Preprocessing strategy influences graph-based exploration of altered functional networks in major depression
Resting‐state fMRI studies have gained widespread use in exploratory studies of neuropsychiatric disorders. Graph metrics derived from whole brain functional connectivity studies have been used to reveal disease‐related variations in many neuropsychiatric disorders including major depression (MDD)....
Saved in:
Published in | Human brain mapping Vol. 37; no. 4; pp. 1422 - 1442 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.04.2016
John Wiley & Sons, Inc John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1065-9471 1097-0193 1097-0193 |
DOI | 10.1002/hbm.23111 |
Cover
Loading…
Abstract | Resting‐state fMRI studies have gained widespread use in exploratory studies of neuropsychiatric disorders. Graph metrics derived from whole brain functional connectivity studies have been used to reveal disease‐related variations in many neuropsychiatric disorders including major depression (MDD). These techniques show promise in developing diagnostics for these often difficult to identify disorders. However, the analysis of resting‐state datasets is increasingly beset by a myriad of approaches and methods, each with underlying assumptions. Choosing the most appropriate preprocessing parameters a priori is difficult. Nevertheless, the specific methodological choice influences graph‐theoretical network topologies as well as regional metrics. The aim of this study was to systematically compare different preprocessing strategies by evaluating their influence on group differences between healthy participants (HC) and depressive patients. We thus investigated the effects of common preprocessing variants, including global mean‐signal regression (GMR), temporal filtering, detrending, and network sparsity on group differences between brain networks of HC and MDD patients measured by global and nodal graph theoretical metrics. Occurrence of group differences in global metrics was absent in the majority of tested preprocessing variants, but in local graph metrics it is sparse, variable, and highly dependent on the combination of preprocessing variant and sparsity threshold. Sparsity thresholds between 16 and 22% were shown to have the greatest potential to reveal differences between HC and MDD patients in global and local network metrics. Our study offers an overview of consequences of methodological decisions and which neurobiological characteristics of MDD they implicate, adding further caution to this rapidly growing field. Hum Brain Mapp 37:1422‐1442, 2016. © 2016 Wiley Periodicals, Inc.
Highlights
Groups can be differentiated based on local graph metrics
Group differences are influenced by preprocessing method
Finding group differences depends strongly on the network density
Conclusions regarding functional connectomic differences in major depression should be mindful of the influence of preprocessing strategies. |
---|---|
AbstractList | Resting‐state fMRI studies have gained widespread use in exploratory studies of neuropsychiatric disorders. Graph metrics derived from whole brain functional connectivity studies have been used to reveal disease‐related variations in many neuropsychiatric disorders including major depression (MDD). These techniques show promise in developing diagnostics for these often difficult to identify disorders. However, the analysis of resting‐state datasets is increasingly beset by a myriad of approaches and methods, each with underlying assumptions. Choosing the most appropriate preprocessing parameters a priori is difficult. Nevertheless, the specific methodological choice influences graph‐theoretical network topologies as well as regional metrics. The aim of this study was to systematically compare different preprocessing strategies by evaluating their influence on group differences between healthy participants (HC) and depressive patients. We thus investigated the effects of common preprocessing variants, including global mean‐signal regression (GMR), temporal filtering, detrending, and network sparsity on group differences between brain networks of HC and MDD patients measured by global and nodal graph theoretical metrics. Occurrence of group differences in global metrics was absent in the majority of tested preprocessing variants, but in local graph metrics it is sparse, variable, and highly dependent on the combination of preprocessing variant and sparsity threshold. Sparsity thresholds between 16 and 22% were shown to have the greatest potential to reveal differences between HC and MDD patients in global and local network metrics. Our study offers an overview of consequences of methodological decisions and which neurobiological characteristics of MDD they implicate, adding further caution to this rapidly growing field.
Hum Brain Mapp 37:1422‐1442, 2016
. © 2016 Wiley Periodicals, Inc.
Groups can be differentiated based on local graph metrics
Group differences are influenced by preprocessing method
Finding group differences depends strongly on the network density
Conclusions regarding functional connectomic differences in major depression should be mindful of the influence of preprocessing strategies. Resting‐state fMRI studies have gained widespread use in exploratory studies of neuropsychiatric disorders. Graph metrics derived from whole brain functional connectivity studies have been used to reveal disease‐related variations in many neuropsychiatric disorders including major depression (MDD). These techniques show promise in developing diagnostics for these often difficult to identify disorders. However, the analysis of resting‐state datasets is increasingly beset by a myriad of approaches and methods, each with underlying assumptions. Choosing the most appropriate preprocessing parameters a priori is difficult. Nevertheless, the specific methodological choice influences graph‐theoretical network topologies as well as regional metrics. The aim of this study was to systematically compare different preprocessing strategies by evaluating their influence on group differences between healthy participants (HC) and depressive patients. We thus investigated the effects of common preprocessing variants, including global mean‐signal regression (GMR), temporal filtering, detrending, and network sparsity on group differences between brain networks of HC and MDD patients measured by global and nodal graph theoretical metrics. Occurrence of group differences in global metrics was absent in the majority of tested preprocessing variants, but in local graph metrics it is sparse, variable, and highly dependent on the combination of preprocessing variant and sparsity threshold. Sparsity thresholds between 16 and 22% were shown to have the greatest potential to reveal differences between HC and MDD patients in global and local network metrics. Our study offers an overview of consequences of methodological decisions and which neurobiological characteristics of MDD they implicate, adding further caution to this rapidly growing field. Hum Brain Mapp 37:1422‐1442, 2016. © 2016 Wiley Periodicals, Inc. Highlights Groups can be differentiated based on local graph metrics Group differences are influenced by preprocessing method Finding group differences depends strongly on the network density Conclusions regarding functional connectomic differences in major depression should be mindful of the influence of preprocessing strategies. Resting-state fMRI studies have gained widespread use in exploratory studies of neuropsychiatric disorders. Graph metrics derived from whole brain functional connectivity studies have been used to reveal disease-related variations in many neuropsychiatric disorders including major depression (MDD). These techniques show promise in developing diagnostics for these often difficult to identify disorders. However, the analysis of resting-state datasets is increasingly beset by a myriad of approaches and methods, each with underlying assumptions. Choosing the most appropriate preprocessing parameters a priori is difficult. Nevertheless, the specific methodological choice influences graph-theoretical network topologies as well as regional metrics. The aim of this study was to systematically compare different preprocessing strategies by evaluating their influence on group differences between healthy participants (HC) and depressive patients. We thus investigated the effects of common preprocessing variants, including global mean-signal regression (GMR), temporal filtering, detrending, and network sparsity on group differences between brain networks of HC and MDD patients measured by global and nodal graph theoretical metrics. Occurrence of group differences in global metrics was absent in the majority of tested preprocessing variants, but in local graph metrics it is sparse, variable, and highly dependent on the combination of preprocessing variant and sparsity threshold. Sparsity thresholds between 16 and 22% were shown to have the greatest potential to reveal differences between HC and MDD patients in global and local network metrics. Our study offers an overview of consequences of methodological decisions and which neurobiological characteristics