proteomic analysis of rice seed germination as affected by high temperature and ABA treatment

Seed germination is a critical phase in the plant life cycle, but the specific events associated with seed germination are still not fully understood. In this study, we used two‐dimensional gel electrophoresis followed by mass spectrometry to investigate the changes in the proteome during imbibition...

Full description

Saved in:
Bibliographic Details
Published inPhysiologia plantarum Vol. 154; no. 1; pp. 142 - 161
Main Authors Liu, Shu‐Jun, Xu, Heng‐Heng, Wang, Wei‐Qing, Li, Ni, Wang, Wei‐Ping, Møller, Ian Max, Song, Song‐Quan
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.05.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Seed germination is a critical phase in the plant life cycle, but the specific events associated with seed germination are still not fully understood. In this study, we used two‐dimensional gel electrophoresis followed by mass spectrometry to investigate the changes in the proteome during imbibition of Oryza sativa seeds at optimal temperature with or without abscisic acid (ABA) and high temperature (germination thermoinhibition) to further identify and quantify key proteins required for seed germination. A total of 121 protein spots showed a significant change in abundance (1.5‐fold increase/decrease) during germination under all conditions. Among these proteins, we found seven proteins specifically associated with seed germination including glycosyl hydrolases family 38 protein, granule‐bound starch synthase 1, Os03g0842900 (putative steroleosin‐B), N‐carbamoylputrescine amidase, spermidine synthase 1, tubulin α‐1 chain and glutelin type‐A; and a total of 20 imbibition response proteins involved in energy metabolism, cell growth, cell defense and storage proteins. High temperature inhibited seed germination by decreasing the abundance of proteins involved in methionine metabolism, amino acid biosynthesis, energy metabolism, reserve degradation, protein folding and stress responses. ABA treatment inhibited germination and decreased the abundance of proteins associated with methionine metabolism, energy production and cell division. Our results show that changes in many biological processes including energy metabolism, protein synthesis and cell defense and rescue occurred as a result of all treatments, while enzymes involved in methionine metabolism and weakening of cell wall specifically accumulated when the seeds germinated at the optimal temperature.
AbstractList Seed germination is a critical phase in the plant life cycle, but the specific events associated with seed germination are still not fully understood. In this study, we used two‐dimensional gel electrophoresis followed by mass spectrometry to investigate the changes in the proteome during imbibition of Oryza sativa seeds at optimal temperature with or without abscisic acid (ABA) and high temperature (germination thermoinhibition) to further identify and quantify key proteins required for seed germination. A total of 121 protein spots showed a significant change in abundance (1.5‐fold increase/decrease) during germination under all conditions. Among these proteins, we found seven proteins specifically associated with seed germination including glycosyl hydrolases family 38 protein, granule‐bound starch synthase 1, Os03g0842900 (putative steroleosin‐B), N‐carbamoylputrescine amidase, spermidine synthase 1, tubulin α‐1 chain and glutelin type‐A; and a total of 20 imbibition response proteins involved in energy metabolism, cell growth, cell defense and storage proteins. High temperature inhibited seed germination by decreasing the abundance of proteins involved in methionine metabolism, amino acid biosynthesis, energy metabolism, reserve degradation, protein folding and stress responses. ABA treatment inhibited germination and decreased the abundance of proteins associated with methionine metabolism, energy production and cell division. Our results show that changes in many biological processes including energy metabolism, protein synthesis and cell defense and rescue occurred as a result of all treatments, while enzymes involved in methionine metabolism and weakening of cell wall specifically accumulated when the seeds germinated at the optimal temperature.
Seed germination is a critical phase in the plant life cycle, but the specific events associated with seed germination are still not fully understood. In this study, we used two‐dimensional gel electrophoresis followed by mass spectrometry to investigate the changes in the proteome during imbibition of Oryza sativa seeds at optimal temperature with or without abscisic acid ( ABA ) and high temperature (germination thermoinhibition) to further identify and quantify key proteins required for seed germination. A total of 121 protein spots showed a significant change in abundance (1.5‐fold increase/decrease) during germination under all conditions. Among these proteins, we found seven proteins specifically associated with seed germination including glycosyl hydrolases family 38 protein, granule‐bound starch synthase 1, Os03g0842900 (putative steroleosin‐B), N‐carbamoylputrescine amidase, spermidine synthase 1, tubulin α‐1 chain and glutelin type‐A; and a total of 20 imbibition response proteins involved in energy metabolism, cell growth, cell defense and storage proteins. High temperature inhibited seed germination by decreasing the abundance of proteins involved in methionine metabolism, amino acid biosynthesis, energy metabolism, reserve degradation, protein folding and stress responses. ABA treatment inhibited germination and decreased the abundance of proteins associated with methionine metabolism, energy production and cell division. Our results show that changes in many biological processes including energy metabolism, protein synthesis and cell defense and rescue occurred as a result of all treatments, while enzymes involved in methionine metabolism and weakening of cell wall specifically accumulated when the seeds germinated at the optimal temperature.
Seed germination is a critical phase in the plant life cycle, but the specific events associated with seed germination are still not fully understood. In this study, we used two-dimensional gel electrophoresis followed by mass spectrometry to investigate the changes in the proteome during imbibition of Oryza sativa seeds at optimal temperature with or without abscisic acid (ABA) and high temperature (germination thermoinhibition) to further identify and quantify key proteins required for seed germination. A total of 121 protein spots showed a significant change in abundance (1.5-fold increase/decrease) during germination under all conditions. Among these proteins, we found seven proteins specifically associated with seed germination including glycosyl hydrolases family 38 protein, granule-bound starch synthase 1, Os03g0842900 (putative steroleosin-B), N-carbamoylputrescine amidase, spermidine synthase 1, tubulin [alpha]-1 chain and glutelin type-A; and a total of 20 imbibition response proteins involved in energy metabolism, cell growth, cell defense and storage proteins. High temperature inhibited seed germination by decreasing the abundance of proteins involved in methionine metabolism, amino acid biosynthesis, energy metabolism, reserve degradation, protein folding and stress responses. ABA treatment inhibited germination and decreased the abundance of proteins associated with methionine metabolism, energy production and cell division. Our results show that changes in many biological processes including energy metabolism, protein synthesis and cell defense and rescue occurred as a result of all treatments, while enzymes involved in methionine metabolism and weakening of cell wall specifically accumulated when the seeds germinated at the optimal temperature.
Seed germination is a critical phase in the plant life cycle, but the specific events associated with seed germination are still not fully understood. In this study, we used two-dimensional gel electrophoresis followed by mass spectrometry to investigate the changes in the proteome during imbibition of Oryza sativa seeds at optimal temperature with or without abscisic acid (ABA) and high temperature (germination thermoinhibition) to further identify and quantify key proteins required for seed germination. A total of 121 protein spots showed a significant change in abundance (1.5-fold increase/decrease) during germination under all conditions. Among these proteins, we found seven proteins specifically associated with seed germination including glycosyl hydrolases family 38 protein, granule-bound starch synthase 1, Os03g0842900 (putative steroleosin-B), N-carbamoylputrescine amidase, spermidine synthase 1, tubulin α-1 chain and glutelin type-A; and a total of 20 imbibition response proteins involved in energy metabolism, cell growth, cell defense and storage proteins. High temperature inhibited seed germination by decreasing the abundance of proteins involved in methionine metabolism, amino acid biosynthesis, energy metabolism, reserve degradation, protein folding and stress responses. ABA treatment inhibited germination and decreased the abundance of proteins associated with methionine metabolism, energy production and cell division. Our results show that changes in many biological processes including energy metabolism, protein synthesis and cell defense and rescue occurred as a result of all treatments, while enzymes involved in methionine metabolism and weakening of cell wall specifically accumulated when the seeds germinated at the optimal temperature.Seed germination is a critical phase in the plant life cycle, but the specific events associated with seed germination are still not fully understood. In this study, we used two-dimensional gel electrophoresis followed by mass spectrometry to investigate the changes in the proteome during imbibition of Oryza sativa seeds at optimal temperature with or without abscisic acid (ABA) and high temperature (germination thermoinhibition) to further identify and quantify key proteins required for seed germination. A total of 121 protein spots showed a significant change in abundance (1.5-fold increase/decrease) during germination under all conditions. Among these proteins, we found seven proteins specifically associated with seed germination including glycosyl hydrolases family 38 protein, granule-bound starch synthase 1, Os03g0842900 (putative steroleosin-B), N-carbamoylputrescine amidase, spermidine synthase 1, tubulin α-1 chain and glutelin type-A; and a total of 20 imbibition response proteins involved in energy metabolism, cell growth, cell defense and storage proteins. High temperature inhibited seed germination by decreasing the abundance of proteins involved in methionine metabolism, amino acid biosynthesis, energy metabolism, reserve degradation, protein folding and stress responses. ABA treatment inhibited germination and decreased the abundance of proteins associated with methionine metabolism, energy production and cell division. Our results show that changes in many biological processes including energy metabolism, protein synthesis and cell defense and rescue occurred as a result of all treatments, while enzymes involved in methionine metabolism and weakening of cell wall specifically accumulated when the seeds germinated at the optimal temperature.
