Prior optic neuritis detection on peripapillary ring scans using deep learning

Background The diagnosis of multiple sclerosis (MS) requires demyelinating events that are disseminated in time and space. Peripapillary retinal nerve fiber layer (pRNFL) thickness as measured by optical coherence tomography (OCT) distinguishes eyes with a prior history of acute optic neuritis (ON)...

Full description

Saved in:
Bibliographic Details
Published inAnnals of clinical and translational neurology Vol. 9; no. 11; pp. 1682 - 1691
Main Authors Motamedi, Seyedamirhosein, Yadav, Sunil Kumar, Kenney, Rachel C., Lin, Ting‐Yi, Kauer‐Bonin, Josef, Zimmermann, Hanna G., Galetta, Steven L., Balcer, Laura J., Paul, Friedemann, Brandt, Alexander U.
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.11.2022
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background The diagnosis of multiple sclerosis (MS) requires demyelinating events that are disseminated in time and space. Peripapillary retinal nerve fiber layer (pRNFL) thickness as measured by optical coherence tomography (OCT) distinguishes eyes with a prior history of acute optic neuritis (ON) and may provide evidence to support a demyelinating attack. Objective To investigate whether a deep learning (DL)‐based network can distinguish between eyes with prior ON and healthy control (HC) eyes using peripapillary ring scans. Methods We included 1033 OCT scans from 415 healthy eyes (213 HC subjects) and 510 peripapillary ring scans from 164 eyes with prior acute ON (140 patients with MS). Data were split into 70% training, 15% validation, and 15% test data. We included 102 OCT scans from 80 healthy eyes (40 HC) and 61 scans from 40 ON eyes (31 MS patients) from an independent second center. Receiver operating characteristic curve analyses with area under the curve (AUC) were used to investigate performance. Results We used a dilated residual convolutional neural network for the classification. The final network had an accuracy of 0.85 and an AUC of 0.86, whereas pRNFL only had an AUC of 0.77 in recognizing ON eyes. Using data from a second center, the network achieved an accuracy of 0.77 and an AUC of 0.90 compared to pRNFL, which had an AUC of 0.84. Interpretation DL‐based disease classification of prior ON is feasible and has the potential to outperform thickness‐based classification of eyes with and without history of prior ON.
AbstractList The diagnosis of multiple sclerosis (MS) requires demyelinating events that are disseminated in time and space. Peripapillary retinal nerve fiber layer (pRNFL) thickness as measured by optical coherence tomography (OCT) distinguishes eyes with a prior history of acute optic neuritis (ON) and may provide evidence to support a demyelinating attack. To investigate whether a deep learning (DL)-based network can distinguish between eyes with prior ON and healthy control (HC) eyes using peripapillary ring scans. We included 1033 OCT scans from 415 healthy eyes (213 HC subjects) and 510 peripapillary ring scans from 164 eyes with prior acute ON (140 patients with MS). Data were split into 70% training, 15% validation, and 15% test data. We included 102 OCT scans from 80 healthy eyes (40 HC) and 61 scans from 40 ON eyes (31 MS patients) from an independent second center. Receiver operating characteristic curve analyses with area under the curve (AUC) were used to investigate performance. We used a dilated residual convolutional neural network for the classification. The final network had an accuracy of 0.85 and an AUC of 0.86, whereas pRNFL only had an AUC of 0.77 in recognizing ON eyes. Using data from a second center, the network achieved an accuracy of 0.77 and an AUC of 0.90 compared to pRNFL, which had an AUC of 0.84. DL-based disease classification of prior ON is feasible and has the potential to outperform thickness-based classification of eyes with and without history of prior ON.
Background The diagnosis of multiple sclerosis (MS) requires demyelinating events that are disseminated in time and space. Peripapillary retinal nerve fiber layer (pRNFL) thickness as measured by optical coherence tomography (OCT) distinguishes eyes with a prior history of acute optic neuritis (ON) and may provide evidence to support a demyelinating attack. Objective To investigate whether a deep learning (DL)‐based network can distinguish between eyes with prior ON and healthy control (HC) eyes using peripapillary ring scans. Methods We included 1033 OCT scans from 415 healthy eyes (213 HC subjects) and 510 peripapillary ring scans from 164 eyes with prior acute ON (140 patients with MS). Data were split into 70% training, 15% validation, and 15% test data. We included 102 OCT scans from 80 healthy eyes (40 HC) and 61 scans from 40 ON eyes (31 MS patients) from an independent second center. Receiver operating characteristic curve analyses with area under the curve (AUC) were used to investigate performance. Results We used a dilated residual convolutional neural network for the classification. The final network had an accuracy of 0.85 and an AUC of 0.86, whereas pRNFL only had an AUC of 0.77 in recognizing ON eyes. Using data from a second center, the network achieved an accuracy of 0.77 and an AUC of 0.90 compared to pRNFL, which had an AUC of 0.84. Interpretation DL‐based disease classification of prior ON is feasible and has the potential to outperform thickness‐based classification of eyes with and without history of prior ON.
