Preprocessing strategy influences graph-based exploration of altered functional networks in major depression

Resting‐state fMRI studies have gained widespread use in exploratory studies of neuropsychiatric disorders. Graph metrics derived from whole brain functional connectivity studies have been used to reveal disease‐related variations in many neuropsychiatric disorders including major depression (MDD)....

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 37; no. 4; pp. 1422 - 1442
Main Authors Borchardt, Viola, Lord, Anton Richard, Li, Meng, van der Meer, Johan, Heinze, Hans-Jochen, Bogerts, Bernhard, Breakspear, Michael, Walter, Martin
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.04.2016
John Wiley & Sons, Inc
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.23111

Cover

Loading…
Abstract Resting‐state fMRI studies have gained widespread use in exploratory studies of neuropsychiatric disorders. Graph metrics derived from whole brain functional connectivity studies have been used to reveal disease‐related variations in many neuropsychiatric disorders including major depression (MDD). These techniques show promise in developing diagnostics for these often difficult to identify disorders. However, the analysis of resting‐state datasets is increasingly beset by a myriad of approaches and methods, each with underlying assumptions. Choosing the most appropriate preprocessing parameters a priori is difficult. Nevertheless, the specific methodological choice influences graph‐theoretical network topologies as well as regional metrics. The aim of this study was to systematically compare different preprocessing strategies by evaluating their influence on group differences between healthy participants (HC) and depressive patients. We thus investigated the effects of common preprocessing variants, including global mean‐signal regression (GMR), temporal filtering, detrending, and network sparsity on group differences between brain networks of HC and MDD patients measured by global and nodal graph theoretical metrics. Occurrence of group differences in global metrics was absent in the majority of tested preprocessing variants, but in local graph metrics it is sparse, variable, and highly dependent on the combination of preprocessing variant and sparsity threshold. Sparsity thresholds between 16 and 22% were shown to have the greatest potential to reveal differences between HC and MDD patients in global and local network metrics. Our study offers an overview of consequences of methodological decisions and which neurobiological characteristics of MDD they implicate, adding further caution to this rapidly growing field. Hum Brain Mapp 37:1422‐1442, 2016. © 2016 Wiley Periodicals, Inc. Highlights Groups can be differentiated based on local graph metrics Group differences are influenced by preprocessing method Finding group differences depends strongly on the network density Conclusions regarding functional connectomic differences in major depression should be mindful of the influence of preprocessing strategies.
AbstractList Resting‐state fMRI studies have gained widespread use in exploratory studies of neuropsychiatric disorders. Graph metrics derived from whole brain functional connectivity studies have been used to reveal disease‐related variations in many neuropsychiatric disorders including major depression (MDD). These techniques show promise in developing diagnostics for these often difficult to identify disorders. However, the analysis of resting‐state datasets is increasingly beset by a myriad of approaches and methods, each with underlying assumptions. Choosing the most appropriate preprocessing parameters a priori is difficult. Nevertheless, the specific methodological choice influences graph‐theoretical network topologies as well as regional metrics. The aim of this study was to systematically compare different preprocessing strategies by evaluating their influence on group differences between healthy participants (HC) and depressive patients. We thus investigated the effects of common preprocessing variants, including global mean‐signal regression (GMR), temporal filtering, detrending, and network sparsity on group differences between brain networks of HC and MDD patients measured by global and nodal graph theoretical metrics. Occurrence of group differences in global metrics was absent in the majority of tested preprocessing variants, but in local graph metrics it is sparse, variable, and highly dependent on the combination of preprocessing variant and sparsity threshold. Sparsity thresholds between 16 and 22% were shown to have the greatest potential to reveal differences between HC and MDD patients in global and local network metrics. Our study offers an overview of consequences of methodological decisions and which neurobiological characteristics of MDD they implicate, adding further caution to this rapidly growing field. Hum Brain Mapp 37:1422‐1442, 2016 . © 2016 Wiley Periodicals, Inc. Groups can be differentiated based on local graph metrics Group differences are influenced by preprocessing method Finding group differences depends strongly on the network density Conclusions regarding functional connectomic differences in major depression should be mindful of the influence of preprocessing strategies.
Resting‐state fMRI studies have gained widespread use in exploratory studies of neuropsychiatric disorders. Graph metrics derived from whole brain functional connectivity studies have been used to reveal disease‐related variations in many neuropsychiatric disorders including major depression (MDD). These techniques show promise in developing diagnostics for these often difficult to identify disorders. However, the analysis of resting‐state datasets is increasingly beset by a myriad of approaches and methods, each with underlying assumptions. Choosing the most appropriate preprocessing parameters a priori is difficult. Nevertheless, the specific methodological choice influences graph‐theoretical network topologies as well as regional metrics. The aim of this study was to systematically compare different preprocessing strategies by evaluating their influence on group differences between healthy participants (HC) and depressive patients. We thus investigated the effects of common preprocessing variants, including global mean‐signal regression (GMR), temporal filtering, detrending, and network sparsity on group differences between brain networks of HC and MDD patients measured by global and nodal graph theoretical metrics. Occurrence of group differences in global metrics was absent in the majority of tested preprocessing variants, but in local graph metrics it is sparse, variable, and highly dependent on the combination of preprocessing variant and sparsity threshold. Sparsity thresholds between 16 and 22% were shown to have the greatest potential to reveal differences between HC and MDD patients in global and local network metrics. Our study offers an overview of consequences of methodological decisions and which neurobiological characteristics of MDD they implicate, adding further caution to this rapidly growing field. Hum Brain Mapp 37:1422‐1442, 2016. © 2016 Wiley Periodicals, Inc. Highlights Groups can be differentiated based on local graph metrics Group differences are influenced by preprocessing method Finding group differences depends strongly on the network density Conclusions regarding functional connectomic differences in major depression should be mindful of the influence of preprocessing strategies.
Resting-state fMRI studies have gained widespread use in exploratory studies of neuropsychiatric disorders. Graph metrics derived from whole brain functional connectivity studies have been used to reveal disease-related variations in many neuropsychiatric disorders including major depression (MDD). These techniques show promise in developing diagnostics for these often difficult to identify disorders. However, the analysis of resting-state datasets is increasingly beset by a myriad of approaches and methods, each with underlying assumptions. Choosing the most appropriate preprocessing parameters a priori is difficult. Nevertheless, the specific methodological choice influences graph-theoretical network topologies as well as regional metrics. The aim of this study was to systematically compare different preprocessing strategies by evaluating their influence on group differences between healthy participants (HC) and depressive patients. We thus investigated the effects of common preprocessing variants, including global mean-signal regression (GMR), temporal filtering, detrending, and network sparsity on group differences between brain networks of HC and MDD patients measured by global and nodal graph theoretical metrics. Occurrence of group differences in global metrics was absent in the majority of tested preprocessing variants, but in local graph metrics it is sparse, variable, and highly dependent on the combination of preprocessing variant and sparsity threshold. Sparsity thresholds between 16 and 22% were shown to have the greatest potential to reveal differences between HC and MDD patients in global and local network metrics. Our study offers an overview of consequences of methodological decisions and which neurobiological characteristics of MDD they implicate, adding further caution to this rapidly growing field. Hum Brain Mapp 37:1422-1442, 2016. © 2016 Wiley Periodicals, Inc. Highlights Groups can be differentiated based on local graph metrics Group differences are influenced by preprocessing method Finding group differences depends strongly on the network density Conclusions regarding functional connectomic differences in major depression should be mindful of the influence of preprocessing strategies.
Resting-state fMRI studies have gained widespread use in exploratory studies of neuropsychiatric disorders. Graph metrics derived from whole brain functional connectivity studies have been used to reveal disease-related variations in many neuropsychiatric disorders including major depression (MDD). These techniques show promise in developing diagnostics for these often difficult to identify disorders. However, the analysis of resting-state datasets is increasingly beset by a myriad of approaches and methods, each with underlying assumptions. Choosing the most appropriate preprocessing parameters a priori is difficult. Nevertheless, the specific methodological choice influences graph-theoretical network topologies as well as regional metrics. The aim of this study was to systematically compare different preprocessing strategies by evaluating their influence on group differences between healthy participants (HC) and depressive patients. We thus investigated the effects of common preprocessing variants, including global mean-signal regression (GMR), temporal filtering, detrending, and network sparsity on group differences between brain networks of HC and MDD patients measured by global and nodal graph theoretical metrics. Occurrence of group differences in global metrics was absent in the majority of tested preprocessing variants, but in local graph metrics it is sparse, variable, and highly dependent on the combination of preprocessing variant and sparsity threshold. Sparsity thresholds between 16 and 22% were shown to have the greatest potential to reveal differences between HC and MDD patients in global and local network metrics. Our study offers an overview of consequences of methodological decisions and which neurobiological characteristics of MDD they implicate, adding further caution to this rapidly growing field.Resting-state fMRI studies have gained widespread use in exploratory studies of neuropsychiatric disorders. Graph metrics derived from whole brain functional connectivity studies have been used to reveal disease-related variations in many neuropsychiatric disorders including major depression (MDD). These techniques show promise in developing diagnostics for these often difficult to identify disorders. However, the analysis of resting-state datasets is increasingly beset by a myriad of approaches and methods, each with underlying assumptions. Choosing the most appropriate preprocessing parameters a priori is difficult. Nevertheless, the specific methodological choice influences graph-theoretical network topologies as well as regional metrics. The aim of this study was to systematically compare different preprocessing strategies by evaluating their influence on group differences between healthy participants (HC) and depressive patients. We thus investigated the effects of common preprocessing variants, including global mean-signal regression (GMR), temporal filtering, detrending, and network sparsity on group differences between brain networks of HC and MDD patients measured by global and nodal graph theoretical metrics. Occurrence of group differences in global metrics was absent in the majority of tested preprocessing variants, but in local graph metrics it is sparse, variable, and highly dependent on the combination of preprocessing variant and sparsity threshold. Sparsity thresholds between 16 and 22% were shown to have the greatest potential to reveal differences between HC and MDD patients in global and local network metrics. Our study offers an overview of consequences of methodological decisions and which neurobiological characteristics of MDD they implicate, adding further caution to this rapidly growing field.