Author Li, Ni
Liu, Shu‐Jun
Wang, Wei‐Ping
Wang, Wei‐Qing
Møller, Ian Max
Xu, Heng‐Heng
Song, Song‐Quan
Author_xml – sequence: 1
  fullname: Liu, Shu‐Jun
– sequence: 2
  fullname: Xu, Heng‐Heng
– sequence: 3
  fullname: Wang, Wei‐Qing
– sequence: 4
  fullname: Li, Ni
– sequence: 5
  fullname: Wang, Wei‐Ping
– sequence: 6
  fullname: Møller, Ian Max
– sequence: 7
  fullname: Song, Song‐Quan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25270993$$D View this record in MEDLINE/PubMed
BookMark eNqNkt1rFDEUxYNU7Lb64D-gAV_qw7TJZJLZPK5Vq7BowS2CIOFu5s42db5MMtT9781--VAUvC-By-8cuOfkhBx1fYeEPOfsnKe5GIbmnOe5zh-RCRdaZ4LJ4ohMGBM804KXx-QkhDvGuFI8f0KOc5mXTGsxId8H30fsW2cpdNCsgwu0r6l3FmlArOgKfes6iK7vKAQKdY02pv1yTW_d6pZGbAf0EEePyaGiszczGj1CbLGLT8njGpqAz_bvKbl5_25x-SGbf776eDmbZ1byIs-gLrWVmsm80pwLBlO-FKooKl0vQRdQFkyAQquEQjFVVW0lqNoiMKmVZlackrOdb7rm54ghmtYFi00DHfZjMFzpQjI-5ew_0FKUWsipSuirB-hdP_qU0pbKtdSl0Il6safGZYuVGbxrwa_NIeMEXOwA6_sQPNbGurgNNHpwjeHMbFo0qUWzbTEpXj9QHEz_xu7d712D63-D5vp6flBkO4ULEX_9UYD_YTa3S_P105V5uxDf2EKXZsO_3PE19AZW3gVz8yVnXKb_NC1TrOI3dGTCAQ
CitedBy_id crossref_primary_10_1038_nplants_2015_17
crossref_primary_10_1007_s00299_021_02695_4
crossref_primary_10_1016_j_jplph_2018_06_011
crossref_primary_10_1016_j_plaphy_2024_109284
crossref_primary_10_1007_s10725_019_00567_2
crossref_primary_10_1038_s41598_017_00566_1
crossref_primary_10_1016_j_foodchem_2021_130028
crossref_primary_10_1016_j_jplph_2016_08_016
crossref_primary_10_1371_journal_pone_0233228
crossref_primary_10_1021_acs_jproteome_5b00215
crossref_primary_10_3390_ijms22020811
crossref_primary_10_3390_plants12020405
crossref_primary_10_1016_j_jplph_2017_03_008
crossref_primary_10_1007_s12010_023_04783_5
crossref_primary_10_1080_17429145_2019_1603406
crossref_primary_10_1093_pcp_pcw074
crossref_primary_10_1007_s12298_022_01195_3
crossref_primary_10_1111_pbi_13353
crossref_primary_10_1007_s00709_019_01354_6
crossref_primary_10_1111_ppl_13076
crossref_primary_10_3390_agronomy13020330
crossref_primary_10_1007_s40415_019_00551_0
crossref_primary_10_1016_j_ijbiomac_2023_125463
crossref_primary_10_1016_j_plaphy_2016_03_007
crossref_primary_10_1371_journal_pone_0157264
crossref_primary_10_1016_j_bbapap_2015_12_008
crossref_primary_10_3389_fpls_2024_1417632
crossref_primary_10_1016_j_foodres_2022_111758
crossref_primary_10_3390_ijms24108710
crossref_primary_10_2135_cropsci2016_03_0196
crossref_primary_10_1186_s12870_019_1643_z
crossref_primary_10_1186_s12870_025_06134_4
crossref_primary_10_1016_j_jplph_2016_02_021
crossref_primary_10_1038_srep34583
crossref_primary_10_1007_s12042_016_9170_7
crossref_primary_10_1007_s12229_020_09220_4
crossref_primary_10_3389_fpls_2021_753011
crossref_primary_10_3389_fpls_2023_1137923
crossref_primary_10_1111_pbr_12740
crossref_primary_10_1007_s12374_016_0539_9
crossref_primary_10_1007_s11032_019_0963_x
crossref_primary_10_1016_j_jplph_2018_07_012
crossref_primary_10_3389_fpls_2016_02006
crossref_primary_10_3389_fpls_2023_1250878
crossref_primary_10_1093_aob_mcz044
crossref_primary_10_3390_proteomes4040042
crossref_primary_10_31083_j_fbl2803049
crossref_primary_10_3390_plants11070886
Cites_doi 10.1104/pp.102.016006
10.1021/ac950914h
10.1104/pp.108.123141
10.1105/tpc.110.079657
10.1016/j.jprot.2012.07.005
10.1104/pp.104.041947
10.1002/pmic.201000598
10.1104/pp.73.1.175
10.1104/pp.103.036293
10.1002/pmic.200600694
10.1093/jxb/err030
10.1046/j.0014-2956.2001.02656.x
10.1002/pmic.201200394
10.1021/pr900358s
10.1007/s11032-012-9721-z
10.1007/978-1-4614-4693-4
10.1146/annurev-arplant-042110-103921
10.1007/s007260170046
10.1016/S0969-2126(01)00680-3
10.1093/jxb/ert435
10.1016/S1369-5266(99)00047-3
10.1002/pmic.200800523
10.1104/pp.108.125807
10.1146/annurev.pp.46.060195.000443
10.1111/j.1399-3054.2009.01338.x
10.1007/s11103-010-9603-x
10.1016/j.plantsci.2010.02.010
10.1105/tpc.109.071837
10.1104/pp.106.082057
10.1093/pcp/pcs024
10.1104/pp.126.2.835
10.1021/pr800799s
10.1111/j.1744-7909.2011.01074.x
10.1007/s00018-004-4464-6
10.1146/annurev.pp.42.060191.003051
10.1002/pmic.200800183
10.1079/SSR2005218
10.1007/s10725-011-9643-5
10.1146/annurev-arplant-042811-105550
10.1007/s00425-008-0805-2
10.1128/JB.00754-07
10.1104/pp.106.079475
10.1002/pmic.200700207
10.1042/BJ20121744
10.1016/j.jprot.2011.10.036
10.1007/s11103-005-0953-8
10.1093/glycob/cwp170
10.3389/fpls.2013.00246
10.1104/pp.105.062778
10.1016/j.jprot.2010.12.004
10.1016/0003-2697(76)90527-3
10.1104/pp.002816
10.1111/j.1365-313X.2010.04135.x
10.1016/S0167-4781(02)00417-7
10.1038/35140
10.1111/j.1469-8137.2007.02226.x
10.1007/s12374-011-9165-8
10.1105/tpc.9.7.1055
10.1073/pnas.95.13.7805
10.1016/j.aquabot.2003.11.008
10.1002/pmic.200401209
10.1104/pp.122.2.327
ContentType Journal Article
Copyright 2014 Scandinavian Plant Physiology Society
2014 Scandinavian Plant Physiology Society.
2015 Scandinavian Plant Physiology Society
Copyright_xml – notice: 2014 Scandinavian Plant Physiology Society
– notice: 2014 Scandinavian Plant Physiology Society.
– notice: 2015 Scandinavian Plant Physiology Society
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7ST
8FD
C1K
FR3
P64
RC3
SOI
7X8
7S9
L.6
DOI 10.1111/ppl.12292
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Engineering Research Database
Ecology Abstracts
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
CrossRef
MEDLINE
Genetics Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1399-3054
EndPage 161
ExternalDocumentID 3654210951
25270993
10_1111_ppl_12292
PPL12292
ark_67375_WNG_DT3Z0T97_2
US201500187501
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Chinese Academy of Sciences Visiting Professorship
– fundername: National Science and Technology Support Program
  funderid: 2012BAC01B05
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29O
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ACAHQ
ACBTR
ACBWZ
ACCFJ
ACCZN
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
H~9
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OHT
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
TWZ
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7ST
8FD
C1K
FR3
P64
RC3
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c5142-af79c59052d91130a81b3644d9fba94a7403a6ec636e386dfc5a6fcea059690c3
IEDL.DBID DR2
ISSN 0031-9317
1399-3054
IngestDate Fri Jul 11 18:31:00 EDT 2025
Fri Jul 11 08:38:06 EDT 2025
Fri Jul 25 12:30:13 EDT 2025
Mon Jul 21 06:01:13 EDT 2025
Tue Jul 01 03:00:42 EDT 2025
Thu Apr 24 23:03:26 EDT 2025
Wed Jan 22 16:54:41 EST 2025
Wed Oct 30 09:55:03 EDT 2024
Wed Dec 27 19:28:25 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2014 Scandinavian Plant Physiology Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5142-af79c59052d91130a81b3644d9fba94a7403a6ec636e386dfc5a6fcea059690c3
Notes http://dx.doi.org/10.1111/ppl.12292
Chinese Academy of Sciences Visiting Professorship
National Science and Technology Support Program - No. 2012BAC01B05
ArticleID:PPL12292
ark:/67375/WNG-DT3Z0T97-2
Table S1. Accumulation levels, accumulation ratios and associated P values for differentially accumulated proteins listed in Table .Table S2. The number of protein spots analyzed and proteins identified for each spot.Table S3. Protein spots with two identified proteins.Fig. S1. Representative gels of soluble proteins from dry rice seeds (A), rice seeds germinating in water at 25°C (B), in water at 43°C (C) and in 50 µM ABA at 25°C (D) for 33 h.
istex:472C40E52F9DE93B13F3F79DADD907F4554976B7
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25270993
PQID 1672959739
PQPubID 1096353
PageCount 20
ParticipantIDs proquest_miscellaneous_1694501810
proquest_miscellaneous_1673793586
proquest_journals_1672959739
pubmed_primary_25270993
crossref_citationtrail_10_1111_ppl_12292
crossref_primary_10_1111_ppl_12292
wiley_primary_10_1111_ppl_12292_PPL12292
istex_primary_ark_67375_WNG_DT3Z0T97_2
fao_agris_US201500187501
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2015
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: May 2015
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Denmark
– name: Malden
PublicationTitle Physiologia plantarum
PublicationTitleAlternate Physiol Plantarum
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D (2012) Seed germination and vigor. Annu Rev Plant Biol 63: 507-533
Yang PF, Li XJ, Wang XQ, Chen H, Chen F, Shen SH (2007) Proteomic analysis of rice (Oryza sativa) seeds during germination. Proteomics 7: 3358-3368
He DL, Yang PF (2013) Proteomics of rice seed germination. Front Plant Sci 4: 1-9
He DL, Han C, Yang PF (2011a) Gene expression profile changes in germinating rice. J Integr Plant Biol 53: 835-844
Sauter M, Moffatt B, Saechao MC, Hell R, Wirtz M (2013) Methionine salvage and S-adenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis. Biochem J 451: 145-154
de Castro RD, van Lammeren AAM, Groot SPC, Bino RJ, Hilhorst HWM (2000) Cell division and subsequent radicle protrusion in tomato seeds are inhibited by osmotic stress but DNA synthesis and formation of microtubular cytoskeleton are not. Plant Physiol 122: 327-335
Rajjou L, Lovigny Y, Groot SPC, Belghazi M, Job C, Job D (2008) Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiol 148: 620-641
Liao JL, Zhou HW, Zhang HY, Zhong PA, Huang YJ (2014) Comparative proteomic analysis of differentially expressed proteins in the early milky stage of rice grains during high temperature stress. J Exp Bot 65: 655-671
Kerk D, Bulgrien J, Smith DW, Gribskov M (2003) Arabidopsis proteins containing similarity to the universal stress protein domain of bacteria. Plant Physiol 131: 1209-1219
Maltman DJ, Gadd SM, Simon WJ, Slabas AR (2007) Differential proteomic analysis of the endoplasmic reticulum from developing and germinating seeds of castor (Ricinus communis) identifies seed protein precursors as significant components of the endoplasmic reticulum. Proteomics 7: 1513-1528
Sano N, Permana H, Kumada R, Shinozaki Y, Tanabata T, Yamada T, Hirasawa T, Kanekatsu M (2012) Proteomic analysis of embryonic proteins synthesized from long-lived mRNAs during germination of rice seeds. Plant Cell Physiol 53: 687-698
Wang Y, Kim SG, Kim ST, Agrawal GK, Rakwal R, Kang KY (2011) Biotic stress-responsive rice proteome: an overview. J Plant Biol 54: 219-226
Huang H, Møller IM, Song SQ (2012) Proteomics of desiccation tolerance during development and germination of maize embryos. J Proteomics 75: 1247-1262
Ravanel S, Gakière G, Job D, Douce R (2008) The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci USA 95: 7805-7812
Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62: 157-184
Bagni N, Tassoni A (2001) Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acids 20: 301-317
Masojć P, Kosmala A (2012) Proteomic analysis of preharvest sprouting in rye using two-dimensional electrophoresis and mass spectrometry. Mol Breed 30: 1355-1361
Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68: 850-858
Sghaier-Hammami B, Valledor L, Drira N, Jorrin-Novo JV (2009) Proteomic analysis of the development and germination of date palm (Phoenix dactylifera L.) zygotic embryos. Proteomics 9: 2543-2554
Kim ST, Wang Y, Kang SY, Kim SG, Rakwal R, Kim YC, Kang KY (2009) Developing rice embryo proteomics reveals essential role for embryonic proteins in regulation of seed germinating. J Proteome Res 8: 3598-3605
Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove J, Job D (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol 126: 835-848
Kajiura H, Koiwa H, Nakazawa Y, Okazawa A, Kobayashi A, Seki T, Fujiyama K (2010) Two Arabidopsis thaliana Golgi α-mannosidase I enzymes are responsible for plant N-glycan maturation. Glycobiology 20: 235-247
Chen M, Thelen JJ (2010) The plastid isoform of triose phosphate isomerase is required for the postgerminative transition from heterotrophic to autotrophic growth in Arabidopsis. Plant Cell 22: 77-90
Schiltz S, Gallardo K, Huart M, Negroni L, Sommerer N, Burstin J (2004) Proteome reference maps of vegetative tissues in pea. An investigation of nitrogen mobilization from leaves during seed filling. Plant Physiol 135: 2241-2260
He DL, Han C, Yao JL, Shen SH, Yang PF (2011b) Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach. Proteomics 11: 2693-2713
Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H (2013) Seeds. Physiology of Development, Germination and Dormancy, 3rd Edn. Springer, New York
Sousa MC, McKay DB (2001) Structure of the universal stress protein of Haemophilus influenzae. Structure 9: 1135-1141
Bove J, Lucas P, Godin B, Ogé L, Jullien M, Grappin P (2005) Gene expression analysis by cDNA-AFLP highlights a set of new signaling networks and translational control during seed dormancy breaking in Nicotiana plumbaginifolia. Plant Mol Biol 57: 593-612
Miernyk J, Hajduch M (2011) Seed proteomics. J Proteomics 74: 389-400
Kimura M, Nambara E (2010) Stored and neosynthesized mRNA in Arabidopsis seeds: effects of cycloheximide and controlled deterioration treatment on the resumption of transcription during imbibitions. Plant Mol Biol 73: 119-129
Kucera B, Cohn MA, Leubner-Metzger GL (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15: 282-307