The diagnosis of multiple sclerosis (MS) requires demyelinating events that are disseminated in time and space. Peripapillary retinal nerve fiber layer (pRNFL) thickness as measured by optical coherence tomography (OCT) distinguishes eyes with a prior history of acute optic neuritis (ON) and may provide evidence to support a demyelinating attack.BACKGROUNDThe diagnosis of multiple sclerosis (MS) requires demyelinating events that are disseminated in time and space. Peripapillary retinal nerve fiber layer (pRNFL) thickness as measured by optical coherence tomography (OCT) distinguishes eyes with a prior history of acute optic neuritis (ON) and may provide evidence to support a demyelinating attack.To investigate whether a deep learning (DL)-based network can distinguish between eyes with prior ON and healthy control (HC) eyes using peripapillary ring scans.OBJECTIVETo investigate whether a deep learning (DL)-based network can distinguish between eyes with prior ON and healthy control (HC) eyes using peripapillary ring scans.We included 1033 OCT scans from 415 healthy eyes (213 HC subjects) and 510 peripapillary ring scans from 164 eyes with prior acute ON (140 patients with MS). Data were split into 70% training, 15% validation, and 15% test data. We included 102 OCT scans from 80 healthy eyes (40 HC) and 61 scans from 40 ON eyes (31 MS patients) from an independent second center. Receiver operating characteristic curve analyses with area under the curve (AUC) were used to investigate performance.METHODSWe included 1033 OCT scans from 415 healthy eyes (213 HC subjects) and 510 peripapillary ring scans from 164 eyes with prior acute ON (140 patients with MS). Data were split into 70% training, 15% validation, and 15% test data. We included 102 OCT scans from 80 healthy eyes (40 HC) and 61 scans from 40 ON eyes (31 MS patients) from an independent second center. Receiver operating characteristic curve analyses with area under the curve (AUC) were used to investigate performance.We used a dilated residual convolutional neural network for the classification. The final network had an accuracy of 0.85 and an AUC of 0.86, whereas pRNFL only had an AUC of 0.77 in recognizing ON eyes. Using data from a second center, the network achieved an accuracy of 0.77 and an AUC of 0.90 compared to pRNFL, which had an AUC of 0.84.RESULTSWe used a dilated residual convolutional neural network for the classification. The final network had an accuracy of 0.85 and an AUC of 0.86, whereas pRNFL only had an AUC of 0.77 in recognizing ON eyes. Using data from a second center, the network achieved an accuracy of 0.77 and an AUC of 0.90 compared to pRNFL, which had an AUC of 0.84.DL-based disease classification of prior ON is feasible and has the potential to outperform thickness-based classification of eyes with and without history of prior ON.INTERPRETATIONDL-based disease classification of prior ON is feasible and has the potential to outperform thickness-based classification of eyes with and without history of prior ON.
BackgroundThe diagnosis of multiple sclerosis (MS) requires demyelinating events that are disseminated in time and space. Peripapillary retinal nerve fiber layer (pRNFL) thickness as measured by optical coherence tomography (OCT) distinguishes eyes with a prior history of acute optic neuritis (ON) and may provide evidence to support a demyelinating attack.ObjectiveTo investigate whether a deep learning (DL)‐based network can distinguish between eyes with prior ON and healthy control (HC) eyes using peripapillary ring scans.MethodsWe included 1033 OCT scans from 415 healthy eyes (213 HC subjects) and 510 peripapillary ring scans from 164 eyes with prior acute ON (140 patients with MS). Data were split into 70% training, 15% validation, and 15% test data. We included 102 OCT scans from 80 healthy eyes (40 HC) and 61 scans from 40 ON eyes (31 MS patients) from an independent second center. Receiver operating characteristic curve analyses with area under the curve (AUC) were used to investigate performance.ResultsWe used a dilated residual convolutional neural network for the classification. The final network had an accuracy of 0.85 and an AUC of 0.86, whereas pRNFL only had an AUC of 0.77 in recognizing ON eyes. Using data from a second center, the network achieved an accuracy of 0.77 and an AUC of 0.90 compared to pRNFL, which had an AUC of 0.84.InterpretationDL‐based disease classification of prior ON is feasible and has the potential to outperform thickness‐based classification of eyes with and without history of prior ON.
Abstract Background The diagnosis of multiple sclerosis (MS) requires demyelinating events that are disseminated in time and space. Peripapillary retinal nerve fiber layer (pRNFL) thickness as measured by optical coherence tomography (OCT) distinguishes eyes with a prior history of acute optic neuritis (ON) and may provide evidence to support a demyelinating attack. Objective To investigate whether a deep learning (DL)‐based network can distinguish between eyes with prior ON and healthy control (HC) eyes using peripapillary ring scans. Methods We included 1033 OCT scans from 415 healthy eyes (213 HC subjects) and 510 peripapillary ring scans from 164 eyes with prior acute ON (140 patients with MS). Data were split into 70% training, 15% validation, and 15% test data. We included 102 OCT scans from 80 healthy eyes (40 HC) and 61 scans from 40 ON eyes (31 MS patients) from an independent second center. Receiver operating characteristic curve analyses with area under the curve (AUC) were used to investigate performance. Results We used a dilated residual convolutional neural network for the classification. The final network had an accuracy of 0.85 and an AUC of 0.86, whereas pRNFL only had an AUC of 0.77 in recognizing ON eyes. Using data from a second center, the network achieved an accuracy of 0.77 and an AUC of 0.90 compared to pRNFL, which had an AUC of 0.84. Interpretation DL‐based disease classification of prior ON is feasible and has the potential to outperform thickness‐based classification of eyes with and without history of prior ON.
Author Lin, Ting‐Yi
Zimmermann, Hanna G.
Galetta, Steven L.
Kenney, Rachel C.
Paul, Friedemann
Yadav, Sunil Kumar
Balcer, Laura J.
Brandt, Alexander U.
Kauer‐Bonin, Josef
Motamedi, Seyedamirhosein
AuthorAffiliation 3 Departments of Radiology and Radiological Sciences and Electrical and Computer Engineering Vanderbilt University Medical Center Nashville Tennessee USA
5 Department of Neurology Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
6 Department of Neurology University of California Irvine California USA
4 Departments of Neurology, Population Health and Ophthalmology New York University New York New York USA
2 Nocturne GmbH Berlin Germany
1 Experimental and Clinical Research Center a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
AuthorAffiliation_xml – name: 6 Department of Neurology University of California Irvine California USA
– name: 2 Nocturne GmbH Berlin Germany
– name: 3 Departments of Radiology and Radiological Sciences and Electrical and Computer Engineering Vanderbilt University Medical Center Nashville Tennessee USA
– name: 5 Department of Neurology Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
– name: 4 Departments of Neurology, Population Health and Ophthalmology New York University New York New York USA
– name: 1 Experimental and Clinical Research Center a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
Author_xml – sequence: 1
  givenname: Seyedamirhosein
  orcidid: 0000-0002-6897-5387
  surname: Motamedi
  fullname: Motamedi, Seyedamirhosein
  organization: a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin
– sequence: 2
  givenname: Sunil Kumar
  surname: Yadav
  fullname: Yadav, Sunil Kumar
  organization: Nocturne GmbH
– sequence: 3
  givenname: Rachel C.
  surname: Kenney
  fullname: Kenney, Rachel C.
  organization: New York University
– sequence: 4
  givenname: Ting‐Yi
  surname: Lin
  fullname: Lin, Ting‐Yi
  organization: a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin
– sequence: 5
  givenname: Josef
  surname: Kauer‐Bonin
  fullname: Kauer‐Bonin, Josef
  organization: Nocturne GmbH
– sequence: 6
  givenname: Hanna G.
  orcidid: 0000-0002-0276-8051
  surname: Zimmermann
  fullname: Zimmermann, Hanna G.
  organization: a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin
– sequence: 7
  givenname: Steven L.
  surname: Galetta
  fullname: Galetta, Steven L.
  organization: New York University
– sequence: 8
  givenname: Laura J.
  surname: Balcer
  fullname: Balcer, Laura J.
  organization: New York University
– sequence: 9
  givenname: Friedemann
  orcidid: 0000-0002-6378-0070
  surname: Paul
  fullname: Paul, Friedemann
  organization: Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin
– sequence: 10
  givenname: Alexander U.
  surname: Brandt
  fullname: Brandt, Alexander U.
  email: aubrandt@hs.uci.edu
  organization: University of California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36285339$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1L3TAYx8NwTKfe7AOMwm5kcFxemra5GchBN0HcLtx1eJo-OcuhJ-mSdsNvb2qdqIxBIG-_58__eXlL9nzwSMg7Rk8ZpfwTGC9OJasEf0UOuODNSkkq9p6c98lxSltKKWNcipq_Ifui4o0UQh2Q6-_RhViEYXSm8DhFN7pUdDiiGV3wRV4DRjfA4Poe4m0Rnd8UyYBPxZTmc4c4FD1C9Pl2RF5b6BMeP-yH5MfF-c366-rq25fL9dnVykhW8hVTFi3UQnYNFRUru7aWtDVCWdUwzOaYqGVjoQVq0ChghnFkYDlSXquqFIfkctHtAmz1EN0ue9MBnL5_CHGjIeaUetS8RGNBtpWUtASFYJmRqra87aQ1XZW1Pi9aw9TusDPoxwj9M9HnP9791JvwW6tKqIrPZk4eBGL4NWEa9c4lg7leHsOUNK-5yr4ZVxn98ALdhin6XKpMidweyugs-P6po0crf9uWgY8LYGJIKaJ9RBjV81joeSz0_VhkmL6AjRth7m7OxvX_DmFLyB_X4-1_xPXZ-losMXdh_Mli
CitedBy_id crossref_primary_10_1097_WNO_0000000000002205
crossref_primary_10_1371_journal_pone_0288366
crossref_primary_10_1097_WNO_0000000000002322
crossref_primary_10_1002_mef2_75
crossref_primary_10_1016_j_neurol_2024_04_004
Cites_doi 10.1038/nature14539
10.1109/CVPR.2016.90
10.1016/j.msard.2018.04.006
10.1016/S1474-4422(17)30470-2
10.1111/ene.13443
10.1212/WNL.0000000000012125
10.1001/jamaneurol.2018.2160
10.1097/00006982-199414050-00010
10.1016/S1474-4422(17)30469-6
10.3389/fneur.2019.01117
10.1177/1352458514538110
10.1002/ana.410130302
10.1016/S1474-4422(13)70259-X
10.1212/WNL.26.6_Part_2.26
10.1212/WNL.0000000000011339
10.1016/j.clineuro.2010.04.014
10.1212/WNL.0000000000011344
10.1007/s11940-017-0452-7
10.1002/ana.25462
10.1093/brain/awaa361
10.1097/WNO.0000000000000629
10.1093/brain/awy245
10.1109/CVPR.2017.75
10.1016/j.compbiomed.2021.104822
10.1016/j.jns.2021.118067
10.1136/bjophthalmol-2018-313173
10.1093/brain/awq080
10.1002/ana.20851
10.1101/2021.11.19.21266592
10.1016/S1474-4422(17)30278-8
10.1056/NEJMra1401483
10.1016/S1474-4422(10)70168-X
10.1002/acn3.51320
10.1016/j.msard.2019.01.048
10.1212/WNL.0000000000009832
ContentType Journal Article
Copyright 2022 The Authors. published by Wiley Periodicals LLC on behalf of American Neurological Association.
2022 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.
2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Wiley Periodicals LLC on behalf of American Neurological Association.
– notice: 2022 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88G
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
K9.
M0S
M2M
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
5PM
DOA
DOI 10.1002/acn3.51632
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Psychology Database (Alumni)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Psychology Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Prior Optic Neuritis Detection Using Deep Learning
EISSN 2328-9503
EndPage 1691
ExternalDocumentID oai_doaj_org_article_24ecfa5b65504a9eaf1c597f2bd5fcd6
PMC9639624
36285339
10_1002_acn3_51632
ACN351632
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations New York
United States--US
GeographicLocations_xml – name: New York
– name: United States--US
GrantInformation_xml – fundername: The Kathleen C. Moore Foundation
– fundername: Berlin Institute of Health
– fundername: ;
GroupedDBID 0R~
1OC
24P
53G
5VS
7X7
8FI
8FJ
AAHHS
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
DIK
DWQXO
EBS
EJD
FYUFA
GNUQQ
GODZA
GROUPED_DOAJ
HMCUK
HYE
IAO
IHR
INH
ITC
KQ8
M2M
M48
OK1
PIMPY
PQQKQ
PROAC
PSYQQ
RPM
SUPJJ
UKHRP
WIN
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5142-19fefa735d803614db750bc39f981e62813758faba0cec9a1c12e1af2e0279643
IEDL.DBID M48
ISSN 2328-9503
IngestDate Wed Aug 27 01:20:33 EDT 2025
Thu Aug 21 18:39:39 EDT 2025
Fri Jul 11 14:28:17 EDT 2025
Sat Aug 23 14:40:57 EDT 2025
Wed Feb 19 02:26:07 EST 2025
Thu Apr 24 22:54:01 EDT 2025
Tue Jul 01 01:01:58 EDT 2025
Wed Jan 22 16:30:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Attribution-NonCommercial-NoDerivs
2022 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5142-19fefa735d803614db750bc39f981e62813758faba0cec9a1c12e1af2e0279643
Notes This study was supported in part by Berlin Institute of Health (project “DEEP‐Neuroretina” to Alexander U. Brandt), and by the Kathleen C. Moore Foundation (to Alexander U. Brandt).
Funding Information
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6897-5387
0000-0002-0276-8051
0000-0002-6378-0070
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1002/acn3.51632
PMID 36285339
PQID 2732530104
PQPubID 2034580
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_24ecfa5b65504a9eaf1c597f2bd5fcd6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9639624
proquest_miscellaneous_2729027129
proquest_journals_2732530104
pubmed_primary_36285339
crossref_primary_10_1002_acn3_51632
crossref_citationtrail_10_1002_acn3_51632
wiley_primary_10_1002_acn3_51632_ACN351632
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2022
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bognor Regis
– name: Hoboken
PublicationTitle Annals of clinical and translational neurology
PublicationTitleAlternate Ann Clin Transl Neurol
PublicationYear 2022
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2021; 8
2018; 141
2019; 30
1983; 3
2015; 521
2019; 10
2017; 24
2006; 59
2019; 103
2021; 144
2018; 22
2021; 96
1976; 26
1983; 13
2018; 17
2022; 141
2021; 97
2018; 4
2019; 85
2022
2021
2020; 95
2017; 16
2010; 112
2018; 378
2015; 21
2010; 133
1994; 14
2018
2014; 13
2017
2017; 19
2016
2021; 430
2018; 75
2018; 38
2010; 9
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
R Core Team (e_1_2_9_29_1) 2018
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
Kaufmann M (e_1_2_9_6_1) 2018; 4
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_4_1
Kenney RC (e_1_2_9_36_1) 2022
e_1_2_9_3_1
e_1_2_9_2_1
Toussaint D (e_1_2_9_13_1) 1983; 3
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
References_xml – volume: 13
  start-page: 227
  issue: 3
  year: 1983
  end-page: 231
  article-title: New diagnostic criteria for multiple sclerosis: guidelines for research protocols
  publication-title: Ann Neurol
– volume: 17
  start-page: 133
  issue: 2
  year: 2018
  end-page: 142
  article-title: Prediction of a multiple sclerosis diagnosis in patients with clinically isolated syndrome using the 2016 MAGNIMS and 2010 McDonald criteria: a retrospective study
  publication-title: Lancet Neurol
– volume: 14
  start-page: 445
  issue: 5
  year: 1994
  end-page: 451
  article-title: Retinal pathologic changes in multiple sclerosis
  publication-title: Retina
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– volume: 430
  year: 2021
  article-title: Long‐term outcomes in patients presenting with optic neuritis: analyses of the MSBase registry
  publication-title: J Neurol Sci
– volume: 95
  start-page: e733
  issue: 6
  year: 2020
  end-page: e744
  article-title: Optical coherence tomography for detection of asymptomatic optic nerve lesions in clinically isolated syndrome
  publication-title: Neurology
– start-page: 10.1212/WNL.0000000000200883
  year: 2022
  article-title: The role of OCT criteria and machine learning in multiple sclerosis and optic neuritis diagnosis
  publication-title: Neurology
– start-page: 770
  year: 2016
  end-page: 778
– volume: 59
  start-page: 963
  issue: 6
  year: 2006
  end-page: 969
  article-title: Quantifying axonal loss after optic neuritis with optical coherence tomography
  publication-title: Ann Neurol
– year: 2021
– volume: 17
  start-page: 162
  issue: 2
  year: 2018
  end-page: 173
  article-title: Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria
  publication-title: Lancet Neurol
– volume: 96
  start-page: 139
  issue: 4
  year: 2021
  end-page: 140
  article-title: Optic nerve in multiple sclerosis diagnostic criteria: an aye to the eyes?
  publication-title: Neurology
– volume: 24
  start-page: 1479
  issue: 12
  year: 2017
  end-page: 1484
  article-title: Diagnostic accuracy of optical coherence tomography inter‐eye percentage difference for optic neuritis in multiple sclerosis
  publication-title: Eur J Neurol
– volume: 378
  start-page: 169
  year: 2018
  end-page: 180
  article-title: Multiple sclerosis
  publication-title: N Engl J Med
– volume: 38
  start-page: 451
  year: 2018
  end-page: 458
  article-title: Optimal intereye difference thresholds in retinal nerve fiber layer thickness for predicting a unilateral optic nerve lesion in multiple sclerosis
  publication-title: J Neuroophthalmol
– volume: 26
  start-page: 26
  issue: 6 pt 2
  year: 1976
  end-page: 28
  article-title: Distribution of plaques in seventy autopsy cases of multiple sclerosis in the United States
  publication-title: Neurology
– volume: 103
  start-page: 167
  issue: 2
  year: 2019
  end-page: 175
  article-title: Artificial intelligence and deep learning in ophthalmology
  publication-title: Br J Ophthalmol
– volume: 8
  start-page: 1528
  issue: 7
  year: 2021
  end-page: 1542
  article-title: Artificial intelligence extension of the OSCAR‐IB criteria
  publication-title: Ann Clin Transl Neurol
– volume: 3
  start-page: 211
  issue: 3
  year: 1983
  end-page: 220
  article-title: Clinicopathological study of the visual pathways, eyes, and cerebral hemispheres in 32 cases of disseminated sclerosis
  publication-title: J Clin Neuroophthalmol
– volume: 112
  start-page: 647
  issue: 8
  year: 2010
  end-page: 652
  article-title: Patterns of retinal nerve fiber layer loss in multiple sclerosis patients with or without optic neuritis and glaucoma patients
  publication-title: Clin Neurol Neurosurg
– year: 2018
– volume: 22
  start-page: 141
  year: 2018
  end-page: 147
  article-title: Frequent retinal ganglion cell damage after acute optic neuritis
  publication-title: Mult Scler Relat Disord
– volume: 4
  issue: 4
  year: 2018
  article-title: Factors associated with time from first‐symptoms to diagnosis and treatment initiation of multiple sclerosis in Switzerland
  publication-title: Mult Scler J Exp Transl Clin
– volume: 9
  start-page: 921
  issue: 9
  year: 2010
  end-page: 932
  article-title: Optical coherence tomography in multiple sclerosis: a systematic review and meta‐analysis
  publication-title: Lancet Neurol
– volume: 10
  start-page: 1117
  year: 2019
  article-title: Normative data and minimally detectable change for inner retinal layer thicknesses using a semi‐automated OCT image segmentation pipeline
  publication-title: Front Neurol
– volume: 30
  start-page: 51
  year: 2019
  end-page: 56
  article-title: Incidence of multiple sclerosis misdiagnosis in referrals to two academic centers
  publication-title: Mult Scler Relat Disord
– volume: 21
  start-page: 163
  issue: 2
  year: 2015
  end-page: 170
  article-title: Quality control for retinal OCT in multiple sclerosis: validation of the OSCAR‐IB criteria
  publication-title: Mult Scler
– volume: 144
  start-page: 224
  issue: 1
  year: 2021
  end-page: 235
  article-title: Retinal asymmetry in multiple sclerosis
  publication-title: Brain
– volume: 133
  start-page: 1591
  issue: 6
  year: 2010
  end-page: 1601
  article-title: Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration
  publication-title: Brain
– volume: 16
  start-page: 797
  issue: 10
  year: 2017
  end-page: 812
  article-title: Retinal layer segmentation in multiple sclerosis: a systematic review and meta‐analysis
  publication-title: Lancet Neurol
– volume: 141
  start-page: 3115
  issue: 11
  year: 2018
  end-page: 3129
  article-title: Brain and retinal atrophy in African‐Americans versus Caucasian‐Americans with multiple sclerosis: a longitudinal study
  publication-title: Brain
– start-page: 472
  year: 2017
  end-page: 480
– volume: 75
  start-page: 1392
  issue: 11
  year: 2018
  article-title: Application of the 2017 revised McDonald criteria for multiple sclerosis to patients with a typical clinically isolated syndrome
  publication-title: JAMA Neurol
– volume: 13
  start-page: 83
  issue: 1
  year: 2014
  end-page: 99
  article-title: Optic neuritis
  publication-title: Lancet Neurol
– volume: 19
  start-page: 15
  issue: 4
  year: 2017
  article-title: Monitoring the course of MS with optical coherence tomography
  publication-title: Curr Treat Options Neurol
– volume: 141
  year: 2022
  article-title: Modular deep neural networks for automatic quality control of retinal optical coherence tomography scans
  publication-title: Comput Biol Med
– volume: 85
  start-page: 618
  issue: 5
  year: 2019
  end-page: 629
  article-title: Optimal intereye difference thresholds by optical coherence tomography in multiple sclerosis: an international study
  publication-title: Ann Neurol
– volume: 96
  start-page: e482
  issue: 4
  year: 2021
  end-page: e490
  article-title: Optic nerve topography in multiple sclerosis diagnosis
  publication-title: Neurology
– volume: 97
  start-page: 68
  issue: 2
  year: 2021
  end-page: 79
  article-title: APOSTEL 2.0 recommendations for reporting quantitative optical coherence tomography studies
  publication-title: Neurology
– start-page: 10.1212/WNL.000
  year: 2022
  ident: e_1_2_9_36_1
  article-title: The role of OCT criteria and machine learning in multiple sclerosis and optic neuritis diagnosis
  publication-title: Neurology
– ident: e_1_2_9_22_1
  doi: 10.1038/nature14539
– ident: e_1_2_9_31_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_9_37_1
  doi: 10.1016/j.msard.2018.04.006
– ident: e_1_2_9_4_1
  doi: 10.1016/S1474-4422(17)30470-2
– ident: e_1_2_9_34_1
  doi: 10.1111/ene.13443
– ident: e_1_2_9_27_1
  doi: 10.1212/WNL.0000000000012125
– ident: e_1_2_9_5_1
  doi: 10.1001/jamaneurol.2018.2160
– ident: e_1_2_9_11_1
  doi: 10.1097/00006982-199414050-00010
– ident: e_1_2_9_15_1
  doi: 10.1016/S1474-4422(17)30469-6
– ident: e_1_2_9_21_1
  doi: 10.3389/fneur.2019.01117
– ident: e_1_2_9_26_1
  doi: 10.1177/1352458514538110
– ident: e_1_2_9_3_1
  doi: 10.1002/ana.410130302
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2018
  ident: e_1_2_9_29_1
– ident: e_1_2_9_9_1
  doi: 10.1016/S1474-4422(13)70259-X
– ident: e_1_2_9_12_1
  doi: 10.1212/WNL.26.6_Part_2.26
– volume: 3
  start-page: 211
  issue: 3
  year: 1983
  ident: e_1_2_9_13_1
  article-title: Clinicopathological study of the visual pathways, eyes, and cerebral hemispheres in 32 cases of disseminated sclerosis
  publication-title: J Clin Neuroophthalmol
– volume: 4
  start-page: 205521731881456
  issue: 4
  year: 2018
  ident: e_1_2_9_6_1
  article-title: Factors associated with time from first‐symptoms to diagnosis and treatment initiation of multiple sclerosis in Switzerland
  publication-title: Mult Scler J Exp Transl Clin
– ident: e_1_2_9_39_1
  doi: 10.1212/WNL.0000000000011339
– ident: e_1_2_9_20_1
  doi: 10.1016/j.clineuro.2010.04.014
– ident: e_1_2_9_14_1
  doi: 10.1212/WNL.0000000000011344
– ident: e_1_2_9_16_1
  doi: 10.1007/s11940-017-0452-7
– ident: e_1_2_9_33_1
  doi: 10.1002/ana.25462
– ident: e_1_2_9_35_1
  doi: 10.1093/brain/awaa361
– ident: e_1_2_9_32_1
  doi: 10.1097/WNO.0000000000000629
– ident: e_1_2_9_40_1
  doi: 10.1093/brain/awy245
– ident: e_1_2_9_30_1
  doi: 10.1109/CVPR.2017.75
– ident: e_1_2_9_24_1
  doi: 10.1016/j.compbiomed.2021.104822
– ident: e_1_2_9_8_1
  doi: 10.1016/j.jns.2021.118067
– ident: e_1_2_9_23_1
  doi: 10.1136/bjophthalmol-2018-313173
– ident: e_1_2_9_10_1
  doi: 10.1093/brain/awq080
– ident: e_1_2_9_19_1
  doi: 10.1002/ana.20851
– ident: e_1_2_9_25_1
  doi: 10.1101/2021.11.19.21266592
– ident: e_1_2_9_18_1
  doi: 10.1016/S1474-4422(17)30278-8
– ident: e_1_2_9_2_1
  doi: 10.1056/NEJMra1401483
– ident: e_1_2_9_17_1
  doi: 10.1016/S1474-4422(10)70168-X
– ident: e_1_2_9_28_1
  doi: 10.1002/acn3.51320
– ident: e_1_2_9_7_1
  doi: 10.1016/j.msard.2019.01.048
– ident: e_1_2_9_38_1
  doi: 10.1212/WNL.0000000000009832
SSID ssj0001125372
Score 2.2287655
Snippet Background The diagnosis of multiple sclerosis (MS) requires demyelinating events that are disseminated in time and space. Peripapillary retinal nerve fiber...
The diagnosis of multiple sclerosis (MS) requires demyelinating events that are disseminated in time and space. Peripapillary retinal nerve fiber layer (pRNFL)...
BackgroundThe diagnosis of multiple sclerosis (MS) requires demyelinating events that are disseminated in time and space. Peripapillary retinal nerve fiber...
Abstract Background The diagnosis of multiple sclerosis (MS) requires demyelinating events that are disseminated in time and space. Peripapillary retinal nerve...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1682
SubjectTerms Age
Artificial intelligence
Biomarkers
Datasets
Deep Learning
Ethnicity
Hispanic Americans
Humans
Longitudinal studies
Multiple sclerosis
Multiple Sclerosis - diagnostic imaging
Neural networks
Optic nerve
Optic Neuritis - diagnostic imaging
Optics
Pacific Islander people
Patients
Retina
Tomography
Tomography, Optical Coherence - methods
White people
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEA_Fg_QiflS7ViVSLxa2viT7laNKRQo-elDwFvIxsYLse7z3PPS_dya7Lu9RqZfCHpbNwGYnk53fJJPfMHaiXZCNqH2OaDrkhSsgd0JBbqNuoFC2ri2td9yMq-u74ud9eb9U6otywjp64E5xZ7IAH23pKoTShdVgo_AIgqN0oYw-JLJt9HlLwVRaXUG_rWo58JHKM-tb9b1E9CFXPFAi6n8LXf6dJLkMXpP3udpkGz1s5Oddd7fYB2i32fpNvzG-w8a_Zo-TGZ_gD8Bz4qgkqiIeYJEyrVqOF1EaT-2UqgzN_nBazuNz1OucU-r7A8rClPc1JB4-sburH7eX13lfKiH3iHhkLnSEaGtVhgZdkiiCQyTgvNKocgEVDofCwCBaZ0cevLbCCwnCRgkYlhIl1y5bayctfGZc1U3wGNX5EZ2ZrUZNqL0aNdYJDa7SLmOnr-ozvucRp3IWT6ZjQJaGVG2SqjP2dZCdduwZb0pd0CgMEsR4nR6gHZjeDsx7dpCxg9cxNP00nBvEZmgHFHJm7HhoxglEuyK2hckzyUiNSkDck7G9bsiHnig6YKoUttQrxrDS1dWW9vF3IunGH5uuJL73WzKbf3y-Ob8cq3S3_z8U8YV9lHREI52XPGBri9kzHCJwWrijNEdeAF0ZF6E
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA9aQXwRv91aJaIvCmsvye5m8yS1WIrQwwcL9xbyeS3I7rp3feh_70wut_WwFO7huAzc7swk85tJ8htCPirrecukKwFN-7KyVSgtE6E0UbWhEkZKg_WOs3lzel79WNSLXHBb5WOV2zUxLdS-d1gjP4Qwy2uB2cPX4U-JXaNwdzW30LhPHiB1GXq1XMibGgtEbyH5xErKD43rxJcaMAjfiUOJrv82jPn_Ucl_IWyKQSdPyOMMHunRxtpPyb3QPSMPz_L2-HMy_zle9iPtYRlwFJkqkbCI-rBO5606Ch8kNh7MgL2GxmuKRT26Au2uKB6AX4JsGGjuJLF8Qc5Pvv86Pi1zw4TSAe7hJVMxRCNF7VsITKzyFvCAdUKB4llowCgC0oNorJm54JRhjvHATOQBklMk5npJ9rq-C68JFbL1DnI7N8Obs82s9dKJWWssU8E2yhbk01Z92mU2cWxq8VtveJC5RlXrpOqCfJhkhw2Hxq1S39AKkwTyXqcf-nGp8zTSvAoumto2kFhVRgUTmYOUKHLr6-h8U5CDrQ11nowrfeM6BXk_DcM0wr0R04X-CmW4AiUA-inIq43JpycReM1UCBiRO86w86i7I93lRaLqhuVNNRz-93NymzteXx8dz0X6tn_3O7whjzhewUj3IQ_I3nq8Cm8BGK3tu-T9fwET7w1p
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBYhgdJLSdKX8ygq7SUBN5bklyCXNDSEQpYcGshN6LkNBHvxbg7595mRvd4uCYWAD8YaY3tGI30ja74h5Ls0jtessimgaZfmJvepYcKnOsja50JXlcb1jqtJeXmT_74tbjfI6TIXpueHGBfc0DPieI0Ors38ZEUaqm0jfhQAJ2AA3sLcWtzQx_Pr1QoLzN0iVm8C1ABeXWRi5CflJ6vb12akSNz_Etp8vmnyXzAbZ6OLbfJugJH0rLf7DtnwzS55czX8KH9PJtfdXdvRFgYES5GzEqmLqPOLuPOqoXAgxfFMz7DqUPdIcXmPzkHPc4pb4acg62d0qCkx_UBuLn79Ob9Mh9IJqQUExFMmgw-6EoWrYYpiuTOADIwVEkzAfAnmERAoBG10Zr2VmlnGPdOBewhTkaLrI9ls2sZ_JlRUtbMQ5dkMc2jLrHaVFVmtDZPelNIk5GipPmUHXnEsb3GvekZkrlDVKqo6Id9G2VnPpvGi1E-0wiiBDNjxQttN1eBQiufeBl2YEkKsXEuvA7MQHAVuXBGsKxNysLShGtxyrgCrQZ_AEDQhX8dmcCj8S6Ib3z6gDJegBMBBCfnUm3x8E4EJp0JAS7XWGdZedb2lufsbSbthoJMlh-cex27zn89XZ-cTEc_2XiO8T95yTM2IeZIHZHPRPfhDAEwL8yX6xROqLA_c
  priority: 102
  providerName: Wiley-Blackwell
Title Prior optic neuritis detection on peripapillary ring scans using deep learning
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Facn3.51632
https://www.ncbi.nlm.nih.gov/pubmed/36285339
https://www.proquest.com/docview/2732530104
https://www.proquest.com/docview/2729027129
https://pubmed.ncbi.nlm.nih.gov/PMC9639624
https://doaj.org/article/24ecfa5b65504a9eaf1c597f2bd5fcd6
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swED66FsZexn7PWxc0tpcN3EWSbVkPY7SlpQwSwlggb0aS5bRQ7MxJof3ve6c4pmFhTwNjjHXG8p2k-06WvgP4rG0pcq5cjGi6jBOb-Nhy6WNT6dwn0ihlaL5jNM4upsnPWTrbg03-zk6By52hHeWTmrbXR7d_7n5gh__eEYh-M66WRykCCxyKD9AjKcpkMOpgfphrQS8ulejZSR8-suWPAm3_Lqz595LJh1A2-KLzZ_C0A5HseG3157Dn6xfweNT9Jn8J40l71bSsweHAMWKsJOIiVvpVWHdVMzyI4HhhFpRzqL1jNLnHlqjlJaOF8HOU9QvWZZSYv4Lp-dnv04u4S5wQO8Q_Iua68pVRMi1zdFA8KS3iAuukRgNwn6FxJIYJlbFm6LzThjsuPDeV8BikEkHXa9ivm9q_BSZVXjqM8dyQdtBmw7xUTg5zY7n2NtM2gi8b9RWuYxWn5BbXxZoPWRSk6iKoOoJPvexizaWxU-qErNBLEP91uNG086LrToVIvKtMajMMsBKjvam4w9CoErZMK1dmERxubFhs2lSBSA3bAQWgEXzsi7E70T8SU_vmhmSERiUgCorgzdrkfU0kbTeVEkvUVmPYqup2SX11GSi7cZjTmcD3fg3N5h-fXxyfjmW4evc_FPEengjasBF2Tx7C_qq98R8QRq3sAB6JZIJnNVMDODg5G09-DcKUxCD0nnv4yCGE
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAL4k2ggBFwACk0sZM4PiBUCtWWdlccWmlvwa8slVASsluh_il-IzPOo6yoequ0h2g92nXm5Rnb8w0hr6W2LI-FCSGatmGiExfqmLtQlTJ3CVdCKNzvmM6yyXHydZ7ON8ifoRYGr1UOPtE7alsb3CPfhmWWpRyzh4_NrxC7RuHp6tBCo1OLA3f2G1K25Yf9zyDfN4ztfTnanYR9V4HQQHDAwliWrlSCpzYH7x0nVsOiqQ2XMLvYZTBzDjF0qbSKjDNSxSZmLlYlc5DBIXoV_O41ch0W3giTPTEX53s6EC1wwUYUVLatTMXfpxDzsLV1z7cHuCim_f9q5r8hs1_z9u6Q232wSnc67bpLNlx1j9yY9sfx98nsW3tSt7QGt2MoImMiQBK1buXvd1UUPgik3KgGexu1ZxQ3EekSpLmkeOF-AbSuoX3nisUDcnwlrHxINqu6co8J5SK3BnJJE2GlbhblVhge5UrH0ulM6oC8HdhXmB69HJto_Cw63GVWIKsLz-qAvBppmw6z40KqTyiFkQJxtv0XdbsoerMtWOJMqVKdQSKXKOlUGRtIwUqmbVoamwVka5Bh0Rv_sjhX1YC8HIfBbPEsRlWuPkUaJoEJEG0F5FEn8nEmHMtaOYcRsaYMa1NdH6lOfnhocHCnMmPwv--82lzy-sXO7oz7pyeXv8MLcnNyND0sDvdnB0_JLYblH74Wc4tsrtpT9wyCspV-7i2Bku9XbXp_AQabSXw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtQwcFS2UsUL4ialgBHwAFLYjZ3zAaFeq5bSaIWo1DdjO85SCSVpdivUX-PrmMlVVlR9q7QP0XqU2HN5xp4D4G2iMx57kXHRms5cX_vW1Z6wrsqT2PpCRZGi847jNDw48b-cBqdr8KfPhaGwyl4nNoo6Kw2dkY9xm-WBIO9hnHdhEbO96efq3KUOUnTT2rfTaFnkyF7-Rvdt8elwD2n9jvPp_vfdA7frMOAaNBS46yW5zVUkgixGTe75mcYNVBuR4Ew9G-IqBNrTudJqYqxJlGc8bj2Vc4veHFWywvfegfWIvKIRrO_sp7NvVyc8aDuIiA81UflYmUJ8DNAC4iu7YNMs4DoL9_9AzX8N6GYHnN6He53pyrZbXnsAa7Z4CBvH3eX8I0hn9VlZsxKVkGFUJ5PKJbHMLptor4Lhj8oqV6qiTkf1JaMjRbZA2i4Yhd_PEdZWrOtjMX8MJ7eCzCcwKsrCPgMmojgz6FmaCeXthpM4i4yYxEp7idVhoh1436NPmq6WObXU-CXbKsxcEqplg2oH3gywVVvB41qoHaLCAEFVt5s_ynouOyGW3LcmV4EO0a3zVWJV7hl0yHKusyA3WejAVk9D2amChbxiXAdeD8MoxHQzowpbXhAMTxAJaHs58LQl-TATQUmuQuBItMIMK1NdHSnOfjaFwlG5JiHH735o2OaG5cvt3VQ0T5s3r-EVbKDYya-H6dFzuMspF6RJzNyC0bK-sC_QQlvql50oMPhx29L3F_uOTxc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prior+optic+neuritis+detection+on+peripapillary+ring+scans+using+deep+learning&rft.jtitle=Annals+of+clinical+and+translational+neurology&rft.au=Seyedamirhosein+Motamedi&rft.au=Sunil+Kumar+Yadav&rft.au=Rachel+C.+Kenney&rft.au=Ting%E2%80%90Yi+Lin&rft.date=2022-11-01&rft.pub=Wiley&rft.eissn=2328-9503&rft.volume=9&rft.issue=11&rft.spage=1682&rft.epage=1691&rft_id=info:doi/10.1002%2Facn3.51632&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_24ecfa5b65504a9eaf1c597f2bd5fcd6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2328-9503&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2328-9503&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2328-9503&client=summon