proteomic analysis of rice seed germination as affected by high temperature and ABA treatment
Seed germination is a critical phase in the plant life cycle, but the specific events associated with seed germination are still not fully understood. In this study, we used two‐dimensional gel electrophoresis followed by mass spectrometry to investigate the changes in the proteome during imbibition...
Saved in:
Published in | Physiologia plantarum Vol. 154; no. 1; pp. 142 - 161 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.05.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Seed germination is a critical phase in the plant life cycle, but the specific events associated with seed germination are still not fully understood. In this study, we used two‐dimensional gel electrophoresis followed by mass spectrometry to investigate the changes in the proteome during imbibition of Oryza sativa seeds at optimal temperature with or without abscisic acid (ABA) and high temperature (germination thermoinhibition) to further identify and quantify key proteins required for seed germination. A total of 121 protein spots showed a significant change in abundance (1.5‐fold increase/decrease) during germination under all conditions. Among these proteins, we found seven proteins specifically associated with seed germination including glycosyl hydrolases family 38 protein, granule‐bound starch synthase 1, Os03g0842900 (putative steroleosin‐B), N‐carbamoylputrescine amidase, spermidine synthase 1, tubulin α‐1 chain and glutelin type‐A; and a total of 20 imbibition response proteins involved in energy metabolism, cell growth, cell defense and storage proteins. High temperature inhibited seed germination by decreasing the abundance of proteins involved in methionine metabolism, amino acid biosynthesis, energy metabolism, reserve degradation, protein folding and stress responses. ABA treatment inhibited germination and decreased the abundance of proteins associated with methionine metabolism, energy production and cell division. Our results show that changes in many biological processes including energy metabolism, protein synthesis and cell defense and rescue occurred as a result of all treatments, while enzymes involved in methionine metabolism and weakening of cell wall specifically accumulated when the seeds germinated at the optimal temperature. |
---|---|
AbstractList | Seed germination is a critical phase in the plant life cycle, but the specific events associated with seed germination are still not fully understood. In this study, we used two‐dimensional gel electrophoresis followed by mass spectrometry to investigate the changes in the proteome during imbibition of Oryza sativa seeds at optimal temperature with or without abscisic acid (ABA) and high temperature (germination thermoinhibition) to further identify and quantify key proteins required for seed germination. A total of 121 protein spots showed a significant change in abundance (1.5‐fold increase/decrease) during germination under all conditions. Among these proteins, we found seven proteins specifically associated with seed germination including glycosyl hydrolases family 38 protein, granule‐bound starch synthase 1, Os03g0842900 (putative steroleosin‐B), N‐carbamoylputrescine amidase, spermidine synthase 1, tubulin α‐1 chain and glutelin type‐A; and a total of 20 imbibition response proteins involved in energy metabolism, cell growth, cell defense and storage proteins. High temperature inhibited seed germination by decreasing the abundance of proteins involved in methionine metabolism, amino acid biosynthesis, energy metabolism, reserve degradation, protein folding and stress responses. ABA treatment inhibited germination and decreased the abundance of proteins associated with methionine metabolism, energy production and cell division. Our results show that changes in many biological processes including energy metabolism, protein synthesis and cell defense and rescue occurred as a result of all treatments, while enzymes involved in methionine metabolism and weakening of cell wall specifically accumulated when the seeds germinated at the optimal temperature. Seed germination is a critical phase in the plant life cycle, but the specific events associated with seed germination are still not fully understood. In this study, we used two‐dimensional gel electrophoresis followed by mass spectrometry to investigate the changes in the proteome during imbibition of Oryza sativa seeds at optimal temperature with or without abscisic acid ( ABA ) and high temperature (germination thermoinhibition) to further identify and quantify key proteins required for seed germination. A total of 121 protein spots showed a significant change in abundance (1.5‐fold increase/decrease) during germination under all conditions. Among these proteins, we found seven proteins specifically associated with seed germination including glycosyl hydrolases family 38 protein, granule‐bound starch synthase 1, Os03g0842900 (putative steroleosin‐B), N‐carbamoylputrescine amidase, spermidine synthase 1, tubulin α‐1 chain and glutelin type‐A; and a total of 20 imbibition response proteins involved in energy metabolism, cell growth, cell defense and storage proteins. High temperature inhibited seed germination by decreasing the abundance of proteins involved in methionine metabolism, amino acid biosynthesis, energy metabolism, reserve degradation, protein folding and stress responses. ABA treatment inhibited germination and decreased the abundance of proteins associated with methionine metabolism, energy production and cell division. Our results show that changes in many biological processes including energy metabolism, protein synthesis and cell defense and rescue occurred as a result of all treatments, while enzymes involved in methionine metabolism and weakening of cell wall specifically accumulated when the seeds germinated at the optimal temperature. Seed germination is a critical phase in the plant life cycle, but the specific events associated with seed germination are still not fully understood. In this study, we used two-dimensional gel electrophoresis followed by mass spectrometry to investigate the changes in the proteome during imbibition of Oryza sativa seeds at optimal temperature with or without abscisic acid (ABA) and high temperature (germination thermoinhibition) to further identify and quantify key proteins required for seed germination. A total of 121 protein spots showed a significant change in abundance (1.5-fold increase/decrease) during germination under all conditions. Among these proteins, we found seven proteins specifically associated with seed germination including glycosyl hydrolases family 38 protein, granule-bound starch synthase 1, Os03g0842900 (putative steroleosin-B), N-carbamoylputrescine amidase, spermidine synthase 1, tubulin [alpha]-1 chain and glutelin type-A; and a total of 20 imbibition response proteins involved in energy metabolism, cell growth, cell defense and storage proteins. High temperature inhibited seed germination by decreasing the abundance of proteins involved in methionine metabolism, amino acid biosynthesis, energy metabolism, reserve degradation, protein folding and stress responses. ABA treatment inhibited germination and decreased the abundance of proteins associated with methionine metabolism, energy production and cell division. Our results show that changes in many biological processes including energy metabolism, protein synthesis and cell defense and rescue occurred as a result of all treatments, while enzymes involved in methionine metabolism and weakening of cell wall specifically accumulated when the seeds germinated at the optimal temperature. Seed germination is a critical phase in the plant life cycle, but the specific events associated with seed germination are still not fully understood. In this study, we used two-dimensional gel electrophoresis followed by mass spectrometry to investigate the changes in the proteome during imbibition of Oryza sativa seeds at optimal temperature with or without abscisic acid (ABA) and high temperature (germination thermoinhibition) to further identify and quantify key proteins required for seed germination. A total of 121 protein spots showed a significant change in abundance (1.5-fold increase/decrease) during germination under all conditions. Among these proteins, we found seven proteins specifically associated with seed germination including glycosyl hydrolases family 38 protein, granule-bound starch synthase 1, Os03g0842900 (putative steroleosin-B), N-carbamoylputrescine amidase, spermidine synthase 1, tubulin α-1 chain and glutelin type-A; and a total of 20 imbibition response proteins involved in energy metabolism, cell growth, cell defense and storage proteins. High temperature inhibited seed germination by decreasing the abundance of proteins involved in methionine metabolism, amino acid biosynthesis, energy metabolism, reserve degradation, protein folding and stress responses. ABA treatment inhibited germination and decreased the abundance of proteins associated with methionine metabolism, energy production and cell division. Our results show that changes in many biological processes including energy metabolism, protein synthesis and cell defense and rescue occurred as a result of all treatments, while enzymes involved in methionine metabolism and weakening of cell wall specifically accumulated when the seeds germinated at the optimal temperature.Seed germination is a critical phase in the plant life cycle, but the specific events associated with seed germination are still not fully understood. In this study, we used two-dimensional gel electrophoresis followed by mass spectrometry to investigate the changes in the proteome during imbibition of Oryza sativa seeds at optimal temperature with or without abscisic acid (ABA) and high temperature (germination thermoinhibition) to further identify and quantify key proteins required for seed germination. A total of 121 protein spots showed a significant change in abundance (1.5-fold increase/decrease) during germination under all conditions. Among these proteins, we found seven proteins specifically associated with seed germination including glycosyl hydrolases family 38 protein, granule-bound starch synthase 1, Os03g0842900 (putative steroleosin-B), N-carbamoylputrescine amidase, spermidine synthase 1, tubulin α-1 chain and glutelin type-A; and a total of 20 imbibition response proteins involved in energy metabolism, cell growth, cell defense and storage proteins. High temperature inhibited seed germination by decreasing the abundance of proteins involved in methionine metabolism, amino acid biosynthesis, energy metabolism, reserve degradation, protein folding and stress responses. ABA treatment inhibited germination and decreased the abundance of proteins associated with methionine metabolism, energy production and cell division. Our results show that changes in many biological processes including energy metabolism, protein synthesis and cell defense and rescue occurred as a result of all treatments, while enzymes involved in methionine metabolism and weakening of cell wall specifically accumulated when the seeds germinated at the optimal temperature. |
Author | Li, Ni Liu, Shu‐Jun Wang, Wei‐Ping Wang, Wei‐Qing Møller, Ian Max Xu, Heng‐Heng Song, Song‐Quan |
Author_xml | – sequence: 1 fullname: Liu, Shu‐Jun – sequence: 2 fullname: Xu, Heng‐Heng – sequence: 3 fullname: Wang, Wei‐Qing – sequence: 4 fullname: Li, Ni – sequence: 5 fullname: Wang, Wei‐Ping – sequence: 6 fullname: Møller, Ian Max – sequence: 7 fullname: Song, Song‐Quan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25270993$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkt1rFDEUxYNU7Lb64D-gAV_qw7TJZJLZPK5Vq7BowS2CIOFu5s42db5MMtT9781--VAUvC-By-8cuOfkhBx1fYeEPOfsnKe5GIbmnOe5zh-RCRdaZ4LJ4ohMGBM804KXx-QkhDvGuFI8f0KOc5mXTGsxId8H30fsW2cpdNCsgwu0r6l3FmlArOgKfes6iK7vKAQKdY02pv1yTW_d6pZGbAf0EEePyaGiszczGj1CbLGLT8njGpqAz_bvKbl5_25x-SGbf776eDmbZ1byIs-gLrWVmsm80pwLBlO-FKooKl0vQRdQFkyAQquEQjFVVW0lqNoiMKmVZlackrOdb7rm54ghmtYFi00DHfZjMFzpQjI-5ew_0FKUWsipSuirB-hdP_qU0pbKtdSl0Il6safGZYuVGbxrwa_NIeMEXOwA6_sQPNbGurgNNHpwjeHMbFo0qUWzbTEpXj9QHEz_xu7d712D63-D5vp6flBkO4ULEX_9UYD_YTa3S_P105V5uxDf2EKXZsO_3PE19AZW3gVz8yVnXKb_NC1TrOI3dGTCAQ |
CitedBy_id | crossref_primary_10_1038_nplants_2015_17 crossref_primary_10_1007_s00299_021_02695_4 crossref_primary_10_1016_j_jplph_2018_06_011 crossref_primary_10_1016_j_plaphy_2024_109284 crossref_primary_10_1007_s10725_019_00567_2 crossref_primary_10_1038_s41598_017_00566_1 crossref_primary_10_1016_j_foodchem_2021_130028 crossref_primary_10_1016_j_jplph_2016_08_016 crossref_primary_10_1371_journal_pone_0233228 crossref_primary_10_1021_acs_jproteome_5b00215 crossref_primary_10_3390_ijms22020811 crossref_primary_10_3390_plants12020405 crossref_primary_10_1016_j_jplph_2017_03_008 crossref_primary_10_1007_s12010_023_04783_5 crossref_primary_10_1080_17429145_2019_1603406 crossref_primary_10_1093_pcp_pcw074 crossref_primary_10_1007_s12298_022_01195_3 crossref_primary_10_1111_pbi_13353 crossref_primary_10_1007_s00709_019_01354_6 crossref_primary_10_1111_ppl_13076 crossref_primary_10_3390_agronomy13020330 crossref_primary_10_1007_s40415_019_00551_0 crossref_primary_10_1016_j_ijbiomac_2023_125463 crossref_primary_10_1016_j_plaphy_2016_03_007 crossref_primary_10_1371_journal_pone_0157264 crossref_primary_10_1016_j_bbapap_2015_12_008 crossref_primary_10_3389_fpls_2024_1417632 crossref_primary_10_1016_j_foodres_2022_111758 crossref_primary_10_3390_ijms24108710 crossref_primary_10_2135_cropsci2016_03_0196 crossref_primary_10_1186_s12870_019_1643_z crossref_primary_10_1186_s12870_025_06134_4 crossref_primary_10_1016_j_jplph_2016_02_021 crossref_primary_10_1038_srep34583 crossref_primary_10_1007_s12042_016_9170_7 crossref_primary_10_1007_s12229_020_09220_4 crossref_primary_10_3389_fpls_2021_753011 crossref_primary_10_3389_fpls_2023_1137923 crossref_primary_10_1111_pbr_12740 crossref_primary_10_1007_s12374_016_0539_9 crossref_primary_10_1007_s11032_019_0963_x crossref_primary_10_1016_j_jplph_2018_07_012 crossref_primary_10_3389_fpls_2016_02006 crossref_primary_10_3389_fpls_2023_1250878 crossref_primary_10_1093_aob_mcz044 crossref_primary_10_3390_proteomes4040042 crossref_primary_10_31083_j_fbl2803049 crossref_primary_10_3390_plants11070886 |
Cites_doi | 10.1104/pp.102.016006 10.1021/ac950914h 10.1104/pp.108.123141 10.1105/tpc.110.079657 10.1016/j.jprot.2012.07.005 10.1104/pp.104.041947 10.1002/pmic.201000598 10.1104/pp.73.1.175 10.1104/pp.103.036293 10.1002/pmic.200600694 10.1093/jxb/err030 10.1046/j.0014-2956.2001.02656.x 10.1002/pmic.201200394 10.1021/pr900358s 10.1007/s11032-012-9721-z 10.1007/978-1-4614-4693-4 10.1146/annurev-arplant-042110-103921 10.1007/s007260170046 10.1016/S0969-2126(01)00680-3 10.1093/jxb/ert435 10.1016/S1369-5266(99)00047-3 10.1002/pmic.200800523 10.1104/pp.108.125807 10.1146/annurev.pp.46.060195.000443 10.1111/j.1399-3054.2009.01338.x 10.1007/s11103-010-9603-x 10.1016/j.plantsci.2010.02.010 10.1105/tpc.109.071837 10.1104/pp.106.082057 10.1093/pcp/pcs024 10.1104/pp.126.2.835 10.1021/pr800799s 10.1111/j.1744-7909.2011.01074.x 10.1007/s00018-004-4464-6 10.1146/annurev.pp.42.060191.003051 10.1002/pmic.200800183 10.1079/SSR2005218 10.1007/s10725-011-9643-5 10.1146/annurev-arplant-042811-105550 10.1007/s00425-008-0805-2 10.1128/JB.00754-07 10.1104/pp.106.079475 10.1002/pmic.200700207 10.1042/BJ20121744 10.1016/j.jprot.2011.10.036 10.1007/s11103-005-0953-8 10.1093/glycob/cwp170 10.3389/fpls.2013.00246 10.1104/pp.105.062778 10.1016/j.jprot.2010.12.004 10.1016/0003-2697(76)90527-3 10.1104/pp.002816 10.1111/j.1365-313X.2010.04135.x 10.1016/S0167-4781(02)00417-7 10.1038/35140 10.1111/j.1469-8137.2007.02226.x 10.1007/s12374-011-9165-8 10.1105/tpc.9.7.1055 10.1073/pnas.95.13.7805 10.1016/j.aquabot.2003.11.008 10.1002/pmic.200401209 10.1104/pp.122.2.327 |
ContentType | Journal Article |
Copyright | 2014 Scandinavian Plant Physiology Society 2014 Scandinavian Plant Physiology Society. 2015 Scandinavian Plant Physiology Society |
Copyright_xml | – notice: 2014 Scandinavian Plant Physiology Society – notice: 2014 Scandinavian Plant Physiology Society. – notice: 2015 Scandinavian Plant Physiology Society |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7ST 8FD C1K FR3 P64 RC3 SOI 7X8 7S9 L.6 |
DOI | 10.1111/ppl.12292 |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Engineering Research Database Ecology Abstracts Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef MEDLINE Genetics Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1399-3054 |
EndPage | 161 |
ExternalDocumentID | 3654210951 25270993 10_1111_ppl_12292 PPL12292 ark_67375_WNG_DT3Z0T97_2 US201500187501 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Chinese Academy of Sciences Visiting Professorship – fundername: National Science and Technology Support Program funderid: 2012BAC01B05 |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29O 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABHUG ABJNI ABPTK ABPVW ACAHQ ACBTR ACBWZ ACCFJ ACCZN ACGFS ACNCT ACPOU ACPRK ACSCC ACSMX ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AETEA AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHEFC AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ H~9 IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OHT P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 TWZ UB1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT ZCG ZZTAW ~02 ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SN 7ST 8FD C1K FR3 P64 RC3 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c5142-af79c59052d91130a81b3644d9fba94a7403a6ec636e386dfc5a6fcea059690c3 |
IEDL.DBID | DR2 |
ISSN | 0031-9317 1399-3054 |
IngestDate | Fri Jul 11 18:31:00 EDT 2025 Fri Jul 11 08:38:06 EDT 2025 Fri Jul 25 12:30:13 EDT 2025 Mon Jul 21 06:01:13 EDT 2025 Tue Jul 01 03:00:42 EDT 2025 Thu Apr 24 23:03:26 EDT 2025 Wed Jan 22 16:54:41 EST 2025 Wed Oct 30 09:55:03 EDT 2024 Wed Dec 27 19:28:25 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2014 Scandinavian Plant Physiology Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5142-af79c59052d91130a81b3644d9fba94a7403a6ec636e386dfc5a6fcea059690c3 |
Notes | http://dx.doi.org/10.1111/ppl.12292 Chinese Academy of Sciences Visiting Professorship National Science and Technology Support Program - No. 2012BAC01B05 ArticleID:PPL12292 ark:/67375/WNG-DT3Z0T97-2 Table S1. Accumulation levels, accumulation ratios and associated P values for differentially accumulated proteins listed in Table .Table S2. The number of protein spots analyzed and proteins identified for each spot.Table S3. Protein spots with two identified proteins.Fig. S1. Representative gels of soluble proteins from dry rice seeds (A), rice seeds germinating in water at 25°C (B), in water at 43°C (C) and in 50 µM ABA at 25°C (D) for 33 h. istex:472C40E52F9DE93B13F3F79DADD907F4554976B7 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 25270993 |
PQID | 1672959739 |
PQPubID | 1096353 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_1694501810 proquest_miscellaneous_1673793586 proquest_journals_1672959739 pubmed_primary_25270993 crossref_citationtrail_10_1111_ppl_12292 crossref_primary_10_1111_ppl_12292 wiley_primary_10_1111_ppl_12292_PPL12292 istex_primary_ark_67375_WNG_DT3Z0T97_2 fao_agris_US201500187501 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2015 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: May 2015 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Denmark – name: Malden |
PublicationTitle | Physiologia plantarum |
PublicationTitleAlternate | Physiol Plantarum |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D (2012) Seed germination and vigor. Annu Rev Plant Biol 63: 507-533 Yang PF, Li XJ, Wang XQ, Chen H, Chen F, Shen SH (2007) Proteomic analysis of rice (Oryza sativa) seeds during germination. Proteomics 7: 3358-3368 He DL, Yang PF (2013) Proteomics of rice seed germination. Front Plant Sci 4: 1-9 He DL, Han C, Yang PF (2011a) Gene expression profile changes in germinating rice. J Integr Plant Biol 53: 835-844 Sauter M, Moffatt B, Saechao MC, Hell R, Wirtz M (2013) Methionine salvage and S-adenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis. Biochem J 451: 145-154 de Castro RD, van Lammeren AAM, Groot SPC, Bino RJ, Hilhorst HWM (2000) Cell division and subsequent radicle protrusion in tomato seeds are inhibited by osmotic stress but DNA synthesis and formation of microtubular cytoskeleton are not. Plant Physiol 122: 327-335 Rajjou L, Lovigny Y, Groot SPC, Belghazi M, Job C, Job D (2008) Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiol 148: 620-641 Liao JL, Zhou HW, Zhang HY, Zhong PA, Huang YJ (2014) Comparative proteomic analysis of differentially expressed proteins in the early milky stage of rice grains during high temperature stress. J Exp Bot 65: 655-671 Kerk D, Bulgrien J, Smith DW, Gribskov M (2003) Arabidopsis proteins containing similarity to the universal stress protein domain of bacteria. Plant Physiol 131: 1209-1219 Maltman DJ, Gadd SM, Simon WJ, Slabas AR (2007) Differential proteomic analysis of the endoplasmic reticulum from developing and germinating seeds of castor (Ricinus communis) identifies seed protein precursors as significant components of the endoplasmic reticulum. Proteomics 7: 1513-1528 Sano N, Permana H, Kumada R, Shinozaki Y, Tanabata T, Yamada T, Hirasawa T, Kanekatsu M (2012) Proteomic analysis of embryonic proteins synthesized from long-lived mRNAs during germination of rice seeds. Plant Cell Physiol 53: 687-698 Wang Y, Kim SG, Kim ST, Agrawal GK, Rakwal R, Kang KY (2011) Biotic stress-responsive rice proteome: an overview. J Plant Biol 54: 219-226 Huang H, Møller IM, Song SQ (2012) Proteomics of desiccation tolerance during development and germination of maize embryos. J Proteomics 75: 1247-1262 Ravanel S, Gakière G, Job D, Douce R (2008) The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci USA 95: 7805-7812 Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62: 157-184 Bagni N, Tassoni A (2001) Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acids 20: 301-317 Masojć P, Kosmala A (2012) Proteomic analysis of preharvest sprouting in rye using two-dimensional electrophoresis and mass spectrometry. Mol Breed 30: 1355-1361 Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68: 850-858 Sghaier-Hammami B, Valledor L, Drira N, Jorrin-Novo JV (2009) Proteomic analysis of the development and germination of date palm (Phoenix dactylifera L.) zygotic embryos. Proteomics 9: 2543-2554 Kim ST, Wang Y, Kang SY, Kim SG, Rakwal R, Kim YC, Kang KY (2009) Developing rice embryo proteomics reveals essential role for embryonic proteins in regulation of seed germinating. J Proteome Res 8: 3598-3605 Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove J, Job D (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol 126: 835-848 Kajiura H, Koiwa H, Nakazawa Y, Okazawa A, Kobayashi A, Seki T, Fujiyama K (2010) Two Arabidopsis thaliana Golgi α-mannosidase I enzymes are responsible for plant N-glycan maturation. Glycobiology 20: 235-247 Chen M, Thelen JJ (2010) The plastid isoform of triose phosphate isomerase is required for the postgerminative transition from heterotrophic to autotrophic growth in Arabidopsis. Plant Cell 22: 77-90 Schiltz S, Gallardo K, Huart M, Negroni L, Sommerer N, Burstin J (2004) Proteome reference maps of vegetative tissues in pea. An investigation of nitrogen mobilization from leaves during seed filling. Plant Physiol 135: 2241-2260 He DL, Han C, Yao JL, Shen SH, Yang PF (2011b) Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach. Proteomics 11: 2693-2713 Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H (2013) Seeds. Physiology of Development, Germination and Dormancy, 3rd Edn. Springer, New York Sousa MC, McKay DB (2001) Structure of the universal stress protein of Haemophilus influenzae. Structure 9: 1135-1141 Bove J, Lucas P, Godin B, Ogé L, Jullien M, Grappin P (2005) Gene expression analysis by cDNA-AFLP highlights a set of new signaling networks and translational control during seed dormancy breaking in Nicotiana plumbaginifolia. Plant Mol Biol 57: 593-612 Miernyk J, Hajduch M (2011) Seed proteomics. J Proteomics 74: 389-400 Kimura M, Nambara E (2010) Stored and neosynthesized mRNA in Arabidopsis seeds: effects of cycloheximide and controlled deterioration treatment on the resumption of transcription during imbibitions. Plant Mol Biol 73: 119-129 Kucera B, Cohn MA, Leubner-Metzger GL (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15: 282-307 Job C, Rajjou L, Lovigny Y, Belghazi M, Job D (2005) Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol 138: 790-802 Baskin CC, Baskin JM (1998) Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. Academic Press, San Diego Sun W, Motangu MV, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta 1577: 1-9 Macdonald FD, Preiss J (1983) Solubilization of the starch-granule-bound starch synthase of normal maize kernels. Plant Physiol 73: 175-178 Rajjou L, Gallardo K, Debeaujon I, Vandekerckhove J, Job C, Job D (2004) The effect of α-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiol 134: 1598-1613 Okamoto M, Tatematsu K, Matsui A, Morosawa T, Ishida J, Tanaka M, Endo T, Mochizuki Y, Toyoda T, Kamiya Y, Shinozaki K, Nambara E, Seki M (2010) Genome-wide analysis of endogenous abscisic acid-mediated transcription in dry and imbibed seeds of Arabidopsis using tiling arrays. Plant J 62: 39-51 McCarty DR (1995) Genetic control and integration of maturation and germination pathways in seed development. Annu Rev Plant Physiol Plant Mol Biol 46: 71-93 Mayer MP, Bukau B (2005) HSP70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62: 670-684 Brándel M (2004) The role of temperature in the regulation of dormancy and germination of two related summer-annual mudflat species. Aquat Bot 79: 15-32 Wang X, Tang C, Deng L, Cai G, Liu X, Liu B, Han Q, Buchenauer H, Wei G, Han D, Huang L, Kang Z (2010) Characterization of a pathogenesis-related thaumatin-like protein gene TaPR5 from wheat induced by stripe rust fungus. Physiol Plant 139: 27-38 Dong TT, Tong JH, Xiao LT, Cheng HY, Song SQ (2012) Nitrate, abscisic acid and gibberellin interactions on the thermoinhibition of lettuce seed germination. Plant Growth Regul 66: 191-202 Tan L, Chen S, Wang T, Dai S (2013) Proteomic insights into seed germination in response to environmental factors. Proteomics 13: 1850-1870 Weitbrecht K, Müller K, Leubner-Metzger G (2011) First off the mark: early seed germination. J Exp Bot 62: 3289-3309 Kim ST, Kang SY, Wang Y, Kim SG, Hwang DH, Kang KY (2008) Analysis of embryonic proteome modulation by GA and ABA from germinating rice seeds. Proteomics 8: 3577-3587 Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, Hirai N, Kamiya Y, Koshiba T, Nambara E (2006) CYP707A1 and CYP707A2, which encode ABA 8'-hydroxylases, are indispensable for a proper control of seed dormancy and germination in Arabidopsis. Plant Physiol 141: 97-107 Pommerrenig B, Feussner K, Zierer W, Rabinovych V, Klebl F, Feussner I, Sauera N (2011) Phloem-specific expression of Yang cycle genes and identification of novel Yang cycle enzymes in Plantago and Arabidopsis. Plant Cell 23: 1904-1919 Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42: 579-620 Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W, Drost L, Ridley P, Hudson S-A, Patel K, Murphy G, Piffanelli P, Wedler H, Wedler E, Wambutt R, Weitzenegger T, Pohl TM, Terryn N, Gielen J, Villarroel R, De Clerck R, Van Montagu M, Lecharny A, Auborg S, Gy I, Kreis M, Lao N, Kavanagh T, Hempel S, Kotter P, Entian K-D, Rieger M, Schaeffer M, Funk B, Mueller-Auer S, Silvey M, James R, Montfort A, Pons A, Puigdomenech P, Douka A, Voukelatou E, Milioni D, Hatzopoulos P, Piravandi E, Obermaier B, Hilbert H, Düsterhöft A, Moores T, Jones JDG, Eneva T, Palme K, Benes V, Rechman S, Ansorge W, Cooke R, Berger C, Delseny M, Voet M, Volckaert G, Mewes H-W, Klosterman S, Schueller C, Chalwatzis N. (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391: 485-488 Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254 Korithoski B, Lévesque CM, Cvitkovitch DG (2007) Involvement of the detoxifying enzyme lactoylglutathione lyase in Streptococcus mutans aciduricity. J Bacteriol 189: 7586-7592 Argyris J, Dahal P, Hayashi E, Still DW, Bradford K (2008) Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes. Plant Physiol 148: 926-947 Sasaki T, Burr B (2000) International rice genom 2007; 189 2013; 4 2000; 3 2005; 138 2011; 62 2005; 62 2008; 228 2008; 8 2011; 54 2008; 148 1997; 9 2010; 62 2012; 53 2014; 65 2004; 134 2010; 22 2010; 20 2004; 135 2013; 13 2007; 176 1976; 72 2011b; 11 1991; 42 2004; 79 2002; 269 2007; 7 2011; 23 2000; 122 1996; 68 2012; 66 2010; 73 2012; 63 1998 2011a; 53 2011; 74 1983; 73 1991 2008; 95 2012; 77 2001; 126 2012; 75 2001; 20 2003; 131 2012; 30 1998; 391 2010; 139 1995; 46 2002; 1577 2001; 9 2010; 179 2006; 141 2005; 5 2002; 129 2009; 9 2009; 8 2013; 451 2013 2005; 15 2005; 57 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Baskin CC (e_1_2_9_4_1) 1998 Sachs MM (e_1_2_9_47_1) 1991 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 Kucera B (e_1_2_9_29_1) 2005; 15 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 |
References_xml | – reference: Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W, Drost L, Ridley P, Hudson S-A, Patel K, Murphy G, Piffanelli P, Wedler H, Wedler E, Wambutt R, Weitzenegger T, Pohl TM, Terryn N, Gielen J, Villarroel R, De Clerck R, Van Montagu M, Lecharny A, Auborg S, Gy I, Kreis M, Lao N, Kavanagh T, Hempel S, Kotter P, Entian K-D, Rieger M, Schaeffer M, Funk B, Mueller-Auer S, Silvey M, James R, Montfort A, Pons A, Puigdomenech P, Douka A, Voukelatou E, Milioni D, Hatzopoulos P, Piravandi E, Obermaier B, Hilbert H, Düsterhöft A, Moores T, Jones JDG, Eneva T, Palme K, Benes V, Rechman S, Ansorge W, Cooke R, Berger C, Delseny M, Voet M, Volckaert G, Mewes H-W, Klosterman S, Schueller C, Chalwatzis N. (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391: 485-488 – reference: Borisjuk L, Macherel D, Benamar A, Wobus U, Rolletschek H (2007) Low oxygen sensing and balancing in plant seeds: a role for nitric oxide. New Phytol 176: 813-823 – reference: Wang X, Tang C, Deng L, Cai G, Liu X, Liu B, Han Q, Buchenauer H, Wei G, Han D, Huang L, Kang Z (2010) Characterization of a pathogenesis-related thaumatin-like protein gene TaPR5 from wheat induced by stripe rust fungus. Physiol Plant 139: 27-38 – reference: Okamoto M, Tatematsu K, Matsui A, Morosawa T, Ishida J, Tanaka M, Endo T, Mochizuki Y, Toyoda T, Kamiya Y, Shinozaki K, Nambara E, Seki M (2010) Genome-wide analysis of endogenous abscisic acid-mediated transcription in dry and imbibed seeds of Arabidopsis using tiling arrays. Plant J 62: 39-51 – reference: Pommerrenig B, Feussner K, Zierer W, Rabinovych V, Klebl F, Feussner I, Sauera N (2011) Phloem-specific expression of Yang cycle genes and identification of novel Yang cycle enzymes in Plantago and Arabidopsis. Plant Cell 23: 1904-1919 – reference: He DL, Han C, Yang PF (2011a) Gene expression profile changes in germinating rice. J Integr Plant Biol 53: 835-844 – reference: Macdonald FD, Preiss J (1983) Solubilization of the starch-granule-bound starch synthase of normal maize kernels. Plant Physiol 73: 175-178 – reference: Baskin CC, Baskin JM (1998) Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. Academic Press, San Diego – reference: Franco OL, Rigden DJ, Melo FR, Grossi-de-Sá MF (2002) Plant α-amylase inhibitors and their interaction with insect α-amylases. Structure, function and potential for crop protection. Eur J Biochem 269: 397-412 – reference: Kim ST, Kang SY, Wang Y, Kim SG, Hwang DH, Kang KY (2008) Analysis of embryonic proteome modulation by GA and ABA from germinating rice seeds. Proteomics 8: 3577-3587 – reference: Ravanel S, Gakière G, Job D, Douce R (2008) The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci USA 95: 7805-7812 – reference: Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68: 850-858 – reference: Brándel M (2004) The role of temperature in the regulation of dormancy and germination of two related summer-annual mudflat species. Aquat Bot 79: 15-32 – reference: He DL, Han C, Yao JL, Shen SH, Yang PF (2011b) Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach. Proteomics 11: 2693-2713 – reference: Schiltz S, Gallardo K, Huart M, Negroni L, Sommerer N, Burstin J (2004) Proteome reference maps of vegetative tissues in pea. An investigation of nitrogen mobilization from leaves during seed filling. Plant Physiol 135: 2241-2260 – reference: Sano N, Permana H, Kumada R, Shinozaki Y, Tanabata T, Yamada T, Hirasawa T, Kanekatsu M (2012) Proteomic analysis of embryonic proteins synthesized from long-lived mRNAs during germination of rice seeds. Plant Cell Physiol 53: 687-698 – reference: Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove J, Job D (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol 126: 835-848 – reference: Sousa MC, McKay DB (2001) Structure of the universal stress protein of Haemophilus influenzae. Structure 9: 1135-1141 – reference: Sun W, Motangu MV, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta 1577: 1-9 – reference: Kerk D, Bulgrien J, Smith DW, Gribskov M (2003) Arabidopsis proteins containing similarity to the universal stress protein domain of bacteria. Plant Physiol 131: 1209-1219 – reference: Lu TC, Meng LB, Yang CP, Liu GF, Liu GJ, Ma W, Wang BC (2008) A shotgun phosphoproteomics analysis of embryos in germinated maize seeds. Planta 228: 1029-1041 – reference: Argyris J, Dahal P, Hayashi E, Still DW, Bradford K (2008) Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes. Plant Physiol 148: 926-947 – reference: Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove J, Job D (2002) Proteomics of Arabidopsis seed germination. A comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol 129: 823-837 – reference: Yang MF, Liu XJ, Liu Y, Chen H, Chen F, Shen SH (2009) Proteomic analysis of oil mobilization in seed germination and postgermination development of Jatropha curcas. J Proteome Res 8: 1441-1451 – reference: Kucera B, Cohn MA, Leubner-Metzger GL (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15: 282-307 – reference: Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, Hirai N, Kamiya Y, Koshiba T, Nambara E (2006) CYP707A1 and CYP707A2, which encode ABA 8'-hydroxylases, are indispensable for a proper control of seed dormancy and germination in Arabidopsis. Plant Physiol 141: 97-107 – reference: Rajjou L, Belghazi M, Huguet R, Robin C, Moreau A, Job C, Job D (2006) Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol 141: 910-923 – reference: Nonogaki H, Bassel GW, Bewley JD (2010) Germination - still a mystery. Plant Sci 179: 574-581 – reference: Kim ST, Wang Y, Kang SY, Kim SG, Rakwal R, Kim YC, Kang KY (2009) Developing rice embryo proteomics reveals essential role for embryonic proteins in regulation of seed germinating. J Proteome Res 8: 3598-3605 – reference: Wang Y, Kim SG, Kim ST, Agrawal GK, Rakwal R, Kang KY (2011) Biotic stress-responsive rice proteome: an overview. J Plant Biol 54: 219-226 – reference: Weitbrecht K, Müller K, Leubner-Metzger G (2011) First off the mark: early seed germination. J Exp Bot 62: 3289-3309 – reference: Dong TT, Tong JH, Xiao LT, Cheng HY, Song SQ (2012) Nitrate, abscisic acid and gibberellin interactions on the thermoinhibition of lettuce seed germination. Plant Growth Regul 66: 191-202 – reference: Wang WQ, Møller IM, Song SQ (2012) Proteomic analysis of embryonic axis of Pisum sativum seeds during germination and identification of proteins associated with loss of desiccation tolerance. J Proteomics 77: 68-86 – reference: Job C, Rajjou L, Lovigny Y, Belghazi M, Job D (2005) Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol 138: 790-802 – reference: Rajjou L, Lovigny Y, Groot SPC, Belghazi M, Job C, Job D (2008) Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiol 148: 620-641 – reference: Mayer MP, Bukau B (2005) HSP70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62: 670-684 – reference: Rajjou L, Gallardo K, Debeaujon I, Vandekerckhove J, Job C, Job D (2004) The effect of α-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiol 134: 1598-1613 – reference: Kajiura H, Koiwa H, Nakazawa Y, Okazawa A, Kobayashi A, Seki T, Fujiyama K (2010) Two Arabidopsis thaliana Golgi α-mannosidase I enzymes are responsible for plant N-glycan maturation. Glycobiology 20: 235-247 – reference: Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H (2013) Seeds. Physiology of Development, Germination and Dormancy, 3rd Edn. Springer, New York – reference: Korithoski B, Lévesque CM, Cvitkovitch DG (2007) Involvement of the detoxifying enzyme lactoylglutathione lyase in Streptococcus mutans aciduricity. J Bacteriol 189: 7586-7592 – reference: Maltman DJ, Gadd SM, Simon WJ, Slabas AR (2007) Differential proteomic analysis of the endoplasmic reticulum from developing and germinating seeds of castor (Ricinus communis) identifies seed protein precursors as significant components of the endoplasmic reticulum. Proteomics 7: 1513-1528 – reference: Bagni N, Tassoni A (2001) Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acids 20: 301-317 – reference: Bove J, Lucas P, Godin B, Ogé L, Jullien M, Grappin P (2005) Gene expression analysis by cDNA-AFLP highlights a set of new signaling networks and translational control during seed dormancy breaking in Nicotiana plumbaginifolia. Plant Mol Biol 57: 593-612 – reference: Kimura M, Nambara E (2010) Stored and neosynthesized mRNA in Arabidopsis seeds: effects of cycloheximide and controlled deterioration treatment on the resumption of transcription during imbibitions. Plant Mol Biol 73: 119-129 – reference: Bewley JD (1997) Seed germination and dormancy. Plant Cell 9: 1055-1066 – reference: Masojć P, Kosmala A (2012) Proteomic analysis of preharvest sprouting in rye using two-dimensional electrophoresis and mass spectrometry. Mol Breed 30: 1355-1361 – reference: Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62: 157-184 – reference: Miernyk J, Hajduch M (2011) Seed proteomics. J Proteomics 74: 389-400 – reference: Sauter M, Moffatt B, Saechao MC, Hell R, Wirtz M (2013) Methionine salvage and S-adenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis. Biochem J 451: 145-154 – reference: Sghaier-Hammami B, Valledor L, Drira N, Jorrin-Novo JV (2009) Proteomic analysis of the development and germination of date palm (Phoenix dactylifera L.) zygotic embryos. Proteomics 9: 2543-2554 – reference: Yang PF, Li XJ, Wang XQ, Chen H, Chen F, Shen SH (2007) Proteomic analysis of rice (Oryza sativa) seeds during germination. Proteomics 7: 3358-3368 – reference: Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254 – reference: Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D (2012) Seed germination and vigor. Annu Rev Plant Biol 63: 507-533 – reference: de Castro RD, van Lammeren AAM, Groot SPC, Bino RJ, Hilhorst HWM (2000) Cell division and subsequent radicle protrusion in tomato seeds are inhibited by osmotic stress but DNA synthesis and formation of microtubular cytoskeleton are not. Plant Physiol 122: 327-335 – reference: Chen M, Thelen JJ (2010) The plastid isoform of triose phosphate isomerase is required for the postgerminative transition from heterotrophic to autotrophic growth in Arabidopsis. Plant Cell 22: 77-90 – reference: He DL, Yang PF (2013) Proteomics of rice seed germination. Front Plant Sci 4: 1-9 – reference: Liao JL, Zhou HW, Zhang HY, Zhong PA, Huang YJ (2014) Comparative proteomic analysis of differentially expressed proteins in the early milky stage of rice grains during high temperature stress. J Exp Bot 65: 655-671 – reference: Huang H, Møller IM, Song SQ (2012) Proteomics of desiccation tolerance during development and germination of maize embryos. J Proteomics 75: 1247-1262 – reference: Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42: 579-620 – reference: McCarty DR (1995) Genetic control and integration of maturation and germination pathways in seed development. Annu Rev Plant Physiol Plant Mol Biol 46: 71-93 – reference: Sasaki T, Burr B (2000) International rice genome sequencing project: the effort to completely sequence the rice genome. Curr Opin Plant Biol 3: 138-141 – reference: Sheoran IS, Olson DJH, Ross ARS, Sawhney VK (2005) Proteome analysis of embryo and endosperm from germinating tomato seeds. Proteomics 5: 3752-3764 – reference: Tan L, Chen S, Wang T, Dai S (2013) Proteomic insights into seed germination in response to environmental factors. Proteomics 13: 1850-1870 – volume: 15 start-page: 282 year: 2005 end-page: 307 article-title: Plant hormone interactions during seed dormancy release and germination publication-title: Seed Sci Res – volume: 74 start-page: 389 year: 2011 end-page: 400 article-title: Seed proteomics publication-title: J Proteomics – volume: 131 start-page: 1209 year: 2003 end-page: 1219 article-title: Arabidopsis proteins containing similarity to the universal stress protein domain of bacteria publication-title: Plant Physiol – volume: 134 start-page: 1598 year: 2004 end-page: 1613 article-title: The effect of α‐amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination publication-title: Plant Physiol – volume: 122 start-page: 327 year: 2000 end-page: 335 article-title: Cell division and subsequent radicle protrusion in tomato seeds are inhibited by osmotic stress but DNA synthesis and formation of microtubular cytoskeleton are not publication-title: Plant Physiol – volume: 7 start-page: 3358 year: 2007 end-page: 3368 article-title: Proteomic analysis of rice ( ) seeds during germination publication-title: Proteomics – volume: 138 start-page: 790 year: 2005 end-page: 802 article-title: Patterns of protein oxidation in Arabidopsis seeds and during germination publication-title: Plant Physiol – volume: 1577 start-page: 1 year: 2002 end-page: 9 article-title: Small heat shock proteins and stress tolerance in plants publication-title: Biochim Biophys Acta – volume: 176 start-page: 813 year: 2007 end-page: 823 article-title: Low oxygen sensing and balancing in plant seeds: a role for nitric oxide publication-title: New Phytol – year: 1998 – volume: 30 start-page: 1355 year: 2012 end-page: 1361 article-title: Proteomic analysis of preharvest sprouting in rye using two‐dimensional electrophoresis and mass spectrometry publication-title: Mol Breed – volume: 65 start-page: 655 year: 2014 end-page: 671 article-title: Comparative proteomic analysis of differentially expressed proteins in the early milky stage of rice grains during high temperature stress publication-title: J Exp Bot – volume: 139 start-page: 27 year: 2010 end-page: 38 article-title: Characterization of a pathogenesis‐related thaumatin‐like protein gene from wheat induced by stripe rust fungus publication-title: Physiol Plant – volume: 73 start-page: 175 year: 1983 end-page: 178 article-title: Solubilization of the starch‐granule‐bound starch synthase of normal maize kernels publication-title: Plant Physiol – volume: 53 start-page: 687 year: 2012 end-page: 698 article-title: Proteomic analysis of embryonic proteins synthesized from long‐lived mRNAs during germination of rice seeds publication-title: Plant Cell Physiol – volume: 11 start-page: 2693 year: 2011b end-page: 2713 article-title: Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach publication-title: Proteomics – volume: 7 start-page: 1513 year: 2007 end-page: 1528 article-title: Differential proteomic analysis of the endoplasmic reticulum from developing and germinating seeds of castor ( ) identifies seed protein precursors as significant components of the endoplasmic reticulum publication-title: Proteomics – volume: 8 start-page: 1441 year: 2009 end-page: 1451 article-title: Proteomic analysis of oil mobilization in seed germination and postgermination development of publication-title: J Proteome Res – volume: 141 start-page: 97 year: 2006 end-page: 107 article-title: and , which encode ABA 8'‐hydroxylases, are indispensable for a proper control of seed dormancy and germination in Arabidopsis publication-title: Plant Physiol – start-page: 129 year: 1991 end-page: 139 – volume: 126 start-page: 835 year: 2001 end-page: 848 article-title: Proteomic analysis of Arabidopsis seed germination and priming publication-title: Plant Physiol – volume: 46 start-page: 71 year: 1995 end-page: 93 article-title: Genetic control and integration of maturation and germination pathways in seed development publication-title: Annu Rev Plant Physiol Plant Mol Biol – volume: 79 start-page: 15 year: 2004 end-page: 32 article-title: The role of temperature in the regulation of dormancy and germination of two related summer‐annual mudflat species publication-title: Aquat Bot – volume: 179 start-page: 574 year: 2010 end-page: 581 article-title: Germination – still a mystery publication-title: Plant Sci – volume: 9 start-page: 1055 year: 1997 end-page: 1066 article-title: Seed germination and dormancy publication-title: Plant Cell – volume: 72 start-page: 248 year: 1976 end-page: 254 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding publication-title: Anal Biochem – volume: 20 start-page: 235 year: 2010 end-page: 247 article-title: Two Golgi α‐mannosidase I enzymes are responsible for plant N‐glycan maturation publication-title: Glycobiology – volume: 9 start-page: 1135 year: 2001 end-page: 1141 article-title: Structure of the universal stress protein of publication-title: Structure – volume: 135 start-page: 2241 year: 2004 end-page: 2260 article-title: Proteome reference maps of vegetative tissues in pea. An investigation of nitrogen mobilization from leaves during seed filling publication-title: Plant Physiol – volume: 77 start-page: 68 year: 2012 end-page: 86 article-title: Proteomic analysis of embryonic axis of seeds during germination and identification of proteins associated with loss of desiccation tolerance publication-title: J Proteomics – volume: 75 start-page: 1247 year: 2012 end-page: 1262 article-title: Proteomics of desiccation tolerance during development and germination of maize embryos publication-title: J Proteomics – volume: 8 start-page: 3577 year: 2008 end-page: 3587 article-title: Analysis of embryonic proteome modulation by GA and ABA from germinating rice seeds publication-title: Proteomics – volume: 3 start-page: 138 year: 2000 end-page: 141 article-title: International rice genome sequencing project: the effort to completely sequence the rice genome publication-title: Curr Opin Plant Biol – volume: 22 start-page: 77 year: 2010 end-page: 90 article-title: The plastid isoform of triose phosphate isomerase is required for the postgerminative transition from heterotrophic to autotrophic growth in Arabidopsis publication-title: Plant Cell – volume: 95 start-page: 7805 year: 2008 end-page: 7812 article-title: The specific features of methionine biosynthesis and metabolism in plants publication-title: Proc Natl Acad Sci USA – volume: 148 start-page: 620 year: 2008 end-page: 641 article-title: Proteome‐wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols publication-title: Plant Physiol – volume: 9 start-page: 2543 year: 2009 end-page: 2554 article-title: Proteomic analysis of the development and germination of date palm ( L.) zygotic embryos publication-title: Proteomics – volume: 68 start-page: 850 year: 1996 end-page: 858 article-title: Mass spectrometric sequencing of proteins from silver‐stained polyacrylamide gels publication-title: Anal Chem – volume: 148 start-page: 926 year: 2008 end-page: 947 article-title: Genetic variation for lettuce seed thermoinhibition is associated with temperature‐sensitive expression of abscisic acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes publication-title: Plant Physiol – volume: 269 start-page: 397 year: 2002 end-page: 412 article-title: Plant α‐amylase inhibitors and their interaction with insect α‐amylases. Structure, function and potential for crop protection publication-title: Eur J Biochem – volume: 451 start-page: 145 year: 2013 end-page: 154 article-title: Methionine salvage and S‐adenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis publication-title: Biochem J – volume: 5 start-page: 3752 year: 2005 end-page: 3764 article-title: Proteome analysis of embryo and endosperm from germinating tomato seeds publication-title: Proteomics – volume: 189 start-page: 7586 year: 2007 end-page: 7592 article-title: Involvement of the detoxifying enzyme lactoylglutathione lyase in aciduricity publication-title: J Bacteriol – volume: 62 start-page: 157 year: 2011 end-page: 184 article-title: Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes publication-title: Annu Rev Plant Biol – volume: 4 start-page: 1 year: 2013 end-page: 9 article-title: Proteomics of rice seed germination publication-title: Front Plant Sci – volume: 129 start-page: 823 year: 2002 end-page: 837 article-title: Proteomics of Arabidopsis seed germination. A comparative study of wild‐type and gibberellin‐deficient seeds publication-title: Plant Physiol – volume: 141 start-page: 910 year: 2006 end-page: 923 article-title: Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms publication-title: Plant Physiol – volume: 42 start-page: 579 year: 1991 end-page: 620 article-title: The roles of heat shock proteins in plants publication-title: Annu Rev Plant Physiol Plant Mol Biol – volume: 391 start-page: 485 year: 1998 end-page: 488 article-title: Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of publication-title: Nature – volume: 66 start-page: 191 year: 2012 end-page: 202 article-title: Nitrate, abscisic acid and gibberellin interactions on the thermoinhibition of lettuce seed germination publication-title: Plant Growth Regul – volume: 8 start-page: 3598 year: 2009 end-page: 3605 article-title: Developing rice embryo proteomics reveals essential role for embryonic proteins in regulation of seed germinating publication-title: J Proteome Res – volume: 73 start-page: 119 year: 2010 end-page: 129 article-title: Stored and neosynthesized mRNA in Arabidopsis seeds: effects of cycloheximide and controlled deterioration treatment on the resumption of transcription during imbibitions publication-title: Plant Mol Biol – volume: 62 start-page: 3289 year: 2011 end-page: 3309 article-title: First off the mark: early seed germination publication-title: J Exp Bot – volume: 228 start-page: 1029 year: 2008 end-page: 1041 article-title: A shotgun phosphoproteomics analysis of embryos in germinated maize seeds publication-title: Planta – volume: 57 start-page: 593 year: 2005 end-page: 612 article-title: Gene expression analysis by cDNA‐AFLP highlights a set of new signaling networks and translational control during seed dormancy breaking in publication-title: Plant Mol Biol – volume: 54 start-page: 219 year: 2011 end-page: 226 article-title: Biotic stress‐responsive rice proteome: an overview publication-title: J Plant Biol – volume: 63 start-page: 507 year: 2012 end-page: 533 article-title: Seed germination and vigor publication-title: Annu Rev Plant Biol – volume: 53 start-page: 835 year: 2011a end-page: 844 article-title: Gene expression profile changes in germinating rice publication-title: J Integr Plant Biol – volume: 20 start-page: 301 year: 2001 end-page: 317 article-title: Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants publication-title: Amino Acids – volume: 62 start-page: 39 year: 2010 end-page: 51 article-title: Genome‐wide analysis of endogenous abscisic acid‐mediated transcription in dry and imbibed seeds of Arabidopsis using tiling arrays publication-title: Plant J – volume: 23 start-page: 1904 year: 2011 end-page: 1919 article-title: Phloem‐specific expression of Yang cycle genes and identification of novel Yang cycle enzymes in and publication-title: Plant Cell – volume: 62 start-page: 670 year: 2005 end-page: 684 article-title: HSP70 chaperones: cellular functions and molecular mechanism publication-title: Cell Mol Life Sci – year: 2013 – volume: 13 start-page: 1850 year: 2013 end-page: 1870 article-title: Proteomic insights into seed germination in response to environmental factors publication-title: Proteomics – ident: e_1_2_9_24_1 doi: 10.1104/pp.102.016006 – ident: e_1_2_9_54_1 doi: 10.1021/ac950914h – ident: e_1_2_9_44_1 doi: 10.1104/pp.108.123141 – ident: e_1_2_9_41_1 doi: 10.1105/tpc.110.079657 – ident: e_1_2_9_62_1 doi: 10.1016/j.jprot.2012.07.005 – ident: e_1_2_9_51_1 doi: 10.1104/pp.104.041947 – ident: e_1_2_9_20_1 doi: 10.1002/pmic.201000598 – ident: e_1_2_9_32_1 doi: 10.1104/pp.73.1.175 – ident: e_1_2_9_42_1 doi: 10.1104/pp.103.036293 – ident: e_1_2_9_33_1 doi: 10.1002/pmic.200600694 – ident: e_1_2_9_63_1 doi: 10.1093/jxb/err030 – ident: e_1_2_9_15_1 doi: 10.1046/j.0014-2956.2001.02656.x – ident: e_1_2_9_58_1 doi: 10.1002/pmic.201200394 – ident: e_1_2_9_26_1 doi: 10.1021/pr900358s – ident: e_1_2_9_34_1 doi: 10.1007/s11032-012-9721-z – ident: e_1_2_9_7_1 doi: 10.1007/978-1-4614-4693-4 – ident: e_1_2_9_57_1 doi: 10.1146/annurev-arplant-042110-103921 – ident: e_1_2_9_3_1 doi: 10.1007/s007260170046 – ident: e_1_2_9_55_1 doi: 10.1016/S0969-2126(01)00680-3 – ident: e_1_2_9_30_1 doi: 10.1093/jxb/ert435 – ident: e_1_2_9_49_1 doi: 10.1016/S1369-5266(99)00047-3 – ident: e_1_2_9_52_1 doi: 10.1002/pmic.200800523 – ident: e_1_2_9_2_1 doi: 10.1104/pp.108.125807 – ident: e_1_2_9_36_1 doi: 10.1146/annurev.pp.46.060195.000443 – ident: e_1_2_9_60_1 doi: 10.1111/j.1399-3054.2009.01338.x – ident: e_1_2_9_27_1 doi: 10.1007/s11103-010-9603-x – ident: e_1_2_9_38_1 doi: 10.1016/j.plantsci.2010.02.010 – ident: e_1_2_9_12_1 doi: 10.1105/tpc.109.071837 – ident: e_1_2_9_43_1 doi: 10.1104/pp.106.082057 – ident: e_1_2_9_48_1 doi: 10.1093/pcp/pcs024 – ident: e_1_2_9_16_1 doi: 10.1104/pp.126.2.835 – ident: e_1_2_9_65_1 doi: 10.1021/pr800799s – ident: e_1_2_9_19_1 doi: 10.1111/j.1744-7909.2011.01074.x – ident: e_1_2_9_35_1 doi: 10.1007/s00018-004-4464-6 – ident: e_1_2_9_59_1 doi: 10.1146/annurev.pp.42.060191.003051 – ident: e_1_2_9_25_1 doi: 10.1002/pmic.200800183 – volume: 15 start-page: 282 year: 2005 ident: e_1_2_9_29_1 article-title: Plant hormone interactions during seed dormancy release and germination publication-title: Seed Sci Res doi: 10.1079/SSR2005218 – ident: e_1_2_9_14_1 doi: 10.1007/s10725-011-9643-5 – ident: e_1_2_9_45_1 doi: 10.1146/annurev-arplant-042811-105550 – ident: e_1_2_9_31_1 doi: 10.1007/s00425-008-0805-2 – ident: e_1_2_9_28_1 doi: 10.1128/JB.00754-07 – ident: e_1_2_9_39_1 doi: 10.1104/pp.106.079475 – volume-title: Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination year: 1998 ident: e_1_2_9_4_1 – ident: e_1_2_9_64_1 doi: 10.1002/pmic.200700207 – ident: e_1_2_9_50_1 doi: 10.1042/BJ20121744 – ident: e_1_2_9_21_1 doi: 10.1016/j.jprot.2011.10.036 – ident: e_1_2_9_9_1 doi: 10.1007/s11103-005-0953-8 – ident: e_1_2_9_23_1 doi: 10.1093/glycob/cwp170 – ident: e_1_2_9_18_1 doi: 10.3389/fpls.2013.00246 – ident: e_1_2_9_22_1 doi: 10.1104/pp.105.062778 – ident: e_1_2_9_37_1 doi: 10.1016/j.jprot.2010.12.004 – ident: e_1_2_9_10_1 doi: 10.1016/0003-2697(76)90527-3 – ident: e_1_2_9_17_1 doi: 10.1104/pp.002816 – ident: e_1_2_9_40_1 doi: 10.1111/j.1365-313X.2010.04135.x – ident: e_1_2_9_56_1 doi: 10.1016/S0167-4781(02)00417-7 – ident: e_1_2_9_5_1 doi: 10.1038/35140 – ident: e_1_2_9_8_1 doi: 10.1111/j.1469-8137.2007.02226.x – start-page: 129 volume-title: Plant Life Under Oxygen Deprivation. Ecology, Physiology and Biochemistry year: 1991 ident: e_1_2_9_47_1 – ident: e_1_2_9_61_1 doi: 10.1007/s12374-011-9165-8 – ident: e_1_2_9_6_1 doi: 10.1105/tpc.9.7.1055 – ident: e_1_2_9_46_1 doi: 10.1073/pnas.95.13.7805 – ident: e_1_2_9_11_1 doi: 10.1016/j.aquabot.2003.11.008 – ident: e_1_2_9_53_1 doi: 10.1002/pmic.200401209 – ident: e_1_2_9_13_1 doi: 10.1104/pp.122.2.327 |
SSID | ssj0016612 |
Score | 2.3623333 |
Snippet | Seed germination is a critical phase in the plant life cycle, but the specific events associated with seed germination are still not fully understood. In this... |
SourceID | proquest pubmed crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 142 |
SubjectTerms | Abscisic acid Abscisic Acid - physiology Amino acids Biosynthesis Cell division cell growth cell walls energy energy metabolism Germination glutelins glycosidases High temperature Hot Temperature imbibition Mass spectrometry Metabolism methionine N-carbamoylputrescine amidase Oryza - growth & development Oryza - metabolism Oryza sativa protein folding Protein synthesis Proteome proteomics rice Seed germination Seedlings - growth & development Seeds Seeds - metabolism spermidine synthase starch synthase storage proteins stress response temperature tubulin two-dimensional gel electrophoresis |
Title | proteomic analysis of rice seed germination as affected by high temperature and ABA treatment |
URI | https://api.istex.fr/ark:/67375/WNG-DT3Z0T97-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fppl.12292 https://www.ncbi.nlm.nih.gov/pubmed/25270993 https://www.proquest.com/docview/1672959739 https://www.proquest.com/docview/1673793586 https://www.proquest.com/docview/1694501810 |
Volume | 154 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-1-OCL9bvbVoki4sse2WR3s8Gnq1qLaCl6h0WEMMlu-lC5ld4dWP96Z7IfWKkivi27k7CZzGR-SSa_MPa0kKaSulZpngWcoHjwKZRSp0ZAqDIQSjtaGnh_VB7O87cnxckGezGchen4IcYFN_KMOF6Tg4Nb_uLkCNImmZSGxl_K1SJA9GGkjsow7nRM4SpLDQbJnlWIsnjGkpdi0bUALSJUUu73q-DmZfQaw8_BFvsy_HiXdXI2Wa_cxP_4jdPxP1t2i93sYSmfdnZ0m200izvs-n6L0PHiLrNTHvkc6AQzh57GhLeBEyMRX2IA5KddUg11M4clh5gmgu_dBSdGZE4UWD1_M9ZQ8-n-lI9J7vfY_OD17OVh2t_MkHoEWDKFoI0vjChkjYOlEoDgVyGyqk1wYHLQuVBQNr5UZaOqsg6-gDL4BuiyHyO8us82F-2i2WZce-Gk95WrEMwFXzvpVF2hjeimESK4hD0f-sj6nracbs_4aofpC6rLRnUl7Mko-q3j6rhKaBs72sIpjqF2_lHSig9dTFiILGHPYu-PheH8jPLedGE_Hb2xr2bqs5gZbbGOvcE8bO_yS5uVOE_B6ZkyCXs8fkZnpR0YWDTtOsooTTvP5d9kTB5ZFkXCHnSmN_6QLKRGSK9QKdGA_txMe3z8Lj7s_LvoLrtB6ujSOffY5up83TxEyLVyj6Jv_QT2DiK3 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGQGIvjM8tbIBBCPGSyrGTOJb20gGjQFdN0IoJCVm2E-9hqEFrKzH--t05H2JoIMRblFyi-Hzn-51z-R0hzzOuCi5LEaeJhwTFGRebnMtYMeOLxDAhLW4NHE7y0Sx9f5wdr5G97l-Yhh-i33BDzwjrNTo4bkj_4uWA0gYJ5woW4OvY0TskVB978qgEIk_DFS6SWEGYbHmFsI6nv_VSNLrmTQ0YFdX74yrAeRm_hgB0sEm-dq_e1J2cDlZLO3A_f2N1_N-x3Sa3WmRKh40p3SFr1fwuubFfA3o8v0f0kAZKB_yJmZqWyYTWniIpEV1ADKQnTV0NzjQ1C2pCpQict-cUSZEpsmC1FM7whJIO94e0r3O_T2YHb6avRnHbnCF2gLF4bLxULlMs4yWsl4IZwL8CwFWpvDUqNTJlwuSVy0VeiSIvvctM7l1lsN-PYk48IOvzel5tEyods9y5whaA57wrLbeiLMBMZFUx5m1EXnaTpF3LXI4NNL7pLoMBdemgrog860W_N3QdVwltw0xrcwLLqJ594rjpg70JM5ZE5EWY_v5mc3aKpW8y058nb_XrqfjCpkpqeMZuZx-69fqFTnJIVSBDEyoiT_vL4K_4EcbMq3oVZITEj8_532RUGogWWUS2GtvrX4hnXAKqF6CUYEF_HqY-OhqHg4f_LvqE3BxND8d6_G7yYYdsoGqa6s5dsr48W1WPAIEt7ePgaBcS8ibS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbxQhECe1GtMXv7WrVdEY48teWNiFJT5dPc-q9XLRu7QxJgRY6EOb26Z3l1j_egf2I9ZUY3zb7A5kGWaYHzD8QOhFQWVJRcXSPPMwQbHapppTkUqifZlpwoQJSwOfJnxvnn84LA430OvuLEzDD9EvuAXPiON1cPDTyv_i5ADSBhmlEsbfqzknZTDp0eeeOyqDwNNQhbMslRAlW1qhkMbTF70QjK54XQNEDdr9fhnevAhfY_wZ30Tfuj9v0k6OB-uVGdgfv5E6_mfTbqEbLS7Fw8aQbqMNt7iDru3WgB3P7yI1xJHQIRxhxrrlMcG1x4GSCC8hAuKjJqsm9DPWS6xjngi8N-c4UCLjwIHVEjhDDRUe7g5xn-V-D83Hb2dv9tL2aobUAsKiqfZC2kKSglYwWjKiAf0ygFaV9EbLXIucMM2d5Yw7VvLK20Jzb50Ot_1IYtl9tLmoF24bYWGJodaWpgQ0521lqGFVCUYinCPEmwS96vpI2Za3PFyfcaK6-QuoS0V1Jeh5L3rakHVcJrQNHa30EQyiav6FhiWfcDNhQbIEvYy93xfWZ8ch8U0U6mDyTo1m7CuZSaGgjp3OPFTr80uVcZiowPyMyQQ96z-Dt4YtGL1w9TrKMBG2nvnfZGQeaRZJgh40ptf_EC2oAEzPQCnRgP7cTDWd7seHh_8u-hRdn47Gav_95OMjtBU006R27qDN1dnaPQb4tTJPopv9BJh1JYo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+proteomic+analysis+of+rice+seed+germination+as+affected+by+high+temperature+and+ABA+treatment&rft.jtitle=Physiologia+plantarum&rft.au=Liu%2C+Shu-Jun&rft.au=Xu%2C+Heng-Heng&rft.au=Wang%2C+Wei-Qing&rft.au=Li%2C+Ni&rft.date=2015-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0031-9317&rft.eissn=1399-3054&rft.volume=154&rft.issue=1&rft.spage=142&rft_id=info:doi/10.1111%2Fppl.12292&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3654210951 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9317&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9317&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9317&client=summon |