of MDD they implicate, adding further caution to this rapidly growing field. Hum Brain Mapp 37:1422-1442, 2016. © 2016 Wiley Periodicals, Inc. Highlights Groups can be differentiated based on local graph metrics Group differences are influenced by preprocessing method Finding group differences depends strongly on the network density Conclusions regarding functional connectomic differences in major depression should be mindful of the influence of preprocessing strategies. Resting-state fMRI studies have gained widespread use in exploratory studies of neuropsychiatric disorders. Graph metrics derived from whole brain functional connectivity studies have been used to reveal disease-related variations in many neuropsychiatric disorders including major depression (MDD). These techniques show promise in developing diagnostics for these often difficult to identify disorders. However, the analysis of resting-state datasets is increasingly beset by a myriad of approaches and methods, each with underlying assumptions. Choosing the most appropriate preprocessing parameters a priori is difficult. Nevertheless, the specific methodological choice influences graph-theoretical network topologies as well as regional metrics. The aim of this study was to systematically compare different preprocessing strategies by evaluating their influence on group differences between healthy participants (HC) and depressive patients. We thus investigated the effects of common preprocessing variants, including global mean-signal regression (GMR), temporal filtering, detrending, and network sparsity on group differences between brain networks of HC and MDD patients measured by global and nodal graph theoretical metrics. Occurrence of group differences in global metrics was absent in the majority of tested preprocessing variants, but in local graph metrics it is sparse, variable, and highly dependent on the combination of preprocessing variant and sparsity threshold. Sparsity thresholds between 16 and 22% were shown to have the greatest potential to reveal differences between HC and MDD patients in global and local network metrics. Our study offers an overview of consequences of methodological decisions and which neurobiological characteristics of MDD they implicate, adding further caution to this rapidly growing field.Resting-state fMRI studies have gained widespread use in exploratory studies of neuropsychiatric disorders. Graph metrics derived from whole brain functional connectivity studies have been used to reveal disease-related variations in many neuropsychiatric disorders including major depression (MDD). These techniques show promise in developing diagnostics for these often difficult to identify disorders. However, the analysis of resting-state datasets is increasingly beset by a myriad of approaches and methods, each with underlying assumptions. Choosing the most appropriate preprocessing parameters a priori is difficult. Nevertheless, the specific methodological choice influences graph-theoretical network topologies as well as regional metrics. The aim of this study was to systematically compare different preprocessing strategies by evaluating their influence on group differences between healthy participants (HC) and depressive patients. We thus investigated the effects of common preprocessing variants, including global mean-signal regression (GMR), temporal filtering, detrending, and network sparsity on group differences between brain networks of HC and MDD patients measured by global and nodal graph theoretical metrics. Occurrence of group differences in global metrics was absent in the majority of tested preprocessing variants, but in local graph metrics it is sparse, variable, and highly dependent on the combination of preprocessing variant and sparsity threshold. Sparsity thresholds between 16 and 22% were shown to have the greatest potential to reveal differences between HC and MDD patients in global and local network metrics. Our study offers an overview of consequences of methodological decisions and which neurobiological characteristics of MDD they implicate, adding further caution to this rapidly growing field. Resting-state fMRI studies have gained widespread use in exploratory studies of neuropsychiatric disorders. Graph metrics derived from whole brain functional connectivity studies have been used to reveal disease-related variations in many neuropsychiatric disorders including major depression (MDD). These techniques show promise in developing diagnostics for these often difficult to identify disorders. However, the analysis of resting-state datasets is increasingly beset by a myriad of approaches and methods, each with underlying assumptions. Choosing the most appropriate preprocessing parameters a priori is difficult. Nevertheless, the specific methodological choice influences graph-theoretical network topologies as well as regional metrics. The aim of this study was to systematically compare different preprocessing strategies by evaluating their influence on group differences between healthy participants (HC) and depressive patients. We thus investigated the effects of common preprocessing variants, including global mean-signal regression (GMR), temporal filtering, detrending, and network sparsity on group differences between brain networks of HC and MDD patients measured by global and nodal graph theoretical metrics. Occurrence of group differences in global metrics was absent in the majority of tested preprocessing variants, but in local graph metrics it is sparse, variable, and highly dependent on the combination of preprocessing variant and sparsity threshold. Sparsity thresholds between 16 and 22% were shown to have the greatest potential to reveal differences between HC and MDD patients in global and local network metrics. Our study offers an overview of consequences of methodological decisions and which neurobiological characteristics of MDD they implicate, adding further caution to this rapidly growing field. Hum Brain Mapp 37:1422-1442, 2016. Highlights * Groups can be differentiated based on local graph metrics * Group differences are influenced by preprocessing method * Finding group differences depends strongly on the network density * Conclusions regarding functional connectomic differences in major depression should be mindful of the influence of preprocessing strategies. Resting-state fMRI studies have gained widespread use in exploratory studies of neuropsychiatric disorders. Graph metrics derived from whole brain functional connectivity studies have been used to reveal disease-related variations in many neuropsychiatric disorders including major depression (MDD). These techniques show promise in developing diagnostics for these often difficult to identify disorders. However, the analysis of resting-state datasets is increasingly beset by a myriad of approaches and methods, each with underlying assumptions. Choosing the most appropriate preprocessing parameters a priori is difficult. Nevertheless, the specific methodological choice influences graph-theoretical network topologies as well as regional metrics. The aim of this study was to systematically compare different preprocessing strategies by evaluating their influence on group differences between healthy participants (HC) and depressive patients. We thus investigated the effects of common preprocessing variants, including global mean-signal regression (GMR), temporal filtering, detrending, and network sparsity on group differences between brain networks of HC and MDD patients measured by global and nodal graph theoretical metrics. Occurrence of group differences in global metrics was absent in the majority of tested preprocessing variants, but in local graph metrics it is sparse, variable, and highly dependent on the combination of preprocessing variant and sparsity threshold. Sparsity thresholds between 16 and 22% were shown to have the greatest potential to reveal differences between HC and MDD patients in global and local network metrics. Our study offers an overview of consequences of methodological decisions and which neurobiological characteristics of MDD they implicate, adding further caution to this rapidly growing field. |
Author | Lord, Anton Richard Borchardt, Viola van der Meer, Johan Li, Meng Walter, Martin Bogerts, Bernhard Breakspear, Michael Heinze, Hans-Jochen |
AuthorAffiliation | 3 QIMR Berghofer Medical Research Institute Brisbane Queensland Australia 9 Metro North Mental Health Service Brisbane Queensland Australia 5 Department of Neurology Otto Von Guericke University Magdeburg Germany 6 Department of Psychiatry and Psychotherapy Otto Von Guericke University Magdeburg Germany 4 University of Queensland St Lucia Queensland Australia 7 Department of Cognition and Emotion Netherlands Institute for Neuroscience, an Institute of the Royal Academy of Arts and Sciences Amsterdam Netherlands 10 Department of Psychiatry University Tübingen 8 Center for Behavioral Brain Sciences (CBBS) Magdeburg Germany 1 Department of Behavioral Neurology Leibniz Institute for Neurobiology Magdeburg Germany 2 Clinical Affective Neuroimaging Laboratory Magdeburg Germany |
AuthorAffiliation_xml | – name: 3 QIMR Berghofer Medical Research Institute Brisbane Queensland Australia – name: 7 Department of Cognition and Emotion Netherlands Institute for Neuroscience, an Institute of the Royal Academy of Arts and Sciences Amsterdam Netherlands – name: 4 University of Queensland St Lucia Queensland Australia – name: 5 Department of Neurology Otto Von Guericke University Magdeburg Germany – name: 10 Department of Psychiatry University Tübingen – name: 1 Department of Behavioral Neurology Leibniz Institute for Neurobiology Magdeburg Germany – name: 2 Clinical Affective Neuroimaging Laboratory Magdeburg Germany – name: 6 Department of Psychiatry and Psychotherapy Otto Von Guericke University Magdeburg Germany – name: 9 Metro North Mental Health Service Brisbane Queensland Australia – name: 8 Center for Behavioral Brain Sciences (CBBS) Magdeburg Germany |
Author_xml | – sequence: 1 givenname: Viola surname: Borchardt fullname: Borchardt, Viola organization: Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany – sequence: 2 givenname: Anton Richard surname: Lord fullname: Lord, Anton Richard organization: Clinical Affective Neuroimaging Laboratory, Magdeburg, Germany – sequence: 3 givenname: Meng surname: Li fullname: Li, Meng organization: Clinical Affective Neuroimaging Laboratory, Magdeburg, Germany – sequence: 4 givenname: Johan surname: van der Meer fullname: van der Meer, Johan organization: Clinical Affective Neuroimaging Laboratory, Magdeburg, Germany – sequence: 5 givenname: Hans-Jochen surname: Heinze fullname: Heinze, Hans-Jochen organization: Department of Neurology, Otto Von Guericke University, Magdeburg, Germany – sequence: 6 givenname: Bernhard surname: Bogerts fullname: Bogerts, Bernhard organization: Department of Psychiatry and Psychotherapy, Otto Von Guericke University, Magdeburg, Germany – sequence: 7 givenname: Michael surname: Breakspear fullname: Breakspear, Michael organization: QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia – sequence: 8 givenname: Martin surname: Walter fullname: Walter, Martin email: martin.walter@med.ovgu.de organization: Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26888761$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhiNURD_gwB9AkbjAIa0nie3kgkRXtFupLBUCcbQcZ7Lrrdde7IR2_329XxVUIHGyNX7ed2Y8c5wcWGcxSV4DOQVC8rNZszjNCwB4lhwBqXlGoC4O1ndGs7rkcJgchzAnBIASeJEc5qyqKs7gKDE3HpfeKQxB22kaei97nK5SbTszoI3xdOrlcpY1MmCb4v3SuIhoZ1PXpdL06GO4G6xax6RJLfZ3zt-G6JAu5Nz5tI0J1vbOvkyed9IEfLU7T5LvF5--jcbZ9ZfLq9HH60xRKCGLNVJO85aUTVmqTqpWdk2Lsq6ZKmkJHbSEStY2Teyh40p2FLFusCoKqtqiKk6SD1vf5dAssFVoY1tGLL1eSL8STmrx54vVMzF1vwSrGKe0jAbvdgbe_Rww9GKhg0JjpEU3BAGcM8YKBvn_oDmUnHEe0bdP0LkbfPy0DQV5Xhe0jtSb34t_rHo_swicbQHlXQgeO6F0vxlJ7EUbAUSst0LErRCbrYiK908Ue9O_sTv3O21w9W9QjM8_7xXZVqFDj_ePCulvBeMFp-LH5FJcjL5Oxjf0XEyKB3FT2I8 |
CitedBy_id | crossref_primary_10_1038_s44220_024_00323_0 crossref_primary_10_1007_s12530_017_9187_7 crossref_primary_10_1038_tp_2016_233 crossref_primary_10_1002_brb3_1257 crossref_primary_10_1038_s41598_017_15926_0 crossref_primary_10_1016_j_ijchp_2023_100401 crossref_primary_10_1002_hbm_23929 crossref_primary_10_1016_j_jad_2017_08_086 crossref_primary_10_1038_s41386_022_01328_y crossref_primary_10_3389_fncom_2020_554186 crossref_primary_10_1038_s41380_021_01247_2 crossref_primary_10_1093_cercor_bhae478 crossref_primary_10_1016_j_pnpbp_2024_111158 crossref_primary_10_1016_j_neuroimage_2016_11_052 crossref_primary_10_1016_j_pnpbp_2021_110401 crossref_primary_10_1162_netn_a_00132 crossref_primary_10_1016_j_compbiomed_2023_107478 crossref_primary_10_1038_s41598_020_67162_8 crossref_primary_10_1016_j_chaos_2024_115566 crossref_primary_10_1002_hbm_24305 crossref_primary_10_1038_s41380_022_01519_5 crossref_primary_10_1089_brain_2020_0854 crossref_primary_10_3389_fncom_2018_00008 crossref_primary_10_1038_s41398_020_01053_4 crossref_primary_10_1016_j_dib_2018_08_198 |
Cites_doi | 10.1001/jamapsychiatry.2013.143 10.1007/s10508-013-0103-3 10.3389/fnins.2012.00149 10.1371/journal.pone.0041282 10.1002/mrm.1910340409 10.1016/j.neuroimage.2012.03.027 10.1016/j.biopsych.2011.05.018 10.1006/nimg.2002.1053 10.1155/2013/935154 10.1016/j.neuroimage.2009.10.003 10.1002/hbm.20096 10.1038/nrn3901 10.1089/brain.2012.0080 10.1016/j.pscychresns.2010.03.004 10.1016/j.jad.2012.04.013 10.1016/j.neuroimage.2013.04.013 10.1126/science.1065103 10.1002/hbm.20517 10.1016/j.neuroimage.2012.07.004 10.1016/j.neuroimage.2005.02.021 10.1073/pnas.0903641106 10.1016/j.neuroimage.2008.09.036 10.1006/nimg.2001.0978 10.1016/j.neulet.2009.05.022 10.1016/j.neubiorev.2012.01.004 10.3389/fnhum.2014.00692 10.1371/journal.pone.0032766 10.1002/hbm.21297 10.1016/j.mri.2012.10.013 10.1016/j.neuroimage.2011.10.018 10.1073/pnas.1220826110 10.1016/j.jad.2012.12.026 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E 10.1073/pnas.1405289111 10.1126/science.1099745 10.1016/j.neuroimage.2009.12.027 10.1016/j.neuroimage.2009.03.068 10.1016/j.neuroimage.2011.08.044 10.1111/j.1469-8137.1912.tb05611.x 10.1073/pnas.1000446107 10.1016/j.neuroimage.2013.05.116 10.1016/j.neuroimage.2009.05.005 10.3109/15622975.2014.966144 10.1016/j.neuroimage.2013.04.087 10.1073/pnas.0604187103 10.3389/fnins.2015.00048 10.3389/fnhum.2013.00356 10.1097/WCO.0b013e328306f2c5 10.1073/pnas.0905267106 10.1016/j.jad.2014.08.001 10.1017/S0033291713002742 10.1016/j.jad.2009.05.029 10.1371/journal.pone.0025031 10.1002/hbm.20623 10.1016/j.biopsych.2005.02.021 10.1371/journal.pmed.1001547 |
ContentType | Journal Article |
Copyright | 2016 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2016 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
DOI | 10.1002/hbm.23111 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef Technology Research Database MEDLINE - Academic Neurosciences Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Preprocessing Influences Graph Metrics in MDD |
EISSN | 1097-0193 |
EndPage | 1442 |
ExternalDocumentID | PMC6867554 3973769581 26888761 10_1002_hbm_23111 HBM23111 ark_67375_WNG_FCRNHP5B_N |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: DFG funderid: SFB 779 – fundername: Center for Behavioral and Brain Sciences (CBBS); EU‐Marie Curie Grant. – fundername: DFG grantid: SFB 779 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACGFS ACIWK ACPOU ACPRK ACSCC ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AANHP AAYCA ACCMX ACRPL ACYXJ ADNMO AAFWJ AAYXX AFPKN AGQPQ CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c5141-5015752d04b44cfacdafbdea996c4541f1d05a6dbb876f7caf5ee9be8335cd383 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 14:10:33 EDT 2025 Fri Jul 11 12:23:40 EDT 2025 Fri Jul 11 13:03:32 EDT 2025 Sat Jul 26 02:23:55 EDT 2025 Sun Jul 13 03:07:44 EDT 2025 Thu Apr 24 22:51:53 EDT 2025 Tue Jul 01 04:26:05 EDT 2025 Wed Jan 22 16:42:32 EST 2025 Wed Oct 30 09:52:56 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | functional connectivity major depressive disorder resting-state fMRI functional network analysis graph-theory |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5141-5015752d04b44cfacdafbdea996c4541f1d05a6dbb876f7caf5ee9be8335cd383 |
Notes | DFG - No. SFB 779 ark:/67375/WNG-FCRNHP5B-N Center for Behavioral and Brain Sciences (CBBS); EU-Marie Curie Grant. istex:4BEB5C5E50574E26AF1D77135B1927062A5C9F43 ArticleID:HBM23111 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6867554 |
PMID | 26888761 |
PQID | 1771229359 |
PQPubID | 996345 |
PageCount | 21 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6867554 proquest_miscellaneous_1776663612 proquest_miscellaneous_1772147677 proquest_journals_1771229359 pubmed_primary_26888761 crossref_citationtrail_10_1002_hbm_23111 crossref_primary_10_1002_hbm_23111 wiley_primary_10_1002_hbm_23111_HBM23111 istex_primary_ark_67375_WNG_FCRNHP5B_N |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2016 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: April 2016 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Antonio – name: Hoboken |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum. Brain Mapp |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | Chang HH, Zhuang AH, Valentino DJ, Chu WC (2009): Performance measure characterization for evaluating neuroimage segmentation algorithms. Neuroimage 47:122-135. Available at: http://dx.doi.org/10.1016/j.neuroimage.2009.03.068. Ferrari AJ, Charlson FJ, Norman RE, et al. (2013): Burden of Depressive Disorders by Country, Sex, Age, and Year: Findings from the Global Burden of Disease Study 2010. PLoS Medicine. 2013;10(11):e1001547. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3818162/. Rubinov M, Knock S, Stam CJ, Micheloyannis S, Harris AWF, Williams LM, Breakspear M (2009): Small-world properties of nonlinear brain activity in schizophrenia. Hum Brain Mapp 30:403-416. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18072237. Li M, Metzger CD, Li W, Safron A, van Tol M-J, Lord A, Borchardt V, Dou W, Genz A, Heinze H-J, He H, Walter M (2014): Dissociation of glutamate and cortical thickness is restricted to regions subserving trait but not state markers in major depressive disorder. J Affect Disord 169:91-100. Sheline YI, Price JL, Yan Z, Mintun MA (2010): Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc Natl Acad Sci USA 107:11020-11025. Wang J, Wang L, Zang Y, Yang H, Tang H, Gong Q, Chen Z, Zhu C, He Y (2009): Parcellation-dependent small-world brain functional networks: A resting-state fMRI study. Hum Brain Mapp 30:1511-1523. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18649353. Greicius M (2008): Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol 21:424-430. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18607202. Orrù G, Pettersson-Yeo W, Marquand AF, Sartori G, Mechelli A (2012): Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review. Neurosci Biobehav Rev 36:1140-1152. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22305994. Horn DI, Yu C, Steiner J, Buchmann J, Kaufmann J, Osoba A, Eckert U, Zierhut K, Schiltz K, He H, Biswal B, Bogerts B, Walter M (2010): Glutamatergic and resting-state functional connectivity correlates of severity in major depression-The role of pregenual anterior cingulate cortex and anterior insula. Front Syst Neurosci 4:1-10. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2914530&tool= pmcentrez&rendertype=abstract. Zhou Y, Yu C, Zheng H, Liu Y, Song M, Qin W, Li K, Jiang T (2010): Increased neural resources recruitment in the intrinsic organization in major depression. J Affect Disord 121:220-230. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19541369. Cullen KR, Gee DG, Klimes-Dougan B, Gabbay V, Hulvershorn L, Mueller BA, Camchong J, Bell CJ, Houri A, Kumra S, Lim KO, Castellanos FX, Milham MP (2009): A preliminary study of functional connectivity in comorbid adolescent depression. Neurosci Lett 460:227-231. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2713606/. Gotts SJ, Saad ZS, Jo HJ, Wallace GL, Cox RW, Martin A (2013): The perils of global signal regression for group comparisons: A case study of Autism spectrum disorders. Front Hum Neurosci 7:356. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3709423&tool=pmcentrez&rendertype= abstract. Jaccard P (1912): The distribution of the flora in the alphine zone. New Phytol XI:37-50. Tanabe J, Miller D, Tregellas J, Freedman R, Meyer FG (2002): Comparison of detrending methods for optimal fMRI preprocessing. Neuroimage 15:902-907. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11906230. Liu Z, Xu C, Xu Y, Wang Y, Zhao B, Lv Y, Cao X, Zhang K, Du C (2010): Decreased regional homogeneity in insula and cerebellum: A resting-state fMRI study in patients with major depression and subjects at high risk for major depression. Psychiatry Res Neuroimaging 182:211-215. Available at: http://www.sciencedirect.com/science/article/pii/S0925492710001058. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002): Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273-289. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11771995. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF (2009): Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci USA 106:13040-13045. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2722273&tool=pmcentrez&rendertype= abstract. van Tol M-J, Li M, Metzger CD, Hailla N, Horn DI, Li W, Heinze HJ, Bogerts B, Steiner J, He H, Walter M (2014): Local cortical thinning links to resting-state disconnectivity in major depressive disorder. Psychol Med 44(10):2053-65. Available at: http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9277479&fileId=S0033291713002742. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012): Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59:2142-2154. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3254728&tool=pmcentrez&rendertype= abstract. Stöcker T, Schneider F, Klein M, Habel U, Kellermann T, Zilles K, Shah NJ (2005): Automated quality assurance routines for fMRI data applied to a multicenter study. Hum Brain Mapp 25:237-246. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15846770. Weissenbacher A, Kasess C, Gerstl F, Lanzenberger R, Moser E, Windischberger C (2009): Correlations and anticorrelations in resting-state functional connectivity MRI: A quantitative comparison of preprocessing strategies. Neuroimage 47:1408-1416. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19442749. Jo HJ, Gotts SJ, Reynolds RC, Bandettini PA, Martin A, Cox RW, Saad ZS (2013): Effective Preprocessing Procedures Virtually Eliminate Distance-Dependent Motion Artifacts in Resting State FMRI. J Applied Mathematics. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886863/. Langer N, Pedroni A, Gianotti LRR, Hänggi J, Knoch D, Jäncke L (2012): Functional brain network efficiency predicts intelligence. Hum Brain Mapp 33:1393-1406. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21557387. Steiner JB, Walter M, Gos TC, Guillemin GJ, Bernstein H-G, Sarnyai Z, Mawrin C, Brisch R, Bielau H, Zu Schwabedissen LM, Bogerts B, Myint A-MG (2011): Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: Evidence for an immunemodulated glutamatergic neurotransmission? J Neuroinflammation 8(94). Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3177898/. Yang GJ, Murray JD, Repovs G, Cole MW, Savic A, Glasser MF, Pittenger C, Krystal JH, Wang X-J, Pearlson GD, Glahn DC, Anticevic A (2014): Altered global brain signal in schizophrenia. Proc Natl Acad Sci USA 111:7438-7443. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24799682. Fox MD, Greicius M (2010): Clinical applications of resting state functional connectivity. Front Syst Neurosci 4:19. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid= 2893721&tool=pmcentrez&rendertype=abstract. Osoba A, Hänggi J, Li M, Horn DI, Metzger C, Eckert U, Kaufmann J, Zierhut K, Steiner J, Schiltz K, Heinze H-J, Bogerts B, Walter M (2013): Disease severity is correlated to tract specific changes of fractional anisotropy in MD and CM thalamus-A DTI study in major depressive disorder. J Affect Disord 149:116-128. Available at: http://www.sciencedirect.com/science/article/pii/S0165032713000645. Rubinov M, Sporns O (2010): Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 52:1059-1069. Available at: http://dx.doi.org/10.1016/j.neuroimage.2009.10.003. Glover GH, Li TQ, Ress D (2000): Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 44:162-167. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10893535. Sundermann B, Beverborg MO, lütke Pfleiderer B (2014): Toward literature-based feature selection for diagnostic classification: A meta-analysis of resting-state fMRI in depression. Front Hum Neurosci 8:1-12. Available at: http://www.frontiersin.org/Human_Neuroscience/10.3389/fnhum.2014.00692/abstract. Lord A, Horn D, Breakspear M, Walter M (2012): Changes in community structure of resting state functional connectivity in unipolar depression. PLoS One 7:e41282. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-84865159740& partnerID=40&md5=c8b5df4e 1df4b24a8ee581f01eb750ca. Braun U, Plichta MM, Esslinger C, Sauer C, Haddad L, Grimm O, Mier D, Mohnke S, Heinz A, Erk S, Walter H, Seiferth N, Kirsch P, Meyer-Lindenberg A (2012): Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures. Neuroimage 59:1404-1412. Available at: http://dx.doi.org/10.1016/j.neuroimage.2011.08.044. Patriat R, Molloy EK, Meier TB, Kirk GR, Nair VA, Meyerand ME, Prabhakaran V, Birn RM (2013): The effect of resting condition on resting-state fMRI reliability and consistency: A comparison between resting with eyes open, closed, and fixated. Neuroimage 78:463-473. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23597935. Crossley Na, Mechelli A, Vértes PE, Toby T, Patel AX, Ginestet CE, Winton-brown TT, (2013): Cognitive relevance of the community structure of the human brain functional coactivation network. Proc Natl Acad Sci USA 110:15502-15502. Available at: http://www.pnas.org/cgi/doi/10.1073/pnas.1314559110. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995): Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537-541. Fornito A, Zalesky A, Bullmore ET (2010): Network scaling effects in graph analytic studies of human resting-state FMRI data. Front Syst Neurosci 4:22. Available at: http://w 2012; 61 2009; 44 2009; 47 2002; 15 2010; 107 1995; 34 2000; 44 2013; 70 2012; 59 2010; 182 2013; 7 2005; 26 2005; 25 2013; 15 2013; 10 2011; 70 2014; 16 2008; 21 2013; 110 2014; 8 2010; 4 2014; 169 2012; 142 2015; 16 2002; 296 2012 2013; 149 2013; 42 2009 2010; 121 2012; 36 2015; 9 2014; 111 2011; 6 2004; 304 2012; 33 2011; 8 2014; 44 2012a; 6 2012b; 63 2009; 30 2012; 2 1912; XI 2013; 78 2013; 31 2013; 82 2009; 460 2013 2012; 7 2010; 52 2005; 57 2006; 103 2010; 50 2009; 106 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 Steiner JB (e_1_2_8_52_1) 2011; 8 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_64_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 R Core Team (e_1_2_8_45_1) 2012 Fornito A (e_1_2_8_16_1) 2010; 4 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 Horn DI (e_1_2_8_27_1) 2010; 4 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_48_1 e_1_2_8_2_1 Fox MD (e_1_2_8_19_1) 2010; 4 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 Yan C‐G (e_1_2_8_62_1) 2010; 4 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_37_1 e_1_2_8_58_1 Cole DM (e_1_2_8_12_1) 2010; 4 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_50_1 |