Resting-state fMRI studies have gained widespread use in exploratory studies of neuropsychiatric disorders. Graph metrics derived from whole brain functional connectivity studies have been used to reveal disease-related variations in many neuropsychiatric disorders including major depression (MDD). These techniques show promise in developing diagnostics for these often difficult to identify disorders. However, the analysis of resting-state datasets is increasingly beset by a myriad of approaches and methods, each with underlying assumptions. Choosing the most appropriate preprocessing parameters a priori is difficult. Nevertheless, the specific methodological choice influences graph-theoretical network topologies as well as regional metrics. The aim of this study was to systematically compare different preprocessing strategies by evaluating their influence on group differences between healthy participants (HC) and depressive patients. We thus investigated the effects of common preprocessing variants, including global mean-signal regression (GMR), temporal filtering, detrending, and network sparsity on group differences between brain networks of HC and MDD patients measured by global and nodal graph theoretical metrics. Occurrence of group differences in global metrics was absent in the majority of tested preprocessing variants, but in local graph metrics it is sparse, variable, and highly dependent on the combination of preprocessing variant and sparsity threshold. Sparsity thresholds between 16 and 22% were shown to have the greatest potential to reveal differences between HC and MDD patients in global and local network metrics. Our study offers an overview of consequences of methodological decisions and which neurobiological characteristics of MDD they implicate, adding further caution to this rapidly growing field. Hum Brain Mapp 37:1422-1442, 2016. Highlights * Groups can be differentiated based on local graph metrics * Group differences are influenced by preprocessing method * Finding group differences depends strongly on the network density * Conclusions regarding functional connectomic differences in major depression should be mindful of the influence of preprocessing strategies.
Resting-state fMRI studies have gained widespread use in exploratory studies of neuropsychiatric disorders. Graph metrics derived from whole brain functional connectivity studies have been used to reveal disease-related variations in many neuropsychiatric disorders including major depression (MDD). These techniques show promise in developing diagnostics for these often difficult to identify disorders. However, the analysis of resting-state datasets is increasingly beset by a myriad of approaches and methods, each with underlying assumptions. Choosing the most appropriate preprocessing parameters a priori is difficult. Nevertheless, the specific methodological choice influences graph-theoretical network topologies as well as regional metrics. The aim of this study was to systematically compare different preprocessing strategies by evaluating their influence on group differences between healthy participants (HC) and depressive patients. We thus investigated the effects of common preprocessing variants, including global mean-signal regression (GMR), temporal filtering, detrending, and network sparsity on group differences between brain networks of HC and MDD patients measured by global and nodal graph theoretical metrics. Occurrence of group differences in global metrics was absent in the majority of tested preprocessing variants, but in local graph metrics it is sparse, variable, and highly dependent on the combination of preprocessing variant and sparsity threshold. Sparsity thresholds between 16 and 22% were shown to have the greatest potential to reveal differences between HC and MDD patients in global and local network metrics. Our study offers an overview of consequences of methodological decisions and which neurobiological characteristics of MDD they implicate, adding further caution to this rapidly growing field.
Author Lord, Anton Richard
Borchardt, Viola
van der Meer, Johan
Li, Meng
Walter, Martin
Bogerts, Bernhard
Breakspear, Michael
Heinze, Hans-Jochen
AuthorAffiliation 3 QIMR Berghofer Medical Research Institute Brisbane Queensland Australia
9 Metro North Mental Health Service Brisbane Queensland Australia
5 Department of Neurology Otto Von Guericke University Magdeburg Germany
6 Department of Psychiatry and Psychotherapy Otto Von Guericke University Magdeburg Germany
4 University of Queensland St Lucia Queensland Australia
7 Department of Cognition and Emotion Netherlands Institute for Neuroscience, an Institute of the Royal Academy of Arts and Sciences Amsterdam Netherlands
10 Department of Psychiatry University Tübingen
8 Center for Behavioral Brain Sciences (CBBS) Magdeburg Germany
1 Department of Behavioral Neurology Leibniz Institute for Neurobiology Magdeburg Germany
2 Clinical Affective Neuroimaging Laboratory Magdeburg Germany
AuthorAffiliation_xml – name: 3 QIMR Berghofer Medical Research Institute Brisbane Queensland Australia
– name: 7 Department of Cognition and Emotion Netherlands Institute for Neuroscience, an Institute of the Royal Academy of Arts and Sciences Amsterdam Netherlands
– name: 4 University of Queensland St Lucia Queensland Australia
– name: 5 Department of Neurology Otto Von Guericke University Magdeburg Germany
– name: 10 Department of Psychiatry University Tübingen
– name: 1 Department of Behavioral Neurology Leibniz Institute for Neurobiology Magdeburg Germany
– name: 2 Clinical Affective Neuroimaging Laboratory Magdeburg Germany
– name: 6 Department of Psychiatry and Psychotherapy Otto Von Guericke University Magdeburg Germany
– name: 9 Metro North Mental Health Service Brisbane Queensland Australia
– name: 8 Center for Behavioral Brain Sciences (CBBS) Magdeburg Germany
Author_xml – sequence: 1
  givenname: Viola
  surname: Borchardt
  fullname: Borchardt, Viola
  organization: Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
– sequence: 2
  givenname: Anton Richard
  surname: Lord
  fullname: Lord, Anton Richard
  organization: Clinical Affective Neuroimaging Laboratory, Magdeburg, Germany
– sequence: 3
  givenname: Meng
  surname: Li
  fullname: Li, Meng
  organization: Clinical Affective Neuroimaging Laboratory, Magdeburg, Germany
– sequence: 4
  givenname: Johan
  surname: van der Meer
  fullname: van der Meer, Johan
  organization: Clinical Affective Neuroimaging Laboratory, Magdeburg, Germany
– sequence: 5
  givenname: Hans-Jochen
  surname: Heinze
  fullname: Heinze, Hans-Jochen
  organization: Department of Neurology, Otto Von Guericke University, Magdeburg, Germany
– sequence: 6
  givenname: Bernhard
  surname: Bogerts
  fullname: Bogerts, Bernhard
  organization: Department of Psychiatry and Psychotherapy, Otto Von Guericke University, Magdeburg, Germany
– sequence: 7
  givenname: Michael
  surname: Breakspear
  fullname: Breakspear, Michael
  organization: QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
– sequence: 8
  givenname: Martin
  surname: Walter
  fullname: Walter, Martin
  email: martin.walter@med.ovgu.de
  organization: Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26888761$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhiNURD_gwB9AkbjAIa0nie3kgkRXtFupLBUCcbQcZ7Lrrdde7IR2_329XxVUIHGyNX7ed2Y8c5wcWGcxSV4DOQVC8rNZszjNCwB4lhwBqXlGoC4O1ndGs7rkcJgchzAnBIASeJEc5qyqKs7gKDE3HpfeKQxB22kaei97nK5SbTszoI3xdOrlcpY1MmCb4v3SuIhoZ1PXpdL06GO4G6xax6RJLfZ3zt-G6JAu5Nz5tI0J1vbOvkyed9IEfLU7T5LvF5--jcbZ9ZfLq9HH60xRKCGLNVJO85aUTVmqTqpWdk2Lsq6ZKmkJHbSEStY2Teyh40p2FLFusCoKqtqiKk6SD1vf5dAssFVoY1tGLL1eSL8STmrx54vVMzF1vwSrGKe0jAbvdgbe_Rww9GKhg0JjpEU3BAGcM8YKBvn_oDmUnHEe0bdP0LkbfPy0DQV5Xhe0jtSb34t_rHo_swicbQHlXQgeO6F0vxlJ7EUbAUSst0LErRCbrYiK908Ue9O_sTv3O21w9W9QjM8_7xXZVqFDj_ePCulvBeMFp-LH5FJcjL5Oxjf0XEyKB3FT2I8
CitedBy_id crossref_primary_10_1038_s44220_024_00323_0
crossref_primary_10_1007_s12530_017_9187_7
crossref_primary_10_1038_tp_2016_233
crossref_primary_10_1002_brb3_1257
crossref_primary_10_1038_s41598_017_15926_0
crossref_primary_10_1016_j_ijchp_2023_100401
crossref_primary_10_1002_hbm_23929
crossref_primary_10_1016_j_jad_2017_08_086
crossref_primary_10_1038_s41386_022_01328_y
crossref_primary_10_3389_fncom_2020_554186
crossref_primary_10_1038_s41380_021_01247_2
crossref_primary_10_1093_cercor_bhae478
crossref_primary_10_1016_j_pnpbp_2024_111158
crossref_primary_10_1016_j_neuroimage_2016_11_052
crossref_primary_10_1016_j_pnpbp_2021_110401
crossref_primary_10_1162_netn_a_00132
crossref_primary_10_1016_j_compbiomed_2023_107478
crossref_primary_10_1038_s41598_020_67162_8
crossref_primary_10_1016_j_chaos_2024_115566
crossref_primary_10_1002_hbm_24305
crossref_primary_10_1038_s41380_022_01519_5
crossref_primary_10_1089_brain_2020_0854
crossref_primary_10_3389_fncom_2018_00008
crossref_primary_10_1038_s41398_020_01053_4
crossref_primary_10_1016_j_dib_2018_08_198
Cites_doi 10.1001/jamapsychiatry.2013.143
10.1007/s10508-013-0103-3
10.3389/fnins.2012.00149
10.1371/journal.pone.0041282
10.1002/mrm.1910340409
10.1016/j.neuroimage.2012.03.027
10.1016/j.biopsych.2011.05.018
10.1006/nimg.2002.1053
10.1155/2013/935154
10.1016/j.neuroimage.2009.10.003
10.1002/hbm.20096
10.1038/nrn3901
10.1089/brain.2012.0080
10.1016/j.pscychresns.2010.03.004
10.1016/j.jad.2012.04.013
10.1016/j.neuroimage.2013.04.013
10.1126/science.1065103
10.1002/hbm.20517
10.1016/j.neuroimage.2012.07.004
10.1016/j.neuroimage.2005.02.021
10.1073/pnas.0903641106
10.1016/j.neuroimage.2008.09.036
10.1006/nimg.2001.0978
10.1016/j.neulet.2009.05.022
10.1016/j.neubiorev.2012.01.004
10.3389/fnhum.2014.00692
10.1371/journal.pone.0032766
10.1002/hbm.21297
10.1016/j.mri.2012.10.013
10.1016/j.neuroimage.2011.10.018
10.1073/pnas.1220826110
10.1016/j.jad.2012.12.026
10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E
10.1073/pnas.1405289111
10.1126/science.1099745
10.1016/j.neuroimage.2009.12.027
10.1016/j.neuroimage.2009.03.068
10.1016/j.neuroimage.2011.08.044
10.1111/j.1469-8137.1912.tb05611.x
10.1073/pnas.1000446107
10.1016/j.neuroimage.2013.05.116
10.1016/j.neuroimage.2009.05.005
10.3109/15622975.2014.966144
10.1016/j.neuroimage.2013.04.087
10.1073/pnas.0604187103
10.3389/fnins.2015.00048
10.3389/fnhum.2013.00356
10.1097/WCO.0b013e328306f2c5
10.1073/pnas.0905267106
10.1016/j.jad.2014.08.001
10.1017/S0033291713002742
10.1016/j.jad.2009.05.029
10.1371/journal.pone.0025031
10.1002/hbm.20623
10.1016/j.biopsych.2005.02.021
10.1371/journal.pmed.1001547
ContentType Journal Article
Copyright 2016 Wiley Periodicals, Inc.
Copyright_xml – notice: 2016 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.23111
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef

Technology Research Database

MEDLINE - Academic
Neurosciences Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Preprocessing Influences Graph Metrics in MDD
EISSN 1097-0193
EndPage 1442
ExternalDocumentID PMC6867554
3973769581
26888761
10_1002_hbm_23111
HBM23111
ark_67375_WNG_FCRNHP5B_N
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: DFG
  funderid: SFB 779
– fundername: Center for Behavioral and Brain Sciences (CBBS); EU‐Marie Curie Grant.
– fundername: DFG
  grantid: SFB 779
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AANHP
AAYCA
ACCMX
ACRPL
ACYXJ
ADNMO
AAFWJ
AAYXX
AFPKN
AGQPQ
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c5141-5015752d04b44cfacdafbdea996c4541f1d05a6dbb876f7caf5ee9be8335cd383
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 14:10:33 EDT 2025
Fri Jul 11 12:23:40 EDT 2025
Fri Jul 11 13:03:32 EDT 2025
Sat Jul 26 02:23:55 EDT 2025
Sun Jul 13 03:07:44 EDT 2025
Thu Apr 24 22:51:53 EDT 2025
Tue Jul 01 04:26:05 EDT 2025
Wed Jan 22 16:42:32 EST 2025
Wed Oct 30 09:52:56 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords functional connectivity
major depressive disorder
resting-state fMRI
functional network analysis
graph-theory
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5141-5015752d04b44cfacdafbdea996c4541f1d05a6dbb876f7caf5ee9be8335cd383
Notes DFG - No. SFB 779
ark:/67375/WNG-FCRNHP5B-N
Center for Behavioral and Brain Sciences (CBBS); EU-Marie Curie Grant.
istex:4BEB5C5E50574E26AF1D77135B1927062A5C9F43
ArticleID:HBM23111
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6867554
PMID 26888761
PQID 1771229359
PQPubID 996345
PageCount 21
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6867554
proquest_miscellaneous_1776663612
proquest_miscellaneous_1772147677
proquest_journals_1771229359
pubmed_primary_26888761
crossref_citationtrail_10_1002_hbm_23111
crossref_primary_10_1002_hbm_23111
wiley_primary_10_1002_hbm_23111_HBM23111
istex_primary_ark_67375_WNG_FCRNHP5B_N
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2016
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: April 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Antonio
– name: Hoboken
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum. Brain Mapp
PublicationYear 2016
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References Chang HH, Zhuang AH, Valentino DJ, Chu WC (2009): Performance measure characterization for evaluating neuroimage segmentation algorithms. Neuroimage 47:122-135. Available at: http://dx.doi.org/10.1016/j.neuroimage.2009.03.068.
Ferrari AJ, Charlson FJ, Norman RE, et al. (2013): Burden of Depressive Disorders by Country, Sex, Age, and Year: Findings from the Global Burden of Disease Study 2010. PLoS Medicine. 2013;10(11):e1001547. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3818162/.
Rubinov M, Knock S, Stam CJ, Micheloyannis S, Harris AWF, Williams LM, Breakspear M (2009): Small-world properties of nonlinear brain activity in schizophrenia. Hum Brain Mapp 30:403-416. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18072237.
Li M, Metzger CD, Li W, Safron A, van Tol M-J, Lord A, Borchardt V, Dou W, Genz A, Heinze H-J, He H, Walter M (2014): Dissociation of glutamate and cortical thickness is restricted to regions subserving trait but not state markers in major depressive disorder. J Affect Disord 169:91-100.
Sheline YI, Price JL, Yan Z, Mintun MA (2010): Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc Natl Acad Sci USA 107:11020-11025.
Wang J, Wang L, Zang Y, Yang H, Tang H, Gong Q, Chen Z, Zhu C, He Y (2009): Parcellation-dependent small-world brain functional networks: A resting-state fMRI study. Hum Brain Mapp 30:1511-1523. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18649353.
Greicius M (2008): Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol 21:424-430. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18607202.
Orrù G, Pettersson-Yeo W, Marquand AF, Sartori G, Mechelli A (2012): Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review. Neurosci Biobehav Rev 36:1140-1152. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22305994.
Horn DI, Yu C, Steiner J, Buchmann J, Kaufmann J, Osoba A, Eckert U, Zierhut K, Schiltz K, He H, Biswal B, Bogerts B, Walter M (2010): Glutamatergic and resting-state functional connectivity correlates of severity in major depression-The role of pregenual anterior cingulate cortex and anterior insula. Front Syst Neurosci 4:1-10. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2914530&tool= pmcentrez&rendertype=abstract.
Zhou Y, Yu C, Zheng H, Liu Y, Song M, Qin W, Li K, Jiang T (2010): Increased neural resources recruitment in the intrinsic organization in major depression. J Affect Disord 121:220-230. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19541369.
Cullen KR, Gee DG, Klimes-Dougan B, Gabbay V, Hulvershorn L, Mueller BA, Camchong J, Bell CJ, Houri A, Kumra S, Lim KO, Castellanos FX, Milham MP (2009): A preliminary study of functional connectivity in comorbid adolescent depression. Neurosci Lett 460:227-231. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2713606/.
Gotts SJ, Saad ZS, Jo HJ, Wallace GL, Cox RW, Martin A (2013): The perils of global signal regression for group comparisons: A case study of Autism spectrum disorders. Front Hum Neurosci 7:356. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3709423&tool=pmcentrez&rendertype= abstract.
Jaccard P (1912): The distribution of the flora in the alphine zone. New Phytol XI:37-50.
Tanabe J, Miller D, Tregellas J, Freedman R, Meyer FG (2002): Comparison of detrending methods for optimal fMRI preprocessing. Neuroimage 15:902-907. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11906230.
Liu Z, Xu C, Xu Y, Wang Y, Zhao B, Lv Y, Cao X, Zhang K, Du C (2010): Decreased regional homogeneity in insula and cerebellum: A resting-state fMRI study in patients with major depression and subjects at high risk for major depression. Psychiatry Res Neuroimaging 182:211-215. Available at: http://www.sciencedirect.com/science/article/pii/S0925492710001058.
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002): Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273-289. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11771995.
Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF (2009): Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci USA 106:13040-13045. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2722273&tool=pmcentrez&rendertype= abstract.
van Tol M-J, Li M, Metzger CD, Hailla N, Horn DI, Li W, Heinze HJ, Bogerts B, Steiner J, He H, Walter M (2014): Local cortical thinning links to resting-state disconnectivity in major depressive disorder. Psychol Med 44(10):2053-65. Available at: http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9277479&fileId=S0033291713002742.
Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012): Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59:2142-2154. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3254728&tool=pmcentrez&rendertype= abstract.
Stöcker T, Schneider F, Klein M, Habel U, Kellermann T, Zilles K, Shah NJ (2005): Automated quality assurance routines for fMRI data applied to a multicenter study. Hum Brain Mapp 25:237-246. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15846770.
Weissenbacher A, Kasess C, Gerstl F, Lanzenberger R, Moser E, Windischberger C (2009): Correlations and anticorrelations in resting-state functional connectivity MRI: A quantitative comparison of preprocessing strategies. Neuroimage 47:1408-1416. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19442749.
Jo HJ, Gotts SJ, Reynolds RC, Bandettini PA, Martin A, Cox RW, Saad ZS (2013): Effective Preprocessing Procedures Virtually Eliminate Distance-Dependent Motion Artifacts in Resting State FMRI. J Applied Mathematics. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886863/.
Langer N, Pedroni A, Gianotti LRR, Hänggi J, Knoch D, Jäncke L (2012): Functional brain network efficiency predicts intelligence. Hum Brain Mapp 33:1393-1406. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21557387.
Steiner JB, Walter M, Gos TC, Guillemin GJ, Bernstein H-G, Sarnyai Z, Mawrin C, Brisch R, Bielau H, Zu Schwabedissen LM, Bogerts B, Myint A-MG (2011): Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: Evidence for an immunemodulated glutamatergic neurotransmission? J Neuroinflammation 8(94). Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3177898/.
Yang GJ, Murray JD, Repovs G, Cole MW, Savic A, Glasser MF, Pittenger C, Krystal JH, Wang X-J, Pearlson GD, Glahn DC, Anticevic A (2014): Altered global brain signal in schizophrenia. Proc Natl Acad Sci USA 111:7438-7443. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24799682.
Fox MD, Greicius M (2010): Clinical applications of resting state functional connectivity. Front Syst Neurosci 4:19. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid= 2893721&tool=pmcentrez&rendertype=abstract.
Osoba A, Hänggi J, Li M, Horn DI, Metzger C, Eckert U, Kaufmann J, Zierhut K, Steiner J, Schiltz K, Heinze H-J, Bogerts B, Walter M (2013): Disease severity is correlated to tract specific changes of fractional anisotropy in MD and CM thalamus-A DTI study in major depressive disorder. J Affect Disord 149:116-128. Available at: http://www.sciencedirect.com/science/article/pii/S0165032713000645.
Rubinov M, Sporns O (2010): Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 52:1059-1069. Available at: http://dx.doi.org/10.1016/j.neuroimage.2009.10.003.
Glover GH, Li TQ, Ress D (2000): Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 44:162-167. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10893535.
Sundermann B, Beverborg MO, lütke Pfleiderer B (2014): Toward literature-based feature selection for diagnostic classification: A meta-analysis of resting-state fMRI in depression. Front Hum Neurosci 8:1-12. Available at: http://www.frontiersin.org/Human_Neuroscience/10.3389/fnhum.2014.00692/abstract.
Lord A, Horn D, Breakspear M, Walter M (2012): Changes in community structure of resting state functional connectivity in unipolar depression. PLoS One 7:e41282. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-84865159740& partnerID=40&md5=c8b5df4e 1df4b24a8ee581f01eb750ca.
Braun U, Plichta MM, Esslinger C, Sauer C, Haddad L, Grimm O, Mier D, Mohnke S, Heinz A, Erk S, Walter H, Seiferth N, Kirsch P, Meyer-Lindenberg A (2012): Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures. Neuroimage 59:1404-1412. Available at: http://dx.doi.org/10.1016/j.neuroimage.2011.08.044.
Patriat R, Molloy EK, Meier TB, Kirk GR, Nair VA, Meyerand ME, Prabhakaran V, Birn RM (2013): The effect of resting condition on resting-state fMRI reliability and consistency: A comparison between resting with eyes open, closed, and fixated. Neuroimage 78:463-473. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23597935.
Crossley Na, Mechelli A, Vértes PE, Toby T, Patel AX, Ginestet CE, Winton-brown TT, (2013): Cognitive relevance of the community structure of the human brain functional coactivation network. Proc Natl Acad Sci USA 110:15502-15502. Available at: http://www.pnas.org/cgi/doi/10.1073/pnas.1314559110.
Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995): Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537-541.
Fornito A, Zalesky A, Bullmore ET (2010): Network scaling effects in graph analytic studies of human resting-state FMRI data. Front Syst Neurosci 4:22. Available at: http://w
2012; 61
2009; 44
2009; 47
2002; 15
2010; 107
1995; 34
2000; 44
2013; 70
2012; 59
2010; 182
2013; 7
2005; 26
2005; 25
2013; 15
2013; 10
2011; 70
2014; 16
2008; 21
2013; 110
2014; 8
2010; 4
2014; 169
2012; 142
2015; 16
2002; 296
2012
2013; 149
2013; 42
2009
2010; 121
2012; 36
2015; 9
2014; 111
2011; 6
2004; 304
2012; 33
2011; 8
2014; 44
2012a; 6
2012b; 63
2009; 30
2012; 2
1912; XI
2013; 78
2013; 31
2013; 82
2009; 460
2013
2012; 7
2010; 52
2005; 57
2006; 103
2010; 50
2009; 106
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Steiner JB (e_1_2_8_52_1) 2011; 8
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_64_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
R Core Team (e_1_2_8_45_1) 2012
Fornito A (e_1_2_8_16_1) 2010; 4
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
Horn DI (e_1_2_8_27_1) 2010; 4
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_48_1
e_1_2_8_2_1
Fox MD (e_1_2_8_19_1) 2010; 4
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
Yan C‐G (e_1_2_8_62_1) 2010; 4
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_37_1
e_1_2_8_58_1
Cole DM (e_1_2_8_12_1) 2010; 4
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_50_1
References_xml – reference: Greicius M (2008): Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol 21:424-430. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18607202.
– reference: Zhou Y, Yu C, Zheng H, Liu Y, Song M, Qin W, Li K, Jiang T (2010): Increased neural resources recruitment in the intrinsic organization in major depression. J Affect Disord 121:220-230. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19541369.
– reference: Jo HJ, Gotts SJ, Reynolds RC, Bandettini PA, Martin A, Cox RW, Saad ZS (2013): Effective Preprocessing Procedures Virtually Eliminate Distance-Dependent Motion Artifacts in Resting State FMRI. J Applied Mathematics. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886863/.
– reference: Li M, Metzger CD, Li W, Safron A, van Tol M-J, Lord A, Borchardt V, Dou W, Genz A, Heinze H-J, He H, Walter M (2014): Dissociation of glutamate and cortical thickness is restricted to regions subserving trait but not state markers in major depressive disorder. J Affect Disord 169:91-100.
– reference: Gotts SJ, Saad ZS, Jo HJ, Wallace GL, Cox RW, Martin A (2013): The perils of global signal regression for group comparisons: A case study of Autism spectrum disorders. Front Hum Neurosci 7:356. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3709423&tool=pmcentrez&rendertype= abstract.
– reference: Liang X, Wang J, Yan C, Shu N, Xu K, Gong G, He Y (2012): Effects of different correlation metrics and preprocessing factors on small-world brain functional networks: A resting-state functional MRI study. Ed. Pedro Antonio Valdes-Sosa. PLoS One 7:e32766. Available at: http://dx.plos.org/10.1371/journal.pone.0032766.
– reference: Wang L, Hermens DF, Hickie IB, Lagopoulos J (2012): A systematic review of resting-state functional-MRI studies in major depression. J Affect Disord 142:6-12. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22858266.
– reference: Murphy K, Birn R, Handwerker D, Jones T, Bandettini P (2009): The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? Neuroimage 44:893-905. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2750906&tool=pmcentrez&rendertype= abstract.
– reference: van Tol M-J, Li M, Metzger CD, Hailla N, Horn DI, Li W, Heinze HJ, Bogerts B, Steiner J, He H, Walter M (2014): Local cortical thinning links to resting-state disconnectivity in major depressive disorder. Psychol Med 44(10):2053-65. Available at: http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9277479&fileId=S0033291713002742.
– reference: Anand A, Li Y, Wang Y, Wu J, Gao S, Bukhari L, Mathews VP, Kalnin A, Lowe MJ (2005): Activity and connectivity of brain mood regulating circuit in depression: A functional magnetic resonance study. Biol Psychiatry 57:1079-1088. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15866546.
– reference: Glover GH, Li TQ, Ress D (2000): Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 44:162-167. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10893535.
– reference: Crossley Na, Mechelli A, Vértes PE, Toby T, Patel AX, Ginestet CE, Winton-brown TT, (2013): Cognitive relevance of the community structure of the human brain functional coactivation network. Proc Natl Acad Sci USA 110:15502-15502. Available at: http://www.pnas.org/cgi/doi/10.1073/pnas.1314559110.
– reference: Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012): Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59:2142-2154. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3254728&tool=pmcentrez&rendertype= abstract.
– reference: Fornito A, Zalesky A, Breakspear M (2015): The connectomics of brain disorders. Nat Rev Neurosci 16:159-172. Available at: http://dx.doi.org/10.1038/nrn3901.
– reference: Yang GJ, Murray JD, Repovs G, Cole MW, Savic A, Glasser MF, Pittenger C, Krystal JH, Wang X-J, Pearlson GD, Glahn DC, Anticevic A (2014): Altered global brain signal in schizophrenia. Proc Natl Acad Sci USA 111:7438-7443. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24799682.
– reference: Hallquist MN, Hwang K, Luna B (2013): The nuisance of nuisance regression: Spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. Neuroimage 82:208-225. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23747457.
– reference: Langer N, Pedroni A, Gianotti LRR, Hänggi J, Knoch D, Jäncke L (2012): Functional brain network efficiency predicts intelligence. Hum Brain Mapp 33:1393-1406. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21557387.
– reference: Borchardt V, Krause AL, Starck T, Nissilä J, Timonen M, Kiviniemi V, Walter M (2014): Graph theory reveals hyper-functionality in visual cortices of SAD patients. World J Biol Psychiatry 16(2):123-34. Available at: http://www.tandfonline.com/doi/abs/10.3109/15622975.2014.966144?journalCode=iwbp20.
– reference: Fox MD, Greicius M (2010): Clinical applications of resting state functional connectivity. Front Syst Neurosci 4:19. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid= 2893721&tool=pmcentrez&rendertype=abstract.
– reference: Zhang J, Wang J, Wu Q, Kuang W, Huang X, He Y, Gong Q (2011): Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biol Psychiatry 70:334-342. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21791259.
– reference: Fornito A, Zalesky A, Bullmore ET (2010): Network scaling effects in graph analytic studies of human resting-state FMRI data. Front Syst Neurosci 4:22. Available at: http://www.pubmed central.nih.gov/articlerender.fcgi?artid=2893703&tool=pmcentrez& rendertype=abstract.
– reference: Sheline YI, Price JL, Yan Z, Mintun MA (2010): Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc Natl Acad Sci USA 107:11020-11025.
– reference: Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF (2009): Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci USA 106:13040-13045. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2722273&tool=pmcentrez&rendertype= abstract.
– reference: Chang HH, Zhuang AH, Valentino DJ, Chu WC (2009): Performance measure characterization for evaluating neuroimage segmentation algorithms. Neuroimage 47:122-135. Available at: http://dx.doi.org/10.1016/j.neuroimage.2009.03.068.
– reference: Ferrari AJ, Charlson FJ, Norman RE, et al. (2013): Burden of Depressive Disorders by Country, Sex, Age, and Year: Findings from the Global Burden of Disease Study 2010. PLoS Medicine. 2013;10(11):e1001547. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3818162/.
– reference: Horn DI, Yu C, Steiner J, Buchmann J, Kaufmann J, Osoba A, Eckert U, Zierhut K, Schiltz K, He H, Biswal B, Bogerts B, Walter M (2010): Glutamatergic and resting-state functional connectivity correlates of severity in major depression-The role of pregenual anterior cingulate cortex and anterior insula. Front Syst Neurosci 4:1-10. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2914530&tool= pmcentrez&rendertype=abstract.
– reference: Zalesky A, Fornito A, Harding IH, Cocchi L, Yücel M, Pantelis C, Bullmore ET (2010): Whole-brain anatomical networks: Does the choice of nodes matter? Neuroimage 50:970-983. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20035887.
– reference: Maslov S, Sneppen K (2002): Specificity and stability in topology of protein networks. Science 296:910-913. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11988575.
– reference: Steiner JB, Walter M, Gos TC, Guillemin GJ, Bernstein H-G, Sarnyai Z, Mawrin C, Brisch R, Bielau H, Zu Schwabedissen LM, Bogerts B, Myint A-MG (2011): Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: Evidence for an immunemodulated glutamatergic neurotransmission? J Neuroinflammation 8(94). Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3177898/.
– reference: Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME (2006): Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci USA 103:9381-9386.
– reference: Jaccard P (1912): The distribution of the flora in the alphine zone. New Phytol XI:37-50.
– reference: Yan C-G, Zang Y-F (2010): DPARSF: A MATLAB toolbox for "pipeline" data analysis of resting-state fMRI. Front Syst Neurosci 4:13. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2889691&tool=pmcentrez&rendertype= abstract.
– reference: Rubinov M, Sporns O (2010): Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 52:1059-1069. Available at: http://dx.doi.org/10.1016/j.neuroimage.2009.10.003.
– reference: Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002): Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273-289. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11771995.
– reference: Cole DM, Smith SM, Beckmann CF (2010): Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front Syst Neurosci 4:8. Available at: http://www.pubmed central.nih.gov/articlerender.fcgi?artid=2854531&tool=pmcentrez& rendertype=abstract.
– reference: Patriat R, Molloy EK, Meier TB, Kirk GR, Nair VA, Meyerand ME, Prabhakaran V, Birn RM (2013): The effect of resting condition on resting-state fMRI reliability and consistency: A comparison between resting with eyes open, closed, and fixated. Neuroimage 78:463-473. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23597935.
– reference: R Core Team (2012): R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Available at: http://www.r-project.org/.
– reference: Braun U, Plichta MM, Esslinger C, Sauer C, Haddad L, Grimm O, Mier D, Mohnke S, Heinz A, Erk S, Walter H, Seiferth N, Kirsch P, Meyer-Lindenberg A (2012): Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures. Neuroimage 59:1404-1412. Available at: http://dx.doi.org/10.1016/j.neuroimage.2011.08.044.
– reference: Cullen KR, Gee DG, Klimes-Dougan B, Gabbay V, Hulvershorn L, Mueller BA, Camchong J, Bell CJ, Houri A, Kumra S, Lim KO, Castellanos FX, Milham MP (2009): A preliminary study of functional connectivity in comorbid adolescent depression. Neurosci Lett 460:227-231. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2713606/.
– reference: Song X-W, Dong Z-Y, Long X-Y, Li S-F, Zuo X-N, Zhu C-Z, He Y, Yan C-G, Zang Y-F (2011): REST: A toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One 6:e25031. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3176805&tool=pmcentrez&rendertype= abstract.
– reference: Weissenbacher A, Kasess C, Gerstl F, Lanzenberger R, Moser E, Windischberger C (2009): Correlations and anticorrelations in resting-state functional connectivity MRI: A quantitative comparison of preprocessing strategies. Neuroimage 47:1408-1416. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19442749.
– reference: Orrù G, Pettersson-Yeo W, Marquand AF, Sartori G, Mechelli A (2012): Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review. Neurosci Biobehav Rev 36:1140-1152. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22305994.
– reference: Rubinov M, Knock S, Stam CJ, Micheloyannis S, Harris AWF, Williams LM, Breakspear M (2009): Small-world properties of nonlinear brain activity in schizophrenia. Hum Brain Mapp 30:403-416. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18072237.
– reference: Metzger CD, Walter M, Graf H, Abler B (2013): SSRI-related modulation of sexual functioning is predicted by pre-treatment resting state functional connectivity in healthy men. Arch Sex Behav 42:935-947. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23771550.
– reference: Aurich NK, Alves Filho JO, Marques da Silva AM, Franco AR (2015): Evaluating the reliability of different preprocessing steps to estimate graph theoretical measures in resting state fMRI data. Front Neurosci 9:1-10. Available at: http://www.frontiersin.org/Brain_Imaging_Methods/10.3389/fnins.2015.00048/abstract.
– reference: Lund TE, Nørgaard MD, Rostrup E, Rowe JB, Paulson OB (2005): Motion or activity: Their role in intra- and inter-subject variation in fMRI. Neuroimage 26:960-964. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15955506.
– reference: McGrath CL, Kelley ME, Holtzheimer PE, Dunlop BW, Craighead WE, Franco AR, Craddock RC, Mayberg HS (2013): Toward a neuroimaging treatment selection biomarker for major depressive disorder. JAMA Psychiatry 70:821-829. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23760393.
– reference: Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995): Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537-541.
– reference: Pedoia V, Strocchi S, Colli V, Binaghi E, Conte L (2013): Functional magnetic resonance imaging: Comparison between activation maps and computation pipelines in a clinical context. Magn Reson Imaging 31:555-566. Available at: http://dx.doi.org/10.1016/j.mri.2012.10.013.
– reference: Stöcker T, Schneider F, Klein M, Habel U, Kellermann T, Zilles K, Shah NJ (2005): Automated quality assurance routines for fMRI data applied to a multicenter study. Hum Brain Mapp 25:237-246. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15846770.
– reference: Guo CC, Kurth F, Zhou J, Mayer EA, Eickhoff SB, Kramer JH, Seeley WW (2012): One-year test-retest reliability of intrinsic connectivity network fMRI in older adults. Neuroimage 61:1471-1483. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22446491.
– reference: Saad ZS, Gotts SJ, Murphy K, Chen G, Jo HJ, Martin A, Cox RW (2012): Trouble at rest: How correlation patterns and group differences become distorted after global signal regression. Brain Connect 2:25-32. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3484684&tool=pmcentrez& rendertype=abstract.
– reference: Lord A, Horn D, Breakspear M, Walter M (2012): Changes in community structure of resting state functional connectivity in unipolar depression. PLoS One 7:e41282. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-84865159740& partnerID=40&md5=c8b5df4e 1df4b24a8ee581f01eb750ca.
– reference: Liu Z, Xu C, Xu Y, Wang Y, Zhao B, Lv Y, Cao X, Zhang K, Du C (2010): Decreased regional homogeneity in insula and cerebellum: A resting-state fMRI study in patients with major depression and subjects at high risk for major depression. Psychiatry Res Neuroimaging 182:211-215. Available at: http://www.sciencedirect.com/science/article/pii/S0925492710001058.
– reference: Tanabe J, Miller D, Tregellas J, Freedman R, Meyer FG (2002): Comparison of detrending methods for optimal fMRI preprocessing. Neuroimage 15:902-907. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11906230.
– reference: Bassett DS, Bullmore ET, Meyer-Lindenberg A, Apud JA, Weinberger DR, Coppola R (2009): Cognitive fitness of cost-efficient brain functional networks. Proc Natl Acad Sci USA 106:11747-11752.
– reference: Carp J (2012a): On the plurality of (methodological) worlds: Estimating the analytic flexibility of FMRI experiments. Front Neurosci 6:149. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3468892&tool=pmcentrez&rendertype= abstract.
– reference: Fornito A, Zalesky A, Breakspear M (2013): Graph analysis of the human connectome: Promise, progress, and pitfalls. Neuroimage 15(80):426-44. Available at: http://www.sciencedirect.com/science/article/pii/S1053811913004345.
– reference: Wang J, Wang L, Zang Y, Yang H, Tang H, Gong Q, Chen Z, Zhu C, He Y (2009): Parcellation-dependent small-world brain functional networks: A resting-state fMRI study. Hum Brain Mapp 30:1511-1523. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18649353.
– reference: Carp J (2012b): The secret lives of experiments: Methods reporting in the fMRI literature. Neuroimage 63:289-300. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22796459.
– reference: Buzsáki G, Draguhn A (2004): Neuronal oscillations in cortical networks. Science 304:1926-1929. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15218136.
– reference: Osoba A, Hänggi J, Li M, Horn DI, Metzger C, Eckert U, Kaufmann J, Zierhut K, Steiner J, Schiltz K, Heinze H-J, Bogerts B, Walter M (2013): Disease severity is correlated to tract specific changes of fractional anisotropy in MD and CM thalamus-A DTI study in major depressive disorder. J Affect Disord 149:116-128. Available at: http://www.sciencedirect.com/science/article/pii/S0165032713000645.
– reference: Sundermann B, Beverborg MO, lütke Pfleiderer B (2014): Toward literature-based feature selection for diagnostic classification: A meta-analysis of resting-state fMRI in depression. Front Hum Neurosci 8:1-12. Available at: http://www.frontiersin.org/Human_Neuroscience/10.3389/fnhum.2014.00692/abstract.
– volume: 63
  start-page: 289
  year: 2012b
  end-page: 300
  article-title: The secret lives of experiments: Methods reporting in the fMRI literature
  publication-title: Neuroimage
– volume: 169
  start-page: 91
  year: 2014
  end-page: 100
  article-title: Dissociation of glutamate and cortical thickness is restricted to regions subserving trait but not state markers in major depressive disorder
  publication-title: J Affect Disord
– year: 2009
– volume: 7
  start-page: e32766
  year: 2012
  article-title: Effects of different correlation metrics and preprocessing factors on small‐world brain functional networks: A resting‐state functional MRI study. Ed. Pedro Antonio Valdes‐Sosa
  publication-title: PLoS One
– volume: 26
  start-page: 960
  year: 2005
  end-page: 964
  article-title: Motion or activity: Their role in intra‐ and inter‐subject variation in fMRI
  publication-title: Neuroimage
– volume: 142
  start-page: 6
  year: 2012
  end-page: 12
  article-title: A systematic review of resting‐state functional‐MRI studies in major depression
  publication-title: J Affect Disord
– volume: 4
  start-page: 22
  year: 2010
  article-title: Network scaling effects in graph analytic studies of human resting‐state FMRI data
  publication-title: Front Syst Neurosci
– volume: 460
  start-page: 227
  year: 2009
  end-page: 231
  article-title: A preliminary study of functional connectivity in comorbid adolescent depression
  publication-title: Neurosci Lett
– volume: 304
  start-page: 1926
  year: 2004
  end-page: 1929
  article-title: Neuronal oscillations in cortical networks
  publication-title: Science
– volume: 47
  start-page: 122
  year: 2009
  end-page: 135
  article-title: Performance measure characterization for evaluating neuroimage segmentation algorithms
  publication-title: Neuroimage
– volume: 16
  start-page: 159
  year: 2015
  end-page: 172
  article-title: The connectomics of brain disorders
  publication-title: Nat Rev Neurosci
– volume: 36
  start-page: 1140
  year: 2012
  end-page: 1152
  article-title: Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review
  publication-title: Neurosci Biobehav Rev
– volume: 15
  start-page: 426
  issue: 80
  year: 2013
  end-page: 44
  article-title: Graph analysis of the human connectome: Promise, progress, and pitfalls
  publication-title: Neuroimage
– volume: 21
  start-page: 424
  year: 2008
  end-page: 430
  article-title: Resting‐state functional connectivity in neuropsychiatric disorders
  publication-title: Curr Opin Neurol
– volume: 106
  start-page: 13040
  year: 2009
  end-page: 13045
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proc Natl Acad Sci USA
– volume: 111
  start-page: 7438
  year: 2014
  end-page: 7443
  article-title: Altered global brain signal in schizophrenia
  publication-title: Proc Natl Acad Sci USA
– volume: 59
  start-page: 1404
  year: 2012
  end-page: 1412
  article-title: Test‐retest reliability of resting‐state connectivity network characteristics using fMRI and graph theoretical measures
  publication-title: Neuroimage
– volume: 34
  start-page: 537
  year: 1995
  end-page: 541
  article-title: Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI
  publication-title: Magn Reson Med
– volume: 182
  start-page: 211
  year: 2010
  end-page: 215
  article-title: Decreased regional homogeneity in insula and cerebellum: A resting‐state fMRI study in patients with major depression and subjects at high risk for major depression
  publication-title: Psychiatry Res Neuroimaging
– volume: 44
  start-page: 162
  year: 2000
  end-page: 167
  article-title: Image‐based method for retrospective correction of physiological motion effects in fMRI: RETROICOR
  publication-title: Magn Reson Med
– volume: 47
  start-page: 1408
  year: 2009
  end-page: 1416
  article-title: Correlations and anticorrelations in resting‐state functional connectivity MRI: A quantitative comparison of preprocessing strategies
  publication-title: Neuroimage
– volume: 16
  start-page: 123
  issue: 2
  year: 2014
  end-page: 34
  article-title: Graph theory reveals hyper‐functionality in visual cortices of SAD patients
  publication-title: World J Biol Psychiatry
– volume: 70
  start-page: 821
  year: 2013
  end-page: 829
  article-title: Toward a neuroimaging treatment selection biomarker for major depressive disorder
  publication-title: JAMA Psychiatry
– volume: 44
  start-page: 893
  year: 2009
  end-page: 905
  article-title: The impact of global signal regression on resting state correlations: Are anti‐correlated networks introduced?
  publication-title: Neuroimage
– volume: 9
  start-page: 1
  year: 2015
  end-page: 10
  article-title: Evaluating the reliability of different preprocessing steps to estimate graph theoretical measures in resting state fMRI data
  publication-title: Front Neurosci
– volume: 44
  start-page: 2053
  issue: 10
  year: 2014
  end-page: 65
  article-title: Local cortical thinning links to resting-state disconnectivity in major depressive disorder
  publication-title: Psychol Med
– volume: 7
  start-page: e41282
  year: 2012
  article-title: Changes in community structure of resting state functional connectivity in unipolar depression
  publication-title: PLoS One
– volume: 106
  start-page: 11747
  year: 2009
  end-page: 11752
  article-title: Cognitive fitness of cost‐efficient brain functional networks
  publication-title: Proc Natl Acad Sci USA
– year: 2013
  article-title: Effective Preprocessing Procedures Virtually Eliminate Distance‐Dependent Motion Artifacts in Resting State FMRI
  publication-title: J Applied Mathematics
– volume: 25
  start-page: 237
  year: 2005
  end-page: 246
  article-title: Automated quality assurance routines for fMRI data applied to a multicenter study
  publication-title: Hum Brain Mapp
– volume: 30
  start-page: 1511
  year: 2009
  end-page: 1523
  article-title: Parcellation‐dependent small‐world brain functional networks: A resting‐state fMRI study
  publication-title: Hum Brain Mapp
– volume: 103
  start-page: 9381
  year: 2006
  end-page: 9386
  article-title: Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems
  publication-title: Proc Natl Acad Sci USA
– volume: 4
  start-page: 1
  year: 2010
  end-page: 10
  article-title: Glutamatergic and resting‐state functional connectivity correlates of severity in major depression—The role of pregenual anterior cingulate cortex and anterior insula
  publication-title: Front Syst Neurosci
– volume: 296
  start-page: 910
  year: 2002
  end-page: 913
  article-title: Specificity and stability in topology of protein networks
  publication-title: Science
– volume: 8
  start-page: 1
  year: 2014
  end-page: 12
  article-title: Toward literature‐based feature selection for diagnostic classification: A meta‐analysis of resting‐state fMRI in depression
  publication-title: Front Hum Neurosci
– volume: 50
  start-page: 970
  year: 2010
  end-page: 983
  article-title: Whole‐brain anatomical networks: Does the choice of nodes matter?
  publication-title: Neuroimage
– volume: 59
  start-page: 2142
  year: 2012
  end-page: 2154
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: Neuroimage
– volume: 33
  start-page: 1393
  year: 2012
  end-page: 1406
  article-title: Functional brain network efficiency predicts intelligence
  publication-title: Hum Brain Mapp
– volume: 78
  start-page: 463
  year: 2013
  end-page: 473
  article-title: The effect of resting condition on resting‐state fMRI reliability and consistency: A comparison between resting with eyes open, closed, and fixated
  publication-title: Neuroimage
– volume: 121
  start-page: 220
  year: 2010
  end-page: 230
  article-title: Increased neural resources recruitment in the intrinsic organization in major depression
  publication-title: J Affect Disord
– volume: 149
  start-page: 116
  year: 2013
  end-page: 128
  article-title: Disease severity is correlated to tract specific changes of fractional anisotropy in MD and CM thalamus—A DTI study in major depressive disorder
  publication-title: J Affect Disord
– volume: 57
  start-page: 1079
  year: 2005
  end-page: 1088
  article-title: Activity and connectivity of brain mood regulating circuit in depression: A functional magnetic resonance study
  publication-title: Biol Psychiatry
– volume: 4
  start-page: 8
  year: 2010
  article-title: Advances and pitfalls in the analysis and interpretation of resting‐state FMRI data
  publication-title: Front Syst Neurosci
– volume: 61
  start-page: 1471
  year: 2012
  end-page: 1483
  article-title: One‐year test‐retest reliability of intrinsic connectivity network fMRI in older adults
  publication-title: Neuroimage
– volume: 10
  start-page: e1001547
  issue: 11
  year: 2013
  article-title: Burden of Depressive Disorders by Country, Sex, Age, and Year: Findings from the Global Burden of Disease Study 2010
  publication-title: PLoS Medicine
– volume: XI
  start-page: 37
  year: 1912
  end-page: 50
  article-title: The distribution of the flora in the alphine zone
  publication-title: New Phytol
– volume: 4
  start-page: 13
  year: 2010
  article-title: DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting‐state fMRI
  publication-title: Front Syst Neurosci
– year: 2012
– volume: 82
  start-page: 208
  year: 2013
  end-page: 225
  article-title: The nuisance of nuisance regression: Spectral misspecification in a common approach to resting‐state fMRI preprocessing reintroduces noise and obscures functional connectivity
  publication-title: Neuroimage
– volume: 6
  start-page: e25031
  year: 2011
  article-title: REST: A toolkit for resting‐state functional magnetic resonance imaging data processing
  publication-title: PLoS One
– volume: 31
  start-page: 555
  year: 2013
  end-page: 566
  article-title: Functional magnetic resonance imaging: Comparison between activation maps and computation pipelines in a clinical context
  publication-title: Magn Reson Imaging
– volume: 42
  start-page: 935
  year: 2013
  end-page: 947
  article-title: SSRI‐related modulation of sexual functioning is predicted by pre‐treatment resting state functional connectivity in healthy men
  publication-title: Arch Sex Behav
– volume: 15
  start-page: 273
  year: 2002
  end-page: 289
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single‐subject brain
  publication-title: Neuroimage
– volume: 15
  start-page: 902
  year: 2002
  end-page: 907
  article-title: Comparison of detrending methods for optimal fMRI preprocessing
  publication-title: Neuroimage
– volume: 4
  start-page: 19
  year: 2010
  article-title: Clinical applications of resting state functional connectivity
  publication-title: Front Syst Neurosci
– volume: 52
  start-page: 1059
  year: 2010
  end-page: 1069
  article-title: Complex network measures of brain connectivity: Uses and interpretations
  publication-title: Neuroimage
– volume: 2
  start-page: 25
  year: 2012
  end-page: 32
  article-title: Trouble at rest: How correlation patterns and group differences become distorted after global signal regression
  publication-title: Brain Connect
– volume: 70
  start-page: 334
  year: 2011
  end-page: 342
  article-title: Disrupted brain connectivity networks in drug‐naive, first‐episode major depressive disorder
  publication-title: Biol Psychiatry
– volume: 7
  start-page: 356
  year: 2013
  article-title: The perils of global signal regression for group comparisons: A case study of Autism spectrum disorders
  publication-title: Front Hum Neurosci
– volume: 6
  start-page: 149
  year: 2012a
  article-title: On the plurality of (methodological) worlds: Estimating the analytic flexibility of FMRI experiments
  publication-title: Front Neurosci
– volume: 107
  start-page: 11020
  year: 2010
  end-page: 11025
  article-title: Resting‐state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus
  publication-title: Proc Natl Acad Sci USA
– volume: 8
  issue: 94
  year: 2011
  article-title: Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: Evidence for an immunemodulated glutamatergic neurotransmission?
  publication-title: J Neuroinflammation
– volume: 110
  start-page: 15502
  year: 2013
  end-page: 15502
  article-title: Cognitive relevance of the community structure of the human brain functional coactivation network
  publication-title: Proc Natl Acad Sci USA
– volume: 30
  start-page: 403
  year: 2009
  end-page: 416
  article-title: Small‐world properties of nonlinear brain activity in schizophrenia
  publication-title: Hum Brain Mapp
– year: 2013
– ident: e_1_2_8_37_1
  doi: 10.1001/jamapsychiatry.2013.143
– ident: e_1_2_8_38_1
  doi: 10.1007/s10508-013-0103-3
– ident: e_1_2_8_9_1
  doi: 10.3389/fnins.2012.00149
– volume: 4
  start-page: 22
  year: 2010
  ident: e_1_2_8_16_1
  article-title: Network scaling effects in graph analytic studies of human resting‐state FMRI data
  publication-title: Front Syst Neurosci
– ident: e_1_2_8_34_1
  doi: 10.1371/journal.pone.0041282
– ident: e_1_2_8_5_1
  doi: 10.1002/mrm.1910340409
– ident: e_1_2_8_25_1
  doi: 10.1016/j.neuroimage.2012.03.027
– ident: e_1_2_8_65_1
  doi: 10.1016/j.biopsych.2011.05.018
– ident: e_1_2_8_55_1
  doi: 10.1006/nimg.2002.1053
– ident: e_1_2_8_29_1
  doi: 10.1155/2013/935154
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2012
  ident: e_1_2_8_45_1
– ident: e_1_2_8_58_1
– ident: e_1_2_8_46_1
  doi: 10.1016/j.neuroimage.2009.10.003
– ident: e_1_2_8_53_1
  doi: 10.1002/hbm.20096
– ident: e_1_2_8_18_1
  doi: 10.1038/nrn3901
– ident: e_1_2_8_48_1
  doi: 10.1089/brain.2012.0080
– ident: e_1_2_8_33_1
  doi: 10.1016/j.pscychresns.2010.03.004
– ident: e_1_2_8_60_1
  doi: 10.1016/j.jad.2012.04.013
– ident: e_1_2_8_42_1
  doi: 10.1016/j.neuroimage.2013.04.013
– volume: 4
  start-page: 13
  year: 2010
  ident: e_1_2_8_62_1
  article-title: DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting‐state fMRI
  publication-title: Front Syst Neurosci
– ident: e_1_2_8_36_1
  doi: 10.1126/science.1065103
– ident: e_1_2_8_47_1
  doi: 10.1002/hbm.20517
– ident: e_1_2_8_10_1
  doi: 10.1016/j.neuroimage.2012.07.004
– ident: e_1_2_8_35_1
  doi: 10.1016/j.neuroimage.2005.02.021
– volume: 8
  issue: 94
  year: 2011
  ident: e_1_2_8_52_1
  article-title: Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: Evidence for an immunemodulated glutamatergic neurotransmission?
  publication-title: J Neuroinflammation
– ident: e_1_2_8_4_1
  doi: 10.1073/pnas.0903641106
– ident: e_1_2_8_39_1
  doi: 10.1016/j.neuroimage.2008.09.036
– ident: e_1_2_8_56_1
  doi: 10.1006/nimg.2001.0978
– ident: e_1_2_8_14_1
  doi: 10.1016/j.neulet.2009.05.022
– ident: e_1_2_8_40_1
  doi: 10.1016/j.neubiorev.2012.01.004
– ident: e_1_2_8_54_1
  doi: 10.3389/fnhum.2014.00692
– ident: e_1_2_8_32_1
  doi: 10.1371/journal.pone.0032766
– ident: e_1_2_8_30_1
  doi: 10.1002/hbm.21297
– ident: e_1_2_8_43_1
  doi: 10.1016/j.mri.2012.10.013
– ident: e_1_2_8_44_1
  doi: 10.1016/j.neuroimage.2011.10.018
– ident: e_1_2_8_13_1
  doi: 10.1073/pnas.1220826110
– ident: e_1_2_8_41_1
  doi: 10.1016/j.jad.2012.12.026
– ident: e_1_2_8_21_1
  doi: 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E
– ident: e_1_2_8_63_1
  doi: 10.1073/pnas.1405289111
– volume: 4
  start-page: 8
  year: 2010
  ident: e_1_2_8_12_1
  article-title: Advances and pitfalls in the analysis and interpretation of resting‐state FMRI data
  publication-title: Front Syst Neurosci
– ident: e_1_2_8_8_1
  doi: 10.1126/science.1099745
– ident: e_1_2_8_64_1
  doi: 10.1016/j.neuroimage.2009.12.027
– ident: e_1_2_8_11_1
  doi: 10.1016/j.neuroimage.2009.03.068
– ident: e_1_2_8_7_1
  doi: 10.1016/j.neuroimage.2011.08.044
– ident: e_1_2_8_28_1
  doi: 10.1111/j.1469-8137.1912.tb05611.x
– ident: e_1_2_8_49_1
  doi: 10.1073/pnas.1000446107
– ident: e_1_2_8_26_1
  doi: 10.1016/j.neuroimage.2013.05.116
– volume: 4
  start-page: 1
  year: 2010
  ident: e_1_2_8_27_1
  article-title: Glutamatergic and resting‐state functional connectivity correlates of severity in major depression—The role of pregenual anterior cingulate cortex and anterior insula
  publication-title: Front Syst Neurosci
– ident: e_1_2_8_61_1
  doi: 10.1016/j.neuroimage.2009.05.005
– ident: e_1_2_8_6_1
  doi: 10.3109/15622975.2014.966144
– ident: e_1_2_8_17_1
  doi: 10.1016/j.neuroimage.2013.04.087
– ident: e_1_2_8_20_1
  doi: 10.1073/pnas.0604187103
– ident: e_1_2_8_3_1
  doi: 10.3389/fnins.2015.00048
– ident: e_1_2_8_24_1
– ident: e_1_2_8_22_1
  doi: 10.3389/fnhum.2013.00356
– ident: e_1_2_8_23_1
  doi: 10.1097/WCO.0b013e328306f2c5
– ident: e_1_2_8_50_1
  doi: 10.1073/pnas.0905267106
– volume: 4
  start-page: 19
  year: 2010
  ident: e_1_2_8_19_1
  article-title: Clinical applications of resting state functional connectivity
  publication-title: Front Syst Neurosci
– ident: e_1_2_8_31_1
  doi: 10.1016/j.jad.2014.08.001
– ident: e_1_2_8_57_1
  doi: 10.1017/S0033291713002742
– ident: e_1_2_8_66_1
  doi: 10.1016/j.jad.2009.05.029
– ident: e_1_2_8_51_1
  doi: 10.1371/journal.pone.0025031
– ident: e_1_2_8_59_1
  doi: 10.1002/hbm.20623
– ident: e_1_2_8_2_1
  doi: 10.1016/j.biopsych.2005.02.021
– ident: e_1_2_8_15_1
  doi: 10.1371/journal.pmed.1001547
SSID ssj0011501
Score 2.3318448
Snippet Resting‐state fMRI studies have gained widespread use in exploratory studies of neuropsychiatric disorders. Graph metrics derived from whole brain functional...
Resting-state fMRI studies have gained widespread use in exploratory studies of neuropsychiatric disorders. Graph metrics derived from whole brain functional...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1422
SubjectTerms Adult
Depressive Disorder, Major - diagnostic imaging
Depressive Disorder, Major - physiopathology
Female
functional connectivity
functional network analysis
graph-theory
Humans
Magnetic Resonance Imaging - methods
major depressive disorder
Male
Nerve Net - diagnostic imaging
Nerve Net - physiopathology
resting-state fMRI
Title Preprocessing strategy influences graph-based exploration of altered functional networks in major depression
URI https://api.istex.fr/ark:/67375/WNG-FCRNHP5B-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.23111
https://www.ncbi.nlm.nih.gov/pubmed/26888761
https://www.proquest.com/docview/1771229359
https://www.proquest.com/docview/1772147677
https://www.proquest.com/docview/1776663612
https://pubmed.ncbi.nlm.nih.gov/PMC6867554
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3datRAFB5KBfHGaqs2WmUUKd5km2QzMxu8aovrIuxSisVeCMP8hda62bLZBeuVj-Az-iSeOZNEV6uIdyE5Ccnk_Hxn5pxvCHkuUmOSgejHEGtVDF6yiJVwPM7AlAqX9A3D3qrxhI9O8jen7HSNvGx7YQI_RDfh5i0D_bU3cKXrvR-koWd62gNwgn29vlbLA6LjjjrKAx1MtiDExgV44JZVKMn2ujtXYtENP6yfrgOav9dL_oxjMRANN8j79hNC_clFb7nQPfP5F3bH__zGO-R2A1DpftCou2TNVZtka7-C5Hx6RXcploziXPwmuTluVua3SHXk6TGx6QCCIa0D6e0VPW83QakpcmN_-_LVB05LHRb_oV7QWUlx1R5O-zgbpidpFSrUa3gGnaoPszntynare-Rk-Ort4Shu9nKIDUCyNIa_AcAws0mu89yUylhVausUpFsmZ3lapjZhilutwT2XwqiSOVdo53vCjIU0-j5Zr2aV2ybU8pLbjGlTWJ1rztTA75LHLe_DmUIXEXnR_lVpGqJzv9_GRxkomjMJwypxWCPyrBO9DOwe1wntomp0Emp-4cvhBJPvJq_l8PB4MjpiB3ISkZ1Wd2TjCWqZCpFmme9_jsjT7jLYsF-YUZWbLVHGbxfFhfirDGSafQCkEXkQ1LF7oYwPIFZweFOxoqidgOcQX71SnZ8hlzgfQMbIchgz1MM_j4IcHYzx4OG_iz4itwBf8lDotEPWF_OlewwYbqGfoLF-B-PNRo8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtRAEC1FiQRcWBKWgQANQhEXT2yP3T2WuCSBwUDGiqJE5IJavVnZxoNmkQgnPoFv5Euo7rYNAwEhbpZdtuxyrd1VrwCesUipsM96AfpaEaCVzALBDA1iVKXMhD2Vut6qYUHzw-TtUXq0BC-aXhiPD9EuuFnNcPbaKrhdkN78gRp6LEddjE5sY--Kneht5xe83G_Bo2yo49ItdLJBhja4wRUK48321gVvtGIZ--myUPP3ismfI1nnigY34EPzEb4C5aw7n8mu-vwLvuP_fuVNuF7HqGTLC9UtWDLVKqxtVZifjy7IBnFVo245fhWuDOvN-TWo9ixCpus7QH9Iph739oKcNHNQpsTBY3_78tX6Tk2Mq_9zokHGJXEb93jaulq_QkkqX6Q-xWeQkTgdT0hbuVvdhsPBq4OdPKjHOQQKo7IowN-BsWGsw0QmiSqF0qKU2gjMuFSSJlEZ6TAVVEuJFrpkSpSpMZk0ti1Macyk78ByNa7MPSCallTHqVSZlomkqejbQXlU0x6eyWTWgefNb-Wqxjq3IzfOuUdpjjmylTu2duBpS_rRA3xcRrThZKOlEJMzWxHHUv6-eM0HO_tFvpdu86ID643w8NoYTHnEWBTHtgW6A0_ay6jGdm9GVGY8dzR2YhRl7K80mGz2MCbtwF0vj-0LxbSP7oLim7IFSW0JLIz44pXq5NjBidM-Jo1pgjxzgvhnLvB8e-gO7v876WO4mh8Md_num-LdA7iG4Sb1dU_rsDybzM1DDOlm8pHT3O8KxUqp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VrVRx4dHyCBQwCFVcsk2ysbMRp7awLI-NVhUVPVSy_IpaymarfUiUEz-B38gvYWwngYWCELcomUTJZMbzjT3zGeBJFisV9bJuiLFWhDhK5qHIDAsTdKXcRF1FXW_VsGCDw_T1ET1agWdNL4znh2gn3KxnuPHaOvi5Lnd-kIaeyHEHwYnt611LGTqLRUQHLXeURTou28IYG-Y4BDe0QlGy0966FIzWrF4_XYY0fy-Y_BnIukjUvwbHzTf4ApSzzmIuO-rzL_SO__mR1-FqjVDJrjepG7Biqg3Y3K0wOx9fkG3iakbdZPwGrA_rpflNqEaWH9N1HWA0JDPPentBTptdUGbEkWN_-_LVRk5NjKv-c4ZBJiVxy_Z42gZaPz9JKl-iPsNnkLH4MJmStm63ugmH_Rfv9gdhvZlDqBCTxSH-DUSGiY5SmaaqFEqLUmojMN9SKU3jMtYRFUxLieNzmSlRUmNyaWxTmNKYR9-C1WpSmTtANCuZTqhUuZapZFT07DZ5TLMunsllHsDT5q9yVTOd2w03PnLP0ZxwVCt3ag3gcSt67uk9LhPadqbRSojpma2Hyyh_X7zk_f2DYjCie7wIYKuxHV4PBTMeZ1mcJLYBOoBH7WV0YrsyIyozWTgZu18Uy7K_ymCq2UVEGsBtb47tCyWsh8GC4ZtmS4baClgS8eUr1emJIxNnPUwZaYo6c3b4Zy3wwd7QHdz9d9GHsD563udvXxVv7sEVxJrMFz1twep8ujD3Ec_N5QPnt98BInVJYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preprocessing+strategy+influences+graph-based+exploration+of+altered+functional+networks+in+major+depression&rft.jtitle=Human+brain+mapping&rft.au=Borchardt%2C+Viola&rft.au=Lord%2C+Anton+Richard&rft.au=Li%2C+Meng&rft.au=van+der+Meer%2C+Johan&rft.date=2016-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=37&rft.issue=4&rft.spage=1422&rft.epage=1442&rft_id=info:doi/10.1002%2Fhbm.23111&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_FCRNHP5B_N
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon