502_024_00809_0
crossref_primary_10_1007_s11738_024_03757_2
crossref_primary_10_1016_j_plaphy_2021_01_010
crossref_primary_10_1080_09670262_2015_1070437
crossref_primary_10_1007_s00344_020_10145_w
crossref_primary_10_1155_2016_8231873
crossref_primary_10_3390_ijms19092636
crossref_primary_10_1093_treephys_tpv090
crossref_primary_10_1371_journal_pone_0219799
crossref_primary_10_3390_horticulturae7060140
crossref_primary_10_1007_s10725_020_00659_4
crossref_primary_10_1016_j_sajb_2022_11_001
crossref_primary_10_1016_j_envexpbot_2019_02_021
crossref_primary_10_1111_pce_14189
crossref_primary_10_1111_nph_15852
crossref_primary_10_1016_j_fcr_2022_108461
crossref_primary_10_1016_j_plaphy_2021_01_021
crossref_primary_10_1016_j_flora_2018_03_003
crossref_primary_10_3389_fpls_2015_00977
crossref_primary_10_1007_s00425_018_2907_9
crossref_primary_10_1016_j_hpj_2018_10_001
crossref_primary_10_1007_s12298_017_0462_7
crossref_primary_10_1016_j_stress_2023_100317
crossref_primary_10_1111_pce_14279
crossref_primary_10_3390_ijms24010002
crossref_primary_10_1016_j_plaphy_2023_108235
crossref_primary_10_3389_fpls_2020_00323
crossref_primary_10_3389_fpls_2019_01086
crossref_primary_10_1016_j_envexpbot_2024_105706
crossref_primary_10_3390_genes10090638
crossref_primary_10_1002_saj2_20438
crossref_primary_10_1016_j_plaphy_2024_108768
crossref_primary_10_3390_agronomy10070938
crossref_primary_10_1016_j_sajb_2024_03_042
crossref_primary_10_1002_jsfa_9107
crossref_primary_10_3389_fpls_2014_00787
crossref_primary_10_1134_S1995425522010061
crossref_primary_10_3390_ijms25115648
crossref_primary_10_1016_j_algal_2019_101526
crossref_primary_10_1071_FP20167
crossref_primary_10_3389_fpls_2023_1241736
crossref_primary_10_1007_s13205_024_03979_8
crossref_primary_10_1016_j_jplph_2016_03_001
crossref_primary_10_1080_15226514_2021_1874289
crossref_primary_10_1007_s00425_016_2605_4
crossref_primary_10_1186_s12870_023_04613_0
crossref_primary_10_1016_j_ijbiomac_2023_123503
crossref_primary_10_3390_ijms25063432
crossref_primary_10_3923_ajps_2020_508_514
crossref_primary_10_1007_s11356_018_3571_0
crossref_primary_10_1016_j_plaphy_2022_01_016
crossref_primary_10_3390_su142315514
crossref_primary_10_1093_jxb_erz042
crossref_primary_10_1016_j_envexpbot_2023_105427
crossref_primary_10_1016_j_sajb_2017_09_007
crossref_primary_10_1093_pcp_pcab022
crossref_primary_10_1016_j_envexpbot_2020_104098
crossref_primary_10_3390_agriculture12111867
crossref_primary_10_3390_agronomy11061193
crossref_primary_10_1016_j_indcrop_2021_114190
crossref_primary_10_3390_plants10020314
crossref_primary_10_1071_FP22117
crossref_primary_10_1016_j_jplph_2015_01_005
crossref_primary_10_1093_treephys_tpu081
crossref_primary_10_1007_s11738_023_03539_2
crossref_primary_10_3390_ijms21155292
crossref_primary_10_1186_s12864_016_3380_0
crossref_primary_10_1007_s10725_015_0028_z
crossref_primary_10_1007_s12298_019_00654_8
crossref_primary_10_3390_soilsystems8040104
crossref_primary_10_3390_plants12061260
crossref_primary_10_1093_jxb_erab043
crossref_primary_10_1016_j_rsci_2023_02_001
crossref_primary_10_1007_s12892_022_00153_5
crossref_primary_10_1007_s40415_018_0500_x
crossref_primary_10_1016_j_plaphy_2023_108313
crossref_primary_10_1111_nph_13173
crossref_primary_10_1016_j_cj_2021_02_010
crossref_primary_10_1007_s12892_018_0108_0
crossref_primary_10_1016_j_jenvman_2022_116434
crossref_primary_10_1371_journal_pone_0218528
crossref_primary_10_1071_FP23266
crossref_primary_10_3390_agronomy11040691
crossref_primary_10_3390_plants10020419
crossref_primary_10_1093_aob_mcu219
crossref_primary_10_1007_s10725_019_00519_w
crossref_primary_10_1007_s12298_017_0483_2
crossref_primary_10_3390_agronomy13092198
crossref_primary_10_1007_s13562_021_00694_w
crossref_primary_10_18036_estubtdc_1224531
crossref_primary_10_1007_s00344_024_11523_4
crossref_primary_10_1007_s11104_024_07101_y
crossref_primary_10_3389_fpls_2014_00605
crossref_primary_10_1016_j_plaphy_2023_02_020
crossref_primary_10_3390_biology9070144
crossref_primary_10_1007_s11738_018_2616_9
crossref_primary_10_1590_1983_21252021v34n318rc
crossref_primary_10_1016_j_scienta_2024_113356
crossref_primary_10_1111_tpj_16549
crossref_primary_10_3389_fpls_2016_00609
crossref_primary_10_1016_j_plantsci_2015_10_003
crossref_primary_10_1016_j_plaphy_2019_05_016
crossref_primary_10_1371_journal_pone_0229513
crossref_primary_10_3390_microorganisms11122910
crossref_primary_10_3390_horticulturae8010075
crossref_primary_10_3390_plants10112328
crossref_primary_10_3390_ijms23084072
crossref_primary_10_3390_ijms24043549
crossref_primary_10_1016_j_eti_2021_101808
crossref_primary_10_3390_agronomy11112329
crossref_primary_10_1093_plphys_kiab028
Cites_doi 10.1016/j.plantsci.2011.04.002
10.1111/pce.12109
10.4161/psb.3.6.5429
10.1073/pnas.0702595104
10.1093/jxb/ers343
10.1007/s00425-002-0829-y
10.1016/B978-0-12-387692-8.00005-9
10.1023/A:1015182310754
10.1080/07352689.2010.524517
10.1111/j.1399-3054.2010.01373.x
10.1093/jxb/48.Special_Issue.451
10.1074/jbc.M508490200
10.1016/j.envexpbot.2012.12.005
10.1104/pp.113.216572
10.1046/j.1439-037x.2000.00422.x
10.1104/pp.106.082388
10.1093/pcp/pcr194
10.1104/pp.104.046482
10.1111/j.1365-313X.2007.03236.x
10.1016/j.plaphy.2010.09.016
10.1074/jbc.M604781200
10.1038/35021067
10.1111/j.1399-3054.2008.01168.x
10.1016/S0065-2571(98)00010-7
10.1016/j.cub.2007.07.020
10.2307/3870106
10.1104/pp.111.179671
10.1016/j.cell.2006.06.011
10.1104/pp.111.4.1077
10.1093/jxb/eri229
10.1126/science.1152505
10.1074/jbc.M708213200
10.1111/j.1365-3040.2005.01364.x
10.1006/pmpp.1997.0129
10.1111/pce.12180
10.1016/j.jplph.2010.05.021
10.1093/jxb/erp013
10.1046/j.1469-8137.1999.00395.x
10.1007/s00425-006-0297-x
10.1111/j.1365-3040.2005.01486.x
10.1080/01904169909365729
10.1093/mp/ssp121
10.1126/science.280.5365.918
10.1111/j.1399-3054.2006.00709.x
10.1111/j.1399-3054.2007.01008.x
10.1007/s00425-010-1213-y
10.1146/annurev-arplant-050312-120153
10.1007/s11104-004-1082-x
10.1371/journal.pone.0047797
10.1093/pcp/41.6.785
10.1073/pnas.0504437102
10.1038/cr.2011.50
10.1073/pnas.0733970100
10.1055/s-2006-923965
10.1046/j.1365-313x.1998.00274.x
10.1105/tpc.112.097881
10.1016/j.abb.2007.01.020
10.1111/j.1438-8677.2011.00526.x
10.1113/expphysiol.2010.055244
10.1242/jcs.00201
10.1104/pp.125.1.406
10.1002/jpln.200420516
10.1105/tpc.112.105700
10.1105/tpc.108.063099
10.1006/anbo.1996.0003
10.1071/CP11071
10.1073/pnas.0401707101
10.1104/pp.85.4.1040
10.2307/3869871
10.1007/s004250050532
10.1146/annurev-arplant-042809-112226
10.1007/BF00195686
10.1111/j.1399-3054.1993.tb05274.x
10.1007/s11240-012-0207-9
10.1007/s11104-010-0520-1
10.1093/jxb/ern225
10.1111/j.1438-8677.2010.00353.x
10.1051/agro:2008021
10.1071/FP06158
10.1007/s11103-008-9380-y
10.1016/j.febslet.2007.03.050
10.1046/j.1365-313X.1997.11051059.x
10.1111/j.1365-313X.2007.03342.x
10.1096/fj.02-0211hyp
10.1073/pnas.96.21.12186
10.1093/aob/mct205
10.1093/jxb/erq074
10.1093/jxb/erg067
10.1007/BF00223692
10.1111/j.1365-313X.2011.04579.x
10.1007/s002490050237
10.1016/j.febslet.2007.04.014
10.1093/treephys/tpq017
10.1093/jxb/erm370
10.1007/s00122-003-1421-y
10.1371/journal.pone.0013935
10.1093/jxb/ern128
10.1093/jxb/39.3.279
10.4161/psb.3.6.5374
10.1007/BF00202963
10.1046/j.0028-646X.2001.00318.x
10.1007/s00232-005-0766-3
10.1105/tpc.113.110353
10.1080/01904169909365710
10.1007/s11099-011-0043-x
10.1038/nature03381
10.1016/j.plantsci.2009.06.004
10.1111/pce.12073
10.1089/ars.2011.4359
10.1073/pnas.1434381100
10.1105/tpc.111.095273
10.1016/j.tplants.2011.03.007
10.1071/AR03097
10.1111/pce.12020
10.1093/pcp/pcr061
10.1071/FP10233
10.1071/FP04111
10.1111/j.1399-3054.2008.01067.x
10.1007/BF00216815
10.1101/gad.1953910
10.1111/j.1469-8137.2008.02461.x
10.1146/annurev.pp.28.060177.000513
10.1046/j.1365-2958.2003.03800.x
10.1093/jxb/erj050
10.1111/j.1469-8137.2011.03664.x
10.2478/s11535-011-0065-1
10.1186/1471-2229-12-161
10.1093/jxb/erg072
10.1016/S0014-5793(00)01093-0
10.1111/j.1365-313X.2011.04697.x
10.1111/j.1365-313X.2009.04073.x
10.1093/pcp/pcq007
10.1007/s11738-013-1239-4
10.1242/jcs.064352
10.1093/pcp/pce004
10.1104/pp.124.3.1315
10.1111/j.1469-8137.2010.03465.x
10.1111/jipb.12038
10.1080/01904167.2012.754032
10.1007/s00425-007-0561-8
10.1038/90824
10.1104/pp.020005
10.1071/FP09269
10.1093/treephys/tpq115
10.1042/BJ20091221
10.1094/MPMI-19-0711
10.1111/j.1469-8137.2006.01777.x
10.1007/978-3-540-68964-5_2
10.1007/978-3-642-10305-6_2
10.1046/j.1365-313X.2000.00844.x
10.1093/pcp/pcj007
10.1093/jxb/erm293
10.1111/j.1469-8137.1987.tb00860.x
10.1093/pcp/pce085
10.1093/jxb/erq271
10.1006/anbo.1999.0912
10.1038/sj.cr.7290086
10.1016/j.pbi.2009.04.003
10.1126/science.285.5431.1256
10.1111/j.1365-3040.2011.02426.x
10.1007/BF00027184
10.1111/j.1399-3054.2008.01075.x
10.1146/annurev.arplant.55.031903.141701
10.1111/j.1365-3040.2008.01888.x
10.1093/aob/mci207
10.1104/pp.115.4.1707
10.1104/pp.125.3.1459
10.1111/j.1469-8137.2008.02531.x
10.1016/S0176-1617(97)80320-3
10.1146/annurev.arplant.54.031902.134831
10.1007/s002329900477
10.1126/science.1057175
10.1016/S0014-5793(03)01118-9
10.1093/jxb/eri138
10.1046/j.1365-313X.1999.00423.x
10.1074/jbc.M110.141176
10.1104/pp.107.105882
10.1073/pnas.0912021106
10.1093/jxb/erq422
10.1016/j.plantsci.2011.12.007
10.1002/jpln.200900316
10.1016/S0176-1617(89)80248-2
10.1074/jbc.M603761200
10.1111/j.1365-313X.2004.02230.x
10.1007/s00425-010-1106-0
10.1007/s10658-008-9302-5
10.1046/j.0016-8025.2003.01116.x
10.1105/tpc.105.035626
10.1007/s11103-008-9388-3
10.1093/jxb/erm035
10.1093/mp/ssr017
10.1007/s00425-008-0855-5
10.1071/PP9740491
10.1111/j.1365-313X.2004.02273.x
10.1104/pp.107.110262
10.1007/s00425-010-1130-0
10.1111/j.1469-8137.2010.03564.x
10.1105/tpc.111.086751
10.4161/psb.6.11.17797
10.1074/jbc.M309084200
10.1016/j.bbamcr.2011.09.011
10.1093/jxb/25.6.1104
10.1023/B:RUPP.0000003284.25827.95
10.1104/pp.104.039255
10.1081/PLN-120030371
10.4161/psb.21185
10.1007/s0023200100073
10.1111/j.1469-8137.2010.03575.x
10.1016/j.plaphy.2012.09.002
10.1080/01904160802043122
10.1111/j.1365-3040.2009.02060.x
10.1111/j.1469-8137.2008.02431.x
10.1111/j.1469-8137.1984.tb04103.x
10.1111/j.1469-8137.2005.01460.x
10.1007/s00425-007-0606-z
10.1071/FP08030
10.1093/jxb/erm284
10.1007/PL00013998
10.1093/jxb/50.339.1547
10.1089/ars.2009.2657
10.1093/jxb/erq261
10.4161/psb.23425
10.1071/FP03016
10.1104/pp.85.3.655
10.1007/s00726-011-1012-1
10.1016/j.febslet.2009.02.009
10.1016/j.virol.2007.10.024
10.1002/jpln.200420485
10.1071/PP01154
10.1104/pp.112.206896
10.1080/11263500802633626
10.2135/cropsci2012.05.0284
10.1007/s00425-009-0946-y
10.1007/s00425-004-1293-7
10.1093/jexbot/51.350.1585
ContentType Journal Article
Copyright 2014 Scandinavian Plant Physiology Society
2014 Scandinavian Plant Physiology Society.
Copyright_xml – notice: 2014 Scandinavian Plant Physiology Society
– notice: 2014 Scandinavian Plant Physiology Society.
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7ST
8FD
C1K
FR3
P64
RC3
SOI
7X8
7S9
L.6
DOI 10.1111/ppl.12165
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Engineering Research Database
Ecology Abstracts
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE
MEDLINE - Academic
Genetics Abstracts
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1399-3054
EndPage 279
ExternalDocumentID 3332604511
24506225
10_1111_ppl_12165
PPL12165
ark_67375_WNG_D6DC79JQ_W
US201400100641
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Australian Research Council and Grain Research Development Corporation
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29O
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ACAHQ
ACBTR
ACBWZ
ACCFJ
ACCZN
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
H~9
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OHT
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
TWZ
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7ST
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
RC3
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c5145-607aa302e7b34c71112dd14ec2f74e70da5582c7812c74112e378f4e91f3f7063
IEDL.DBID DR2
ISSN 0031-9317
1399-3054
IngestDate Fri Jul 11 18:32:40 EDT 2025
Fri Jul 11 05:21:10 EDT 2025
Fri Jul 25 12:17:35 EDT 2025
Thu Apr 03 07:07:16 EDT 2025
Tue Jul 01 03:00:41 EDT 2025
Thu Apr 24 23:11:08 EDT 2025
Wed Jan 22 16:46:59 EST 2025
Wed Oct 30 09:53:48 EDT 2024
Wed Dec 27 19:16:16 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License 2014 Scandinavian Plant Physiology Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5145-607aa302e7b34c71112dd14ec2f74e70da5582c7812c74112e378f4e91f3f7063
Notes http://dx.doi.org/10.1111/ppl.12165
Australian Research Council and Grain Research Development Corporation
ArticleID:PPL12165
istex:6EB7B4BF9A2AEAE00C1ED5F3C28D0C4CD80B78B4
ark:/67375/WNG-D6DC79JQ-W
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 24506225
PQID 1535162910
PQPubID 1096353
PageCount 23
ParticipantIDs proquest_miscellaneous_1999949392
proquest_miscellaneous_1535623654
proquest_journals_1535162910
pubmed_primary_24506225
crossref_citationtrail_10_1111_ppl_12165
crossref_primary_10_1111_ppl_12165
wiley_primary_10_1111_ppl_12165_PPL12165
istex_primary_ark_67375_WNG_D6DC79JQ_W
fao_agris_US201400100641
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2014
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: July 2014
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Denmark
– name: Malden
PublicationTitle Physiologia plantarum
PublicationTitleAlternate Physiol Plantarum
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Shin R, Schachtman DP (2004) Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci USA 101: 8827-8832
Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285: 1256-1258
Held K, Pascaud F, Eckert C, Gajdanowicz P, Hashimoto K, Coratge-Faillie C, Offenborn JN, Lacombe B, Dreyer I, Thibaud JB, Kudla J (2011) Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex. Cell Res 21: 1116-1130
Ou LJ, Dai XZ, Zhang ZQ, Zou XX (2011) Responses of pepper to waterlogging stress. Photosynthetica 49: 339-345
Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231: 1237-1249
Huertas R, Rubio L, Cagnac O, Garcia-Sanchez MJ, Alche JD, Venema K, Fernandez JA, Rodriguez-Rosales MP (2013) The K+/H+ antiporter LeNHX2 increases salt tolerance by improving K+ homeostasis in transgenic tomato. Plant Cell Environ 36: 2135-2149
Ling TF, Zhang B, Cui WT, Wu MZ, Lin JS, Zhou WT, Huang JJ, Shen WB (2009) Carbon monoxide mitigates salt-induced inhibition of root growth and suppresses programmed cell death in wheat primary roots by inhibiting superoxide anion overproduction. Plant Sci 177: 331-340
Xuan W, Xu S, Yuan X, Shen W (2008) Carbon monoxide. A novel and pivotal signal molecule in plants? Plant Signal Behav 3: 381-382
Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK (2011) Additive effects of Na+ and Cl- ions on barley growth under salinity stress. J Exp Bot 62: 2189-2203
Bose J, Shabala L, Pottosin I, Zeng F, Velarde-Buendía AM, Massart A, Poschenrieder C, Hariadi Y, Shabala S (2014) Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K+-permeable channels to reactive oxygen species: physiological traits that differentiate salinity tolerance between pea and barley. Plant Cell Environ 37: 589-600
Flowers TJ, Troke PF, Yeo AR (1977) Mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol Plant Mol Biol 28: 89-121
Rodrigo-Moreno A, Poschenrieder C, Shabala S (2013b) Transition metals: a double edge sword in ROS generation and signaling. Plant Signal Behav 8: e23421-e23425
Brüggemann LI, Pottosin II, Schönknecht G (1999b) Cytoplasmic magnesium regulates the fast activating vacuolar cation channel. J Exp Bot 50: 1547-1552
Jiang MY, Zhang JH (2002) Involvement of plasma-membrane NADPH oxidase in abscisic acid- and water stress-induced antioxidant defense in leaves of maize seedlings. Planta 215: 1022-1030
Yannarelli GG, Noriega GO, Batlle A, Tomaro ML (2006) Heme oxygenase up-regulation in ultraviolet-B irradiated soybean plants involves reactive oxygen species. Planta 224: 1154-1162
Kajimura M, Fukuda R, Bateman RM, Yamamoto T, Suematsu M (2010) Interactions of multiple gas-transducing systems: hallmarks and uncertainties of CO, NO, and H2S gas biology. Antioxid Redox Signal 13: 157-192
Peers C, Bauer CC, Boyle JP, Scragg JL, Dallas ML (2012) Modulation of ion channels by hydrogen sulfide. Antioxid Redox Signal 17: 95-105
Zwieniecki MA, Melcher PJ, Holbrook NM (2001) Hydrogel control of xylem hydraulic resistance in plants. Science 291: 1059-1062
Ashraf M, Rehman H (1999) Mineral nutrient status of corn in relation to nitrate and long-term waterlogging. J Plant Nutr 22: 1253-1268
Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci-Z Pflanzenernahr Bodenkd 168: 521-530
Dubcovsky J, Maria GS, Epstein E, Luo MC, Dvorak J (1996) Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor Appl Genet 92: 448-454
Srivastava N, Gonugunta VK, Puli MR, Raghavendra AS (2009) Nitric oxide production occurs downstream of reactive oxygen species in guard cells during stomatal closure induced by chitosan in abaxial epidermis of Pisum sativum. Planta 229: 757-765
Sutter JU, Sieben C, Hartel A, Eisenach C, Thiel G, Blatt MR (2007) Abscisic acid triggers the endocytosis of the Arabidopsis KAT1 K+ channel and its recycling to the plasma membrane. Curr Biol 17: 1396-1402
Zhao F, Song CP, He J, Zhu H (2007) Polyamines improve K+/Na+ homeostasis in barley seedlings by regulating root ion channel activities. Plant Physiol 145: 1061-1072
Felle HH (2005) pH regulation in anoxic plants. Ann Bot 96: 519-532
Walker DJ, Leigh RA, Miller AJ (1996) Potassium homeostasis in vacuolate plant cells. Proc Natl Acad Sci USA 93: 10510-10514
Oria-Hernandez J, Cabrera N, Perez-Montfort R, Ramirez-Silva L (2005) Pyruvate kinase revisited - the activating effect of K+. J Biol Chem 280: 37924-37929
Voelker C, Gomes-Porras JL, Becker D, Hamamoto S, Uozumi N, Gambale F, Mueller-Roeber B, Czemspinski K, Dreyer I (2010) Roles of tandem-pore K+ channels in plants - a puzzle still to be solved. Plant Biol 12: 56-63
Pezeshki SR, DeLaune RD, Anderson PH (1999) Effect of flooding on elemental uptake and biomass allocation in seedlings of three bottomland tree species. J Plant Nutr 22: 1481-1494
Sirichandra C, Davanture M, Turk BE, Zivy M, Valot B, Leung J, Merlot S (2010) The Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover. PLoS One 5: e13935
Wery J, Silim SN, Knights EJ, Malhotra RS, Cousin R (1994) Screening techniques and sources of tolerance to extremes of moisture and air temperature in cool season food legumes. Euphytica 73: 73-83
Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 581: 2204-2214
Oddo E, Inzerillo S, La Bella F, Grisafi F, Salleo S, Nardini A (2011) Short-term effects of potassium fertilization on the hydraulic conductance of Laurus nobilis L. Tree Physiol 31: 131-138
Wu M, Huang J, Xu S, Ling T, Xie Y, Shen W (2011b) Haem oxygenase delays programmed cell death in wheat aleurone layers by modulation of hydrogen peroxide metabolism. J Exp Bot 62: 235-248
Thiel G, Weise R (1999) Auxin augments conductance of K+ inward rectifier in maize coleoptile protoplasts. Planta 208: 38-45
Noriega GO, Yannarelli GG, Balestrasse KB, Batlle A, Tomaro ML (2007) The effect of nitric oxide on heme oxygenase gene expression in soybean leaves. Planta 226: 1155-1163
Shabala S (2011) Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance. New Phytol 190: 289-298
Wang P, Song CP (2008) Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytol 178: 703-718
Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 123: 1468-1479
Ranf S, Wünnenberg P, Lee J, Becker D, Dunkel M, Hedrich R, Scheel D, Dietrich P (2008) Loss of the vacuolar cation channel, AtTPC1, does not impair Ca2+ signals induced by abiotic and biotic stresses. Plant J 53: 287-299
Dadacz-Narloch B, Beyhl D, Larisch C, Lopez-Sanjurjo EJ, Reski R, Kuchitsu K, Mueller TD, Becker D, Schönknecht G, Hedrich R (2011) A novel calcium binding site in the slow vacuolar cation channel TPC1 senses luminal calcium levels. Plant Cell 23: 2696-2707
Britto DT, Kronzucker HJ (2008) Cellular mechanisms of potassium transport in plants. Physiol Plant 133: 637-650
Shabala SN, Lew RR (2002) Turgor regulation in osmotically stressed Arabidopsis epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements. Plant Physiol 129: 290-299
Cuin TA, Zhou M, Parsons D, Shabala S (2011) Genetic behaviour of physiological traits conferring cytosolic K+/Na+ homeostasis in wheat. Plant Biol 14: 438-446
Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, Poree F, Boucherez J, Lebaudy A, Bouchez D, Very AA, Simonneau T, Thibaud JB, Sentenac H (2003) The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci USA 100: 5549-5554
Pottosin I, Velarde-Buendía AM, Zepeda-Jazo I, Dobrovinskaya O, Shabala S (2012) Synergism between polyamines and ROS in the induction of Ca2+ and K+ fluxes in roots. Plant Signal Behav 7: 1084-1087
Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48: 251-275
Smethurst CF, Garnett T, Shabala S (2005) Nutritional and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging and subsequent recovery. Plant Soil 270: 31-45
Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel in plant nutrition. Science 280: 918-921
Crawford NM (2006) Mechanisms for nitric oxide synthesis in plants. J Exp Bot 57: 471-478
Roberts SK, Snowman BN (2000) The effects of ABA on channel-mediated K+ transport across higher plant roots. Journal of Experimental Botany 51: 1585-1594
Schulze C, Sticht H, Meyerhoff P, Dietrich P (2011) Differential contribution of EF-hands to the Ca2+-dependent activation in the plant two-pore channel TPC1. Plant J 68: 424-432
Marschner H (1995) Mineral Nutrition of Higher Plants. Academic Press, London
Pang JY, Newman I, Mendham N, Zhou M, Shabala S (2006) Microelectrode ion and O2 fluxes measurements reveal differential sensitivity of barley root tissues to hypoxia. Plant Cell Environ 29: 1107-1121
Rodrigo-Moreno A, Andreas-Colas N, Poschenrieder C, Gunse B, Pellarrubia L, Shabala S (2013a) Calcium- and potassium-permeable plasma membrane transporters are activated by copper in Arabidopsis root tips: Linking copper transport with cytosolic hydroxyl radical production. Plant Cell Environ 36: 844-855
Bonales-Alatorre E, Shabala S, Chen ZH, Pottosin I (2013) Reduced tonoplast fast-activating and slow-activati
1998; 280
2011a; 189
1987; 105
2004; 27
1999a; 50
2013; 64
2010; 188
1974; 1
2008; 35
2012; 17
2008; 31
2012; 12
2001; 42
1996; 77
1999; 208
1998; 16
1991; 185
2004; 31
2013; 55
2013; 53
2000; 406
2013; 112
2004; 219
2012; 24
2010; 5
2007; 17
2012; 184
2007; 19
2009; 69
2004; 40
2007; 282
1989; 134
2013; 89
2009; 60
2010; 167
2008; 59
2009; 177
1996; 93
1999; 22
1999a; 167
2010; 285
1996; 92
2008; 53
2011; 4
2012; 35
2011; 6
2008; 121
2004; 55
2009; 191
1999; 39
2005; 96
2000; 185
1996; 111
2010; 173
2010b; 61
2001; 39
1993; 191
2008; 134
2008; 133
2008; 372
2012; 42
2010a; 3
2006; 224
2007; 145
2013; 25
2008; 3
2007; 34
2010; 61
1987; 85
1999; 18
2008; 319
2001; 19
2008; 68
2006; 128
2006; 125
2011b; 62
1993; 89
2005; 270
2001a; 125
2010
1992; 188
2010; 123
1999; 142
2007
2006; 19
2002; 215
2007; 52
2001; 125
2007; 58
1974; 25
2005; 280
2013; 36
2002; 29
2007a; 58
2013; 35
2005; 167
2005; 168
2010; 139
2006; 141
2001; 114
2010; 95
2009; 424
2010; 12
2002; 16
2007; 104
2008a; 3
2013; 4
2007; 226
2010; 13
2007; 227
2002; 153
1997; 150
1977; 28
2007; 462
1997; 48
2007; 581
2011; 62
2011; 61
1999; 285
2011; 52
2011; 57
2011; 191
2011; 190
2006; 171
2009; 230
2003; 554
2003; 50
2003; 54
2009; 12
1997; 51
1999b; 28
2010; 24
2000; 124
2010; 29
2005; 102
2010; 231
2010; 232
2006; 29
2011; 68
2011; 67
1998; 94
2006; 281
2010; 30
1994; 73
2010; 33
2010; 37
2006; 57
2013a; 36
1995
2003; 30
1999
1995; 7
2010; 48
2004; 279
2000; 466
2010; 335
2006; 47
2013b; 8
2009; 583
2014; 37
2002; 129
2009; 229
2003; 100
2010; 51
2009; 106
2012; 61
1997; 115
2011; 157
2003; 116
2001; 181
2000; 41
1988; 39
2000; 51
2013; 162
2007b; 145
1999; 84
2011; 14
2011; 16
2005; 28
2013; 161
2012; 53
1984; 97
2004; 136
2004; 135
1997; 11
2001; 291
2011; 21
2011; 23
1999; 96
1994; 32
2004; 101
2009; 21
2012; 1823
2000; 24
2005; 434
2011; 31
2006; 8
2005; 41
2004; 108
2011; 38
2008; 283
2009; 29
2008b; 9
2005; 205
2009; 143
2011; 181
2001b; 11
2008; 179
2008; 178
1999b; 50
2012; 7
2011; 49
2005; 56
1994; 6
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_191_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_142_1
e_1_2_7_165_1
e_1_2_7_188_1
e_1_2_7_202_1
e_1_2_7_225_1
e_1_2_7_240_1
e_1_2_7_116_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_180_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_56_1
e_1_2_7_79_1
e_1_2_7_131_1
e_1_2_7_154_1
e_1_2_7_237_1
e_1_2_7_177_1
e_1_2_7_214_1
Brüggemann LI (e_1_2_7_31_1) 1999; 50
e_1_2_7_139_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_192_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_67_1
e_1_2_7_143_1
e_1_2_7_189_1
e_1_2_7_29_1
e_1_2_7_203_1
e_1_2_7_226_1
e_1_2_7_166_1
e_1_2_7_241_1
e_1_2_7_117_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_181_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_78_1
e_1_2_7_193_1
e_1_2_7_238_1
e_1_2_7_132_1
e_1_2_7_155_1
e_1_2_7_178_1
e_1_2_7_215_1
e_1_2_7_230_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_9_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_170_1
e_1_2_7_227_1
e_1_2_7_89_1
e_1_2_7_182_1
e_1_2_7_28_1
e_1_2_7_144_1
e_1_2_7_167_1
e_1_2_7_204_1
e_1_2_7_242_1
e_1_2_7_118_1
e_1_2_7_110_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_171_1
e_1_2_7_216_1
e_1_2_7_194_1
e_1_2_7_239_1
e_1_2_7_39_1
e_1_2_7_133_1
e_1_2_7_156_1
e_1_2_7_179_1
e_1_2_7_231_1
e_1_2_7_107_1
e_1_2_7_80_1
Prabhu AS (e_1_2_7_161_1) 2007
e_1_2_7_122_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_205_1
e_1_2_7_228_1
e_1_2_7_160_1
e_1_2_7_183_1
e_1_2_7_27_1
e_1_2_7_145_1
e_1_2_7_220_1
e_1_2_7_243_1
e_1_2_7_168_1
e_1_2_7_119_1
e_1_2_7_91_1
Kuiper PJC (e_1_2_7_100_1) 1994; 32
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
Cakmak I (e_1_2_7_35_1) 1999
e_1_2_7_172_1
e_1_2_7_195_1
e_1_2_7_217_1
e_1_2_7_38_1
e_1_2_7_134_1
e_1_2_7_232_1
e_1_2_7_157_1
e_1_2_7_108_1
e_1_2_7_7_1
e_1_2_7_123_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_184_1
e_1_2_7_206_1
e_1_2_7_26_1
e_1_2_7_229_1
e_1_2_7_49_1
e_1_2_7_146_1
e_1_2_7_169_1
e_1_2_7_244_1
e_1_2_7_221_1
e_1_2_7_90_1
e_1_2_7_112_1
Marschner H (e_1_2_7_126_1) 1995
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_75_1
e_1_2_7_150_1
e_1_2_7_196_1
e_1_2_7_37_1
e_1_2_7_173_1
e_1_2_7_218_1
e_1_2_7_135_1
e_1_2_7_158_1
e_1_2_7_233_1
e_1_2_7_210_1
e_1_2_7_109_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_63_1
e_1_2_7_86_1
e_1_2_7_185_1
e_1_2_7_207_1
e_1_2_7_48_1
e_1_2_7_162_1
e_1_2_7_245_1
e_1_2_7_147_1
e_1_2_7_222_1
e_1_2_7_113_1
Zepeda‐Jazo I (e_1_2_7_236_1) 2008; 9
e_1_2_7_51_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_151_1
e_1_2_7_174_1
e_1_2_7_197_1
e_1_2_7_136_1
e_1_2_7_211_1
e_1_2_7_159_1
e_1_2_7_5_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_85_1
Zeng F (e_1_2_7_234_1) 2013; 4
e_1_2_7_47_1
e_1_2_7_140_1
e_1_2_7_163_1
e_1_2_7_208_1
e_1_2_7_223_1
e_1_2_7_186_1
e_1_2_7_148_1
e_1_2_7_200_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_58_1
e_1_2_7_152_1
e_1_2_7_175_1
e_1_2_7_212_1
e_1_2_7_198_1
e_1_2_7_235_1
e_1_2_7_137_1
e_1_2_7_6_1
Waraich EA (e_1_2_7_219_1) 2011; 61
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_209_1
e_1_2_7_190_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_201_1
e_1_2_7_224_1
e_1_2_7_164_1
e_1_2_7_187_1
e_1_2_7_149_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_153_1
e_1_2_7_176_1
e_1_2_7_199_1
e_1_2_7_213_1
e_1_2_7_138_1
References_xml – reference: Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A (2006) Early signaling events induced by elicitors of plant defenses. Mol Plant Microbe Interact 19: 711-724
– reference: Roeflsema MRG, Hedrich R (2005) In the light of stomata opening: new insights into 'the Watergate'. New Phytol 167: 665-691
– reference: Shabala S, Shabala L, Van Volkenburgh E, Newman I (2005) Effect of divalent cations on ion fluxes and leaf photochemistry in salinized barley leaves. J Exp Bot 56: 1369-1378
– reference: Lisjak M, Teklic T, Wilson ID, Whiteman M, Hancock JT (2013) Hydrogene sulfide: environmental factor or signaling molecule? Plant Cell Environ 36: 1607-1616
– reference: Pier PA, Berkowitz GA (1987) Modulation of water-stress effects on photosynthesis by altered leaf K+. Plant Physiol 85: 655-661
– reference: Close DC, Davidson NJ (2003) Long-term waterlogging: nutrient, gas exchange, photochemical and pigment characteristics of Eucalyptus nitens saplings. Russ J Plant Physiol 50: 843-847
– reference: Zhao X, Qiao X, Yan J, Ma X, Zhang X (2012) Nitric oxide inhibits blue light-induced stomatal opening by regulating the K+ influx in guard cells. Plant Sci 184: 29-35
– reference: Yannarelli GG, Noriega GO, Batlle A, Tomaro ML (2006) Heme oxygenase up-regulation in ultraviolet-B irradiated soybean plants involves reactive oxygen species. Planta 224: 1154-1162
– reference: Colmer TD, Greenway H (2011) Ion transport in seminal and adventitious roots of cereals during O2 deficiency. J Exp Bot 62: 39-57
– reference: Yamaguchi T, Aharin GA, Sottosanto JB, Blumwald E (2005) Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+- and pH-dependent manner. Proc Natl Acad Sci USA 102: 16107-16112
– reference: Xu J, Li HD, Chen LQ, Wang Y, Liu LL, He L, Wu H (2006) A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125: 1347-1360
– reference: Held K, Pascaud F, Eckert C, Gajdanowicz P, Hashimoto K, Coratge-Faillie C, Offenborn JN, Lacombe B, Dreyer I, Thibaud JB, Kudla J (2011) Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex. Cell Res 21: 1116-1130
– reference: Wang H, Liang X, Wan Q, Wang X, Bi Y (2009) Ethylene and nitric oxide are involved in maintaining ion homeostasis in Arabidopsis callus under salt stress. Planta 230: 293-307
– reference: Wang R (2002) Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16: 1792-1798
– reference: Tazawa M, Sutou E, Shibasaka M (2001) Onion root water transport sensitive to water channel and K+ channel inhibitors. Plant Cell Physiol 42: 28-36
– reference: Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133: 651-669
– reference: Xuan W, Xu S, Yuan X, Shen W (2008) Carbon monoxide. A novel and pivotal signal molecule in plants? Plant Signal Behav 3: 381-382
– reference: Cuin TA, Miller AJ, Laurie SA, Leigh RA (2003) Potassium activities in cell compartments of salt-grown barley leaves. J Exp Bot 54: 657-661
– reference: Maathuis FJM, Sanders D (1997) Regulation of K+ absorption in plant root cells by external K+: interplay of different plasma membrane K+ transporters. J Exp Bot 48: 451-458
– reference: Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112: 1209-1221
– reference: Hawker JS, Marschner H, Downton WJS (1974) Effects of sodium and potassium on starch synthesis in leaves. Aust J Plant Physiol 1: 491-501
– reference: Hedrich R, Marten I (2011) TPC1-SV channels gain shape. Mol Plant 4: 428-441
– reference: Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48: 251-275
– reference: Wu JY, Qu HY, Shang ZL, Tao ST, Xu GH, Wu J, Wu HQ, Zhang SL (2011a) Reciprocal regulation of Ca2+-activated outward K+ channels of Pyrus pyrifolia pollen by heme and carbon monoxide. New Phytol 189: 1060-1068
– reference: Jiang MY, Zhang JH (2002) Involvement of plasma-membrane NADPH oxidase in abscisic acid- and water stress-induced antioxidant defense in leaves of maize seedlings. Planta 215: 1022-1030
– reference: Shabala S (2011) Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance. New Phytol 190: 289-298
– reference: Lisjak M, Srivastava N, Teklic T, Civale L, Lewandowski K, Wilson I, Wood ME, Whiteman M, Hancock JT (2010) A novel hydrogen sulphide donor causes stomatal opening and reduces nitric oxide accumulation. Plant Physiol Biochem 48: 931-935
– reference: Nieves-Cordones M, Miller AJ, Aleman F, Martinez V, Rubio F (2008) A putative role for the plasma membrane potential in the control of the expression of the gene encoding the tomato high-affinity potassium transporter HAK5. Plant Mol Biol 68: 521-532
– reference: Lee SC, Luan S (2012) ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ 35: 53-60
– reference: Shabala S, Shabala L, Van Volkenburgh E (2003) Effect of calcium on root development and root ion fluxes in salinised barley seedlings. Funct Plant Biol 30: 507-514
– reference: Brault M, Amiar Z, Pennarum AM, Monestiez M, Zhang Z, Cornel D, Dellis O, Knight H, Bouteau F, Rona JP (2004) Plasma membrane depolarization induced by abscisic acid in Arabidopsis suspension cells involves reduction of proton pumping in addition to anion channel activation, which are both Ca2+ dependent. Plant Physiol 135: 231-243
– reference: Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581: 2247-2254
– reference: Ashraf M, Rehman H (1999) Mineral nutrient status of corn in relation to nitrate and long-term waterlogging. J Plant Nutr 22: 1253-1268
– reference: Rodriguez-Rosales MP, Jiang XY, Galvez FJ, Aranda MN, Cubero B, Venema K (2008) Overexpression of the tomato K+/H+ antiporter LeNHX2 confers salt tolerance by improving potassium compartmentalization. New Phytol 179: 366-377
– reference: Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vanderpoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16: 300-309
– reference: Osakabe Y, Arinaga N, Umezawa T, Katsura S, Nagamachi K, Tanaka H, Ohiraki H, Yamada K, Seo SU, Abo M, Yoshimura E, Shinozaki K, Yamaguchi-Shinozaki K (2013) Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis. Plant Cell 25: 609-624
– reference: Brüggemann LI, Pottosin II, Schönknecht G (1999a) Selectivity of the fast activating vacuolar cation channel. J Exp Bot 50: 873-876
– reference: Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, Poree F, Boucherez J, Lebaudy A, Bouchez D, Very AA, Simonneau T, Thibaud JB, Sentenac H (2003) The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci USA 100: 5549-5554
– reference: Wegner LH, de Boer AH (1997) Properties of two outward-rectifying channels in root xylem parenchyma cells suggest a role in KCl homeostasis and long-distance signaling. Plant Physiol 115: 1707-1719
– reference: Wang F, Deng S, Ding M, Sun J, Wang M, Zhu H, Han Y, Shen Z, Jing X, Zhang F, Hu Y, Chen S (2013) Overexpression of a poplar two-pore K+ channel enhances salinity tolerance in tobacco cells. Plant Cell Tissue Organ Cult 112: 19-31
– reference: Pottosin I, Velarde-Buendía AM, Zepeda-Jazo I, Dobrovinskaya O, Shabala S (2012) Synergism between polyamines and ROS in the induction of Ca2+ and K+ fluxes in roots. Plant Signal Behav 7: 1084-1087
– reference: Peers C, Bauer CC, Boyle JP, Scragg JL, Dallas ML (2012) Modulation of ion channels by hydrogen sulfide. Antioxid Redox Signal 17: 95-105
– reference: Ruan CJ, da Silva JAT, Mopper S, Qin P, Lutts S (2010) Halophyte improvement for a salinized world. Crit Rev Plant Sci 29: 329-359
– reference: Pottosin I, Martínez-Estévez M, Dobrovinskaya O, Muñiz J, Schönknecht G (2004) Mechanism of luminal Ca2+ and Mg2+ action on the vacuolar slowly activating channels. Planta 219: 1057-1070
– reference: Kuiper PJC, Walton CS, Greenway H (1994) Effect of hypoxia on ion uptake by nodal and seminal wheat roots. Plant Physiol Biochem 32: 267-276
– reference: Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Develop 29: 185-212
– reference: Remy E, Cabrito TR, Baster P, Batista RA, Teixeira MC, Friml J, Sá-Correia I, Duque P (2013) A Major Facilitator Superfamily transporter plays a dual role in polar auxin transport and drought stress tolerance in Arabidopsis. Plant Cell 25: 901-926
– reference: Brüggemann LI, Pottosin II, Schönknecht G (1999b) Cytoplasmic magnesium regulates the fast activating vacuolar cation channel. J Exp Bot 50: 1547-1552
– reference: Jackson MB, Davies WJ, Else MA (1996) Pressure-flow relationships, xylem solutes and root hydraulic conductance in flooded tomato plants. Ann Bot 77: 17-24
– reference: Shabala S, Mackay A (2011) Ion transport in halophytes. Adv Bot Res 57: 151-199
– reference: Dadacz-Narloch B, Beyhl D, Larisch C, Lopez-Sanjurjo EJ, Reski R, Kuchitsu K, Mueller TD, Becker D, Schönknecht G, Hedrich R (2011) A novel calcium binding site in the slow vacuolar cation channel TPC1 senses luminal calcium levels. Plant Cell 23: 2696-2707
– reference: Demidchik V, Shabala SN, Coutts KB, Tester MA, Davies JM (2003) Free oxygen radicals regulate plasma membrane Ca2+- and K+- permeable channels in plant root cells. J Cell Sci 116: 81-88
– reference: Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L (2008) Local positive feedback regulation determines cell shape in root hair cells. Science 319: 1241-1244
– reference: Ma TL, Wu WH, Wang Y (2012) Transcriptome analysis of rice root responses to potassium deficiency. BMC Plant Biol 12: 161
– reference: Rubio F, Nieves-Cordones M, Alemán F, Martínez V (2008) Relative contribution of AtHAK5 and AtAKT1 to K+ uptake in the high- affinity range of concentrations. Physiol Plant 134: 598-608
– reference: Véry AA, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol 54: 575-603
– reference: Dubcovsky J, Maria GS, Epstein E, Luo MC, Dvorak J (1996) Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor Appl Genet 92: 448-454
– reference: Romheld V, Kirkby EA (2010) Research on potassium in agriculture: needs and prospects. Plant Soil 335: 155-180
– reference: Bohmer M, Schroeder JI (2011) Quantitative transcriptomic analysis of abscisic acid-induced and reactive oxygen species-dependent expression changes and proteomic profiling in Arabidopsis suspension cells. Plant J 67: 105-118
– reference: Kimura S, Kaya H, Kawazaraki T, Hiraoka G, Senzaki E, Michikawa M, Kuchitsu K (2012) Protein phosphorylation is a prerequisite for the Ca2+-dependent activation of Arabidopsis NADPH oxidases and may function as a trigger for the positive feedback regulation of Ca2+ and reactive oxygen species. Biochim Biophys Acta 1823: 398-405
– reference: Sato A, Sato Y, Fukao Y, Fujiwara M, Umezawa T, Shinozaki K, Hibi T, Taniquchi M, Miyake H, Goto DB, Uozumi N (2009) Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochem J 424: 439-448
– reference: Leidi EO, Barragan V, Rubio L, El-Hamdaoui A, Ruiz MT, Cubero B, Fernandez JA, Bressan RA, Hasegawa PM, Quintero FJ, Pardo JM (2010) The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. Plant J 61: 495-506
– reference: Waraich EA, Ahmad R, Ashraf MY, Saifullah AM (2011) Improving agricultural water use efficiency by nutrient management in crop plants. Acta Agric Scand B Soil Plant Sci 61: 291-304
– reference: Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Michaux-Ferrière N, Thibaud JB, Sentenac H (1998) Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Cell 94: 647-655
– reference: Umar S, Diva I, Anjum NA, Iqbal M, Ahmad I, Pereira E (2011) Potassium-induced alleviation of salinity stress in Brassica campestris L. Cent Eur J Biol 6: 1054-1063
– reference: Voelker C, Gomes-Porras JL, Becker D, Hamamoto S, Uozumi N, Gambale F, Mueller-Roeber B, Czemspinski K, Dreyer I (2010) Roles of tandem-pore K+ channels in plants - a puzzle still to be solved. Plant Biol 12: 56-63
– reference: Bose J, Xie Z, Shen W, Shabala S (2013) Haem oxygenase modifies salinity tolerance in Arabidopsis by controlling K+ retention via regulation of the plasma membrane H+-ATPase and by altering SOS1 transcript levels in roots. J Exp Bot 64: 471-481
– reference: Marschner H, Cakmak I (1989) High light-intensity enhances chlorosis and necrosis in leaves of zinc, potassium, and magnesium deficient bean (Phaseolus vulgaris) plants. J Plant Physiol 134: 308-315
– reference: Teakle NL, Tyerman SD (2010) Mechanisms of Cl- transport contributing to salt tolerance. Plant Cell Environ 33: 566-589
– reference: Kim TH, Böhmer M, Hu H, Nishimura N, Schroeder JI (2010b) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61: 561-591
– reference: Zhao F, Song CP, He J, Zhu H (2007) Polyamines improve K+/Na+ homeostasis in barley seedlings by regulating root ion channel activities. Plant Physiol 145: 1061-1072
– reference: Vicente-Agullo F, Rigas S, Desbrosses G, Dolan L, Hatzopoulos P, Grabov A (2004) Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots. Plant J 40: 523-535
– reference: Kinoshita T, Nishimura M, Shimazaki K (1995) Cytosolic concentration of Ca2+ regulates the plasma membrane H+-ATPase in guard cells of fava bean. Plant Cell 7: 1333-1342
– reference: Bauer CS, Hoth S, Haga K, Philippar K, Aoki N, Hedrich R (2000) Differential expression and regulation of K+ channels in the maize coleoptile: molecular and biophysical analysis of cells isolated from cortex and vasculature. Plant J 24: 139-145
– reference: Zepeda-Jazo I, Velarde-Buendía AM, Enríquez-Figueroa R, Bose J, Shabala S, Muñiz-Murguía J, Pottosin II (2011) Polyamines interact with hydroxyl radicals in activating Ca2+ and K+ transport across the root epidermal plasma membranes. Plant Physiol 157: 2167-2180
– reference: Pei ZM, Murata Y, Benning G, Thomine S, Klüsener BG, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406: 731-734
– reference: Rodrigo-Moreno A, Poschenrieder C, Shabala S (2013b) Transition metals: a double edge sword in ROS generation and signaling. Plant Signal Behav 8: e23421-e23425
– reference: Barragan V, Leidi EO, Andres Z, Rubio L, De Luca A, Fernandez JA, Cubero B, Pardo JM (2012) Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell 24: 1127-1142
– reference: Neupartl M, Meyer C, Woll I, Frohns F, Kang M, Van Etten JL, Kramer D, Hertel B, Moroni A, Thiel G (2008) Chlorella viruses evoke a rapid release of K+ from host cells during the early phase of infection. Virology 372: 340-348
– reference: Pezeshki SR, DeLaune RD, Anderson PH (1999) Effect of flooding on elemental uptake and biomass allocation in seedlings of three bottomland tree species. J Plant Nutr 22: 1481-1494
– reference: Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285: 1256-1258
– reference: Shetty NP, Jørgensen HJL, Jensen JD, Collinge DB, Shetty HS (2008) Roles of reactive oxygen species in interactions between plants and pathogens. Eur J Plant Pathol 121: 267-280
– reference: Dobrovinskaya OR, Muñiz J, Pottosin II (1999a) Inhibition of vacuolar ion channels by polyamines. J Membr Biol 167: 127-140
– reference: Becker D, Hoth S, Ache P, Wenkel S, Roelfsema MRG, Meyerhoff O, Hartung W, Hedrich R (2003) Regulation of the ABA-sensitive Arabidopsis potassium channel gene GORK in response to water stress. FEBS Lett 554: 119-126
– reference: Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA, Hu XH, Ren ZH, Chao DY (2004) QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet 108: 253-260
– reference: Roberts SK, Snowman BN (2000) The effects of ABA on channel-mediated K+ transport across higher plant roots. Journal of Experimental Botany 51: 1585-1594
– reference: Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179: 945-963
– reference: Gupta K, Dey A, Gupta B (2013) Plant polyamines in abiotic stress responses. Acta Physiol Plant 35: 2015-2036
– reference: Mancuso S, Marras AM (2006) Adaptative response of Vitis root to anoxia. Plant Cell Physiol 47: 401-409
– reference: Marschner H (1995) Mineral Nutrition of Higher Plants. Academic Press, London
– reference: Hager A, Debus G, Edel HG, Stransky H, Serrano R (1991) Auxin induces exocytosis and the rapid synthesis of a high-turnover pool of plasma-membrane proton ATPase. Planta 185: 527-537
– reference: Rubio V, Bustos R, Irigoyen ML, Cardona-López X, Rojas-Triana M, Paz-Ares J (2009) Plant hormones and nutrient signaling. Plant Mol Biol 69: 361-373
– reference: Hamamoto S, Marui J, Matsuoka K, Higashi K, Igarashi K, Nakagawa T, Kuroda T, Mori Y, Murata Y, Nakanishi Y, Maeshima M, Yabe I, Uozumi N (2008) Characterization of a tobacco TPK- type K+ channel as a novel tonoplast K+ channel using yeast tonoplasts. J Biol Chem 283: 1911-1920
– reference: Chen Z, Pottosin II, Cuin TA, Fuglsang AT, Tester M, Jha D, Zepeda-Jazo I, Zhou M, Palmgren MG, Newman IA, Shabala S (2007b) Root plasma membrane transporters controlling K+/Na+ homeostasis in salt stressed barley. Plant Physiol 145: 1714-1725
– reference: Malik AI, Colmer TD, Lambers H, Setter TL, Schortemeyer M (2002) Short-term waterlogging has long-term effects on the growth and physiology of wheat. New Phytol 153: 225-236
– reference: Aziz I, Khan MA (2001) Effect of seawater on the growth, ion content and water potential of Rhizophora mucronata Lam. J Plant Res 114: 369-373
– reference: Gilliham M, Athman A, Tyerman SD, Conn SJ (2011) Cell-specific compartmentation of mineral nutrients is an essential mechanism for optimal plant productivity - another role for TPC1? Plant Signal Behav 6: 1656-1661
– reference: Nieves-Cordones M, Caballero F, Martinez V, Rubio F (2012) Disruption of the Arabidopsis thaliana inward-rectifier K+ channel AKT1 improves plant responses to water stress. Plant Cell Physiol 53: 423-432
– reference: Zwieniecki MA, Melcher PJ, Holbrook NM (2001) Hydrogel control of xylem hydraulic resistance in plants. Science 291: 1059-1062
– reference: van den Wijngaard PWJ, Sinnige MP, Roobeek I, Reumer A, Schoonheim PJ, Mol JNM, Wang M, De Boer AH (2005) Abscisic acid and 14-3-3 proteins control K+ channel activity in barley embryonic root. Plant J 41: 43-55
– reference: Jung JY, Shin R, Schachtman DP (2009) Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis. Plant Cell 21: 607-621
– reference: Polacik KA, Maricle BR (2013) Effects of flooding on photosynthesis and root respiration in saltcedar (Tamarix ramosissima), an invasive riparian shrub. Environ Exp Bot 89: 19-27
– reference: Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK (2011) Additive effects of Na+ and Cl- ions on barley growth under salinity stress. J Exp Bot 62: 2189-2203
– reference: Bose J, Shabala L, Pottosin I, Zeng F, Velarde-Buendía AM, Massart A, Poschenrieder C, Hariadi Y, Shabala S (2014) Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K+-permeable channels to reactive oxygen species: physiological traits that differentiate salinity tolerance between pea and barley. Plant Cell Environ 37: 589-600
– reference: Pandolfi C, Pottosin I, Cuin T, Mancuso S, Shabala S (2010) Specificity of polyamine effects on NaCl-induced ion flux kinetics and salt stress amelioration in plants. Plant Cell Physiol 51: 422-434
– reference: Crawford NM (2006) Mechanisms for nitric oxide synthesis in plants. J Exp Bot 57: 471-478
– reference: Armstrong W, Beckett PM (1987) Internal aeration and the development of stelar anoxia in submerged roots - a multishelled mathematical-model combining axial diffusion of oxygen in the cortex with radial losses to the stele, the wall layers and the rhizosphere. New Phytol 105: 221-245
– reference: Cuin TA, Betts SA, Chalmandrier R, Shabala S (2008) A root's ability to retain K+ correlates with salt tolerance in wheat. J Exp Bot 59: 2697-2706
– reference: Derbyshire ER, Marletta MA (2009) Biochemistry of soluble guanylate cyclase. Handb Exp Pharmacol 191: 17-31
– reference: Armengaud P, Breitling R, Amtmann A (2004) The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol 136: 2556-2576
– reference: Koyama ML, Levesley A, Koebner RMD, Flowers TJ, Yeo AR (2001) Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiol 125: 406-422
– reference: Trifilo P, Nardini A, Raimondo F, Lo Gullo MA, Salleo S (2011) Ion-mediated compensation for drought-induced loss of xylem hydraulic conductivity in field-growing plants of Laurus nobilis. Funct Plant Biol 38: 606-613
– reference: Smethurst CF, Rix K, Garnett T, Auricht G, Bayart A, Lane P, Wilson SJ, Shabala S (2008) Multiple traits associated with salt tolerance in lucerne: revealing the underlying cellular mechanisms. Funct Plant Biol 35: 640-650
– reference: Pottosin II, Martínez-Estévez M, Dobrovinskaya OR, Muñiz J (2005) Regulation of the slow vacuolar channel by luminal potassium: role of surface charge. J Membr Biol 205: 103-111
– reference: Xie YJ, Ling TF, Han Y, Liu KL, Zheng QS, Huang LQ, Yuan X, Xe Z, Hu B, Fang L, Shen Z, Yang Q, Shen W (2008) Carbon monoxide enhances salt tolerance by nitric oxide-mediated maintenance of ion homeostasis and up-regulation of antioxidant defense in wheat seedling roots. Plant Cell Environ 31: 1864-1881
– reference: Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA (2006) Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol 141: 1653-1665
– reference: Brüggemann LI, Pottosin II, Schönknecht G (1998) Cytoplasmic polyamines block the fast-activating vacuolar cation channel. Plant J 16: 101-106
– reference: Peiter E, Maathuis FJ, Mills LN, Knight H, Pelloux J, Hetherington AM, Sanders D (2005) The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 434: 404-408
– reference: Siringam K, Juntawong N, Cha-um S, Kirdmanee C (2013) Exogenous application of potassium nitrate to alleviate salt stress in rice seedlings. J Plant Nutr 36: 607-616
– reference: Cheng NH, Pittman JK, Zhu JK, Hirschi K (2004) The protein kinase SOS2 activates the Arabidopsis H+/Ca2+ antiporters CAX1 to integrate calcium transport and salt tolerance. J Biol Chem 279: 2922-2926
– reference: Christian M, Steffens B, Schneck D, Burmester S, Böttger M, Lüthen H (2006) How does auxin enhance cell elongation? Roles of auxin-binding proteins and potassium channels in growth control. Plant Biol 8: 346-352
– reference: Fuglsang AT, Guo Y, Cuin TA, Qiu Q, Song CP, Kristiansen KA, Bych K, Schulz A, Shabala S, Schumaker KS, Palmgren MG, Zhu JK (2007) Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein. Plant Cell 19: 1617-1634
– reference: Jeannette E, Rona JP, Bardat F, Cornel D, Sotta B, Miginiac E (1999) Induction of RAB18 gene expression and activation of K+ outward rectifying channels depend on an extracellular perception of ABA in Arabidopsis thaliana suspension cells. Plant J 18: 13-22
– reference: Pottosin II, Schönknecht G (2007) Vacuolar calcium channels. J Exp Bot 58: 1559-1569
– reference: Teakle NL, Amtmann A, Real D, Colmer TD (2010) Lotus tenuis tolerates combined salinity and waterlogging: maintaining O2 transport to roots and expression of an NHX1-like gene contribute to regulation of Na+ transport. Physiol Plant 139: 358-374
– reference: Gobert A, Isayenkov S, Voelker C, Czempinski K, Maathuis FJM (2007) The two-pore channel TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis. Proc Natl Acad Sci USA 104: 10726-10731
– reference: Zepeda-Jazo I, Chen Z, Shabala S, Pottosin II (2008a) Na+-K+ transport in roots under salt stress. Plant Signal Behav 3: 401-403
– reference: Oria-Hernandez J, Cabrera N, Perez-Montfort R, Ramirez-Silva L (2005) Pyruvate kinase revisited - the activating effect of K+. J Biol Chem 280: 37924-37929
– reference: Tavaldoraki P, Cona A, Federico R, Tempera G, Viceconte N, Saccoccio S, Battaglia V, Toninello A, Agostinelli E (2012) Polyamine catabolism: target for antiproliferative therapies in animals and stress tolerance strategies in plants. Amino Acids 42: 411-426
– reference: Board JE (2008) Waterlogging effects on plant nutrient concentrations in soybean. J Plant Nutr 31: 828-838
– reference: Zepeda-Jazo I, Velarde-Buendía AM, Dobrovinskaya OR, Muñiz J, Pottosin II (2008b) Polyamines as regulators of ionic transport in plants. Curr Top Plant Biol 9: 87-99
– reference: Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci-Z Pflanzenernahr Bodenkd 168: 521-530
– reference: Hughes FM, Cidlowski JA (1999) Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo. Adv Enzyme Reg 39: 157-171
– reference: Sangakkara UR, Frehner M, Nosberger J (2000) Effect of soil moisture and potassium fertilizer on shoot water potential, photosynthesis and partitioning of carbon in mungbean and cowpea. J Agron Crop Sci 185: 201-207
– reference: Cuin TA, Zhou M, Parsons D, Shabala S (2011) Genetic behaviour of physiological traits conferring cytosolic K+/Na+ homeostasis in wheat. Plant Biol 14: 438-446
– reference: Pottosin I, Wherrett T, Shabala S (2009) SV channels dominate the vacuolar Ca2+ release during intracellular signaling. FEBS Lett 583: 921-926
– reference: Srivastava N, Gonugunta VK, Puli MR, Raghavendra AS (2009) Nitric oxide production occurs downstream of reactive oxygen species in guard cells during stomatal closure induced by chitosan in abaxial epidermis of Pisum sativum. Planta 229: 757-765
– reference: Lindsay MP, Lagudah ES, Hare RA, Munns R (2004) A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Funct Plant Biol 31: 1105-1114
– reference: Lacombe B, Pilot G, Gaymard F, Sentenac H, Thibaud JB (2000) pH control of the plant outwardly-rectifying potassium channel SKOR. FEBS Lett 466: 351-354
– reference: Shabala S (2009) Salinity and programmed cell death: unravelling mechanisms for ion specific signalling. J Exp Bot 60: 709-711
– reference: Shabala S, Babourina O, Rengel Z, Nemchinov LG (2010) Non-invasive microelectrode potassium flux measurements as a potential tool for early recognition of virus-host compatibility in plants. Planta 232: 807-815
– reference: Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Riberio D, Wilson I (2008) Nitric oxide, stomatal closure and abiotic stress. J Exp Bot 59: 165-176
– reference: Zhang WH, Tyerman SD (1997) Effect of low oxygen concentration on the electrical properties of cortical cells of wheat roots. J Plant Physiol 150: 567-572
– reference: Morard P, Lacoste L, Silvestre J (2004) Effect of oxygen deficiency on mineral nutrition of excised tomato roots. J Plant Nutr 27: 613-626
– reference: Laohavisit A, Shang Z, Rubio L, Cuin TA, Véry AA, Wang A, Mortimer JC, Macpherson N, Coxon KM, Battey NH, Brownlee C, Park OK, Sentenac H, Shabala S, Webb AAR, Davies JM (2012) Arabidopsis annexin1 mediates the radical-activated plasma membrane Ca2+-and K+-permeable conductance in root cells. Plant Cell 24: 1522-1533
– reference: Felle HH (2005) pH regulation in anoxic plants. Ann Bot 96: 519-532
– reference: Zhang X, Miao YC, An GY, Zhou Y, Shang Guan ZP, Gao JF, Song CP (2001b) K+ channels inhibited by hydrogen peroxide mediate abscisic acid signaling in Vicia faba guard cells. Cell Res 11: 195-202
– reference: Shabala SN, Lew RR (2002) Turgor regulation in osmotically stressed Arabidopsis epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements. Plant Physiol 129: 290-299
– reference: Chen Z, Cuin TA, Zhou M, Twomey A, Naidu BP, Shabala S (2007a) Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot 58: 4245-4255
– reference: Dobrovinskaya OR, Muñiz J, Pottosin II (1999b) Asymmetric block of the plant vacuolar Ca2+-permeable channel by organic cations. Eur Biophys J 28: 552-563
– reference: Chen Z, Newman I, Zhou M, Mendham N, Zhang G, Shabala S (2005) Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant Cell Environ 28: 1230-1246
– reference: Pang JY, Zhou MX, Mendham N, Shabala S (2004) Growth and physiological responses of six barley genotypes to waterlogging and subsequent recovery. Aust J Agric Res 55: 895-906
– reference: Sirichandra C, Davanture M, Turk BE, Zivy M, Valot B, Leung J, Merlot S (2010) The Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover. PLoS One 5: e13935
– reference: Leigh R, Wyn Jones RG (1984) A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytol 97: 1-13
– reference: Noriega GO, Yannarelli GG, Balestrasse KB, Batlle A, Tomaro ML (2007) The effect of nitric oxide on heme oxygenase gene expression in soybean leaves. Planta 226: 1155-1163
– reference: Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19: 765-768
– reference: Pottosin II, Martínez-Estévez M, Dobrovinskaya OR, Muñiz J (2003) Potassium-selective channel in the red beet vacuolar membrane. J Exp Bot 54: 663-667
– reference: Liu YH, Xu S, Ling TF, Xu LL, Shen WB (2010) Heme oxygenase/carbon monoxide system participates in regulating wheat seed germination under osmotic stress involving the nitric oxide pathway. J Plant Physiol 167: 1371-1379
– reference: Maathuis FJM (2009) Physiological functions of mineral macronutrients. Curr Opin Plant Biol 12: 250-258
– reference: Damon PM, Ma QF, Rengel Z (2011) Wheat genotypes differ in potassium accumulation and osmotic adjustment under drought stress. Crop Pasture Sci 62: 550-555
– reference: Shabala S, Cuin TA, Prismall L, Nemchinov LG (2007) Expression of animal CED-9 anti-apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress. Planta 227: 189-197
– reference: Glass ADM (1974) Influence of phenolic acids upon ion uptake. 3. Inhibition of potassium absorption. J Exp Bot 25: 1104-1113
– reference: Hu LX, Wang ZL, Huang BR (2013) Effects of cytokinin and potassium on stomatal and photosynthetic recovery of Kentucky bluegrass from drought stress. Crop Sci 53: 221-231
– reference: Maathuis FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios. Ann Bot 84: 123-133
– reference: Schulze C, Sticht H, Meyerhoff P, Dietrich P (2011) Differential contribution of EF-hands to the Ca2+-dependent activation in the plant two-pore channel TPC1. Plant J 68: 424-432
– reference: Garthwaite AJ, von Bothmer R, Colmer TD (2005) Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl- into the shoots. J Exp Bot 56: 2365-2378
– reference: Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 123: 1468-1479
– reference: Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55: 373-399
– reference: Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel in plant nutrition. Science 280: 918-921
– reference: Geiger D, Scherzer S, Mumm P, Stange A, Marten I, Bauer H, Ache P, Matschi S, Liese A, Al-Rasheied KAS, Romeis T, Hedrich R (2009) Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc Natl Acad Sci USA 106: 21425-21430
– reference: Hu YC, Schmidhalter U (2005) Drought and salinity: A comparison of their effects on mineral nutrition of plants. J Plant Nutr Soil Sci-Z Pflanzenernahr Bodenkd 168: 541-549
– reference: Liu LL, Ren HM, Chen LQ, Wang Y, Wu WH (2013) A protein kinase CIPK9 interacts with calcium sensor CBL3 and regulates K+ homeostasis under low-K+ stress in Arabidopsis. Plant Physiol 161: 266-277
– reference: Garcia-Mata C, Gay R, Sokolovski S, Hills A, Lamattina L, Blatt MR (2003) Nitric oxide regulates K+ and Cl− channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc Natl Acad Sci USA 100: 11116-11121
– reference: Ashraf M, Ahmad A, McNeilly T (2001) Growth and photosynthetic characteristics in pearl millet under water stress and different potassium supply. Photosynthetica 39: 389-394
– reference: Nardini A, Grego F, Trifilò P, Salleo S (2010) Changes of xylem sap ionic content and stem hydraulics in response to irradiance in Laurus nobilis. Tree Physiol 30: 628-635
– reference: Wu M, Huang J, Xu S, Ling T, Xie Y, Shen W (2011b) Haem oxygenase delays programmed cell death in wheat aleurone layers by modulation of hydrogen peroxide metabolism. J Exp Bot 62: 235-248
– reference: Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231: 1237-1249
– reference: Watson MB, Malmberg RL (1996) Regulation of Arabidopsis thaliana (L.) Heynh arginine decarboxylase by potassium deficiency stress. Plant Physiol 111: 1077-1083
– reference: Lecourieux D, Ranjeva R, Pugin A (2006) Calcium in plant defence-signalling pathways. New Phytol 171: 249-269
– reference: Bonales-Alatorre E, Shabala S, Chen ZH, Pottosin I (2013) Reduced tonoplast fast-activating and slow-activating channel activity is essential for conferring salinity tolerance in a facultative halophyte, quinoa. Plant Physiol 162: 940-952
– reference: Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 581: 2204-2214
– reference: Zhao X, Li YY, Xiao H, Xu CS, Zhang X (2013) Nitric oxide blocks blue light-induced K+ influx by elevating the cytosolic Ca2+ concentration in Vicia faba L. guard cells. J Integr Plant Biol 55: 527-536
– reference: Pang JY, Ross J, Zhou MX, Mendham N, Shabala S (2007) Amelioration of detrimental effects of waterlogging by foliar nutrient sprays in barley. Funct Plant Biol 34: 221-227
– reference: Smart LB, Moskal WA, Cameron KD, Bennett AB (2001) MIP genes are down-regulated under drought stress in Nicotiana glauca. Plant Cell Physiol 42: 686-693
– reference: Kajimura M, Fukuda R, Bateman RM, Yamamoto T, Suematsu M (2010) Interactions of multiple gas-transducing systems: hallmarks and uncertainties of CO, NO, and H2S gas biology. Antioxid Redox Signal 13: 157-192
– reference: Pang JY, Newman I, Mendham N, Zhou M, Shabala S (2006) Microelectrode ion and O2 fluxes measurements reveal differential sensitivity of barley root tissues to hypoxia. Plant Cell Environ 29: 1107-1121
– reference: Shekhawat GS, Verma K (2010) Haem oxygenase (HO): an overlooked enzyme of plant metabolism and defence. J Exp Bot 61: 2255-2270
– reference: Garg N, Manchanda G (2009) ROS generation in plants: Boon or bane? Plant Biosyst 143: 81-96
– reference: Maathuis FJM, Sanders D (1993) Energization of potassium uptake in Arabidopsis thaliana. Planta 191: 302-307
– reference: Buch-Pedersen MJ, Rudashevskaya EL, Berner TS, Venema K, Palmgren MG (2006) Potassium as an intrinsic uncoupler of the plasma membrane H+-ATPase. J Biol Chem 281: 38285-38292
– reference: Bortner CD, Cidlowski JA (2007) Cell shrinkage and monovalent cation fluxes: role in apoptosis. Arch Biochem Biophys 462: 176-188
– reference: Maathuis FJM (2011) Vacuolar two-pore K+ channels act as vacuolar osmosensors. New Phytol 191: 84-91
– reference: Wang P, Song CP (2008) Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytol 178: 703-718
– reference: Oddo E, Inzerillo S, La Bella F, Grisafi F, Salleo S, Nardini A (2011) Short-term effects of potassium fertilization on the hydraulic conductance of Laurus nobilis L. Tree Physiol 31: 131-138
– reference: Britto DT, Kronzucker HJ (2008) Cellular mechanisms of potassium transport in plants. Physiol Plant 133: 637-650
– reference: Cheong YH, Pandey GK, Grant JJ, Batistič O, Li L, Kim BG, Lee SC, Kudla J, Luan S (2007) Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J 52: 223-239
– reference: Wang Y, Wu WH (2013) Potassium transport and signaling in higher plants. Annu Rev Plant Biol 64: 451-476
– reference: Liu K, Fu H, Bei Q, Luan S (2000) Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiol 124: 1315-1325
– reference: Wimalasekera R, Tebart F, Scherer GFE (2011) Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Sci 181: 593-603
– reference: An Z, Jing W, Liu Y, Zhang W (2008) Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba. J Exp Bot 59: 815-825
– reference: Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37: 604-612
– reference: Flowers TJ, Troke PF, Yeo AR (1977) Mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol Plant Mol Biol 28: 89-121
– reference: Shin R, Schachtman DP (2004) Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci USA 101: 8827-8832
– reference: Velarde-Buendía AM, Shabala S, Cvikrova M, Dobrovinskaya O, Pottosin I (2012) Salt-sensitive and salt-tolerant barley varieties differ in the extent of potentiation of the ROS-induced K+ efflux by polyamines. Plant Physiol Biochem 61: 18-23
– reference: Ward JM, Schroeder JI (1994) Calcium-activated K+ channels and calcium-induced calcium-release by slow vacuolar ion channels in guard-cell vacuoles implicated in the control of stomatal closure. Plant Cell 6: 669-683
– reference: García-Mata C, Lamattina L (2010) Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling. New Phytol 188: 977-984
– reference: Bienert GP, Moller ALB, Kristiansen KA, Schulz A, Moller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282: 1183-1192
– reference: Boron WF (2010) Sharpey-Schafer lecture. Gas channels. J Exp Physiol 95: 1107-1130
– reference: Philippar K, Fuchs I, Lüthen H, Hoth S, Bauer C, Haga K, Thiel G, Ljung K, Sandberg G, Böttger M, Becker D, Hedrich R (1999) Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism. Proc Natl Acad Sci USA 96: 12186-12191
– reference: Walker DJ, Leigh RA, Miller AJ (1996) Potassium homeostasis in vacuolate plant cells. Proc Natl Acad Sci USA 93: 10510-10514
– reference: Huertas R, Rubio L, Cagnac O, Garcia-Sanchez MJ, Alche JD, Venema K, Fernandez JA, Rodriguez-Rosales MP (2013) The K+/H+ antiporter LeNHX2 increases salt tolerance by improving K+ homeostasis in transgenic tomato. Plant Cell Environ 36: 2135-2149
– reference: Rivelli AR, James RA, Munns R, Condon AG (2002) Effect of salinity on water relations and growth of wheat genotypes with contrasting sodium uptake. Funct Plant Biol 29: 1065-1074
– reference: Zeng F, Shabala L, Zhou M, Zhang GP, Shabala S (2013) Barley responses to combined waterlogging and salinity stress: separating effects of oxygen deprivation and elemental toxicity. Front Plant Physiol 4: 313
– reference: Thiel G, Weise R (1999) Auxin augments conductance of K+ inward rectifier in maize coleoptile protoplasts. Planta 208: 38-45
– reference: Wery J, Silim SN, Knights EJ, Malhotra RS, Cousin R (1994) Screening techniques and sources of tolerance to extremes of moisture and air temperature in cool season food legumes. Euphytica 73: 73-83
– reference: Mugnai S, Marras AM, Mancuso S (2011) Effect of hypoxic acclimation on anoxia tolerance in Vitis roots: response of metabolic activity and K+ fluxes. Plant Cell Physiol 52: 1107-1116
– reference: Zandonadi DB, Santos MP, Dobbss LB, Olivares FL, Canellas LP, Binzel ML, Okorokova-Façanha AL, Façanha AR (2010) Nitric oxide mediates humic acids-induced root development and plasma membrane H+-ATPase activation. Planta 231: 1025-1036
– reference: Pottosin II, Dobrovinskaya OR, Muñiz J (2001) Conduction of monovalent and divalent cations in the slow vacuolar channel. J Membr Biol 181: 55-65
– reference: Ling TF, Zhang B, Cui WT, Wu MZ, Lin JS, Zhou WT, Huang JJ, Shen WB (2009) Carbon monoxide mitigates salt-induced inhibition of root growth and suppresses programmed cell death in wheat primary roots by inhibiting superoxide anion overproduction. Plant Sci 177: 331-340
– reference: Zhang WH, Ryan PR, Tyerman SD (2001a) Malate-permeable channels and cation channels activated by aluminum in the apical cells of wheat roots. Plant Physiol 125: 1459-1472
– reference: Nam YJ, Phan Tran LS, Kojima M, Sakakibara H, Nishiyama R, Shin R (2012) Regulatory roles of cytokinins and cytokinin signaling in response to potassium deficiency in Arabidopsis. PLoS ONE 7: e47797
– reference: Sen Gupta A, Berkowitz GA (1987) Osmotic adjustment, symplast volume, and non-stomatally mediated water stress inhibition of photosynthesis in wheat. Plant Physiol 85: 1040-1047
– reference: Rodrigo-Moreno A, Andreas-Colas N, Poschenrieder C, Gunse B, Pellarrubia L, Shabala S (2013a) Calcium- and potassium-permeable plasma membrane transporters are activated by copper in Arabidopsis root tips: Linking copper transport with cytosolic hydroxyl radical production. Plant Cell Environ 36: 844-855
– reference: Khabaz-Saberi H, Rengel Z (2010) Aluminum, manganese, and iron tolerance improves performance of wheat genotypes in waterlogged acidic soils. J Plant Nutr Soil Sci 173: 461-468
– reference: Berkowitz G, Zhang X, Mercier R, Leng Q, Lawton M (2000) Co-expression of calcium-dependent protein kinase with the inward rectified guard cell K+ channel KAT1 alters current parameters in Xenopus laevis oocytes. Plant Cell Physiol 41: 785-790
– reference: Lohse G, Hedrich R (1992) Characterization of the plasma membrane proton ATPase from Vicia faba guard cells: modulation by extracellular factors and seasonal changes. Planta 188: 206-214
– reference: Tikhonova LI, Pottosin II, Dietz KJ, Schönknecht G (1997) Fast-activating cation channel in barley mesophyll vacuoles. Inhibition by calcium. Plant J 11: 1059-1070
– reference: Smethurst CF, Garnett T, Shabala S (2005) Nutritional and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging and subsequent recovery. Plant Soil 270: 31-45
– reference: Aurisano N, Bertani A, Mattana M, Reggiani R (1993) Abscisic acid induced stress-like polyamine pattern in wheat seedlings, and its reversal by potassium ions. Physiol Plant 89: 687-692
– reference: Bolwell GP, Wojtaszek P (1997) Mechanisms for the generation of reactive oxygen species in plant defence - a broad perspective. Physiol Mol Plant Pathol 51: 347-366
– reference: Hajibagheri MA, Flowers TJ, Collins JC, Yeo AR (1988) A comparison of the methods of X-ray-microanalysis, compartmental analysis and longitudinal ion profiles to estimate cytoplasmic ion concentrations in two maize varieties. J Exp Bot 39: 279-290
– reference: Ou LJ, Dai XZ, Zhang ZQ, Zou XX (2011) Responses of pepper to waterlogging stress. Photosynthetica 49: 339-345
– reference: Pérez V, Wherrett T, Shabala S, Muñiz J, Dobrovinskaya O, Pottosin I (2008) Homeostatic control of slow vacuolar channels by luminal cations and evaluation of the channel-mediated tonoplast Ca2+ fluxes in situ. J Exp Bot 59: 3845-3855
– reference: Armstrong J, Armstrong W (1999) Phragmites die-back: toxic effects of propionic, butyric and caproic acids in relation to pH. New Phytol 142: 201-217
– reference: Garcia-Mata C, Wang J, Gajdanowicz P, Gonzalez W, Hills A, Donald N, Riedelsberger J, Amtmann A, Dreyer I, Blatt MR (2010) A minimal cysteine motif required to activate the SKOR K+ channel of Arabidopsis by the reactive oxygen species H2O2. J Biol Chem 285: 29286-29294
– reference: Amtmann A, Troufflard S, Armengaud P (2008) The effect of potassium nutrition on pest and disease resistance in plants. Physiol Plant 133: 682-691
– reference: Ranf S, Wünnenberg P, Lee J, Becker D, Dunkel M, Hedrich R, Scheel D, Dietrich P (2008) Loss of the vacuolar cation channel, AtTPC1, does not impair Ca2+ signals induced by abiotic and biotic stresses. Plant J 53: 287-299
– reference: Sutter JU, Sieben C, Hartel A, Eisenach C, Thiel G, Blatt MR (2007) Abscisic acid triggers the endocytosis of the Arabidopsis KAT1 K+ channel and its recycling to the plasma membrane. Curr Biol 17: 1396-1402
– reference: Kim MJ, Ciani S, Schachtman DP (2010a) A peroxidase contributes to ROS production during Arabidopsis root response to potassium deficiency. Mol Plant 3: 420-427
– reference: Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI (2010) Early abscisic acid signal transduction mehanisms: newly discovered components and newly emerging questions. Genes Dev 24: 1695-1708
– reference: Liu HY, Sun WN, Su WA, Tang ZC (2006) Co-regulation of water channels and potassium channels in rice. Physiol Plant 128: 58-69
– volume: 462
  start-page: 176
  year: 2007
  end-page: 188
  article-title: Cell shrinkage and monovalent cation fluxes: role in apoptosis
  publication-title: Arch Biochem Biophys
– volume: 100
  start-page: 11116
  year: 2003
  end-page: 11121
  article-title: Nitric oxide regulates K and Cl channels in guard cells through a subset of abscisic acid‐evoked signaling pathways
  publication-title: Proc Natl Acad Sci USA
– volume: 31
  start-page: 131
  year: 2011
  end-page: 138
  article-title: Short‐term effects of potassium fertilization on the hydraulic conductance of L
  publication-title: Tree Physiol
– volume: 230
  start-page: 293
  year: 2009
  end-page: 307
  article-title: Ethylene and nitric oxide are involved in maintaining ion homeostasis in callus under salt stress
  publication-title: Planta
– volume: 139
  start-page: 358
  year: 2010
  end-page: 374
  article-title: tolerates combined salinity and waterlogging: maintaining O transport to roots and expression of an NHX1‐like gene contribute to regulation of Na transport
  publication-title: Physiol Plant
– volume: 37
  start-page: 604
  year: 2010
  end-page: 612
  article-title: Evolution of halophytes: multiple origins of salt tolerance in land plants
  publication-title: Funct Plant Biol
– volume: 29
  start-page: 329
  year: 2010
  end-page: 359
  article-title: Halophyte improvement for a salinized world
  publication-title: Crit Rev Plant Sci
– volume: 48
  start-page: 931
  year: 2010
  end-page: 935
  article-title: A novel hydrogen sulphide donor causes stomatal opening and reduces nitric oxide accumulation
  publication-title: Plant Physiol Biochem
– volume: 129
  start-page: 290
  year: 2002
  end-page: 299
  article-title: Turgor regulation in osmotically stressed epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements
  publication-title: Plant Physiol
– volume: 205
  start-page: 103
  year: 2005
  end-page: 111
  article-title: Regulation of the slow vacuolar channel by luminal potassium: role of surface charge
  publication-title: J Membr Biol
– volume: 57
  start-page: 151
  year: 2011
  end-page: 199
  article-title: Ion transport in halophytes
  publication-title: Adv Bot Res
– volume: 208
  start-page: 38
  year: 1999
  end-page: 45
  article-title: Auxin augments conductance of K inward rectifier in maize coleoptile protoplasts
  publication-title: Planta
– volume: 116
  start-page: 81
  year: 2003
  end-page: 88
  article-title: Free oxygen radicals regulate plasma membrane Ca ‐ and K ‐ permeable channels in plant root cells
  publication-title: J Cell Sci
– volume: 39
  start-page: 389
  year: 2001
  end-page: 394
  article-title: Growth and photosynthetic characteristics in pearl millet under water stress and different potassium supply
  publication-title: Photosynthetica
– volume: 57
  start-page: 471
  year: 2006
  end-page: 478
  article-title: Mechanisms for nitric oxide synthesis in plants
  publication-title: J Exp Bot
– volume: 85
  start-page: 1040
  year: 1987
  end-page: 1047
  article-title: Osmotic adjustment, symplast volume, and non‐stomatally mediated water stress inhibition of photosynthesis in wheat
  publication-title: Plant Physiol
– volume: 41
  start-page: 785
  year: 2000
  end-page: 790
  article-title: Co‐expression of calcium‐dependent protein kinase with the inward rectified guard cell K channel KAT1 alters current parameters in oocytes
  publication-title: Plant Cell Physiol
– volume: 191
  start-page: 302
  year: 1993
  end-page: 307
  article-title: Energization of potassium uptake in
  publication-title: Planta
– volume: 185
  start-page: 201
  year: 2000
  end-page: 207
  article-title: Effect of soil moisture and potassium fertilizer on shoot water potential, photosynthesis and partitioning of carbon in mungbean and cowpea
  publication-title: J Agron Crop Sci
– volume: 18
  start-page: 13
  year: 1999
  end-page: 22
  article-title: Induction of RAB18 gene expression and activation of K outward rectifying channels depend on an extracellular perception of ABA in suspension cells
  publication-title: Plant J
– volume: 5
  start-page: e13935
  year: 2010
  article-title: The ABA‐activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14‐3‐3 binding site involved in its turnover
  publication-title: PLoS One
– volume: 29
  start-page: 1107
  year: 2006
  end-page: 1121
  article-title: Microelectrode ion and O fluxes measurements reveal differential sensitivity of barley root tissues to hypoxia
  publication-title: Plant Cell Environ
– volume: 61
  start-page: 561
  year: 2010b
  end-page: 591
  article-title: Guard cell signal transduction network: advances in understanding abscisic acid, CO , and Ca signaling
  publication-title: Annu Rev Plant Biol
– volume: 30
  start-page: 628
  year: 2010
  end-page: 635
  article-title: Changes of xylem sap ionic content and stem hydraulics in response to irradiance in
  publication-title: Tree Physiol
– volume: 424
  start-page: 439
  year: 2009
  end-page: 448
  article-title: Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA‐activated SnRK2/OST1/SnRK2.6 protein kinase
  publication-title: Biochem J
– volume: 279
  start-page: 2922
  year: 2004
  end-page: 2926
  article-title: The protein kinase SOS2 activates the H /Ca antiporters CAX1 to integrate calcium transport and salt tolerance
  publication-title: J Biol Chem
– volume: 55
  start-page: 373
  year: 2004
  end-page: 399
  article-title: Reactive oxygen species: metabolism, oxidative stress, and signal transduction
  publication-title: Annu Rev Plant Biol
– volume: 145
  start-page: 1061
  year: 2007
  end-page: 1072
  article-title: Polyamines improve K /Na homeostasis in barley seedlings by regulating root ion channel activities
  publication-title: Plant Physiol
– volume: 28
  start-page: 89
  year: 1977
  end-page: 121
  article-title: Mechanism of salt tolerance in halophytes
  publication-title: Annu Rev Plant Physiol Plant Mol Biol
– volume: 34
  start-page: 221
  year: 2007
  end-page: 227
  article-title: Amelioration of detrimental effects of waterlogging by foliar nutrient sprays in barley
  publication-title: Funct Plant Biol
– volume: 40
  start-page: 523
  year: 2004
  end-page: 535
  article-title: Potassium carrier TRH1 is required for auxin transport in roots
  publication-title: Plant J
– volume: 285
  start-page: 1256
  year: 1999
  end-page: 1258
  article-title: Salt tolerance conferred by overexpression of a vacuolar Na /H antiport in
  publication-title: Science
– volume: 100
  start-page: 5549
  year: 2003
  end-page: 5554
  article-title: The outward K channel GORK is involved in regulation of stomatal movements and plant transpiration
  publication-title: Proc Natl Acad Sci USA
– volume: 39
  start-page: 157
  year: 1999
  end-page: 171
  article-title: Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo
  publication-title: Adv Enzyme Reg
– volume: 112
  start-page: 19
  year: 2013
  end-page: 31
  article-title: Overexpression of a poplar two‐pore K channel enhances salinity tolerance in tobacco cells
  publication-title: Plant Cell Tissue Organ Cult
– volume: 291
  start-page: 1059
  year: 2001
  end-page: 1062
  article-title: Hydrogel control of xylem hydraulic resistance in plants
  publication-title: Science
– volume: 55
  start-page: 527
  year: 2013
  end-page: 536
  article-title: Nitric oxide blocks blue light‐induced K influx by elevating the cytosolic Ca concentration in L. guard cells
  publication-title: J Integr Plant Biol
– volume: 12
  start-page: 250
  year: 2009
  end-page: 258
  article-title: Physiological functions of mineral macronutrients
  publication-title: Curr Opin Plant Biol
– volume: 59
  start-page: 2697
  year: 2008
  end-page: 2706
  article-title: A root's ability to retain K correlates with salt tolerance in wheat
  publication-title: J Exp Bot
– volume: 319
  start-page: 1241
  year: 2008
  end-page: 1244
  article-title: Local positive feedback regulation determines cell shape in root hair cells
  publication-title: Science
– volume: 36
  start-page: 607
  year: 2013
  end-page: 616
  article-title: Exogenous application of potassium nitrate to alleviate salt stress in rice seedlings
  publication-title: J Plant Nutr
– volume: 188
  start-page: 977
  year: 2010
  end-page: 984
  article-title: Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling
  publication-title: New Phytol
– volume: 581
  start-page: 2204
  year: 2007
  end-page: 2214
  article-title: Plant proton pumps
  publication-title: FEBS Lett
– volume: 32
  start-page: 267
  year: 1994
  end-page: 276
  article-title: Effect of hypoxia on ion uptake by nodal and seminal wheat roots
  publication-title: Plant Physiol Biochem
– volume: 173
  start-page: 461
  year: 2010
  end-page: 468
  article-title: Aluminum, manganese, and iron tolerance improves performance of wheat genotypes in waterlogged acidic soils
  publication-title: J Plant Nutr Soil Sci
– volume: 121
  start-page: 267
  year: 2008
  end-page: 280
  article-title: Roles of reactive oxygen species in interactions between plants and pathogens
  publication-title: Eur J Plant Pathol
– volume: 77
  start-page: 17
  year: 1996
  end-page: 24
  article-title: Pressure‐flow relationships, xylem solutes and root hydraulic conductance in flooded tomato plants
  publication-title: Ann Bot
– year: 1995
– volume: 14
  start-page: 438
  year: 2011
  end-page: 446
  article-title: Genetic behaviour of physiological traits conferring cytosolic K /Na homeostasis in wheat
  publication-title: Plant Biol
– volume: 133
  start-page: 637
  year: 2008
  end-page: 650
  article-title: Cellular mechanisms of potassium transport in plants
  publication-title: Physiol Plant
– volume: 62
  start-page: 550
  year: 2011
  end-page: 555
  article-title: Wheat genotypes differ in potassium accumulation and osmotic adjustment under drought stress
  publication-title: Crop Pasture Sci
– volume: 335
  start-page: 155
  year: 2010
  end-page: 180
  article-title: Research on potassium in agriculture: needs and prospects
  publication-title: Plant Soil
– volume: 167
  start-page: 665
  year: 2005
  end-page: 691
  article-title: In the light of stomata opening: new insights into ‘the Watergate’
  publication-title: New Phytol
– volume: 224
  start-page: 1154
  year: 2006
  end-page: 1162
  article-title: Heme oxygenase up‐regulation in ultraviolet‐B irradiated soybean plants involves reactive oxygen species
  publication-title: Planta
– volume: 136
  start-page: 2556
  year: 2004
  end-page: 2576
  article-title: The potassium‐dependent transcriptome of reveals a prominent role of jasmonic acid in nutrient signaling
  publication-title: Plant Physiol
– volume: 53
  start-page: 221
  year: 2013
  end-page: 231
  article-title: Effects of cytokinin and potassium on stomatal and photosynthetic recovery of Kentucky bluegrass from drought stress
  publication-title: Crop Sci
– volume: 1
  start-page: 491
  year: 1974
  end-page: 501
  article-title: Effects of sodium and potassium on starch synthesis in leaves
  publication-title: Aust J Plant Physiol
– volume: 554
  start-page: 119
  year: 2003
  end-page: 126
  article-title: Regulation of the ABA‐sensitive potassium channel gene GORK in response to water stress
  publication-title: FEBS Lett
– volume: 50
  start-page: 873
  year: 1999a
  end-page: 876
  article-title: Selectivity of the fast activating vacuolar cation channel
  publication-title: J Exp Bot
– volume: 4
  start-page: 313
  year: 2013
  article-title: Barley responses to combined waterlogging and salinity stress: separating effects of oxygen deprivation and elemental toxicity
  publication-title: Front Plant Physiol
– volume: 282
  start-page: 1183
  year: 2007
  end-page: 1192
  article-title: Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes
  publication-title: J Biol Chem
– volume: 42
  start-page: 411
  year: 2012
  end-page: 426
  article-title: Polyamine catabolism: target for antiproliferative therapies in animals and stress tolerance strategies in plants
  publication-title: Amino Acids
– volume: 17
  start-page: 95
  year: 2012
  end-page: 105
  article-title: Modulation of ion channels by hydrogen sulfide
  publication-title: Antioxid Redox Signal
– volume: 53
  start-page: 287
  year: 2008
  end-page: 299
  article-title: Loss of the vacuolar cation channel, AtTPC1, does not impair Ca signals induced by abiotic and biotic stresses
  publication-title: Plant J
– volume: 281
  start-page: 38285
  year: 2006
  end-page: 38292
  article-title: Potassium as an intrinsic uncoupler of the plasma membrane H ‐ATPase
  publication-title: J Biol Chem
– volume: 68
  start-page: 424
  year: 2011
  end-page: 432
  article-title: Differential contribution of EF‐hands to the Ca ‐dependent activation in the plant two‐pore channel TPC1
  publication-title: Plant J
– volume: 229
  start-page: 757
  year: 2009
  end-page: 765
  article-title: Nitric oxide production occurs downstream of reactive oxygen species in guard cells during stomatal closure induced by chitosan in abaxial epidermis of
  publication-title: Planta
– volume: 25
  start-page: 1104
  year: 1974
  end-page: 1113
  article-title: Influence of phenolic acids upon ion uptake. 3. Inhibition of potassium absorption
  publication-title: J Exp Bot
– volume: 3
  start-page: 420
  year: 2010a
  end-page: 427
  article-title: A peroxidase contributes to ROS production during root response to potassium deficiency
  publication-title: Mol Plant
– volume: 181
  start-page: 593
  year: 2011
  end-page: 603
  article-title: Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses
  publication-title: Plant Sci
– volume: 35
  start-page: 2015
  year: 2013
  end-page: 2036
  article-title: Plant polyamines in abiotic stress responses
  publication-title: Acta Physiol Plant
– volume: 16
  start-page: 1792
  year: 2002
  end-page: 1798
  article-title: Two's company, three's a crowd: can H S be the third endogenous gaseous transmitter?
  publication-title: FASEB J
– volume: 7
  start-page: 1084
  year: 2012
  end-page: 1087
  article-title: Synergism between polyamines and ROS in the induction of Ca and K fluxes in roots
  publication-title: Plant Signal Behav
– volume: 61
  start-page: 18
  year: 2012
  end-page: 23
  article-title: Salt‐sensitive and salt‐tolerant barley varieties differ in the extent of potentiation of the ROS‐induced K efflux by polyamines
  publication-title: Plant Physiol Biochem
– volume: 104
  start-page: 10726
  year: 2007
  end-page: 10731
  article-title: The two‐pore channel TPK1 gene encodes the vacuolar K conductance and plays a role in K homeostasis
  publication-title: Proc Natl Acad Sci USA
– volume: 67
  start-page: 105
  year: 2011
  end-page: 118
  article-title: Quantitative transcriptomic analysis of abscisic acid‐induced and reactive oxygen species‐dependent expression changes and proteomic profiling in suspension cells
  publication-title: Plant J
– volume: 42
  start-page: 686
  year: 2001
  end-page: 693
  article-title: MIP genes are down‐regulated under drought stress in
  publication-title: Plant Cell Physiol
– volume: 31
  start-page: 1864
  year: 2008
  end-page: 1881
  article-title: Carbon monoxide enhances salt tolerance by nitric oxide‐mediated maintenance of ion homeostasis and up‐regulation of antioxidant defense in wheat seedling roots
  publication-title: Plant Cell Environ
– volume: 48
  start-page: 451
  year: 1997
  end-page: 458
  article-title: Regulation of K absorption in plant root cells by external K : interplay of different plasma membrane K transporters
  publication-title: J Exp Bot
– volume: 125
  start-page: 1347
  year: 2006
  end-page: 1360
  article-title: A protein kinase, interacting with two calcineurin B‐like proteins, regulates K transporter AKT1 in
  publication-title: Cell
– volume: 84
  start-page: 123
  year: 1999
  end-page: 133
  article-title: K nutrition and Na toxicity: The basis of cellular K /Na ratios
  publication-title: Ann Bot
– volume: 134
  start-page: 308
  year: 1989
  end-page: 315
  article-title: High light‐intensity enhances chlorosis and necrosis in leaves of zinc, potassium, and magnesium deficient bean ( ) plants
  publication-title: J Plant Physiol
– volume: 89
  start-page: 19
  year: 2013
  end-page: 27
  article-title: Effects of flooding on photosynthesis and root respiration in saltcedar ( ), an invasive riparian shrub
  publication-title: Environ Exp Bot
– volume: 42
  start-page: 28
  year: 2001
  end-page: 36
  article-title: Onion root water transport sensitive to water channel and K channel inhibitors
  publication-title: Plant Cell Physiol
– volume: 50
  start-page: 843
  year: 2003
  end-page: 847
  article-title: Long‐term waterlogging: nutrient, gas exchange, photochemical and pigment characteristics of saplings
  publication-title: Russ J Plant Physiol
– volume: 142
  start-page: 201
  year: 1999
  end-page: 217
  article-title: Phragmites die‐back: toxic effects of propionic, butyric and caproic acids in relation to pH
  publication-title: New Phytol
– volume: 583
  start-page: 921
  year: 2009
  end-page: 926
  article-title: SV channels dominate the vacuolar Ca release during intracellular signaling
  publication-title: FEBS Lett
– volume: 188
  start-page: 206
  year: 1992
  end-page: 214
  article-title: Characterization of the plasma membrane proton ATPase from guard cells: modulation by extracellular factors and seasonal changes
  publication-title: Planta
– volume: 8
  start-page: e23421
  year: 2013b
  end-page: e23425
  article-title: Transition metals: a double edge sword in ROS generation and signaling
  publication-title: Plant Signal Behav
– volume: 29
  start-page: 1065
  year: 2002
  end-page: 1074
  article-title: Effect of salinity on water relations and growth of wheat genotypes with contrasting sodium uptake
  publication-title: Funct Plant Biol
– volume: 168
  start-page: 521
  year: 2005
  end-page: 530
  article-title: The role of potassium in alleviating detrimental effects of abiotic stresses in plants
  publication-title: J Plant Nutr Soil Sci‐Z Pflanzenernahr Bodenkd
– volume: 133
  start-page: 651
  year: 2008
  end-page: 669
  article-title: Potassium transport and plant salt tolerance
  publication-title: Physiol Plant
– volume: 1823
  start-page: 398
  year: 2012
  end-page: 405
  article-title: Protein phosphorylation is a prerequisite for the Ca ‐dependent activation of NADPH oxidases and may function as a trigger for the positive feedback regulation of Ca and reactive oxygen species
  publication-title: Biochim Biophys Acta
– volume: 191
  start-page: 84
  year: 2011
  end-page: 91
  article-title: Vacuolar two‐pore K channels act as vacuolar osmosensors
  publication-title: New Phytol
– volume: 134
  start-page: 598
  year: 2008
  end-page: 608
  article-title: Relative contribution of HAK5 and AKT1 to K uptake in the high‐ affinity range of concentrations
  publication-title: Physiol Plant
– volume: 16
  start-page: 300
  year: 2011
  end-page: 309
  article-title: ROS signaling: the new wave?
  publication-title: Trends Plant Sci
– volume: 54
  start-page: 657
  year: 2003
  end-page: 661
  article-title: Potassium activities in cell compartments of salt‐grown barley leaves
  publication-title: J Exp Bot
– volume: 7
  start-page: e47797
  year: 2012
  article-title: Regulatory roles of cytokinins and cytokinin signaling in response to potassium deficiency in
  publication-title: PLoS ONE
– volume: 48
  start-page: 251
  year: 1997
  end-page: 275
  article-title: The oxidative burst in plant disease resistance
  publication-title: Annu Rev Plant Physiol Plant Mol Biol
– volume: 434
  start-page: 404
  year: 2005
  end-page: 408
  article-title: The vacuolar Ca ‐activated channel TPC1 regulates germination and stomatal movement
  publication-title: Nature
– volume: 29
  start-page: 185
  year: 2009
  end-page: 212
  article-title: Plant drought stress: effects, mechanisms and management
  publication-title: Agron Sustain Develop
– volume: 115
  start-page: 1707
  year: 1997
  end-page: 1719
  article-title: Properties of two outward‐rectifying channels in root xylem parenchyma cells suggest a role in KCl homeostasis and long‐distance signaling
  publication-title: Plant Physiol
– volume: 56
  start-page: 2365
  year: 2005
  end-page: 2378
  article-title: Salt tolerance in wild species is associated with restricted entry of Na and Cl into the shoots
  publication-title: J Exp Bot
– volume: 106
  start-page: 21425
  year: 2009
  end-page: 21430
  article-title: Activity of guard cell anion channel SLAC1 is controlled by drought‐stress signaling kinase‐phosphatase pair
  publication-title: Proc Natl Acad Sci USA
– volume: 73
  start-page: 73
  year: 1994
  end-page: 83
  article-title: Screening techniques and sources of tolerance to extremes of moisture and air temperature in cool season food legumes
  publication-title: Euphytica
– volume: 62
  start-page: 39
  year: 2011
  end-page: 57
  article-title: Ion transport in seminal and adventitious roots of cereals during O deficiency
  publication-title: J Exp Bot
– volume: 23
  start-page: 2696
  year: 2011
  end-page: 2707
  article-title: A novel calcium binding site in the slow vacuolar cation channel TPC1 senses luminal calcium levels
  publication-title: Plant Cell
– volume: 191
  start-page: 17
  year: 2009
  end-page: 31
  article-title: Biochemistry of soluble guanylate cyclase
  publication-title: Handb Exp Pharmacol
– volume: 125
  start-page: 1459
  year: 2001a
  end-page: 1472
  article-title: Malate‐permeable channels and cation channels activated by aluminum in the apical cells of wheat roots
  publication-title: Plant Physiol
– volume: 62
  start-page: 2189
  year: 2011
  end-page: 2203
  article-title: Additive effects of Na and Cl ions on barley growth under salinity stress
  publication-title: J Exp Bot
– volume: 27
  start-page: 613
  year: 2004
  end-page: 626
  article-title: Effect of oxygen deficiency on mineral nutrition of excised tomato roots
  publication-title: J Plant Nutr
– volume: 24
  start-page: 1127
  year: 2012
  end-page: 1142
  article-title: Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in
  publication-title: Plant Cell
– volume: 157
  start-page: 2167
  year: 2011
  end-page: 2180
  article-title: Polyamines interact with hydroxyl radicals in activating Ca and K transport across the root epidermal plasma membranes
  publication-title: Plant Physiol
– volume: 372
  start-page: 340
  year: 2008
  end-page: 348
  article-title: Chlorella viruses evoke a rapid release of K from host cells during the early phase of infection
  publication-title: Virology
– volume: 128
  start-page: 58
  year: 2006
  end-page: 69
  article-title: Co‐regulation of water channels and potassium channels in rice
  publication-title: Physiol Plant
– volume: 25
  start-page: 609
  year: 2013
  end-page: 624
  article-title: Osmotic stress responses and plant growth controlled by potassium transporters in
  publication-title: Plant Cell
– volume: 54
  start-page: 663
  year: 2003
  end-page: 667
  article-title: Potassium‐selective channel in the red beet vacuolar membrane
  publication-title: J Exp Bot
– volume: 124
  start-page: 1315
  year: 2000
  end-page: 1325
  article-title: Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements
  publication-title: Plant Physiol
– volume: 58
  start-page: 4245
  year: 2007a
  end-page: 4255
  article-title: Compatible solute accumulation and stress‐mitigating effects in barley genotypes contrasting in their salt tolerance
  publication-title: J Exp Bot
– volume: 280
  start-page: 918
  year: 1998
  end-page: 921
  article-title: A role for the AKT1 potassium channel in plant nutrition
  publication-title: Science
– volume: 190
  start-page: 289
  year: 2011
  end-page: 298
  article-title: Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance
  publication-title: New Phytol
– volume: 41
  start-page: 43
  year: 2005
  end-page: 55
  article-title: Abscisic acid and 14‐3‐3 proteins control K channel activity in barley embryonic root
  publication-title: Plant J
– volume: 21
  start-page: 1116
  year: 2011
  end-page: 1130
  article-title: Calcium‐dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex
  publication-title: Cell Res
– volume: 145
  start-page: 1714
  year: 2007b
  end-page: 1725
  article-title: Root plasma membrane transporters controlling K /Na homeostasis in salt stressed barley
  publication-title: Plant Physiol
– volume: 62
  start-page: 235
  year: 2011b
  end-page: 248
  article-title: Haem oxygenase delays programmed cell death in wheat aleurone layers by modulation of hydrogen peroxide metabolism
  publication-title: J Exp Bot
– volume: 55
  start-page: 895
  year: 2004
  end-page: 906
  article-title: Growth and physiological responses of six barley genotypes to waterlogging and subsequent recovery
  publication-title: Aust J Agric Res
– volume: 161
  start-page: 266
  year: 2013
  end-page: 277
  article-title: A protein kinase CIPK9 interacts with calcium sensor CBL3 and regulates K homeostasis under low‐K stress in
  publication-title: Plant Physiol
– volume: 52
  start-page: 1107
  year: 2011
  end-page: 1116
  article-title: Effect of hypoxic acclimation on anoxia tolerance in roots: response of metabolic activity and K fluxes
  publication-title: Plant Cell Physiol
– volume: 168
  start-page: 541
  year: 2005
  end-page: 549
  article-title: Drought and salinity: A comparison of their effects on mineral nutrition of plants
  publication-title: J Plant Nutr Soil Sci‐Z Pflanzenernahr Bodenkd
– volume: 89
  start-page: 687
  year: 1993
  end-page: 692
  article-title: Abscisic acid induced stress‐like polyamine pattern in wheat seedlings, and its reversal by potassium ions
  publication-title: Physiol Plant
– volume: 7
  start-page: 1333
  year: 1995
  end-page: 1342
  article-title: Cytosolic concentration of Ca regulates the plasma membrane H ‐ATPase in guard cells of fava bean
  publication-title: Plant Cell
– volume: 125
  start-page: 406
  year: 2001
  end-page: 422
  article-title: Quantitative trait loci for component physiological traits determining salt tolerance in rice
  publication-title: Plant Physiol
– volume: 3
  start-page: 381
  year: 2008
  end-page: 382
  article-title: Carbon monoxide. A novel and pivotal signal molecule in plants?
  publication-title: Plant Signal Behav
– volume: 112
  start-page: 1209
  year: 2013
  end-page: 1221
  article-title: Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops
  publication-title: Ann Bot
– volume: 184
  start-page: 29
  year: 2012
  end-page: 35
  article-title: Nitric oxide inhibits blue light‐induced stomatal opening by regulating the K influx in guard cells
  publication-title: Plant Sci
– volume: 64
  start-page: 471
  year: 2013
  end-page: 481
  article-title: Haem oxygenase modifies salinity tolerance in by controlling K retention via regulation of the plasma membrane H ‐ATPase and by altering SOS1 transcript levels in roots
  publication-title: J Exp Bot
– volume: 13
  start-page: 157
  year: 2010
  end-page: 192
  article-title: Interactions of multiple gas‐transducing systems: hallmarks and uncertainties of CO, NO, and H S gas biology
  publication-title: Antioxid Redox Signal
– volume: 12
  start-page: 56
  year: 2010
  end-page: 63
  article-title: Roles of tandem‐pore K channels in plants – a puzzle still to be solved
  publication-title: Plant Biol
– volume: 185
  start-page: 527
  year: 1991
  end-page: 537
  article-title: Auxin induces exocytosis and the rapid synthesis of a high‐turnover pool of plasma‐membrane proton ATPase
  publication-title: Planta
– volume: 466
  start-page: 351
  year: 2000
  end-page: 354
  article-title: pH control of the plant outwardly‐rectifying potassium channel SKOR
  publication-title: FEBS Lett
– volume: 50
  start-page: 1547
  year: 1999b
  end-page: 1552
  article-title: Cytoplasmic magnesium regulates the fast activating vacuolar cation channel
  publication-title: J Exp Bot
– volume: 28
  start-page: 552
  year: 1999b
  end-page: 563
  article-title: Asymmetric block of the plant vacuolar Ca ‐permeable channel by organic cations
  publication-title: Eur Biophys J
– volume: 59
  start-page: 815
  year: 2008
  end-page: 825
  article-title: Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid‐induced stomatal closure in
  publication-title: J Exp Bot
– volume: 69
  start-page: 361
  year: 2009
  end-page: 373
  article-title: Plant hormones and nutrient signaling
  publication-title: Plant Mol Biol
– volume: 35
  start-page: 640
  year: 2008
  end-page: 650
  article-title: Multiple traits associated with salt tolerance in lucerne: revealing the underlying cellular mechanisms
  publication-title: Funct Plant Biol
– volume: 179
  start-page: 366
  year: 2008
  end-page: 377
  article-title: Overexpression of the tomato K /H antiporter LeNHX2 confers salt tolerance by improving potassium compartmentalization
  publication-title: New Phytol
– volume: 85
  start-page: 655
  year: 1987
  end-page: 661
  article-title: Modulation of water‐stress effects on photosynthesis by altered leaf K
  publication-title: Plant Physiol
– volume: 92
  start-page: 448
  year: 1996
  end-page: 454
  article-title: Mapping of the K /Na discrimination locus Kna1 in wheat
  publication-title: Theor Appl Genet
– volume: 47
  start-page: 401
  year: 2006
  end-page: 409
  article-title: Adaptative response of root to anoxia
  publication-title: Plant Cell Physiol
– volume: 270
  start-page: 31
  year: 2005
  end-page: 45
  article-title: Nutritional and chlorophyll fluorescence responses of lucerne ( ) to waterlogging and subsequent recovery
  publication-title: Plant Soil
– volume: 95
  start-page: 1107
  year: 2010
  end-page: 1130
  article-title: Sharpey‐Schafer lecture. Gas channels
  publication-title: J Exp Physiol
– volume: 181
  start-page: 55
  year: 2001
  end-page: 65
  article-title: Conduction of monovalent and divalent cations in the slow vacuolar channel
  publication-title: J Membr Biol
– volume: 31
  start-page: 828
  year: 2008
  end-page: 838
  article-title: Waterlogging effects on plant nutrient concentrations in soybean
  publication-title: J Plant Nutr
– volume: 17
  start-page: 1396
  year: 2007
  end-page: 1402
  article-title: Abscisic acid triggers the endocytosis of the KAT1 K channel and its recycling to the plasma membrane
  publication-title: Curr Biol
– volume: 54
  start-page: 575
  year: 2003
  end-page: 603
  article-title: Molecular mechanisms and regulation of K transport in higher plants
  publication-title: Annu Rev Plant Biol
– volume: 58
  start-page: 1559
  year: 2007
  end-page: 1569
  article-title: Vacuolar calcium channels
  publication-title: J Exp Bot
– volume: 6
  start-page: 669
  year: 1994
  end-page: 683
  article-title: Calcium‐activated K channels and calcium‐induced calcium‐release by slow vacuolar ion channels in guard‐cell vacuoles implicated in the control of stomatal closure
  publication-title: Plant Cell
– volume: 51
  start-page: 1585
  year: 2000
  end-page: 1594
  article-title: The effects of ABA on channel‐mediated K transport across higher plant roots
  publication-title: Journal of Experimental Botany
– volume: 61
  start-page: 495
  year: 2010
  end-page: 506
  article-title: The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato
  publication-title: Plant J
– volume: 231
  start-page: 1025
  year: 2010
  end-page: 1036
  article-title: Nitric oxide mediates humic acids‐induced root development and plasma membrane H ‐ATPase activation
  publication-title: Planta
– volume: 3
  start-page: 401
  year: 2008a
  end-page: 403
  article-title: Na ‐K transport in roots under salt stress
  publication-title: Plant Signal Behav
– volume: 11
  start-page: 195
  year: 2001b
  end-page: 202
  article-title: K channels inhibited by hydrogen peroxide mediate abscisic acid signaling in guard cells
  publication-title: Cell Res
– volume: 581
  start-page: 2247
  year: 2007
  end-page: 2254
  article-title: Na transport in plants
  publication-title: FEBS Lett
– volume: 36
  start-page: 2135
  year: 2013
  end-page: 2149
  article-title: The K /H antiporter LeNHX2 increases salt tolerance by improving K homeostasis in transgenic tomato
  publication-title: Plant Cell Environ
– volume: 167
  start-page: 1371
  year: 2010
  end-page: 1379
  article-title: Heme oxygenase/carbon monoxide system participates in regulating wheat seed germination under osmotic stress involving the nitric oxide pathway
  publication-title: J Plant Physiol
– volume: 232
  start-page: 807
  year: 2010
  end-page: 815
  article-title: Non‐invasive microelectrode potassium flux measurements as a potential tool for early recognition of virus–host compatibility in plants
  publication-title: Planta
– volume: 96
  start-page: 519
  year: 2005
  end-page: 532
  article-title: pH regulation in anoxic plants
  publication-title: Ann Bot
– volume: 219
  start-page: 1057
  year: 2004
  end-page: 1070
  article-title: Mechanism of luminal Ca and Mg action on the vacuolar slowly activating channels
  publication-title: Planta
– volume: 38
  start-page: 606
  year: 2011
  end-page: 613
  article-title: Ion‐mediated compensation for drought‐induced loss of xylem hydraulic conductivity in field‐growing plants of
  publication-title: Funct Plant Biol
– volume: 167
  start-page: 127
  year: 1999a
  end-page: 140
  article-title: Inhibition of vacuolar ion channels by polyamines
  publication-title: J Membr Biol
– volume: 37
  start-page: 589
  year: 2014
  end-page: 600
  article-title: Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K ‐permeable channels to reactive oxygen species: physiological traits that differentiate salinity tolerance between pea and barley
  publication-title: Plant Cell Environ
– volume: 141
  start-page: 1653
  year: 2006
  end-page: 1665
  article-title: Extracellular Ca ameliorates NaCl‐induced K loss from root and leaf cells by controlling plasma membrane K ‐permeable channels
  publication-title: Plant Physiol
– volume: 19
  start-page: 1617
  year: 2007
  end-page: 1634
  article-title: protein kinase PKS5 inhibits the plasma membrane H ‐ATPase by preventing interaction with 14‐3‐3 protein
  publication-title: Plant Cell
– start-page: 141
  year: 1999
  end-page: 168
– volume: 12
  start-page: 161
  year: 2012
  article-title: Transcriptome analysis of rice root responses to potassium deficiency
  publication-title: BMC Plant Biol
– volume: 60
  start-page: 709
  year: 2009
  end-page: 711
  article-title: Salinity and programmed cell death: unravelling mechanisms for ion specific signalling
  publication-title: J Exp Bot
– volume: 61
  start-page: 291
  year: 2011
  end-page: 304
  article-title: Improving agricultural water use efficiency by nutrient management in crop plants
  publication-title: Acta Agric Scand B Soil Plant Sci
– volume: 406
  start-page: 731
  year: 2000
  end-page: 734
  article-title: Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells
  publication-title: Nature
– volume: 30
  start-page: 507
  year: 2003
  end-page: 514
  article-title: Effect of calcium on root development and root ion fluxes in salinised barley seedlings
  publication-title: Funct Plant Biol
– start-page: 57
  year: 2007
  end-page: 78
– volume: 19
  start-page: 765
  year: 2001
  end-page: 768
  article-title: Transgenic salt‐tolerant tomato plants accumulate salt in foliage but not in fruit
  publication-title: Nat Biotechnol
– volume: 226
  start-page: 1155
  year: 2007
  end-page: 1163
  article-title: The effect of nitric oxide on heme oxygenase gene expression in soybean leaves
  publication-title: Planta
– volume: 283
  start-page: 1911
  year: 2008
  end-page: 1920
  article-title: Characterization of a tobacco TPK‐ type K channel as a novel tonoplast K channel using yeast tonoplasts
  publication-title: J Biol Chem
– volume: 153
  start-page: 225
  year: 2002
  end-page: 236
  article-title: Short‐term waterlogging has long‐term effects on the growth and physiology of wheat
  publication-title: New Phytol
– volume: 64
  start-page: 451
  year: 2013
  end-page: 476
  article-title: Potassium transport and signaling in higher plants
  publication-title: Annu Rev Plant Biol
– volume: 28
  start-page: 1230
  year: 2005
  end-page: 1246
  article-title: Screening plants for salt tolerance by measuring K flux: a case study for barley
  publication-title: Plant Cell Environ
– volume: 94
  start-page: 647
  year: 1998
  end-page: 655
  article-title: Identification and disruption of a plant shaker‐like outward channel involved in K release into the xylem sap
  publication-title: Cell
– volume: 51
  start-page: 347
  year: 1997
  end-page: 366
  article-title: Mechanisms for the generation of reactive oxygen species in plant defence – a broad perspective
  publication-title: Physiol Mol Plant Pathol
– volume: 215
  start-page: 1022
  year: 2002
  end-page: 1030
  article-title: Involvement of plasma‐membrane NADPH oxidase in abscisic acid‐ and water stress‐induced antioxidant defense in leaves of maize seedlings
  publication-title: Planta
– volume: 24
  start-page: 139
  year: 2000
  end-page: 145
  article-title: Differential expression and regulation of K channels in the maize coleoptile: molecular and biophysical analysis of cells isolated from cortex and vasculature
  publication-title: Plant J
– volume: 111
  start-page: 1077
  year: 1996
  end-page: 1083
  article-title: Regulation of (L.) Heynh arginine decarboxylase by potassium deficiency stress
  publication-title: Plant Physiol
– volume: 24
  start-page: 1522
  year: 2012
  end-page: 1533
  article-title: annexin1 mediates the radical‐activated plasma membrane Ca ‐and K ‐permeable conductance in root cells
  publication-title: Plant Cell
– volume: 59
  start-page: 165
  year: 2008
  end-page: 176
  article-title: Nitric oxide, stomatal closure and abiotic stress
  publication-title: J Exp Bot
– volume: 97
  start-page: 1
  year: 1984
  end-page: 13
  article-title: A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell
  publication-title: New Phytol
– volume: 177
  start-page: 331
  year: 2009
  end-page: 340
  article-title: Carbon monoxide mitigates salt‐induced inhibition of root growth and suppresses programmed cell death in wheat primary roots by inhibiting superoxide anion overproduction
  publication-title: Plant Sci
– volume: 21
  start-page: 607
  year: 2009
  end-page: 621
  article-title: Ethylene mediates response and tolerance to potassium deprivation in
  publication-title: Plant Cell
– volume: 52
  start-page: 223
  year: 2007
  end-page: 239
  article-title: Two calcineurin B‐like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in
  publication-title: Plant J
– volume: 162
  start-page: 940
  year: 2013
  end-page: 952
  article-title: Reduced tonoplast fast‐activating and slow‐activating channel activity is essential for conferring salinity tolerance in a facultative halophyte, quinoa
  publication-title: Plant Physiol
– volume: 35
  start-page: 53
  year: 2012
  end-page: 60
  article-title: ABA signal transduction at the crossroad of biotic and abiotic stress responses
  publication-title: Plant Cell Environ
– volume: 285
  start-page: 29286
  year: 2010
  end-page: 29294
  article-title: A minimal cysteine motif required to activate the SKOR K channel of by the reactive oxygen species H O
  publication-title: J Biol Chem
– volume: 39
  start-page: 279
  year: 1988
  end-page: 290
  article-title: A comparison of the methods of X‐ray‐microanalysis, compartmental analysis and longitudinal ion profiles to estimate cytoplasmic ion concentrations in two maize varieties
  publication-title: J Exp Bot
– volume: 51
  start-page: 422
  year: 2010
  end-page: 434
  article-title: Specificity of polyamine effects on NaCl‐induced ion flux kinetics and salt stress amelioration in plants
  publication-title: Plant Cell Physiol
– volume: 108
  start-page: 253
  year: 2004
  end-page: 260
  article-title: QTLs for Na and K uptake of the shoots and roots controlling rice salt tolerance
  publication-title: Theor Appl Genet
– volume: 49
  start-page: 339
  year: 2011
  end-page: 345
  article-title: Responses of pepper to waterlogging stress
  publication-title: Photosynthetica
– volume: 33
  start-page: 566
  year: 2010
  end-page: 589
  article-title: Mechanisms of Cl transport contributing to salt tolerance
  publication-title: Plant Cell Environ
– volume: 68
  start-page: 521
  year: 2008
  end-page: 532
  article-title: A putative role for the plasma membrane potential in the control of the expression of the gene encoding the tomato high‐affinity potassium transporter HAK5
  publication-title: Plant Mol Biol
– volume: 16
  start-page: 101
  year: 1998
  end-page: 106
  article-title: Cytoplasmic polyamines block the fast‐activating vacuolar cation channel
  publication-title: Plant J
– volume: 31
  start-page: 1105
  year: 2004
  end-page: 1114
  article-title: A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat
  publication-title: Funct Plant Biol
– volume: 59
  start-page: 3845
  year: 2008
  end-page: 3855
  article-title: Homeostatic control of slow vacuolar channels by luminal cations and evaluation of the channel‐mediated tonoplast Ca fluxes
  publication-title: J Exp Bot
– volume: 53
  start-page: 423
  year: 2012
  end-page: 432
  article-title: Disruption of the inward‐rectifier K channel AKT1 improves plant responses to water stress
  publication-title: Plant Cell Physiol
– volume: 227
  start-page: 189
  year: 2007
  end-page: 197
  article-title: Expression of animal CED‐9 anti‐apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress
  publication-title: Planta
– volume: 178
  start-page: 703
  year: 2008
  end-page: 718
  article-title: Guard‐cell signalling for hydrogen peroxide and abscisic acid
  publication-title: New Phytol
– volume: 231
  start-page: 1237
  year: 2010
  end-page: 1249
  article-title: Polyamines: molecules with regulatory functions in plant abiotic stress tolerance
  publication-title: Planta
– volume: 96
  start-page: 12186
  year: 1999
  end-page: 12191
  article-title: Auxin‐induced K channel expression represents an essential step in coleoptile growth and gravitropism
  publication-title: Proc Natl Acad Sci USA
– volume: 102
  start-page: 16107
  year: 2005
  end-page: 16112
  article-title: Vacuolar Na /H antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca ‐ and pH‐dependent manner
  publication-title: Proc Natl Acad Sci USA
– volume: 105
  start-page: 221
  year: 1987
  end-page: 245
  article-title: Internal aeration and the development of stelar anoxia in submerged roots – a multishelled mathematical‐model combining axial diffusion of oxygen in the cortex with radial losses to the stele, the wall layers and the rhizosphere
  publication-title: New Phytol
– volume: 22
  start-page: 1253
  year: 1999
  end-page: 1268
  article-title: Mineral nutrient status of corn in relation to nitrate and long‐term waterlogging
  publication-title: J Plant Nutr
– volume: 61
  start-page: 2255
  year: 2010
  end-page: 2270
  article-title: Haem oxygenase (HO): an overlooked enzyme of plant metabolism and defence
  publication-title: J Exp Bot
– volume: 56
  start-page: 1369
  year: 2005
  end-page: 1378
  article-title: Effect of divalent cations on ion fluxes and leaf photochemistry in salinized barley leaves
  publication-title: J Exp Bot
– volume: 101
  start-page: 8827
  year: 2004
  end-page: 8832
  article-title: Hydrogen peroxide mediates plant root cell response to nutrient deprivation
  publication-title: Proc Natl Acad Sci USA
– volume: 123
  start-page: 1468
  year: 2010
  end-page: 1479
  article-title: root K ‐efflux conductance activated by hydroxyl radicals: single‐channel properties, genetic basis and involvement in stress‐induced cell death
  publication-title: J Cell Sci
– volume: 179
  start-page: 945
  year: 2008
  end-page: 963
  article-title: Salinity tolerance in halophytes
  publication-title: New Phytol
– volume: 280
  start-page: 37924
  year: 2005
  end-page: 37929
  article-title: Pyruvate kinase revisited ‐ the activating effect of K
  publication-title: J Biol Chem
– volume: 133
  start-page: 682
  year: 2008
  end-page: 691
  article-title: The effect of potassium nutrition on pest and disease resistance in plants
  publication-title: Physiol Plant
– volume: 4
  start-page: 428
  year: 2011
  end-page: 441
  article-title: TPC1‐SV channels gain shape
  publication-title: Mol Plant
– volume: 6
  start-page: 1054
  year: 2011
  end-page: 1063
  article-title: Potassium‐induced alleviation of salinity stress in L
  publication-title: Cent Eur J Biol
– volume: 36
  start-page: 1607
  year: 2013
  end-page: 1616
  article-title: Hydrogene sulfide: environmental factor or signaling molecule?
  publication-title: Plant Cell Environ
– volume: 22
  start-page: 1481
  year: 1999
  end-page: 1494
  article-title: Effect of flooding on elemental uptake and biomass allocation in seedlings of three bottomland tree species
  publication-title: J Plant Nutr
– volume: 24
  start-page: 1695
  year: 2010
  end-page: 1708
  article-title: Early abscisic acid signal transduction mehanisms: newly discovered components and newly emerging questions
  publication-title: Genes Dev
– volume: 114
  start-page: 369
  year: 2001
  end-page: 373
  article-title: Effect of seawater on the growth, ion content and water potential of Lam
  publication-title: J Plant Res
– volume: 189
  start-page: 1060
  year: 2011a
  end-page: 1068
  article-title: Reciprocal regulation of Ca ‐activated outward K channels of pollen by heme and carbon monoxide
  publication-title: New Phytol
– volume: 171
  start-page: 249
  year: 2006
  end-page: 269
  article-title: Calcium in plant defence‐signalling pathways
  publication-title: New Phytol
– volume: 8
  start-page: 346
  year: 2006
  end-page: 352
  article-title: How does auxin enhance cell elongation? Roles of auxin‐binding proteins and potassium channels in growth control
  publication-title: Plant Biol
– volume: 19
  start-page: 711
  year: 2006
  end-page: 724
  article-title: Early signaling events induced by elicitors of plant defenses
  publication-title: Mol Plant Microbe Interact
– volume: 93
  start-page: 10510
  year: 1996
  end-page: 10514
  article-title: Potassium homeostasis in vacuolate plant cells
  publication-title: Proc Natl Acad Sci USA
– start-page: 23
  year: 2010
  end-page: 35
– volume: 6
  start-page: 1656
  year: 2011
  end-page: 1661
  article-title: Cell‐specific compartmentation of mineral nutrients is an essential mechanism for optimal plant productivity – another role for ?
  publication-title: Plant Signal Behav
– volume: 36
  start-page: 844
  year: 2013a
  end-page: 855
  article-title: Calcium‐ and potassium‐permeable plasma membrane transporters are activated by copper in root tips: Linking copper transport with cytosolic hydroxyl radical production
  publication-title: Plant Cell Environ
– volume: 150
  start-page: 567
  year: 1997
  end-page: 572
  article-title: Effect of low oxygen concentration on the electrical properties of cortical cells of wheat roots
  publication-title: J Plant Physiol
– volume: 143
  start-page: 81
  year: 2009
  end-page: 96
  article-title: ROS generation in plants: Boon or bane?
  publication-title: Plant Biosyst
– volume: 11
  start-page: 1059
  year: 1997
  end-page: 1070
  article-title: Fast‐activating cation channel in barley mesophyll vacuoles. Inhibition by calcium
  publication-title: Plant J
– volume: 25
  start-page: 901
  year: 2013
  end-page: 926
  article-title: A Major Facilitator Superfamily transporter plays a dual role in polar auxin transport and drought stress tolerance in
  publication-title: Plant Cell
– volume: 135
  start-page: 231
  year: 2004
  end-page: 243
  article-title: Plasma membrane depolarization induced by abscisic acid in suspension cells involves reduction of proton pumping in addition to anion channel activation, which are both Ca dependent
  publication-title: Plant Physiol
– volume: 9
  start-page: 87
  year: 2008b
  end-page: 99
  article-title: Polyamines as regulators of ionic transport in plants
  publication-title: Curr Top Plant Biol
– ident: e_1_2_7_225_1
  doi: 10.1016/j.plantsci.2011.04.002
– ident: e_1_2_7_87_1
  doi: 10.1111/pce.12109
– ident: e_1_2_7_235_1
  doi: 10.4161/psb.3.6.5429
– ident: e_1_2_7_74_1
  doi: 10.1073/pnas.0702595104
– ident: e_1_2_7_26_1
  doi: 10.1093/jxb/ers343
– ident: e_1_2_7_91_1
  doi: 10.1007/s00425-002-0829-y
– ident: e_1_2_7_183_1
  doi: 10.1016/B978-0-12-387692-8.00005-9
– ident: e_1_2_7_12_1
  doi: 10.1023/A:1015182310754
– ident: e_1_2_7_171_1
  doi: 10.1080/07352689.2010.524517
– ident: e_1_2_7_204_1
  doi: 10.1111/j.1399-3054.2010.01373.x
– ident: e_1_2_7_123_1
  doi: 10.1093/jxb/48.Special_Issue.451
– ident: e_1_2_7_139_1
  doi: 10.1074/jbc.M508490200
– ident: e_1_2_7_153_1
  doi: 10.1016/j.envexpbot.2012.12.005
– ident: e_1_2_7_23_1
  doi: 10.1104/pp.113.216572
– ident: e_1_2_7_174_1
  doi: 10.1046/j.1439-037x.2000.00422.x
– ident: e_1_2_7_186_1
  doi: 10.1104/pp.106.082388
– ident: e_1_2_7_136_1
  doi: 10.1093/pcp/pcr194
– ident: e_1_2_7_8_1
  doi: 10.1104/pp.104.046482
– ident: e_1_2_7_40_1
  doi: 10.1111/j.1365-313X.2007.03236.x
– ident: e_1_2_7_111_1
  doi: 10.1016/j.plaphy.2010.09.016
– ident: e_1_2_7_33_1
  doi: 10.1074/jbc.M604781200
– ident: e_1_2_7_147_1
  doi: 10.1038/35021067
– ident: e_1_2_7_172_1
  doi: 10.1111/j.1399-3054.2008.01168.x
– ident: e_1_2_7_88_1
  doi: 10.1016/S0065-2571(98)00010-7
– ident: e_1_2_7_198_1
  doi: 10.1016/j.cub.2007.07.020
– ident: e_1_2_7_98_1
  doi: 10.2307/3870106
– ident: e_1_2_7_237_1
  doi: 10.1104/pp.111.179671
– ident: e_1_2_7_229_1
  doi: 10.1016/j.cell.2006.06.011
– ident: e_1_2_7_221_1
  doi: 10.1104/pp.111.4.1077
– ident: e_1_2_7_68_1
  doi: 10.1093/jxb/eri229
– ident: e_1_2_7_199_1
  doi: 10.1126/science.1152505
– ident: e_1_2_7_78_1
  doi: 10.1074/jbc.M708213200
– ident: e_1_2_7_36_1
  doi: 10.1111/j.1365-3040.2005.01364.x
– ident: e_1_2_7_22_1
  doi: 10.1006/pmpp.1997.0129
– ident: e_1_2_7_27_1
  doi: 10.1111/pce.12180
– ident: e_1_2_7_115_1
  doi: 10.1016/j.jplph.2010.05.021
– ident: e_1_2_7_178_1
  doi: 10.1093/jxb/erp013
– ident: e_1_2_7_9_1
  doi: 10.1046/j.1469-8137.1999.00395.x
– ident: e_1_2_7_232_1
  doi: 10.1007/s00425-006-0297-x
– ident: e_1_2_7_144_1
  doi: 10.1111/j.1365-3040.2005.01486.x
– ident: e_1_2_7_150_1
  doi: 10.1080/01904169909365729
– ident: e_1_2_7_95_1
  doi: 10.1093/mp/ssp121
– ident: e_1_2_7_82_1
  doi: 10.1126/science.280.5365.918
– volume: 9
  start-page: 87
  year: 2008
  ident: e_1_2_7_236_1
  article-title: Polyamines as regulators of ionic transport in plants
  publication-title: Curr Top Plant Biol
– ident: e_1_2_7_114_1
  doi: 10.1111/j.1399-3054.2006.00709.x
– ident: e_1_2_7_181_1
  doi: 10.1111/j.1399-3054.2007.01008.x
– ident: e_1_2_7_188_1
  doi: 10.1007/s00425-010-1213-y
– ident: e_1_2_7_216_1
  doi: 10.1146/annurev-arplant-050312-120153
– ident: e_1_2_7_195_1
  doi: 10.1007/s11104-004-1082-x
– ident: e_1_2_7_131_1
  doi: 10.1371/journal.pone.0047797
– ident: e_1_2_7_18_1
  doi: 10.1093/pcp/41.6.785
– ident: e_1_2_7_231_1
  doi: 10.1073/pnas.0504437102
– ident: e_1_2_7_81_1
  doi: 10.1038/cr.2011.50
– ident: e_1_2_7_83_1
  doi: 10.1073/pnas.0733970100
– ident: e_1_2_7_41_1
  doi: 10.1055/s-2006-923965
– ident: e_1_2_7_30_1
  doi: 10.1046/j.1365-313x.1998.00274.x
– ident: e_1_2_7_103_1
  doi: 10.1105/tpc.112.097881
– ident: e_1_2_7_25_1
  doi: 10.1016/j.abb.2007.01.020
– ident: e_1_2_7_47_1
  doi: 10.1111/j.1438-8677.2011.00526.x
– ident: e_1_2_7_24_1
  doi: 10.1113/expphysiol.2010.055244
– ident: e_1_2_7_50_1
  doi: 10.1242/jcs.00201
– ident: e_1_2_7_99_1
  doi: 10.1104/pp.125.1.406
– ident: e_1_2_7_84_1
  doi: 10.1002/jpln.200420516
– ident: e_1_2_7_140_1
  doi: 10.1105/tpc.112.105700
– ident: e_1_2_7_92_1
  doi: 10.1105/tpc.108.063099
– ident: e_1_2_7_89_1
  doi: 10.1006/anbo.1996.0003
– ident: e_1_2_7_49_1
  doi: 10.1071/CP11071
– ident: e_1_2_7_191_1
  doi: 10.1073/pnas.0401707101
– ident: e_1_2_7_177_1
  doi: 10.1104/pp.85.4.1040
– ident: e_1_2_7_220_1
  doi: 10.2307/3869871
– ident: e_1_2_7_205_1
  doi: 10.1007/s004250050532
– ident: e_1_2_7_96_1
  doi: 10.1146/annurev-arplant-042809-112226
– ident: e_1_2_7_122_1
  doi: 10.1007/BF00195686
– ident: e_1_2_7_13_1
  doi: 10.1111/j.1399-3054.1993.tb05274.x
– volume: 32
  start-page: 267
  year: 1994
  ident: e_1_2_7_100_1
  article-title: Effect of hypoxia on ion uptake by nodal and seminal wheat roots
  publication-title: Plant Physiol Biochem
– ident: e_1_2_7_218_1
  doi: 10.1007/s11240-012-0207-9
– ident: e_1_2_7_170_1
  doi: 10.1007/s11104-010-0520-1
– ident: e_1_2_7_149_1
  doi: 10.1093/jxb/ern225
– ident: e_1_2_7_212_1
  doi: 10.1111/j.1438-8677.2010.00353.x
– ident: e_1_2_7_57_1
  doi: 10.1051/agro:2008021
– ident: e_1_2_7_145_1
  doi: 10.1071/FP06158
– ident: e_1_2_7_173_1
  doi: 10.1007/s11103-008-9380-y
– ident: e_1_2_7_69_1
  doi: 10.1016/j.febslet.2007.03.050
– ident: e_1_2_7_206_1
  doi: 10.1046/j.1365-313X.1997.11051059.x
– ident: e_1_2_7_162_1
  doi: 10.1111/j.1365-313X.2007.03342.x
– ident: e_1_2_7_214_1
  doi: 10.1096/fj.02-0211hyp
– ident: e_1_2_7_151_1
  doi: 10.1073/pnas.96.21.12186
– ident: e_1_2_7_180_1
  doi: 10.1093/aob/mct205
– ident: e_1_2_7_189_1
  doi: 10.1093/jxb/erq074
– ident: e_1_2_7_156_1
  doi: 10.1093/jxb/erg067
– ident: e_1_2_7_55_1
  doi: 10.1007/BF00223692
– ident: e_1_2_7_21_1
  doi: 10.1111/j.1365-313X.2011.04579.x
– ident: e_1_2_7_54_1
  doi: 10.1007/s002490050237
– ident: e_1_2_7_6_1
  doi: 10.1016/j.febslet.2007.04.014
– ident: e_1_2_7_132_1
  doi: 10.1093/treephys/tpq017
– ident: e_1_2_7_4_1
  doi: 10.1093/jxb/erm370
– ident: e_1_2_7_108_1
  doi: 10.1007/s00122-003-1421-y
– ident: e_1_2_7_192_1
  doi: 10.1371/journal.pone.0013935
– ident: e_1_2_7_46_1
  doi: 10.1093/jxb/ern128
– ident: e_1_2_7_77_1
  doi: 10.1093/jxb/39.3.279
– ident: e_1_2_7_230_1
  doi: 10.4161/psb.3.6.5374
– ident: e_1_2_7_76_1
  doi: 10.1007/BF00202963
– ident: e_1_2_7_124_1
  doi: 10.1046/j.0028-646X.2001.00318.x
– ident: e_1_2_7_158_1
  doi: 10.1007/s00232-005-0766-3
– ident: e_1_2_7_163_1
  doi: 10.1105/tpc.113.110353
– ident: e_1_2_7_11_1
  doi: 10.1080/01904169909365710
– ident: e_1_2_7_141_1
  doi: 10.1007/s11099-011-0043-x
– ident: e_1_2_7_148_1
  doi: 10.1038/nature03381
– ident: e_1_2_7_110_1
  doi: 10.1016/j.plantsci.2009.06.004
– ident: e_1_2_7_112_1
  doi: 10.1111/pce.12073
– ident: e_1_2_7_146_1
  doi: 10.1089/ars.2011.4359
– ident: e_1_2_7_65_1
  doi: 10.1073/pnas.1434381100
– ident: e_1_2_7_15_1
  doi: 10.1105/tpc.111.095273
– ident: e_1_2_7_128_1
  doi: 10.1016/j.tplants.2011.03.007
– ident: e_1_2_7_143_1
  doi: 10.1071/AR03097
– ident: e_1_2_7_166_1
  doi: 10.1111/pce.12020
– ident: e_1_2_7_130_1
  doi: 10.1093/pcp/pcr061
– ident: e_1_2_7_207_1
  doi: 10.1071/FP10233
– volume: 61
  start-page: 291
  year: 2011
  ident: e_1_2_7_219_1
  article-title: Improving agricultural water use efficiency by nutrient management in crop plants
  publication-title: Acta Agric Scand B Soil Plant Sci
– ident: e_1_2_7_109_1
  doi: 10.1071/FP04111
– ident: e_1_2_7_29_1
  doi: 10.1111/j.1399-3054.2008.01067.x
– ident: e_1_2_7_117_1
  doi: 10.1007/BF00216815
– ident: e_1_2_7_86_1
  doi: 10.1101/gad.1953910
– ident: e_1_2_7_168_1
  doi: 10.1111/j.1469-8137.2008.02461.x
– ident: e_1_2_7_60_1
  doi: 10.1146/annurev.pp.28.060177.000513
– ident: e_1_2_7_102_1
  doi: 10.1046/j.1365-2958.2003.03800.x
– ident: e_1_2_7_44_1
  doi: 10.1093/jxb/erj050
– ident: e_1_2_7_120_1
  doi: 10.1111/j.1469-8137.2011.03664.x
– ident: e_1_2_7_208_1
  doi: 10.2478/s11535-011-0065-1
– ident: e_1_2_7_118_1
  doi: 10.1186/1471-2229-12-161
– ident: e_1_2_7_45_1
  doi: 10.1093/jxb/erg072
– ident: e_1_2_7_101_1
  doi: 10.1016/S0014-5793(00)01093-0
– ident: e_1_2_7_176_1
  doi: 10.1111/j.1365-313X.2011.04697.x
– ident: e_1_2_7_106_1
  doi: 10.1111/j.1365-313X.2009.04073.x
– ident: e_1_2_7_142_1
  doi: 10.1093/pcp/pcq007
– ident: e_1_2_7_75_1
  doi: 10.1007/s11738-013-1239-4
– ident: e_1_2_7_51_1
  doi: 10.1242/jcs.064352
– ident: e_1_2_7_202_1
  doi: 10.1093/pcp/pce004
– ident: e_1_2_7_113_1
  doi: 10.1104/pp.124.3.1315
– ident: e_1_2_7_64_1
  doi: 10.1111/j.1469-8137.2010.03465.x
– ident: e_1_2_7_244_1
  doi: 10.1111/jipb.12038
– ident: e_1_2_7_193_1
  doi: 10.1080/01904167.2012.754032
– ident: e_1_2_7_137_1
  doi: 10.1007/s00425-007-0561-8
– ident: e_1_2_7_238_1
  doi: 10.1038/90824
– ident: e_1_2_7_182_1
  doi: 10.1104/pp.020005
– ident: e_1_2_7_61_1
  doi: 10.1071/FP09269
– ident: e_1_2_7_138_1
  doi: 10.1093/treephys/tpq115
– ident: e_1_2_7_175_1
  doi: 10.1042/BJ20091221
– ident: e_1_2_7_63_1
  doi: 10.1094/MPMI-19-0711
– ident: e_1_2_7_104_1
  doi: 10.1111/j.1469-8137.2006.01777.x
– ident: e_1_2_7_52_1
  doi: 10.1007/978-3-540-68964-5_2
– volume-title: Mineral Nutrition of Higher Plants
  year: 1995
  ident: e_1_2_7_126_1
– ident: e_1_2_7_56_1
  doi: 10.1007/978-3-642-10305-6_2
– ident: e_1_2_7_16_1
  doi: 10.1046/j.1365-313X.2000.00844.x
– ident: e_1_2_7_125_1
  doi: 10.1093/pcp/pcj007
– ident: e_1_2_7_133_1
  doi: 10.1093/jxb/erm293
– ident: e_1_2_7_10_1
  doi: 10.1111/j.1469-8137.1987.tb00860.x
– ident: e_1_2_7_194_1
  doi: 10.1093/pcp/pce085
– ident: e_1_2_7_43_1
  doi: 10.1093/jxb/erq271
– ident: e_1_2_7_121_1
  doi: 10.1006/anbo.1999.0912
– ident: e_1_2_7_241_1
  doi: 10.1038/sj.cr.7290086
– ident: e_1_2_7_119_1
  doi: 10.1016/j.pbi.2009.04.003
– ident: e_1_2_7_7_1
  doi: 10.1126/science.285.5431.1256
– volume: 50
  start-page: 873
  year: 1999
  ident: e_1_2_7_31_1
  article-title: Selectivity of the fast activating vacuolar cation channel
  publication-title: J Exp Bot
– ident: e_1_2_7_105_1
  doi: 10.1111/j.1365-3040.2011.02426.x
– ident: e_1_2_7_223_1
  doi: 10.1007/BF00027184
– ident: e_1_2_7_3_1
  doi: 10.1111/j.1399-3054.2008.01075.x
– ident: e_1_2_7_5_1
  doi: 10.1146/annurev.arplant.55.031903.141701
– ident: e_1_2_7_228_1
  doi: 10.1111/j.1365-3040.2008.01888.x
– ident: e_1_2_7_58_1
  doi: 10.1093/aob/mci207
– ident: e_1_2_7_222_1
  doi: 10.1104/pp.115.4.1707
– ident: e_1_2_7_240_1
  doi: 10.1104/pp.125.3.1459
– ident: e_1_2_7_59_1
  doi: 10.1111/j.1469-8137.2008.02531.x
– ident: e_1_2_7_239_1
  doi: 10.1016/S0176-1617(97)80320-3
– ident: e_1_2_7_210_1
  doi: 10.1146/annurev.arplant.54.031902.134831
– ident: e_1_2_7_53_1
  doi: 10.1007/s002329900477
– ident: e_1_2_7_245_1
  doi: 10.1126/science.1057175
– ident: e_1_2_7_17_1
  doi: 10.1016/S0014-5793(03)01118-9
– ident: e_1_2_7_185_1
  doi: 10.1093/jxb/eri138
– ident: e_1_2_7_90_1
  doi: 10.1046/j.1365-313X.1999.00423.x
– ident: e_1_2_7_66_1
  doi: 10.1074/jbc.M110.141176
– ident: e_1_2_7_242_1
  doi: 10.1104/pp.107.105882
– ident: e_1_2_7_71_1
  doi: 10.1073/pnas.0912021106
– ident: e_1_2_7_200_1
  doi: 10.1093/jxb/erq422
– ident: e_1_2_7_243_1
  doi: 10.1016/j.plantsci.2011.12.007
– ident: e_1_2_7_94_1
  doi: 10.1002/jpln.200900316
– ident: e_1_2_7_127_1
  doi: 10.1016/S0176-1617(89)80248-2
– ident: e_1_2_7_19_1
  doi: 10.1074/jbc.M603761200
– ident: e_1_2_7_211_1
  doi: 10.1111/j.1365-313X.2004.02230.x
– ident: e_1_2_7_233_1
  doi: 10.1007/s00425-010-1106-0
– volume: 4
  start-page: 313
  year: 2013
  ident: e_1_2_7_234_1
  article-title: Barley responses to combined waterlogging and salinity stress: separating effects of oxygen deprivation and elemental toxicity
  publication-title: Front Plant Physiol
– ident: e_1_2_7_190_1
  doi: 10.1007/s10658-008-9302-5
– ident: e_1_2_7_213_1
  doi: 10.1046/j.0016-8025.2003.01116.x
– ident: e_1_2_7_62_1
  doi: 10.1105/tpc.105.035626
– ident: e_1_2_7_135_1
  doi: 10.1007/s11103-008-9388-3
– ident: e_1_2_7_154_1
  doi: 10.1093/jxb/erm035
– ident: e_1_2_7_80_1
  doi: 10.1093/mp/ssr017
– ident: e_1_2_7_197_1
  doi: 10.1007/s00425-008-0855-5
– ident: e_1_2_7_79_1
  doi: 10.1071/PP9740491
– ident: e_1_2_7_224_1
  doi: 10.1111/j.1365-313X.2004.02273.x
– ident: e_1_2_7_38_1
  doi: 10.1104/pp.107.110262
– ident: e_1_2_7_2_1
  doi: 10.1007/s00425-010-1130-0
– ident: e_1_2_7_226_1
  doi: 10.1111/j.1469-8137.2010.03564.x
– ident: e_1_2_7_48_1
  doi: 10.1105/tpc.111.086751
– ident: e_1_2_7_72_1
  doi: 10.4161/psb.6.11.17797
– start-page: 57
  volume-title: Mineral Nutrition and Plant Disease
  year: 2007
  ident: e_1_2_7_161_1
– ident: e_1_2_7_39_1
  doi: 10.1074/jbc.M309084200
– ident: e_1_2_7_97_1
  doi: 10.1016/j.bbamcr.2011.09.011
– ident: e_1_2_7_73_1
  doi: 10.1093/jxb/25.6.1104
– ident: e_1_2_7_42_1
  doi: 10.1023/B:RUPP.0000003284.25827.95
– ident: e_1_2_7_28_1
  doi: 10.1104/pp.104.039255
– ident: e_1_2_7_129_1
  doi: 10.1081/PLN-120030371
– ident: e_1_2_7_160_1
  doi: 10.4161/psb.21185
– ident: e_1_2_7_155_1
  doi: 10.1007/s0023200100073
– ident: e_1_2_7_70_1
  doi: 10.1016/j.febslet.2007.03.050
– ident: e_1_2_7_179_1
  doi: 10.1111/j.1469-8137.2010.03575.x
– ident: e_1_2_7_209_1
  doi: 10.1016/j.plaphy.2012.09.002
– ident: e_1_2_7_20_1
  doi: 10.1080/01904160802043122
– ident: e_1_2_7_203_1
  doi: 10.1111/j.1365-3040.2009.02060.x
– ident: e_1_2_7_215_1
  doi: 10.1111/j.1469-8137.2008.02431.x
– ident: e_1_2_7_107_1
  doi: 10.1111/j.1469-8137.1984.tb04103.x
– start-page: 141
  volume-title: Mineral Nutrition of Crops: Mechanisms and Implications
  year: 1999
  ident: e_1_2_7_35_1
– ident: e_1_2_7_169_1
  doi: 10.1111/j.1469-8137.2005.01460.x
– ident: e_1_2_7_187_1
  doi: 10.1007/s00425-007-0606-z
– ident: e_1_2_7_196_1
  doi: 10.1071/FP08030
– ident: e_1_2_7_37_1
  doi: 10.1093/jxb/erm284
– ident: e_1_2_7_14_1
  doi: 10.1007/PL00013998
– ident: e_1_2_7_32_1
  doi: 10.1093/jxb/50.339.1547
– ident: e_1_2_7_93_1
  doi: 10.1089/ars.2009.2657
– ident: e_1_2_7_227_1
  doi: 10.1093/jxb/erq261
– ident: e_1_2_7_167_1
  doi: 10.4161/psb.23425
– ident: e_1_2_7_184_1
  doi: 10.1071/FP03016
– ident: e_1_2_7_152_1
  doi: 10.1104/pp.85.3.655
– ident: e_1_2_7_201_1
  doi: 10.1007/s00726-011-1012-1
– ident: e_1_2_7_159_1
  doi: 10.1016/j.febslet.2009.02.009
– ident: e_1_2_7_134_1
  doi: 10.1016/j.virol.2007.10.024
– ident: e_1_2_7_34_1
  doi: 10.1002/jpln.200420485
– ident: e_1_2_7_164_1
  doi: 10.1071/PP01154
– ident: e_1_2_7_116_1
  doi: 10.1104/pp.112.206896
– ident: e_1_2_7_67_1
  doi: 10.1080/11263500802633626
– ident: e_1_2_7_85_1
  doi: 10.2135/cropsci2012.05.0284
– ident: e_1_2_7_217_1
  doi: 10.1007/s00425-009-0946-y
– ident: e_1_2_7_157_1
  doi: 10.1007/s00425-004-1293-7
– ident: e_1_2_7_165_1
  doi: 10.1093/jexbot/51.350.1585
SSID ssj0016612
Score 2.6010404
SecondaryResourceType review_article
Snippet Intracellular potassium homeostasis is a prerequisite for the optimal operation of plant metabolic machinery and plant's overall performance. It is controlled...
SourceID proquest
pubmed
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 257
SubjectTerms absorption
Adaptation, Physiological - physiology
apoptosis
Biotic factors
biotic stress
calcium
Calcium - metabolism
Drought
Environmental stress
Homeostasis
Homeostasis - physiology
Ion Transport
metabolism
Models, Biological
Plants - metabolism
Polyamines
Potassium
Potassium - metabolism
Potassium Channels - physiology
Potassium-Hydrogen Antiporters - physiology
reactive oxygen species
Relocation
salinity
stress tolerance
Stress, Physiological - physiology
transporters
Title Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance
URI https://api.istex.fr/ark:/67375/WNG-D6DC79JQ-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fppl.12165
https://www.ncbi.nlm.nih.gov/pubmed/24506225
https://www.proquest.com/docview/1535162910
https://www.proquest.com/docview/1535623654
https://www.proquest.com/docview/1999949392
Volume 151
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3dT9RAEMAnSHzwRfGTAprVGMNLSbvd7l71CUEkRAmiF3gw2Wy3W3PhaC9HL1H-ema6bQMGjfGtuZum3e3Mzm_amVmA1yqxIo8kD11hRCgsMpzJZBGiayx5ZE1kLb2H_Hwo98fi4DQ9XYJ3fS2M7w8xvHAjy2jXazJwk19cM3KENGqNIKnAnHK1CIiOh9ZRMfod3yk8icMMnWTXVYiyeIYzb_iiO6WpkVBpcn_ehps36bV1P3sP4Ht_4z7r5Gxr0eRb9vK3no7_ObIVuN9hKdv2evQQllz1CO6-rxEdfz2Gy2O_Yz0-Q1aXbIY_oyktzlnTt0Znk4rNppRTw6gqbc6oeAQvzjDcLnxW2Fs2uZa9zhCWmcknNV6Qmapg3aGvXWFNPXW05Yd7AuO9D9929sNu04bQInuloYyUMUnEncoTYRWOiBdFLJzlpRJORYVJ0xG3CsHCIs3E3CVqVAqXxWVSKgSmp7Bc1ZVbBcYLYRJRGsttKpzjmaCvvrwYYRDJpbUBbPaPT9uuozltrDHVfWSDM6nbmQzg1SA68208bhNaRR3Q5gcur3r8lVPwieEqQlscwJtWMYaTzfyMUuJUqk8OP-pdubujsoMv-iSAjV5zdLcaXGj0KmksOZJZAC-Hv9GO6eOMqVy98DKIojIVf5FBms9EhkgbwDOvlcMNcZGiyXEcxGarW38epj46-tQerP276Drco-nwecobsNzMF-450liTv2jN7gpt5C2t
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD7aBhK8jDsLDDAI0F4yJY4TN0g8wMrotq4a26rtzbiOM1XrkqprBdtv4q_wnzgnN21oIF72wFvUnCaxfS7fsY8_A7yWgREDL-KuTbRwhUEMp-MocTE0ptwz2jOG5iG3e1GnLzYPw8M5-FHvhSn5IZoJN7KMwl-TgdOE9AUrR5RG3AhRXVK5Zc--YcJ2-n6jjaP7hvP1T_trHbc6U8A1CA1CN_Kk1oHHrRwEwkh8Ek8SX1jDUyms9BIdhi1uJMY9g8HW5zaQrVTY2E-DVGI8x-fOww06QZyY-tu7DVmVj5Gu5CYPfDfGsFzxGFHdUPOpl6LffKpzxMQ0nN-vAriX8XIR8NbvwM-6q8o6l-PV2XSwas5_Y5H8X_ryLixWyJt9KE3lHszZ7D7c_JgjOj57AOe79qg6yYzlKRvjz-gtZidsWrO_s2HGxiMqG2K08W7CaH8MtpaZnJb9yXzfseGFAn2G-QDTg2GOL2Q6S1h1WW7PYdN8ZOlUE_sQ-tfS7kewkOWZXQLGE6EDkWrDTSis5bGghW2etDBP5pExDqzU-qJMRdpOZ4eMVJ284cipYuQceNWIjkumkquEllDplD7CCKL6e5zya8zIEZf6DrwtNLH5s54cU9WfDNVB77NqR-01GW9-UQcOLNeqqiqHd6owcIZ-xBF8OvCyuY2uitafdGbzWSmDaDsKxV9kMGGJRYyo3YHHpRk0H8RFiF6FYyNWCmX-czPVzk63uHjy76Iv4FZnf7uruhu9radwm7qmLMtehoXpZGafIficDp4XNs_g63Ubxi8EVYiA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BSEuvKGBAgYB6iVV4jj2BokDNCx9sVpaVu3NOI5Trbokq21W0P4l_go_inFealFBXHrgFu3OZmN7Zr5v4vEMwAsRaJZ4nLomVcxlGjmcinjqIjRm1NPK09q-h_w44BsjtnUQHizAj_YsTF0fonvhZi2j8tfWwKdpdsbIkaTZ0gi8zajcNiffMF47frMZ4-K-pLT__vP6htu0FHA1MoPQ5Z5QKvCoEUnAtMA70TT1mdE0E8wIL1Vh2KNaIOxpxFqfmkD0MmYiPwsygXCO912EK4x7ke0TEe92tap8BLq6NHnguxGiclPGyKYNdY96DvwWM1UgJbar-f0ifnueLld4178JP9uZqtNcjtbmZbKmT38rIvmfTOUtuNHwbvK2NpTbsGDyO3D1XYHc-OQunO6aw6aPGSkyMsWP0VfMv5Kyrf1OxjmZTmzSELHH7mbEno7BwRJd2E1_a7yvyfhMej7BaICoZFzgHxKVp6S5rA_nkLKYGNvTxNyD0aWM-z4s5UVuloHQlKmAZUpTHTJjaMTstjZNexglU661A6utukjdlGy3nUMmsg3dcOVktXIOPO9Ep3WdkouEllHnpDpE_JCjPWqja4zHkZX6DryqFLH7sZod2Zw_Ecr9wQcZ83hdRFuf5L4DK62mysbdHUuEzdDnFKmnA8-6r9FR2d0nlZtiXssg1-Yh-4sMhisRi5CzO_CgtoLugSgL0adQHMRqpct_HqYcDneqi4f_LvoUrg3jvtzZHGw_gut2Zuqc7BVYKmdz8xiZZ5k8qSyewJfLtotfxD2HLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+potassium+transport+in+plants+under+hostile+conditions%3A+implications+for+abiotic+and+biotic+stress+tolerance&rft.jtitle=Physiologia+plantarum&rft.au=Shabala%2C+Sergey&rft.au=Pottosin%2C+Igor&rft.date=2014-07-01&rft.issn=0031-9317&rft.eissn=1399-3054&rft.volume=151&rft.issue=3&rft.spage=257&rft.epage=279&rft_id=info:doi/10.1111%2Fppl.12165&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_ppl_12165
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9317&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9317&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9317&client=summon