References_xml | – reference: Greicius M (2008): Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol 21:424-430. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18607202. – reference: Zhou Y, Yu C, Zheng H, Liu Y, Song M, Qin W, Li K, Jiang T (2010): Increased neural resources recruitment in the intrinsic organization in major depression. J Affect Disord 121:220-230. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19541369. – reference: Jo HJ, Gotts SJ, Reynolds RC, Bandettini PA, Martin A, Cox RW, Saad ZS (2013): Effective Preprocessing Procedures Virtually Eliminate Distance-Dependent Motion Artifacts in Resting State FMRI. J Applied Mathematics. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886863/. – reference: Li M, Metzger CD, Li W, Safron A, van Tol M-J, Lord A, Borchardt V, Dou W, Genz A, Heinze H-J, He H, Walter M (2014): Dissociation of glutamate and cortical thickness is restricted to regions subserving trait but not state markers in major depressive disorder. J Affect Disord 169:91-100. – reference: Gotts SJ, Saad ZS, Jo HJ, Wallace GL, Cox RW, Martin A (2013): The perils of global signal regression for group comparisons: A case study of Autism spectrum disorders. Front Hum Neurosci 7:356. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3709423&tool=pmcentrez&rendertype= abstract. – reference: Liang X, Wang J, Yan C, Shu N, Xu K, Gong G, He Y (2012): Effects of different correlation metrics and preprocessing factors on small-world brain functional networks: A resting-state functional MRI study. Ed. Pedro Antonio Valdes-Sosa. PLoS One 7:e32766. Available at: http://dx.plos.org/10.1371/journal.pone.0032766. – reference: Wang L, Hermens DF, Hickie IB, Lagopoulos J (2012): A systematic review of resting-state functional-MRI studies in major depression. J Affect Disord 142:6-12. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22858266. – reference: Murphy K, Birn R, Handwerker D, Jones T, Bandettini P (2009): The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? Neuroimage 44:893-905. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2750906&tool=pmcentrez&rendertype= abstract. – reference: van Tol M-J, Li M, Metzger CD, Hailla N, Horn DI, Li W, Heinze HJ, Bogerts B, Steiner J, He H, Walter M (2014): Local cortical thinning links to resting-state disconnectivity in major depressive disorder. Psychol Med 44(10):2053-65. Available at: http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9277479&fileId=S0033291713002742. – reference: Anand A, Li Y, Wang Y, Wu J, Gao S, Bukhari L, Mathews VP, Kalnin A, Lowe MJ (2005): Activity and connectivity of brain mood regulating circuit in depression: A functional magnetic resonance study. Biol Psychiatry 57:1079-1088. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15866546. – reference: Glover GH, Li TQ, Ress D (2000): Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 44:162-167. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10893535. – reference: Crossley Na, Mechelli A, Vértes PE, Toby T, Patel AX, Ginestet CE, Winton-brown TT, (2013): Cognitive relevance of the community structure of the human brain functional coactivation network. Proc Natl Acad Sci USA 110:15502-15502. Available at: http://www.pnas.org/cgi/doi/10.1073/pnas.1314559110. – reference: Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012): Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59:2142-2154. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3254728&tool=pmcentrez&rendertype= abstract. – reference: Fornito A, Zalesky A, Breakspear M (2015): The connectomics of brain disorders. Nat Rev Neurosci 16:159-172. Available at: http://dx.doi.org/10.1038/nrn3901. – reference: Yang GJ, Murray JD, Repovs G, Cole MW, Savic A, Glasser MF, Pittenger C, Krystal JH, Wang X-J, Pearlson GD, Glahn DC, Anticevic A (2014): Altered global brain signal in schizophrenia. Proc Natl Acad Sci USA 111:7438-7443. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24799682. – reference: Hallquist MN, Hwang K, Luna B (2013): The nuisance of nuisance regression: Spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. Neuroimage 82:208-225. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23747457. – reference: Langer N, Pedroni A, Gianotti LRR, Hänggi J, Knoch D, Jäncke L (2012): Functional brain network efficiency predicts intelligence. Hum Brain Mapp 33:1393-1406. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21557387. – reference: Borchardt V, Krause AL, Starck T, Nissilä J, Timonen M, Kiviniemi V, Walter M (2014): Graph theory reveals hyper-functionality in visual cortices of SAD patients. World J Biol Psychiatry 16(2):123-34. Available at: http://www.tandfonline.com/doi/abs/10.3109/15622975.2014.966144?journalCode=iwbp20. – reference: Fox MD, Greicius M (2010): Clinical applications of resting state functional connectivity. Front Syst Neurosci 4:19. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid= 2893721&tool=pmcentrez&rendertype=abstract. – reference: Zhang J, Wang J, Wu Q, Kuang W, Huang X, He Y, Gong Q (2011): Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biol Psychiatry 70:334-342. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21791259. – reference: Fornito A, Zalesky A, Bullmore ET (2010): Network scaling effects in graph analytic studies of human resting-state FMRI data. Front Syst Neurosci 4:22. Available at: http://www.pubmed central.nih.gov/articlerender.fcgi?artid=2893703&tool=pmcentrez& rendertype=abstract. – reference: Sheline YI, Price JL, Yan Z, Mintun MA (2010): Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc Natl Acad Sci USA 107:11020-11025. – reference: Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF (2009): Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci USA 106:13040-13045. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2722273&tool=pmcentrez&rendertype= abstract. – reference: Chang HH, Zhuang AH, Valentino DJ, Chu WC (2009): Performance measure characterization for evaluating neuroimage segmentation algorithms. Neuroimage 47:122-135. Available at: http://dx.doi.org/10.1016/j.neuroimage.2009.03.068. – reference: Ferrari AJ, Charlson FJ, Norman RE, et al. (2013): Burden of Depressive Disorders by Country, Sex, Age, and Year: Findings from the Global Burden of Disease Study 2010. PLoS Medicine. 2013;10(11):e1001547. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3818162/. – reference: Horn DI, Yu C, Steiner J, Buchmann J, Kaufmann J, Osoba A, Eckert U, Zierhut K, Schiltz K, He H, Biswal B, Bogerts B, Walter M (2010): Glutamatergic and resting-state functional connectivity correlates of severity in major depression-The role of pregenual anterior cingulate cortex and anterior insula. Front Syst Neurosci 4:1-10. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2914530&tool= pmcentrez&rendertype=abstract. – reference: Zalesky A, Fornito A, Harding IH, Cocchi L, Yücel M, Pantelis C, Bullmore ET (2010): Whole-brain anatomical networks: Does the choice of nodes matter? Neuroimage 50:970-983. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20035887. – reference: Maslov S, Sneppen K (2002): Specificity and stability in topology of protein networks. Science 296:910-913. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11988575. – reference: Steiner JB, Walter M, Gos TC, Guillemin GJ, Bernstein H-G, Sarnyai Z, Mawrin C, Brisch R, Bielau H, Zu Schwabedissen LM, Bogerts B, Myint A-MG (2011): Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: Evidence for an immunemodulated glutamatergic neurotransmission? J Neuroinflammation 8(94). Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3177898/. – reference: Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME (2006): Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci USA 103:9381-9386. – reference: Jaccard P (1912): The distribution of the flora in the alphine zone. New Phytol XI:37-50. – reference: Yan C-G, Zang Y-F (2010): DPARSF: A MATLAB toolbox for "pipeline" data analysis of resting-state fMRI. Front Syst Neurosci 4:13. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2889691&tool=pmcentrez&rendertype= abstract. – reference: Rubinov M, Sporns O (2010): Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 52:1059-1069. Available at: http://dx.doi.org/10.1016/j.neuroimage.2009.10.003. – reference: Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002): Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273-289. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11771995. – reference: Cole DM, Smith SM, Beckmann CF (2010): Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front Syst Neurosci 4:8. Available at: http://www.pubmed central.nih.gov/articlerender.fcgi?artid=2854531&tool=pmcentrez& rendertype=abstract. – reference: Patriat R, Molloy EK, Meier TB, Kirk GR, Nair VA, Meyerand ME, Prabhakaran V, Birn RM (2013): The effect of resting condition on resting-state fMRI reliability and consistency: A comparison between resting with eyes open, closed, and fixated. Neuroimage 78:463-473. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23597935. – reference: R Core Team (2012): R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Available at: http://www.r-project.org/. – reference: Braun U, Plichta MM, Esslinger C, Sauer C, Haddad L, Grimm O, Mier D, Mohnke S, Heinz A, Erk S, Walter H, Seiferth N, Kirsch P, Meyer-Lindenberg A (2012): Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures. Neuroimage 59:1404-1412. Available at: http://dx.doi.org/10.1016/j.neuroimage.2011.08.044. – reference: Cullen KR, Gee DG, Klimes-Dougan B, Gabbay V, Hulvershorn L, Mueller BA, Camchong J, Bell CJ, Houri A, Kumra S, Lim KO, Castellanos FX, Milham MP (2009): A preliminary study of functional connectivity in comorbid adolescent depression. Neurosci Lett 460:227-231. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2713606/. – reference: Song X-W, Dong Z-Y, Long X-Y, Li S-F, Zuo X-N, Zhu C-Z, He Y, Yan C-G, Zang Y-F (2011): REST: A toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One 6:e25031. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3176805&tool=pmcentrez&rendertype= abstract. – reference: Weissenbacher A, Kasess C, Gerstl F, Lanzenberger R, Moser E, Windischberger C (2009): Correlations and anticorrelations in resting-state functional connectivity MRI: A quantitative comparison of preprocessing strategies. Neuroimage 47:1408-1416. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19442749. – reference: Orrù G, Pettersson-Yeo W, Marquand AF, Sartori G, Mechelli A (2012): Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review. Neurosci Biobehav Rev 36:1140-1152. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22305994. – reference: Rubinov M, Knock S, Stam CJ, Micheloyannis S, Harris AWF, Williams LM, Breakspear M (2009): Small-world properties of nonlinear brain activity in schizophrenia. Hum Brain Mapp 30:403-416. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18072237. – reference: Metzger CD, Walter M, Graf H, Abler B (2013): SSRI-related modulation of sexual functioning is predicted by pre-treatment resting state functional connectivity in healthy men. Arch Sex Behav 42:935-947. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23771550. – reference: Aurich NK, Alves Filho JO, Marques da Silva AM, Franco AR (2015): Evaluating the reliability of different preprocessing steps to estimate graph theoretical measures in resting state fMRI data. Front Neurosci 9:1-10. Available at: http://www.frontiersin.org/Brain_Imaging_Methods/10.3389/fnins.2015.00048/abstract. – reference: Lund TE, Nørgaard MD, Rostrup E, Rowe JB, Paulson OB (2005): Motion or activity: Their role in intra- and inter-subject variation in fMRI. Neuroimage 26:960-964. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15955506. – reference: McGrath CL, Kelley ME, Holtzheimer PE, Dunlop BW, Craighead WE, Franco AR, Craddock RC, Mayberg HS (2013): Toward a neuroimaging treatment selection biomarker for major depressive disorder. JAMA Psychiatry 70:821-829. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23760393. – reference: Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995): Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537-541. – reference: Pedoia V, Strocchi S, Colli V, Binaghi E, Conte L (2013): Functional magnetic resonance imaging: Comparison between activation maps and computation pipelines in a clinical context. Magn Reson Imaging 31:555-566. Available at: http://dx.doi.org/10.1016/j.mri.2012.10.013. – reference: Stöcker T, Schneider F, Klein M, Habel U, Kellermann T, Zilles K, Shah NJ (2005): Automated quality assurance routines for fMRI data applied to a multicenter study. Hum Brain Mapp 25:237-246. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15846770. – reference: Guo CC, Kurth F, Zhou J, Mayer EA, Eickhoff SB, Kramer JH, Seeley WW (2012): One-year test-retest reliability of intrinsic connectivity network fMRI in older adults. Neuroimage 61:1471-1483. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22446491. – reference: Saad ZS, Gotts SJ, Murphy K, Chen G, Jo HJ, Martin A, Cox RW (2012): Trouble at rest: How correlation patterns and group differences become distorted after global signal regression. Brain Connect 2:25-32. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3484684&tool=pmcentrez& rendertype=abstract. – reference: Lord A, Horn D, Breakspear M, Walter M (2012): Changes in community structure of resting state functional connectivity in unipolar depression. PLoS One 7:e41282. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-84865159740& partnerID=40&md5=c8b5df4e 1df4b24a8ee581f01eb750ca. – reference: Liu Z, Xu C, Xu Y, Wang Y, Zhao B, Lv Y, Cao X, Zhang K, Du C (2010): Decreased regional homogeneity in insula and cerebellum: A resting-state fMRI study in patients with major depression and subjects at high risk for major depression. Psychiatry Res Neuroimaging 182:211-215. Available at: http://www.sciencedirect.com/science/article/pii/S0925492710001058. – reference: Tanabe J, Miller D, Tregellas J, Freedman R, Meyer FG (2002): Comparison of detrending methods for optimal fMRI preprocessing. Neuroimage 15:902-907. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11906230. – reference: Bassett DS, Bullmore ET, Meyer-Lindenberg A, Apud JA, Weinberger DR, Coppola R (2009): Cognitive fitness of cost-efficient brain functional networks. Proc Natl Acad Sci USA 106:11747-11752. – reference: Carp J (2012a): On the plurality of (methodological) worlds: Estimating the analytic flexibility of FMRI experiments. Front Neurosci 6:149. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3468892&tool=pmcentrez&rendertype= abstract. – reference: Fornito A, Zalesky A, Breakspear M (2013): Graph analysis of the human connectome: Promise, progress, and pitfalls. Neuroimage 15(80):426-44. Available at: http://www.sciencedirect.com/science/article/pii/S1053811913004345. – reference: Wang J, Wang L, Zang Y, Yang H, Tang H, Gong Q, Chen Z, Zhu C, He Y (2009): Parcellation-dependent small-world brain functional networks: A resting-state fMRI study. Hum Brain Mapp 30:1511-1523. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18649353. – reference: Carp J (2012b): The secret lives of experiments: Methods reporting in the fMRI literature. Neuroimage 63:289-300. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22796459. – reference: Buzsáki G, Draguhn A (2004): Neuronal oscillations in cortical networks. Science 304:1926-1929. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15218136. – reference: Osoba A, Hänggi J, Li M, Horn DI, Metzger C, Eckert U, Kaufmann J, Zierhut K, Steiner J, Schiltz K, Heinze H-J, Bogerts B, Walter M (2013): Disease severity is correlated to tract specific changes of fractional anisotropy in MD and CM thalamus-A DTI study in major depressive disorder. J Affect Disord 149:116-128. Available at: http://www.sciencedirect.com/science/article/pii/S0165032713000645. – reference: Sundermann B, Beverborg MO, lütke Pfleiderer B (2014): Toward literature-based feature selection for diagnostic classification: A meta-analysis of resting-state fMRI in depression. Front Hum Neurosci 8:1-12. Available at: http://www.frontiersin.org/Human_Neuroscience/10.3389/fnhum.2014.00692/abstract. – volume: 63 start-page: 289 year: 2012b end-page: 300 article-title: The secret lives of experiments: Methods reporting in the fMRI literature publication-title: Neuroimage – volume: 169 start-page: 91 year: 2014 end-page: 100 article-title: Dissociation of glutamate and cortical thickness is restricted to regions subserving trait but not state markers in major depressive disorder publication-title: J Affect Disord – year: 2009 – volume: 7 start-page: e32766 year: 2012 article-title: Effects of different correlation metrics and preprocessing factors on small‐world brain functional networks: A resting‐state functional MRI study. Ed. Pedro Antonio Valdes‐Sosa publication-title: PLoS One – volume: 26 start-page: 960 year: 2005 end-page: 964 article-title: Motion or activity: Their role in intra‐ and inter‐subject variation in fMRI publication-title: Neuroimage – volume: 142 start-page: 6 year: 2012 end-page: 12 article-title: A systematic review of resting‐state functional‐MRI studies in major depression publication-title: J Affect Disord – volume: 4 start-page: 22 year: 2010 article-title: Network scaling effects in graph analytic studies of human resting‐state FMRI data publication-title: Front Syst Neurosci – volume: 460 start-page: 227 year: 2009 end-page: 231 article-title: A preliminary study of functional connectivity in comorbid adolescent depression publication-title: Neurosci Lett – volume: 304 start-page: 1926 year: 2004 end-page: 1929 article-title: Neuronal oscillations in cortical networks publication-title: Science – volume: 47 start-page: 122 year: 2009 end-page: 135 article-title: Performance measure characterization for evaluating neuroimage segmentation algorithms publication-title: Neuroimage – volume: 16 start-page: 159 year: 2015 end-page: 172 article-title: The connectomics of brain disorders publication-title: Nat Rev Neurosci – volume: 36 start-page: 1140 year: 2012 end-page: 1152 article-title: Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review publication-title: Neurosci Biobehav Rev – volume: 15 start-page: 426 issue: 80 year: 2013 end-page: 44 article-title: Graph analysis of the human connectome: Promise, progress, and pitfalls publication-title: Neuroimage – volume: 21 