Job C, Rajjou L, Lovigny Y, Belghazi M, Job D (2005) Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol 138: 790-802
Baskin CC, Baskin JM (1998) Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. Academic Press, San Diego
Sun W, Motangu MV, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta 1577: 1-9
Macdonald FD, Preiss J (1983) Solubilization of the starch-granule-bound starch synthase of normal maize kernels. Plant Physiol 73: 175-178
Rajjou L, Gallardo K, Debeaujon I, Vandekerckhove J, Job C, Job D (2004) The effect of α-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiol 134: 1598-1613
Okamoto M, Tatematsu K, Matsui A, Morosawa T, Ishida J, Tanaka M, Endo T, Mochizuki Y, Toyoda T, Kamiya Y, Shinozaki K, Nambara E, Seki M (2010) Genome-wide analysis of endogenous abscisic acid-mediated transcription in dry and imbibed seeds of Arabidopsis using tiling arrays. Plant J 62: 39-51
McCarty DR (1995) Genetic control and integration of maturation and germination pathways in seed development. Annu Rev Plant Physiol Plant Mol Biol 46: 71-93
Mayer MP, Bukau B (2005) HSP70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62: 670-684
Brándel M (2004) The role of temperature in the regulation of dormancy and germination of two related summer-annual mudflat species. Aquat Bot 79: 15-32
Wang X, Tang C, Deng L, Cai G, Liu X, Liu B, Han Q, Buchenauer H, Wei G, Han D, Huang L, Kang Z (2010) Characterization of a pathogenesis-related thaumatin-like protein gene TaPR5 from wheat induced by stripe rust fungus. Physiol Plant 139: 27-38
Dong TT, Tong JH, Xiao LT, Cheng HY, Song SQ (2012) Nitrate, abscisic acid and gibberellin interactions on the thermoinhibition of lettuce seed germination. Plant Growth Regul 66: 191-202
Tan L, Chen S, Wang T, Dai S (2013) Proteomic insights into seed germination in response to environmental factors. Proteomics 13: 1850-1870
Weitbrecht K, Müller K, Leubner-Metzger G (2011) First off the mark: early seed germination. J Exp Bot 62: 3289-3309
Kim ST, Kang SY, Wang Y, Kim SG, Hwang DH, Kang KY (2008) Analysis of embryonic proteome modulation by GA and ABA from germinating rice seeds. Proteomics 8: 3577-3587
Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, Hirai N, Kamiya Y, Koshiba T, Nambara E (2006) CYP707A1 and CYP707A2, which encode ABA 8'-hydroxylases, are indispensable for a proper control of seed dormancy and germination in Arabidopsis. Plant Physiol 141: 97-107
Pommerrenig B, Feussner K, Zierer W, Rabinovych V, Klebl F, Feussner I, Sauera N (2011) Phloem-specific expression of Yang cycle genes and identification of novel Yang cycle enzymes in Plantago and Arabidopsis. Plant Cell 23: 1904-1919
Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42: 579-620
Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W, Drost L, Ridley P, Hudson S-A, Patel K, Murphy G, Piffanelli P, Wedler H, Wedler E, Wambutt R, Weitzenegger T, Pohl TM, Terryn N, Gielen J, Villarroel R, De Clerck R, Van Montagu M, Lecharny A, Auborg S, Gy I, Kreis M, Lao N, Kavanagh T, Hempel S, Kotter P, Entian K-D, Rieger M, Schaeffer M, Funk B, Mueller-Auer S, Silvey M, James R, Montfort A, Pons A, Puigdomenech P, Douka A, Voukelatou E, Milioni D, Hatzopoulos P, Piravandi E, Obermaier B, Hilbert H, Düsterhöft A, Moores T, Jones JDG, Eneva T, Palme K, Benes V, Rechman S, Ansorge W, Cooke R, Berger C, Delseny M, Voet M, Volckaert G, Mewes H-W, Klosterman S, Schueller C, Chalwatzis N. (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391: 485-488
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254
Korithoski B, Lévesque CM, Cvitkovitch DG (2007) Involvement of the detoxifying enzyme lactoylglutathione lyase in Streptococcus mutans aciduricity. J Bacteriol 189: 7586-7592
Argyris J, Dahal P, Hayashi E, Still DW, Bradford K (2008) Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes. Plant Physiol 148: 926-947
Sasaki T, Burr B (2000) International rice genom
2007; 189
2013; 4
2000; 3
2005; 138
2011; 62
2005; 62
2008; 228
2008; 8
2011; 54
2008; 148
1997; 9
2010; 62
2012; 53
2014; 65
2004; 134
2010; 22
2010; 20
2004; 135
2013; 13
2007; 176
1976; 72
2011b; 11
1991; 42
2004; 79
2002; 269
2007; 7
2011; 23
2000; 122
1996; 68
2012; 66
2010; 73
2012; 63
1998
2011a; 53
2011; 74
1983; 73
1991
2008; 95
2012; 77
2001; 126
2012; 75
2001; 20
2003; 131
2012; 30
1998; 391
2010; 139
1995; 46
2002; 1577
2001; 9
2010; 179
2006; 141
2005; 5
2002; 129
2009; 9
2009; 8
2013; 451
2013
2005; 15
2005; 57
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Baskin CC (e_1_2_9_4_1) 1998
Sachs MM (e_1_2_9_47_1) 1991
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Kucera B (e_1_2_9_29_1) 2005; 15
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
References_xml – reference: Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W, Drost L, Ridley P, Hudson S-A, Patel K, Murphy G, Piffanelli P, Wedler H, Wedler E, Wambutt R, Weitzenegger T, Pohl TM, Terryn N, Gielen J, Villarroel R, De Clerck R, Van Montagu M, Lecharny A, Auborg S, Gy I, Kreis M, Lao N, Kavanagh T, Hempel S, Kotter P, Entian K-D, Rieger M, Schaeffer M, Funk B, Mueller-Auer S, Silvey M, James R, Montfort A, Pons A, Puigdomenech P, Douka A, Voukelatou E, Milioni D, Hatzopoulos P, Piravandi E, Obermaier B, Hilbert H, Düsterhöft A, Moores T, Jones JDG, Eneva T, Palme K, Benes V, Rechman S, Ansorge W, Cooke R, Berger C, Delseny M, Voet M, Volckaert G, Mewes H-W, Klosterman S, Schueller C, Chalwatzis N. (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391: 485-488
– reference: Borisjuk L, Macherel D, Benamar A, Wobus U, Rolletschek H (2007) Low oxygen sensing and balancing in plant seeds: a role for nitric oxide. New Phytol 176: 813-823
– reference: Wang X, Tang C, Deng L, Cai G, Liu X, Liu B, Han Q, Buchenauer H, Wei G, Han D, Huang L, Kang Z (2010) Characterization of a pathogenesis-related thaumatin-like protein gene TaPR5 from wheat induced by stripe rust fungus. Physiol Plant 139: 27-38
– reference: Okamoto M, Tatematsu K, Matsui A, Morosawa T, Ishida J, Tanaka M, Endo T, Mochizuki Y, Toyoda T, Kamiya Y, Shinozaki K, Nambara E, Seki M (2010) Genome-wide analysis of endogenous abscisic acid-mediated transcription in dry and imbibed seeds of Arabidopsis using tiling arrays. Plant J 62: 39-51
– reference: Pommerrenig B, Feussner K, Zierer W, Rabinovych V, Klebl F, Feussner I, Sauera N (2011) Phloem-specific expression of Yang cycle genes and identification of novel Yang cycle enzymes in Plantago and Arabidopsis. Plant Cell 23: 1904-1919
– reference: He DL, Han C, Yang PF (2011a) Gene expression profile changes in germinating rice. J Integr Plant Biol 53: 835-844
– reference: Macdonald FD, Preiss J (1983) Solubilization of the starch-granule-bound starch synthase of normal maize kernels. Plant Physiol 73: 175-178
– reference: Baskin CC, Baskin JM (1998) Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. Academic Press, San Diego
– reference: Franco OL, Rigden DJ, Melo FR, Grossi-de-Sá MF (2002) Plant α-amylase inhibitors and their interaction with insect α-amylases. Structure, function and potential for crop protection. Eur J Biochem 269: 397-412
– reference: Kim ST, Kang SY, Wang Y, Kim SG, Hwang DH, Kang KY (2008) Analysis of embryonic proteome modulation by GA and ABA from germinating rice seeds. Proteomics 8: 3577-3587
– reference: Ravanel S, Gakière G, Job D, Douce R (2008) The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci USA 95: 7805-7812
– reference: Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68: 850-858
– reference: Brándel M (2004) The role of temperature in the regulation of dormancy and germination of two related summer-annual mudflat species. Aquat Bot 79: 15-32
– reference: He DL, Han C, Yao JL, Shen SH, Yang PF (2011b) Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach. Proteomics 11: 2693-2713
– reference: Schiltz S, Gallardo K, Huart M, Negroni L, Sommerer N, Burstin J (2004) Proteome reference maps of vegetative tissues in pea. An investigation of nitrogen mobilization from leaves during seed filling. Plant Physiol 135: 2241-2260
– reference: Sano N, Permana H, Kumada R, Shinozaki Y, Tanabata T, Yamada T, Hirasawa T, Kanekatsu M (2012) Proteomic analysis of embryonic proteins synthesized from long-lived mRNAs during germination of rice seeds. Plant Cell Physiol 53: 687-698
– reference: Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove J, Job D (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol 126: 835-848
– reference: Sousa MC, McKay DB (2001) Structure of the universal stress protein of Haemophilus influenzae. Structure 9: 1135-1141
– reference: Sun W, Motangu MV, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta 1577: 1-9
– reference: Kerk D, Bulgrien J, Smith DW, Gribskov M (2003) Arabidopsis proteins containing similarity to the universal stress protein domain of bacteria. Plant Physiol 131: 1209-1219
– reference: Lu TC, Meng LB, Yang CP, Liu GF, Liu GJ, Ma W, Wang BC (2008) A shotgun phosphoproteomics analysis of embryos in germinated maize seeds. Planta 228: 1029-1041
– reference: Argyris J, Dahal P, Hayashi E, Still DW, Bradford K (2008) Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes. Plant Physiol 148: 926-947
– reference: Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove J, Job D (2002) Proteomics of Arabidopsis seed germination. A comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol 129: 823-837
– reference: Yang MF, Liu XJ, Liu Y, Chen H, Chen F, Shen SH (2009) Proteomic analysis of oil mobilization in seed germination and postgermination development of Jatropha curcas. J Proteome Res 8: 1441-1451
– reference: Kucera B, Cohn MA, Leubner-Metzger GL (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15: 282-307
– reference: Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, Hirai N, Kamiya Y, Koshiba T, Nambara E (2006) CYP707A1 and CYP707A2, which encode ABA 8'-hydroxylases, are indispensable for a proper control of seed dormancy and germination in Arabidopsis. Plant Physiol 141: 97-107
– reference: Rajjou L, Belghazi M, Huguet R, Robin C, Moreau A, Job C, Job D (2006) Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol 141: 910-923
– reference: Nonogaki H, Bassel GW, Bewley JD (2010) Germination - still a mystery. Plant Sci 179: 574-581
– reference: Kim ST, Wang Y, Kang SY, Kim SG, Rakwal R, Kim YC, Kang KY (2009) Developing rice embryo proteomics reveals essential role for embryonic proteins in regulation of seed germinating. J Proteome Res 8: 3598-3605
– reference: Wang Y, Kim SG, Kim ST, Agrawal GK, Rakwal R, Kang KY (2011) Biotic stress-responsive rice proteome: an overview. J Plant Biol 54: 219-226
– reference: Weitbrecht K, Müller K, Leubner-Metzger G (2011) First off the mark: early seed germination. J Exp Bot 62: 3289-3309
– reference: Dong TT, Tong JH, Xiao LT, Cheng HY, Song SQ (2012) Nitrate, abscisic acid and gibberellin interactions on the thermoinhibition of lettuce seed germination. Plant Growth Regul 66: 191-202
– reference: Wang WQ, Møller IM, Song SQ (2012) Proteomic analysis of embryonic axis of Pisum sativum seeds during germination and identification of proteins associated with loss of desiccation tolerance. J Proteomics 77: 68-86
– reference: Job C, Rajjou L, Lovigny Y, Belghazi M, Job D (2005) Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol 138: 790-802
– reference: Rajjou L, Lovigny Y, Groot SPC, Belghazi M, Job C, Job D (2008) Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiol 148: 620-641
– reference: Mayer MP, Bukau B (2005) HSP70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62: 670-684
– reference: Rajjou L, Gallardo K, Debeaujon I, Vandekerckhove J, Job C, Job D (2004) The effect of α-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiol 134: 1598-1613
– reference: Kajiura H, Koiwa H, Nakazawa Y, Okazawa A, Kobayashi A, Seki T, Fujiyama K (2010) Two Arabidopsis thaliana Golgi α-mannosidase I enzymes are responsible for plant N-glycan maturation. Glycobiology 20: 235-247
– reference: Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H (2013) Seeds. Physiology of Development, Germination and Dormancy, 3rd Edn. Springer, New York
– reference: Korithoski B, Lévesque CM, Cvitkovitch DG (2007) Involvement of the detoxifying enzyme lactoylglutathione lyase in Streptococcus mutans aciduricity. J Bacteriol 189: 7586-7592
– reference: Maltman DJ, Gadd SM, Simon WJ, Slabas AR (2007) Differential proteomic analysis of the endoplasmic reticulum from developing and germinating seeds of castor (Ricinus communis) identifies seed protein precursors as significant components of the endoplasmic reticulum. Proteomics 7: 1513-1528
– reference: Bagni N, Tassoni A (2001) Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acids 20: 301-317
– reference: Bove J, Lucas P, Godin B, Ogé L, Jullien M, Grappin P (2005) Gene expression analysis by cDNA-AFLP highlights a set of new signaling networks and translational control during seed dormancy breaking in Nicotiana plumbaginifolia. Plant Mol Biol 57: 593-612
– reference: Kimura M, Nambara E (2010) Stored and neosynthesized mRNA in Arabidopsis seeds: effects of cycloheximide and controlled deterioration treatment on the resumption of transcription during imbibitions. Plant Mol Biol 73: 119-129
– reference: Bewley JD (1997) Seed germination and dormancy. Plant Cell 9: 1055-1066
– reference: Masojć P, Kosmala A (2012) Proteomic analysis of preharvest sprouting in rye using two-dimensional electrophoresis and mass spectrometry. Mol Breed 30: 1355-1361
– reference: Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62: 157-184
– reference: Miernyk J, Hajduch M (2011) Seed proteomics. J Proteomics 74: 389-400
– reference: Sauter M, Moffatt B, Saechao MC, Hell R, Wirtz M (2013) Methionine salvage and S-adenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis. Biochem J 451: 145-154
– reference: Sghaier-Hammami B, Valledor L, Drira N, Jorrin-Novo JV (2009) Proteomic analysis of the development and germination of date palm (Phoenix dactylifera L.) zygotic embryos. Proteomics 9: 2543-2554
– reference: Yang PF, Li XJ, Wang XQ, Chen H, Chen F, Shen SH (2007) Proteomic analysis of rice (Oryza sativa) seeds during germination. Proteomics 7: 3358-3368
– reference: Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254
– reference: Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D (2012) Seed germination and vigor. Annu Rev Plant Biol 63: 507-533
– reference: de Castro RD, van Lammeren AAM, Groot SPC, Bino RJ, Hilhorst HWM (2000) Cell division and subsequent radicle protrusion in tomato seeds are inhibited by osmotic stress but DNA synthesis and formation of microtubular cytoskeleton are not. Plant Physiol 122: 327-335
– reference: Chen M, Thelen JJ (2010) The plastid isoform of triose phosphate isomerase is required for the postgerminative transition from heterotrophic to autotrophic growth in Arabidopsis. Plant Cell 22: 77-90
– reference: He DL, Yang PF (2013) Proteomics of rice seed germination. Front Plant Sci 4: 1-9
– reference: Liao JL, Zhou HW, Zhang HY, Zhong PA, Huang YJ (2014) Comparative proteomic analysis of differentially expressed proteins in the early milky stage of rice grains during high temperature stress. J Exp Bot 65: 655-671
– reference: Huang H, Møller IM, Song SQ (2012) Proteomics of desiccation tolerance during development and germination of maize embryos. J Proteomics 75: 1247-1262
– reference: Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42: 579-620
– reference: McCarty DR (1995) Genetic control and integration of maturation and germination pathways in seed development. Annu Rev Plant Physiol Plant Mol Biol 46: 71-93
– reference: Sasaki T, Burr B (2000) International rice genome sequencing project: the effort to completely sequence the rice genome. Curr Opin Plant Biol 3: 138-141
– reference: Sheoran IS, Olson DJH, Ross ARS, Sawhney VK (2005) Proteome analysis of embryo and endosperm from germinating tomato seeds. Proteomics 5: 3752-3764
– reference: Tan L, Chen S, Wang T, Dai S (2013) Proteomic insights into seed germination in response to environmental factors. Proteomics 13: 1850-1870
– volume: 15
  start-page: 282
  year: 2005
  end-page: 307
  article-title: Plant hormone interactions during seed dormancy release and germination
  publication-title: Seed Sci Res
– volume: 74
  start-page: 389
  year: 2011
  end-page: 400
  article-title: Seed proteomics
  publication-title: J Proteomics
– volume: 131
  start-page: 1209
  year: 2003
  end-page: 1219
  article-title: Arabidopsis proteins containing similarity to the universal stress protein domain of bacteria
  publication-title: Plant Physiol
– volume: 134
  start-page: 1598
  year: 2004
  end-page: 1613
  article-title: The effect of α‐amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination
  publication-title: Plant Physiol
– volume: 122
  start-page: 327
  year: 2000
  end-page: 335
  article-title: Cell division and subsequent radicle protrusion in tomato seeds are inhibited by osmotic stress but DNA synthesis and formation of microtubular cytoskeleton are not
  publication-title: Plant Physiol
– volume: 7
  start-page: 3358
  year: 2007
  end-page: 3368
  article-title: Proteomic analysis of rice ( ) seeds during germination
  publication-title: Proteomics
– volume: 138
  start-page: 790
  year: 2005
  end-page: 802
  article-title: Patterns of protein oxidation in Arabidopsis seeds and during germination
  publication-title: Plant Physiol
– volume: 1577
  start-page: 1
  year: 2002
  end-page: 9
  article-title: Small heat shock proteins and stress tolerance in plants
  publication-title: Biochim Biophys Acta
– volume: 176
  start-page: 813
  year: 2007
  end-page: 823
  article-title: Low oxygen sensing and balancing in plant seeds: a role for nitric oxide
  publication-title: New Phytol
– year: 1998
– volume: 30
  start-page: 1355
  year: 2012
  end-page: 1361
  article-title: Proteomic analysis of preharvest sprouting in rye using two‐dimensional electrophoresis and mass spectrometry
  publication-title: Mol Breed
– volume: 65
  start-page: 655
  year: 2014
  end-page: 671
  article-title: Comparative proteomic analysis of differentially expressed proteins in the early milky stage of rice grains during high temperature stress
  publication-title: J Exp Bot
– volume: 139
  start-page: 27
  year: 2010
  end-page: 38
  article-title: Characterization of a pathogenesis‐related thaumatin‐like protein gene from wheat induced by stripe rust fungus
  publication-title: Physiol Plant
– volume: 73
  start-page: 175
  year: 1983
  end-page: 178
  article-title: Solubilization of the starch‐granule‐bound starch synthase of normal maize kernels
  publication-title: Plant Physiol
– volume: 53
  start-page: 687
  year: 2012
  end-page: 698
  article-title: Proteomic analysis of embryonic proteins synthesized from long‐lived mRNAs during germination of rice seeds
  publication-title: Plant Cell Physiol
– volume: 11
  start-page: 2693
  year: 2011b
  end-page: 2713
  article-title: Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach
  publication-title: Proteomics
– volume: 7
  start-page: 1513
  year: 2007
  end-page: 1528
  article-title: Differential proteomic analysis of the endoplasmic reticulum from developing and germinating seeds of castor ( ) identifies seed protein precursors as significant components of the endoplasmic reticulum
  publication-title: Proteomics
– volume: 8
  start-page: 1441
  year: 2009
  end-page: 1451
  article-title: Proteomic analysis of oil mobilization in seed germination and postgermination development of
  publication-title: J Proteome Res
– volume: 141
  start-page: 97
  year: 2006
  end-page: 107
  article-title: and , which encode ABA 8'‐hydroxylases, are indispensable for a proper control of seed dormancy and germination in Arabidopsis
  publication-title: Plant Physiol
– start-page: 129
  year: 1991
  end-page: 139
– volume: 126
  start-page: 835
  year: 2001
  end-page: 848
  article-title: Proteomic analysis of Arabidopsis seed germination and priming
  publication-title: Plant Physiol
– volume: 46
  start-page: 71
  year: 1995
  end-page: 93
  article-title: Genetic control and integration of maturation and germination pathways in seed development
  publication-title: Annu Rev Plant Physiol Plant Mol Biol
– volume: 79
  start-page: 15
  year: 2004
  end-page: 32
  article-title: The role of temperature in the regulation of dormancy and germination of two related summer‐annual mudflat species
  publication-title: Aquat Bot
– volume: 179
  start-page: 574
  year: 2010
  end-page: 581
  article-title: Germination – still a mystery
  publication-title: Plant Sci
– volume: 9
  start-page: 1055
  year: 1997
  end-page: 1066
  article-title: Seed germination and dormancy
  publication-title: Plant Cell
– volume: 72
  start-page: 248
  year: 1976
  end-page: 254
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding
  publication-title: Anal Biochem
– volume: 20
  start-page: 235
  year: 2010
  end-page: 247
  article-title: Two Golgi α‐mannosidase I enzymes are responsible for plant N‐glycan maturation
  publication-title: Glycobiology
– volume: 9
  start-page: 1135
  year: 2001
  end-page: 1141
  article-title: Structure of the universal stress protein of
  publication-title: Structure
– volume: 135
  start-page: 2241
  year: 2004
  end-page: 2260
  article-title: Proteome reference maps of vegetative tissues in pea. An investigation of nitrogen mobilization from leaves during seed filling
  publication-title: Plant Physiol
– volume: 77
  start-page: 68
  year: 2012
  end-page: 86
  article-title: Proteomic analysis of embryonic axis of seeds during germination and identification of proteins associated with loss of desiccation tolerance
  publication-title: J Proteomics
– volume: 75
  start-page: 1247
  year: 2012
  end-page: 1262
  article-title: Proteomics of desiccation tolerance during development and germination of maize embryos
  publication-title: J Proteomics
– volume: 8
  start-page: 3577
  year: 2008
  end-page: 3587
  article-title: Analysis of embryonic proteome modulation by GA and ABA from germinating rice seeds
  publication-title: Proteomics
– volume: 3
  start-page: 138
  year: 2000
  end-page: 141
  article-title: International rice genome sequencing project: the effort to completely sequence the rice genome
  publication-title: Curr Opin Plant Biol
– volume: 22
  start-page: 77
  year: 2010
  end-page: 90
  article-title: The plastid isoform of triose phosphate isomerase is required for the postgerminative transition from heterotrophic to autotrophic growth in Arabidopsis
  publication-title: Plant Cell
– volume: 95
  start-page: 7805
  year: 2008
  end-page: 7812
  article-title: The specific features of methionine biosynthesis and metabolism in plants
  publication-title: Proc Natl Acad Sci USA
– volume: 148
  start-page: 620
  year: 2008
  end-page: 641
  article-title: Proteome‐wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols
  publication-title: Plant Physiol
– volume: 9
  start-page: 2543
  year: 2009
  end-page: 2554
  article-title: Proteomic analysis of the development and germination of date palm ( L.) zygotic embryos
  publication-title: Proteomics
– volume: 68
  start-page: 850
  year: 1996
  end-page: 858
  article-title: Mass spectrometric sequencing of proteins from silver‐stained polyacrylamide gels
  publication-title: Anal Chem
– volume: 148
  start-page: 926
  year: 2008
  end-page: 947
  article-title: Genetic variation for lettuce seed thermoinhibition is associated with temperature‐sensitive expression of abscisic acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes
  publication-title: Plant Physiol
– volume: 269
  start-page: 397
  year: 2002
  end-page: 412
  article-title: Plant α‐amylase inhibitors and their interaction with insect α‐amylases. Structure, function and potential for crop protection
  publication-title: Eur J Biochem
– volume: 451
  start-page: 145
  year: 2013
  end-page: 154
  article-title: Methionine salvage and S‐adenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis
  publication-title: Biochem J
– volume: 5
  start-page: 3752
  year: 2005
  end-page: 3764
  article-title: Proteome analysis of embryo and endosperm from germinating tomato seeds
  publication-title: Proteomics
– volume: 189
  start-page: 7586
  year: 2007
  end-page: 7592
  article-title: Involvement of the detoxifying enzyme lactoylglutathione lyase in aciduricity
  publication-title: J Bacteriol
– volume: 62
  start-page: 157
  year: 2011
  end-page: 184
  article-title: Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes
  publication-title: Annu Rev Plant Biol
– volume: 4
  start-page: 1
  year: 2013
  end-page: 9
  article-title: Proteomics of rice seed germination
  publication-title: Front Plant Sci
– volume: 129
  start-page: 823
  year: 2002
  end-page: 837
  article-title: Proteomics of Arabidopsis seed germination. A comparative study of wild‐type and gibberellin‐deficient seeds
  publication-title: Plant Physiol
– volume: 141
  start-page: 910
  year: 2006
  end-page: 923
  article-title: Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms
  publication-title: Plant Physiol
– volume: 42
  start-page: 579
  year: 1991
  end-page: 620
  article-title: The roles of heat shock proteins in plants
  publication-title: Annu Rev Plant Physiol Plant Mol Biol
– volume: 391
  start-page: 485
  year: 1998
  end-page: 488
  article-title: Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of
  publication-title: Nature
– volume: 66
  start-page: 191
  year: 2012
  end-page: 202
  article-title: Nitrate, abscisic acid and gibberellin interactions on the thermoinhibition of lettuce seed germination
  publication-title: Plant Growth Regul
– volume: 8
  start-page: 3598
  year: 2009
  end-page: 3605
  article-title: Developing rice embryo proteomics reveals essential role for embryonic proteins in regulation of seed germinating
  publication-title: J Proteome Res
– volume: 73
  start-page: 119
  year: 2010
  end-page: 129
  article-title: Stored and neosynthesized mRNA in Arabidopsis seeds: effects of cycloheximide and controlled deterioration treatment on the resumption of transcription during imbibitions
  publication-title: Plant Mol Biol
– volume: 62
  start-page: 3289
  year: 2011
  end-page: 3309
  article-title: First off the mark: early seed germination
  publication-title: J Exp Bot
– volume: 228
  start-page: 1029
  year: 2008
  end-page: 1041
  article-title: A shotgun phosphoproteomics analysis of embryos in germinated maize seeds
  publication-title: Planta
– volume: 57
  start-page: 593
  year: 2005
  end-page: 612
  article-title: Gene expression analysis by cDNA‐AFLP highlights a set of new signaling networks and translational control during seed dormancy breaking in
  publication-title: Plant Mol Biol
– volume: 54
  start-page: 219
  year: 2011
  end-page: 226
  article-title: Biotic stress‐responsive rice proteome: an overview
  publication-title: J Plant Biol
– volume: 63
  start-page: 507
  year: 2012
  end-page: 533
  article-title: Seed germination and vigor
  publication-title: Annu Rev Plant Biol
– volume: 53
  start-page: 835
  year: 2011a
  end-page: 844
  article-title: Gene expression profile changes in germinating rice
  publication-title: J Integr Plant Biol
– volume: 20
  start-page: 301
  year: 2001
  end-page: 317
  article-title: Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants
  publication-title: Amino Acids
– volume: 62
  start-page: 39
  year: 2010
  end-page: 51
  article-title: Genome‐wide analysis of endogenous abscisic acid‐mediated transcription in dry and imbibed seeds of Arabidopsis using tiling arrays
  publication-title: Plant J
– volume: 23
  start-page: 1904
  year: 2011
  end-page: 1919
  article-title: Phloem‐specific expression of Yang cycle genes and identification of novel Yang cycle enzymes in and
  publication-title: Plant Cell
– volume: 62
  start-page: 670
  year: 2005
  end-page: 684
  article-title: HSP70 chaperones: cellular functions and molecular mechanism
  publication-title: Cell Mol Life Sci
– year: 2013
– volume: 13
  start-page: 1850
  year: 2013
  end-page: 1870
  article-title: Proteomic insights into seed germination in response to environmental factors
  publication-title: Proteomics
– ident: e_1_2_9_24_1
  doi: 10.1104/pp.102.016006
– ident: e_1_2_9_54_1
  doi: 10.1021/ac950914h
– ident: e_1_2_9_44_1
  doi: 10.1104/pp.108.123141
– ident: e_1_2_9_41_1
  doi: 10.1105/tpc.110.079657
– ident: e_1_2_9_62_1
  doi: 10.1016/j.jprot.2012.07.005
– ident: e_1_2_9_51_1
  doi: 10.1104/pp.104.041947
– ident: e_1_2_9_20_1
  doi: 10.1002/pmic.201000598
– ident: e_1_2_9_32_1
  doi: 10.1104/pp.73.1.175
– ident: e_1_2_9_42_1
  doi: 10.1104/pp.103.036293
– ident: e_1_2_9_33_1
  doi: 10.1002/pmic.200600694
– ident: e_1_2_9_63_1
  doi: 10.1093/jxb/err030
– ident: e_1_2_9_15_1
  doi: 10.1046/j.0014-2956.2001.02656.x
– ident: e_1_2_9_58_1
  doi: 10.1002/pmic.201200394
– ident: e_1_2_9_26_1
  doi: 10.1021/pr900358s
– ident: e_1_2_9_34_1
  doi: 10.1007/s11032-012-9721-z
– ident: e_1_2_9_7_1
  doi: 10.1007/978-1-4614-4693-4
– ident: e_1_2_9_57_1
  doi: 10.1146/annurev-arplant-042110-103921
– ident: e_1_2_9_3_1
  doi: 10.1007/s007260170046
– ident: e_1_2_9_55_1
  doi: 10.1016/S0969-2126(01)00680-3
– ident: e_1_2_9_30_1
  doi: 10.1093/jxb/ert435
– ident: e_1_2_9_49_1
  doi: 10.1016/S1369-5266(99)00047-3
– ident: e_1_2_9_52_1
  doi: 10.1002/pmic.200800523
– ident: e_1_2_9_2_1
  doi: 10.1104/pp.108.125807
– ident: e_1_2_9_36_1
  doi: 10.1146/annurev.pp.46.060195.000443
– ident: e_1_2_9_60_1
  doi: 10.1111/j.1399-3054.2009.01338.x
– ident: e_1_2_9_27_1
  doi: 10.1007/s11103-010-9603-x
– ident: e_1_2_9_38_1
  doi: 10.1016/j.plantsci.2010.02.010
– ident: e_1_2_9_12_1
  doi: 10.1105/tpc.109.071837
– ident: e_1_2_9_43_1
  doi: 10.1104/pp.106.082057
– ident: e_1_2_9_48_1
  doi: 10.1093/pcp/pcs024
– ident: e_1_2_9_16_1
  doi: 10.1104/pp.126.2.835
– ident: e_1_2_9_65_1
  doi: 10.1021/pr800799s
– ident: e_1_2_9_19_1
  doi: 10.1111/j.1744-7909.2011.01074.x
– ident: e_1_2_9_35_1
  doi: 10.1007/s00018-004-4464-6
– ident: e_1_2_9_59_1
  doi: 10.1146/annurev.pp.42.060191.003051
– ident: e_1_2_9_25_1
  doi: 10.1002/pmic.200800183
– volume: 15
  start-page: 282
  year: 2005
  ident: e_1_2_9_29_1
  article-title: Plant hormone interactions during seed dormancy release and germination
  publication-title: Seed Sci Res
  doi: 10.1079/SSR2005218
– ident: e_1_2_9_14_1
  doi: 10.1007/s10725-011-9643-5
– ident: e_1_2_9_45_1
  doi: 10.1146/annurev-arplant-042811-105550
– ident: e_1_2_9_31_1
  doi: 10.1007/s00425-008-0805-2
– ident: e_1_2_9_28_1
  doi: 10.1128/JB.00754-07
– ident: e_1_2_9_39_1
  doi: 10.1104/pp.106.079475
– volume-title: Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination
  year: 1998
  ident: e_1_2_9_4_1
– ident: e_1_2_9_64_1
  doi: 10.1002/pmic.200700207
– ident: e_1_2_9_50_1
  doi: 10.1042/BJ20121744
– ident: e_1_2_9_21_1
  doi: 10.1016/j.jprot.2011.10.036
– ident: e_1_2_9_9_1
  doi: 10.1007/s11103-005-0953-8
– ident: e_1_2_9_23_1
  doi: 10.1093/glycob/cwp170
– ident: e_1_2_9_18_1
  doi: 10.3389/fpls.2013.00246
– ident: e_1_2_9_22_1
  doi: 10.1104/pp.105.062778
– ident: e_1_2_9_37_1
  doi: 10.1016/j.jprot.2010.12.004
– ident: e_1_2_9_10_1
  doi: 10.1016/0003-2697(76)90527-3
– ident: e_1_2_9_17_1
  doi: 10.1104/pp.002816
– ident: e_1_2_9_40_1
  doi: 10.1111/j.1365-313X.2010.04135.x
– ident: e_1_2_9_56_1
  doi: 10.1016/S0167-4781(02)00417-7
– ident: e_1_2_9_5_1
  doi: 10.1038/35140
– ident: e_1_2_9_8_1
  doi: 10.1111/j.1469-8137.2007.02226.x
– start-page: 129
  volume-title: Plant Life Under Oxygen Deprivation. Ecology, Physiology and Biochemistry
  year: 1991
  ident: e_1_2_9_47_1
– ident: e_1_2_9_61_1
  doi: 10.1007/s12374-011-9165-8
– ident: e_1_2_9_6_1
  doi: 10.1105/tpc.9.7.1055
– ident: e_1_2_9_46_1
  doi: 10.1073/pnas.95.13.7805
– ident: e_1_2_9_11_1
  doi: 10.1016/j.aquabot.2003.11.008
– ident: e_1_2_9_53_1
  doi: 10.1002/pmic.200401209
– ident: e_1_2_9_13_1
  doi: 10.1104/pp.122.2.327
SSID ssj0016612
Score 2.3623333
Snippet Seed germination is a critical phase in the plant life cycle, but the specific events associated with seed germination are still not fully understood. In this...
SourceID proquest
pubmed
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 142
SubjectTerms Abscisic acid
Abscisic Acid - physiology
Amino acids
Biosynthesis
Cell division
cell growth
cell walls
energy
energy metabolism
Germination
glutelins
glycosidases
High temperature
Hot Temperature
imbibition
Mass spectrometry
Metabolism
methionine
N-carbamoylputrescine amidase
Oryza - growth & development
Oryza - metabolism
Oryza sativa
protein folding
Protein synthesis
Proteome
proteomics
rice
Seed germination
Seedlings - growth & development
Seeds
Seeds - metabolism
spermidine synthase
starch synthase
storage proteins
stress response
temperature
tubulin
two-dimensional gel electrophoresis
Title proteomic analysis of rice seed germination as affected by high temperature and ABA treatment
URI https://api.istex.fr/ark:/67375/WNG-DT3Z0T97-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fppl.12292
https://www.ncbi.nlm.nih.gov/pubmed/25270993
https://www.proquest.com/docview/1672959739
https://www.proquest.com/docview/1673793586
https://www.proquest.com/docview/1694501810
Volume 154
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-1-OCL9bvbVoki4sse2WR3s8Gnq1qLaCl6h0WEMMlu-lC5ld4dWP96Z7IfWKkivi27k7CZzGR-SSa_MPa0kKaSulZpngWcoHjwKZRSp0ZAqDIQSjtaGnh_VB7O87cnxckGezGchen4IcYFN_KMOF6Tg4Nb_uLkCNImmZSGxl_K1SJA9GGkjsow7nRM4SpLDQbJnlWIsnjGkpdi0bUALSJUUu73q-DmZfQaw8_BFvsy_HiXdXI2Wa_cxP_4jdPxP1t2i93sYSmfdnZ0m200izvs-n6L0PHiLrNTHvkc6AQzh57GhLeBEyMRX2IA5KddUg11M4clh5gmgu_dBSdGZE4UWD1_M9ZQ8-n-lI9J7vfY_OD17OVh2t_MkHoEWDKFoI0vjChkjYOlEoDgVyGyqk1wYHLQuVBQNr5UZaOqsg6-gDL4BuiyHyO8us82F-2i2WZce-Gk95WrEMwFXzvpVF2hjeimESK4hD0f-sj6nracbs_4aofpC6rLRnUl7Mko-q3j6rhKaBs72sIpjqF2_lHSig9dTFiILGHPYu-PheH8jPLedGE_Hb2xr2bqs5gZbbGOvcE8bO_yS5uVOE_B6ZkyCXs8fkZnpR0YWDTtOsooTTvP5d9kTB5ZFkXCHnSmN_6QLKRGSK9QKdGA_txMe3z8Lj7s_LvoLrtB6ujSOffY5up83TxEyLVyj6Jv_QT2DiK3
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGQGIvjM8tbIBBCPGSyrGTOJb20gGjQFdN0IoJCVm2E-9hqEFrKzH--t05H2JoIMRblFyi-Hzn-51z-R0hzzOuCi5LEaeJhwTFGRebnMtYMeOLxDAhLW4NHE7y0Sx9f5wdr5G97l-Yhh-i33BDzwjrNTo4bkj_4uWA0gYJ5woW4OvY0TskVB978qgEIk_DFS6SWEGYbHmFsI6nv_VSNLrmTQ0YFdX74yrAeRm_hgB0sEm-dq_e1J2cDlZLO3A_f2N1_N-x3Sa3WmRKh40p3SFr1fwuubFfA3o8v0f0kAZKB_yJmZqWyYTWniIpEV1ADKQnTV0NzjQ1C2pCpQict-cUSZEpsmC1FM7whJIO94e0r3O_T2YHb6avRnHbnCF2gLF4bLxULlMs4yWsl4IZwL8CwFWpvDUqNTJlwuSVy0VeiSIvvctM7l1lsN-PYk48IOvzel5tEyods9y5whaA57wrLbeiLMBMZFUx5m1EXnaTpF3LXI4NNL7pLoMBdemgrog860W_N3QdVwltw0xrcwLLqJ594rjpg70JM5ZE5EWY_v5mc3aKpW8y058nb_XrqfjCpkpqeMZuZx-69fqFTnJIVSBDEyoiT_vL4K_4EcbMq3oVZITEj8_532RUGogWWUS2GtvrX4hnXAKqF6CUYEF_HqY-OhqHg4f_LvqE3BxND8d6_G7yYYdsoGqa6s5dsr48W1WPAIEt7ePgaBcS8ibS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbxQhECe1GtMXv7WrVdEY48teWNiFJT5dPc-q9XLRu7QxJgRY6EOb26Z3l1j_egf2I9ZUY3zb7A5kGWaYHzD8QOhFQWVJRcXSPPMwQbHapppTkUqifZlpwoQJSwOfJnxvnn84LA430OvuLEzDD9EvuAXPiON1cPDTyv_i5ADSBhmlEsbfqzknZTDp0eeeOyqDwNNQhbMslRAlW1qhkMbTF70QjK54XQNEDdr9fhnevAhfY_wZ30Tfuj9v0k6OB-uVGdgfv5E6_mfTbqEbLS7Fw8aQbqMNt7iDru3WgB3P7yI1xJHQIRxhxrrlMcG1x4GSCC8hAuKjJqsm9DPWS6xjngi8N-c4UCLjwIHVEjhDDRUe7g5xn-V-D83Hb2dv9tL2aobUAsKiqfZC2kKSglYwWjKiAf0ygFaV9EbLXIucMM2d5Yw7VvLK20Jzb50Ot_1IYtl9tLmoF24bYWGJodaWpgQ0521lqGFVCUYinCPEmwS96vpI2Za3PFyfcaK6-QuoS0V1Jeh5L3rakHVcJrQNHa30EQyiav6FhiWfcDNhQbIEvYy93xfWZ8ch8U0U6mDyTo1m7CuZSaGgjp3OPFTr80uVcZiowPyMyQQ96z-Dt4YtGL1w9TrKMBG2nvnfZGQeaRZJgh40ptf_EC2oAEzPQCnRgP7cTDWd7seHh_8u-hRdn47Gav_95OMjtBU006R27qDN1dnaPQb4tTJPopv9BJh1JYo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+proteomic+analysis+of+rice+seed+germination+as+affected+by+high+temperature+and+ABA+treatment&rft.jtitle=Physiologia+plantarum&rft.au=Liu%2C+Shu-Jun&rft.au=Xu%2C+Heng-Heng&rft.au=Wang%2C+Wei-Qing&rft.au=Li%2C+Ni&rft.date=2015-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0031-9317&rft.eissn=1399-3054&rft.volume=154&rft.issue=1&rft.spage=142&rft_id=info:doi/10.1111%2Fppl.12292&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3654210951
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9317&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9317&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9317&client=summon