start-page: 424 year: 2008 end-page: 430 article-title: Resting‐state functional connectivity in neuropsychiatric disorders publication-title: Curr Opin Neurol – volume: 106 start-page: 13040 year: 2009 end-page: 13045 article-title: Correspondence of the brain's functional architecture during activation and rest publication-title: Proc Natl Acad Sci USA – volume: 111 start-page: 7438 year: 2014 end-page: 7443 article-title: Altered global brain signal in schizophrenia publication-title: Proc Natl Acad Sci USA – volume: 59 start-page: 1404 year: 2012 end-page: 1412 article-title: Test‐retest reliability of resting‐state connectivity network characteristics using fMRI and graph theoretical measures publication-title: Neuroimage – volume: 34 start-page: 537 year: 1995 end-page: 541 article-title: Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI publication-title: Magn Reson Med – volume: 182 start-page: 211 year: 2010 end-page: 215 article-title: Decreased regional homogeneity in insula and cerebellum: A resting‐state fMRI study in patients with major depression and subjects at high risk for major depression publication-title: Psychiatry Res Neuroimaging – volume: 44 start-page: 162 year: 2000 end-page: 167 article-title: Image‐based method for retrospective correction of physiological motion effects in fMRI: RETROICOR publication-title: Magn Reson Med – volume: 47 start-page: 1408 year: 2009 end-page: 1416 article-title: Correlations and anticorrelations in resting‐state functional connectivity MRI: A quantitative comparison of preprocessing strategies publication-title: Neuroimage – volume: 16 start-page: 123 issue: 2 year: 2014 end-page: 34 article-title: Graph theory reveals hyper‐functionality in visual cortices of SAD patients publication-title: World J Biol Psychiatry – volume: 70 start-page: 821 year: 2013 end-page: 829 article-title: Toward a neuroimaging treatment selection biomarker for major depressive disorder publication-title: JAMA Psychiatry – volume: 44 start-page: 893 year: 2009 end-page: 905 article-title: The impact of global signal regression on resting state correlations: Are anti‐correlated networks introduced? publication-title: Neuroimage – volume: 9 start-page: 1 year: 2015 end-page: 10 article-title: Evaluating the reliability of different preprocessing steps to estimate graph theoretical measures in resting state fMRI data publication-title: Front Neurosci – volume: 44 start-page: 2053 issue: 10 year: 2014 end-page: 65 article-title: Local cortical thinning links to resting-state disconnectivity in major depressive disorder publication-title: Psychol Med – volume: 7 start-page: e41282 year: 2012 article-title: Changes in community structure of resting state functional connectivity in unipolar depression publication-title: PLoS One – volume: 106 start-page: 11747 year: 2009 end-page: 11752 article-title: Cognitive fitness of cost‐efficient brain functional networks publication-title: Proc Natl Acad Sci USA – year: 2013 article-title: Effective Preprocessing Procedures Virtually Eliminate Distance‐Dependent Motion Artifacts in Resting State FMRI publication-title: J Applied Mathematics – volume: 25 start-page: 237 year: 2005 end-page: 246 article-title: Automated quality assurance routines for fMRI data applied to a multicenter study publication-title: Hum Brain Mapp – volume: 30 start-page: 1511 year: 2009 end-page: 1523 article-title: Parcellation‐dependent small‐world brain functional networks: A resting‐state fMRI study publication-title: Hum Brain Mapp – volume: 103 start-page: 9381 year: 2006 end-page: 9386 article-title: Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems publication-title: Proc Natl Acad Sci USA – volume: 4 start-page: 1 year: 2010 end-page: 10 article-title: Glutamatergic and resting‐state functional connectivity correlates of severity in major depression—The role of pregenual anterior cingulate cortex and anterior insula publication-title: Front Syst Neurosci – volume: 296 start-page: 910 year: 2002 end-page: 913 article-title: Specificity and stability in topology of protein networks publication-title: Science – volume: 8 start-page: 1 year: 2014 end-page: 12 article-title: Toward literature‐based feature selection for diagnostic classification: A meta‐analysis of resting‐state fMRI in depression publication-title: Front Hum Neurosci – volume: 50 start-page: 970 year: 2010 end-page: 983 article-title: Whole‐brain anatomical networks: Does the choice of nodes matter? publication-title: Neuroimage – volume: 59 start-page: 2142 year: 2012 end-page: 2154 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: Neuroimage – volume: 33 start-page: 1393 year: 2012 end-page: 1406 article-title: Functional brain network efficiency predicts intelligence publication-title: Hum Brain Mapp – volume: 78 start-page: 463 year: 2013 end-page: 473 article-title: The effect of resting condition on resting‐state fMRI reliability and consistency: A comparison between resting with eyes open, closed, and fixated publication-title: Neuroimage – volume: 121 start-page: 220 year: 2010 end-page: 230 article-title: Increased neural resources recruitment in the intrinsic organization in major depression publication-title: J Affect Disord – volume: 149 start-page: 116 year: 2013 end-page: 128 article-title: Disease severity is correlated to tract specific changes of fractional anisotropy in MD and CM thalamus—A DTI study in major depressive disorder publication-title: J Affect Disord – volume: 57 start-page: 1079 year: 2005 end-page: 1088 article-title: Activity and connectivity of brain mood regulating circuit in depression: A functional magnetic resonance study publication-title: Biol Psychiatry – volume: 4 start-page: 8 year: 2010 article-title: Advances and pitfalls in the analysis and interpretation of resting‐state FMRI data publication-title: Front Syst Neurosci – volume: 61 start-page: 1471 year: 2012 end-page: 1483 article-title: One‐year test‐retest reliability of intrinsic connectivity network fMRI in older adults publication-title: Neuroimage – volume: 10 start-page: e1001547 issue: 11 year: 2013 article-title: Burden of Depressive Disorders by Country, Sex, Age, and Year: Findings from the Global Burden of Disease Study 2010 publication-title: PLoS Medicine – volume: XI start-page: 37 year: 1912 end-page: 50 article-title: The distribution of the flora in the alphine zone publication-title: New Phytol – volume: 4 start-page: 13 year: 2010 article-title: DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting‐state fMRI publication-title: Front Syst Neurosci – year: 2012 – volume: 82 start-page: 208 year: 2013 end-page: 225 article-title: The nuisance of nuisance regression: Spectral misspecification in a common approach to resting‐state fMRI preprocessing reintroduces noise and obscures functional connectivity publication-title: Neuroimage – volume: 6 start-page: e25031 year: 2011 article-title: REST: A toolkit for resting‐state functional magnetic resonance imaging data processing publication-title: PLoS One – volume: 31 start-page: 555 year: 2013 end-page: 566 article-title: Functional magnetic resonance imaging: Comparison between activation maps and computation pipelines in a clinical context publication-title: Magn Reson Imaging – volume: 42 start-page: 935 year: 2013 end-page: 947 article-title: SSRI‐related modulation of sexual functioning is predicted by pre‐treatment resting state functional connectivity in healthy men publication-title: Arch Sex Behav – volume: 15 start-page: 273 year: 2002 end-page: 289 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single‐subject brain publication-title: Neuroimage – volume: 15 start-page: 902 year: 2002 end-page: 907 article-title: Comparison of detrending methods for optimal fMRI preprocessing publication-title: Neuroimage – volume: 4 start-page: 19 year: 2010 article-title: Clinical applications of resting state functional connectivity publication-title: Front Syst Neurosci – volume: 52 start-page: 1059 year: 2010 end-page: 1069 article-title: Complex network measures of brain connectivity: Uses and interpretations publication-title: Neuroimage – volume: 2 start-page: 25 year: 2012 end-page: 32 article-title: Trouble at rest: How correlation patterns and group differences become distorted after global signal regression publication-title: Brain Connect – volume: 70 start-page: 334 year: 2011 end-page: 342 article-title: Disrupted brain connectivity networks in drug‐naive, first‐episode major depressive disorder publication-title: Biol Psychiatry – volume: 7 start-page: 356 year: 2013 article-title: The perils of global signal regression for group comparisons: A case study of Autism spectrum disorders publication-title: Front Hum Neurosci – volume: 6 start-page: 149 year: 2012a article-title: On the plurality of (methodological) worlds: Estimating the analytic flexibility of FMRI experiments publication-title: Front Neurosci – volume: 107 start-page: 11020 year: 2010 end-page: 11025 article-title: Resting‐state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus publication-title: Proc Natl Acad Sci USA – volume: 8 issue: 94 year: 2011 article-title: Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: Evidence for an immunemodulated glutamatergic neurotransmission? publication-title: J Neuroinflammation – volume: 110 start-page: 15502 year: 2013 end-page: 15502 article-title: Cognitive relevance of the community structure of the human brain functional coactivation network publication-title: Proc Natl Acad Sci USA – volume: 30 start-page: 403 year: 2009 end-page: 416 article-title: Small‐world properties of nonlinear brain activity in schizophrenia publication-title: Hum Brain Mapp – year: 2013 – ident: e_1_2_8_37_1 doi: 10.1001/jamapsychiatry.2013.143 – ident: e_1_2_8_38_1 doi: 10.1007/s10508-013-0103-3 – ident: e_1_2_8_9_1 doi: 10.3389/fnins.2012.00149 – volume: 4 start-page: 22 year: 2010 ident: e_1_2_8_16_1 article-title: Network scaling effects in graph analytic studies of human resting‐state FMRI data publication-title: Front Syst Neurosci – ident: e_1_2_8_34_1 doi: 10.1371/journal.pone.0041282 – ident: e_1_2_8_5_1 doi: 10.1002/mrm.1910340409 – ident: e_1_2_8_25_1 doi: 10.1016/j.neuroimage.2012.03.027 – ident: e_1_2_8_65_1 doi: 10.1016/j.biopsych.2011.05.018 – ident: e_1_2_8_55_1 doi: 10.1006/nimg.2002.1053 – ident: e_1_2_8_29_1 doi: 10.1155/2013/935154 – volume-title: R: A Language and Environment for Statistical Computing year: 2012 ident: e_1_2_8_45_1 – ident: e_1_2_8_58_1 – ident: e_1_2_8_46_1 doi: 10.1016/j.neuroimage.2009.10.003 – ident: e_1_2_8_53_1 doi: 10.1002/hbm.20096 – ident: e_1_2_8_18_1 doi: 10.1038/nrn3901 – ident: e_1_2_8_48_1 doi: 10.1089/brain.2012.0080 – ident: e_1_2_8_33_1 doi: 10.1016/j.pscychresns.2010.03.004 – ident: e_1_2_8_60_1 doi: 10.1016/j.jad.2012.04.013 – ident: e_1_2_8_42_1 doi: 10.1016/j.neuroimage.2013.04.013 – volume: 4 start-page: 13 year: 2010 ident: e_1_2_8_62_1 article-title: DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting‐state fMRI publication-title: Front Syst Neurosci – ident: e_1_2_8_36_1 doi: 10.1126/science.1065103 – ident: e_1_2_8_47_1 doi: 10.1002/hbm.20517 – ident: e_1_2_8_10_1 doi: 10.1016/j.neuroimage.2012.07.004 – ident: e_1_2_8_35_1 doi: 10.1016/j.neuroimage.2005.02.021 – volume: 8 issue: 94 year: 2011 ident: e_1_2_8_52_1 article-title: Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: Evidence for an immunemodulated glutamatergic neurotransmission? publication-title: J Neuroinflammation – ident: e_1_2_8_4_1 doi: 10.1073/pnas.0903641106 – ident: e_1_2_8_39_1 doi: 10.1016/j.neuroimage.2008.09.036 – ident: e_1_2_8_56_1 doi: 10.1006/nimg.2001.0978 – ident: e_1_2_8_14_1 doi: 10.1016/j.neulet.2009.05.022 – ident: e_1_2_8_40_1 doi: 10.1016/j.neubiorev.2012.01.004 – ident: e_1_2_8_54_1 doi: 10.3389/fnhum.2014.00692 – ident: e_1_2_8_32_1 doi: 10.1371/journal.pone.0032766 – ident: e_1_2_8_30_1 doi: 10.1002/hbm.21297 – ident: e_1_2_8_43_1 doi: 10.1016/j.mri.2012.10.013 – ident: e_1_2_8_44_1 doi: 10.1016/j.neuroimage.2011.10.018 – ident: e_1_2_8_13_1 doi: 10.1073/pnas.1220826110 – ident: e_1_2_8_41_1 doi: 10.1016/j.jad.2012.12.026 – ident: e_1_2_8_21_1 doi: 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E – ident: e_1_2_8_63_1 doi: 10.1073/pnas.1405289111 – volume: 4 start-page: 8 year: 2010 ident: e_1_2_8_12_1 article-title: Advances and pitfalls in the analysis and interpretation of resting‐state FMRI data publication-title: Front Syst Neurosci – ident: e_1_2_8_8_1 doi: 10.1126/science.1099745 – ident: e_1_2_8_64_1 doi: 10.1016/j.neuroimage.2009.12.027 – ident: e_1_2_8_11_1 doi: 10.1016/j.neuroimage.2009.03.068 – ident: e_1_2_8_7_1 doi: 10.1016/j.neuroimage.2011.08.044 – ident: e_1_2_8_28_1 doi: 10.1111/j.1469-8137.1912.tb05611.x – ident: e_1_2_8_49_1 doi: 10.1073/pnas.1000446107 – ident: e_1_2_8_26_1 doi: 10.1016/j.neuroimage.2013.05.116 – volume: 4 start-page: 1 year: 2010 ident: e_1_2_8_27_1 article-title: Glutamatergic and resting‐state functional connectivity correlates of severity in major depression—The role of pregenual anterior cingulate cortex and anterior insula publication-title: Front Syst Neurosci – ident: e_1_2_8_61_1 doi: 10.1016/j.neuroimage.2009.05.005 – ident: e_1_2_8_6_1 doi: 10.3109/15622975.2014.966144 – ident: e_1_2_8_17_1 doi: 10.1016/j.neuroimage.2013.04.087 – ident: e_1_2_8_20_1 doi: 10.1073/pnas.0604187103 – ident: e_1_2_8_3_1 doi: 10.3389/fnins.2015.00048 – ident: e_1_2_8_24_1 – ident: e_1_2_8_22_1 doi: 10.3389/fnhum.2013.00356 – ident: e_1_2_8_23_1 doi: 10.1097/WCO.0b013e328306f2c5 – ident: e_1_2_8_50_1 doi: 10.1073/pnas.0905267106 – volume: 4 start-page: 19 year: 2010 ident: e_1_2_8_19_1 article-title: Clinical applications of resting state functional connectivity publication-title: Front Syst Neurosci – ident: e_1_2_8_31_1 doi: 10.1016/j.jad.2014.08.001 – ident: e_1_2_8_57_1 doi: 10.1017/S0033291713002742 – ident: e_1_2_8_66_1 doi: 10.1016/j.jad.2009.05.029 – ident: e_1_2_8_51_1 doi: 10.1371/journal.pone.0025031 – ident: e_1_2_8_59_1 doi: 10.1002/hbm.20623 – ident: e_1_2_8_2_1 doi: 10.1016/j.biopsych.2005.02.021 – ident: e_1_2_8_15_1 doi: 10.1371/journal.pmed.1001547 |
SSID | ssj0011501 |
Score | 2.3318448 |
Snippet | Resting‐state fMRI studies have gained widespread use in exploratory studies of neuropsychiatric disorders. Graph metrics derived from whole brain functional... Resting-state fMRI studies have gained widespread use in exploratory studies of neuropsychiatric disorders. Graph metrics derived from whole brain functional... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1422 |
SubjectTerms | Adult Depressive Disorder, Major - diagnostic imaging Depressive Disorder, Major - physiopathology Female functional connectivity functional network analysis graph-theory Humans Magnetic Resonance Imaging - methods major depressive disorder Male Nerve Net - diagnostic imaging Nerve Net - physiopathology resting-state fMRI |
Title | Preprocessing strategy influences graph-based exploration of altered functional networks in major depression |
URI | https://api.istex.fr/ark:/67375/WNG-FCRNHP5B-N/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.23111 https://www.ncbi.nlm.nih.gov/pubmed/26888761 https://www.proquest.com/docview/1771229359 https://www.proquest.com/docview/1772147677 https://www.proquest.com/docview/1776663612 https://pubmed.ncbi.nlm.nih.gov/PMC6867554 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3datRAFB5KBfHGaqs2WmUUKd5km2QzMxu8aovrIuxSisVeCMP8hda62bLZBeuVj-Az-iSeOZNEV6uIdyE5Ccnk_Hxn5pxvCHkuUmOSgejHEGtVDF6yiJVwPM7AlAqX9A3D3qrxhI9O8jen7HSNvGx7YQI_RDfh5i0D_bU3cKXrvR-koWd62gNwgn29vlbLA6LjjjrKAx1MtiDExgV44JZVKMn2ujtXYtENP6yfrgOav9dL_oxjMRANN8j79hNC_clFb7nQPfP5F3bH__zGO-R2A1DpftCou2TNVZtka7-C5Hx6RXcploziXPwmuTluVua3SHXk6TGx6QCCIa0D6e0VPW83QakpcmN_-_LVB05LHRb_oV7QWUlx1R5O-zgbpidpFSrUa3gGnaoPszntynare-Rk-Ort4Shu9nKIDUCyNIa_AcAws0mu89yUylhVausUpFsmZ3lapjZhilutwT2XwqiSOVdo53vCjIU0-j5Zr2aV2ybU8pLbjGlTWJ1rztTA75LHLe_DmUIXEXnR_lVpGqJzv9_GRxkomjMJwypxWCPyrBO9DOwe1wntomp0Emp-4cvhBJPvJq_l8PB4MjpiB3ISkZ1Wd2TjCWqZCpFmme9_jsjT7jLYsF-YUZWbLVHGbxfFhfirDGSafQCkEXkQ1LF7oYwPIFZweFOxoqidgOcQX71SnZ8hlzgfQMbIchgz1MM_j4IcHYzx4OG_iz4itwBf8lDotEPWF_OlewwYbqGfoLF-B-PNRo8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtRAEC1FiQRcWBKWgQANQhEXT2yP3T2WuCSBwUDGiqJE5IJavVnZxoNmkQgnPoFv5Euo7rYNAwEhbpZdtuxyrd1VrwCesUipsM96AfpaEaCVzALBDA1iVKXMhD2Vut6qYUHzw-TtUXq0BC-aXhiPD9EuuFnNcPbaKrhdkN78gRp6LEddjE5sY--Kneht5xe83G_Bo2yo49ItdLJBhja4wRUK48321gVvtGIZ--myUPP3ismfI1nnigY34EPzEb4C5aw7n8mu-vwLvuP_fuVNuF7HqGTLC9UtWDLVKqxtVZifjy7IBnFVo245fhWuDOvN-TWo9ixCpus7QH9Iph739oKcNHNQpsTBY3_78tX6Tk2Mq_9zokHGJXEb93jaulq_QkkqX6Q-xWeQkTgdT0hbuVvdhsPBq4OdPKjHOQQKo7IowN-BsWGsw0QmiSqF0qKU2gjMuFSSJlEZ6TAVVEuJFrpkSpSpMZk0ti1Macyk78ByNa7MPSCallTHqVSZlomkqejbQXlU0x6eyWTWgefNb-Wqxjq3IzfOuUdpjjmylTu2duBpS_rRA3xcRrThZKOlEJMzWxHHUv6-eM0HO_tFvpdu86ID643w8NoYTHnEWBTHtgW6A0_ay6jGdm9GVGY8dzR2YhRl7K80mGz2MCbtwF0vj-0LxbSP7oLim7IFSW0JLIz44pXq5NjBidM-Jo1pgjxzgvhnLvB8e-gO7v876WO4mh8Md_num-LdA7iG4Sb1dU_rsDybzM1DDOlm8pHT3O8KxUqp |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VrVRx4dHyCBQwCFVcsk2ysbMRp7awLI-NVhUVPVSy_IpaymarfUiUEz-B38gvYWwngYWCELcomUTJZMbzjT3zGeBJFisV9bJuiLFWhDhK5qHIDAsTdKXcRF1FXW_VsGCDw_T1ET1agWdNL4znh2gn3KxnuPHaOvi5Lnd-kIaeyHEHwYnt611LGTqLRUQHLXeURTou28IYG-Y4BDe0QlGy0966FIzWrF4_XYY0fy-Y_BnIukjUvwbHzTf4ApSzzmIuO-rzL_SO__mR1-FqjVDJrjepG7Biqg3Y3K0wOx9fkG3iakbdZPwGrA_rpflNqEaWH9N1HWA0JDPPentBTptdUGbEkWN_-_LVRk5NjKv-c4ZBJiVxy_Z42gZaPz9JKl-iPsNnkLH4MJmStm63ugmH_Rfv9gdhvZlDqBCTxSH-DUSGiY5SmaaqFEqLUmojMN9SKU3jMtYRFUxLieNzmSlRUmNyaWxTmNKYR9-C1WpSmTtANCuZTqhUuZapZFT07DZ5TLMunsllHsDT5q9yVTOd2w03PnLP0ZxwVCt3ag3gcSt67uk9LhPadqbRSojpma2Hyyh_X7zk_f2DYjCie7wIYKuxHV4PBTMeZ1mcJLYBOoBH7WV0YrsyIyozWTgZu18Uy7K_ymCq2UVEGsBtb47tCyWsh8GC4ZtmS4baClgS8eUr1emJIxNnPUwZaYo6c3b4Zy3wwd7QHdz9d9GHsD563udvXxVv7sEVxJrMFz1twep8ujD3Ec_N5QPnt98BInVJYQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preprocessing+strategy+influences+graph-based+exploration+of+altered+functional+networks+in+major+depression&rft.jtitle=Human+brain+mapping&rft.au=Borchardt%2C+Viola&rft.au=Lord%2C+Anton+Richard&rft.au=Li%2C+Meng&rft.au=van+der+Meer%2C+Johan&rft.date=2016-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=37&rft.issue=4&rft.spage=1422&rft.epage=1442&rft_id=info:doi/10.1002%2Fhbm.23111&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_FCRNHP5B_N |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |