Glio‐ and neuro‐protection by prosaposin is mediated by orphan G‐protein coupled receptors GPR37L1 and GPR37
Discovery of neuroprotective pathways is one of the major priorities for neuroscience. Astrocytes are natural neuroprotectors and it is likely that brain resilience can be enhanced by mobilizing their protective potential. Among G‐protein coupled receptors expressed by astrocytes, two highly related...
Saved in:
Published in | Glia Vol. 66; no. 11; pp. 2414 - 2426 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.11.2018
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Discovery of neuroprotective pathways is one of the major priorities for neuroscience. Astrocytes are natural neuroprotectors and it is likely that brain resilience can be enhanced by mobilizing their protective potential. Among G‐protein coupled receptors expressed by astrocytes, two highly related receptors, GPR37L1 and GPR37, are of particular interest. Previous studies suggested that these receptors are activated by a peptide Saposin C and its neuroactive fragments (prosaptide TX14(A)), which were demonstrated to be neuroprotective in various animal models by several groups. However, pairing of Saposin C or prosaptides with GPR37L1/GPR37 has been challenged and presently GPR37L1/GPR37 have regained their orphan status. Here, we demonstrate that in their natural habitat, astrocytes, these receptors mediate a range of effects of TX14(A), including protection from oxidative stress. The Saposin C/GPR37L1/GPR37 pathway is also involved in the neuroprotective effect of astrocytes on neurons subjected to oxidative stress. The action of TX14(A) is at least partially mediated by Gi‐proteins and the cAMP‐PKA axis. On the other hand, when recombinant GPR37L1 or GPR37 are expressed in HEK293 cells, they are not functional and do not respond to TX14(A), which explains unsuccessful attempts to confirm the ligand‐receptor pairing. Therefore, this study identifies GPR37L1/GPR37 as the receptors for TX14(A), and, by extension of Saposin C, and paves the way for the development of neuroprotective therapeutics acting via these receptors.
A video of this article can be found at: https://www.youtube.com/watch?v=qTn13My9Sz8
Main points
Prosaptide TX14(A), a fragment of Saposin C, acts via GPR37L1/GPR37 on astrocytes and protects them from oxidative stress.
In HEK293 cells, GPR37L1 and GPR37 are dysfunctional.
GPR37L1/GPR37 signaling in astrocytes enables neuroprotection.
Astrocytes engage an autocrine loop whereby Saposin C acts on GPR37L1 to help to rescue neurons, affected by oxidative stress. |
---|---|
AbstractList | Discovery of neuroprotective pathways is one of the major priorities for neuroscience. Astrocytes are natural neuroprotectors and it is likely that brain resilience can be enhanced by mobilizing their protective potential. Among G-protein coupled receptors expressed by astrocytes, two highly related receptors, GPR37L1 and GPR37, are of particular interest. Previous studies suggested that these receptors are activated by a peptide Saposin C and its neuroactive fragments (prosaptide TX14(A)), which were demonstrated to be neuroprotective in various animal models by several groups. However, pairing of Saposin C or prosaptides with GPR37L1/GPR37 has been challenged and presently GPR37L1/GPR37 have regained their orphan status. Here, we demonstrate that in their natural habitat, astrocytes, these receptors mediate a range of effects of TX14(A), including protection from oxidative stress. The Saposin C/GPR37L1/GPR37 pathway is also involved in the neuroprotective effect of astrocytes on neurons subjected to oxidative stress. The action of TX14(A) is at least partially mediated by Gi-proteins and the cAMP-PKA axis. On the other hand, when recombinant GPR37L1 or GPR37 are expressed in HEK293 cells, they are not functional and do not respond to TX14(A), which explains unsuccessful attempts to confirm the ligand-receptor pairing. Therefore, this study identifies GPR37L1/GPR37 as the receptors for TX14(A), and, by extension of Saposin C, and paves the way for the development of neuroprotective therapeutics acting via these receptors. Discovery of neuroprotective pathways is one of the major priorities for neuroscience. Astrocytes are natural neuroprotectors and it is likely that brain resilience can be enhanced by mobilizing their protective potential. Among G‐protein coupled receptors expressed by astrocytes, two highly related receptors, GPR37L1 and GPR37, are of particular interest. Previous studies suggested that these receptors are activated by a peptide Saposin C and its neuroactive fragments (prosaptide TX14(A)), which were demonstrated to be neuroprotective in various animal models by several groups. However, pairing of Saposin C or prosaptides with GPR37L1/GPR37 has been challenged and presently GPR37L1/GPR37 have regained their orphan status. Here, we demonstrate that in their natural habitat, astrocytes, these receptors mediate a range of effects of TX14(A), including protection from oxidative stress. The Saposin C/GPR37L1/GPR37 pathway is also involved in the neuroprotective effect of astrocytes on neurons subjected to oxidative stress. The action of TX14(A) is at least partially mediated by Gi‐proteins and the cAMP‐PKA axis. On the other hand, when recombinant GPR37L1 or GPR37 are expressed in HEK293 cells, they are not functional and do not respond to TX14(A), which explains unsuccessful attempts to confirm the ligand‐receptor pairing. Therefore, this study identifies GPR37L1/GPR37 as the receptors for TX14(A), and, by extension of Saposin C, and paves the way for the development of neuroprotective therapeutics acting via these receptors. A video of this article can be found at: https://www.youtube.com/watch?v=qTn13My9Sz8 Main points Prosaptide TX14(A), a fragment of Saposin C, acts via GPR37L1/GPR37 on astrocytes and protects them from oxidative stress. In HEK293 cells, GPR37L1 and GPR37 are dysfunctional. GPR37L1/GPR37 signaling in astrocytes enables neuroprotection. Astrocytes engage an autocrine loop whereby Saposin C acts on GPR37L1 to help to rescue neurons, affected by oxidative stress. Discovery of neuroprotective pathways is one of the major priorities for neuroscience. Astrocytes are natural neuroprotectors and it is likely that brain resilience can be enhanced by mobilizing their protective potential. Among G‐protein coupled receptors expressed by astrocytes, two highly related receptors, GPR37L1 and GPR37, are of particular interest. Previous studies suggested that these receptors are activated by a peptide Saposin C and its neuroactive fragments (prosaptide TX14(A)), which were demonstrated to be neuroprotective in various animal models by several groups. However, pairing of Saposin C or prosaptides with GPR37L1/GPR37 has been challenged and presently GPR37L1/GPR37 have regained their orphan status. Here, we demonstrate that in their natural habitat, astrocytes, these receptors mediate a range of effects of TX14(A), including protection from oxidative stress. The Saposin C/GPR37L1/GPR37 pathway is also involved in the neuroprotective effect of astrocytes on neurons subjected to oxidative stress. The action of TX14(A) is at least partially mediated by Gi‐proteins and the cAMP‐PKA axis. On the other hand, when recombinant GPR37L1 or GPR37 are expressed in HEK293 cells, they are not functional and do not respond to TX14(A), which explains unsuccessful attempts to confirm the ligand‐receptor pairing. Therefore, this study identifies GPR37L1/GPR37 as the receptors for TX14(A), and, by extension of Saposin C, and paves the way for the development of neuroprotective therapeutics acting via these receptors. A video abstract of this article can be found at: https://www.youtube.com/watch?v=qTn13My9Sz8 Discovery of neuroprotective pathways is one of the major priorities for neuroscience. Astrocytes are natural neuroprotectors and it is likely that brain resilience can be enhanced by mobilizing their protective potential. Among G‐protein coupled receptors expressed by astrocytes, two highly related receptors, GPR37L1 and GPR37, are of particular interest. Previous studies suggested that these receptors are activated by a peptide Saposin C and its neuroactive fragments (prosaptide TX14(A)), which were demonstrated to be neuroprotective in various animal models by several groups. However, pairing of Saposin C or prosaptides with GPR37L1/GPR37 has been challenged and presently GPR37L1/GPR37 have regained their orphan status. Here, we demonstrate that in their natural habitat, astrocytes, these receptors mediate a range of effects of TX14(A), including protection from oxidative stress. The Saposin C/GPR37L1/GPR37 pathway is also involved in the neuroprotective effect of astrocytes on neurons subjected to oxidative stress. The action of TX14(A) is at least partially mediated by Gi‐proteins and the cAMP‐PKA axis. On the other hand, when recombinant GPR37L1 or GPR37 are expressed in HEK293 cells, they are not functional and do not respond to TX14(A), which explains unsuccessful attempts to confirm the ligand‐receptor pairing. Therefore, this study identifies GPR37L1/GPR37 as the receptors for TX14(A), and, by extension of Saposin C, and paves the way for the development of neuroprotective therapeutics acting via these receptors.A video abstract of this article can be found at: https://www.youtube.com/watch?v=qTn13My9Sz8 |
Author | Liu, Beihui Teschemacher, Anja G. Huentelman, Mathew Kasparov, Sergey Vaccari Cardoso, Barbara Prokudina, Daria Mosienko, Valentina |
AuthorAffiliation | 1 Department of Physiology, Pharmacology, and Neuroscience University of Bristol Bristol United Kingdom 3 Baltic Federal University Kaliningrad Russia Federation 2 Translational Genomics Research Institute (TGen) Phoenix Arizona |
AuthorAffiliation_xml | – name: 1 Department of Physiology, Pharmacology, and Neuroscience University of Bristol Bristol United Kingdom – name: 2 Translational Genomics Research Institute (TGen) Phoenix Arizona – name: 3 Baltic Federal University Kaliningrad Russia Federation |
Author_xml | – sequence: 1 givenname: Beihui surname: Liu fullname: Liu, Beihui organization: University of Bristol – sequence: 2 givenname: Valentina surname: Mosienko fullname: Mosienko, Valentina organization: University of Bristol – sequence: 3 givenname: Barbara surname: Vaccari Cardoso fullname: Vaccari Cardoso, Barbara organization: University of Bristol – sequence: 4 givenname: Daria surname: Prokudina fullname: Prokudina, Daria organization: Baltic Federal University – sequence: 5 givenname: Mathew surname: Huentelman fullname: Huentelman, Mathew organization: Translational Genomics Research Institute (TGen) – sequence: 6 givenname: Anja G. surname: Teschemacher fullname: Teschemacher, Anja G. email: anja.teschemacher@bristol.ac.uk organization: University of Bristol – sequence: 7 givenname: Sergey orcidid: 0000-0002-1824-1764 surname: Kasparov fullname: Kasparov, Sergey email: sergey.kasparov@bristol.ac.uk organization: University of Bristol |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30260505$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcFu1DAQhi1URLctFx4AReKCkNJ6nDiJL0hVBaHSSlSIni3bmbSusnawk6K98Qg8I0-Cs9tWwIGTPfo__zOe_4gcOO-QkFdAT4FSdnYzWHXKirKhz8gKqGhygKI6ICvaiDKHUsAhOYrxjlJIRf2CHBaUVZRTviKhHaz_9eNnplyXOZzDUozBT2gm612mt1mqohp9tC6zMdtgZ9WE3aL4MN4ql7WPTxJh_DwOSQ1ocJx8iFl79aWo17BrsLufkOe9GiK-fDiPyfXHD18vPuXrz-3lxfk6NxxKmivNwCjBG01BaC60qhnXrMG-NqArbnqNCqBHjpyZmtKmY2VVGGE6UaLgxTF5v_cdZ52mNuimoAY5BrtRYSu9svJvxdlbeePvZVUKBvVi8PbBIPhvM8ZJbmw0OAzKoZ-jZGnNrAZaLOibf9A7PweXvpeoQlTAGkYT9W5PmbTSGLB_GgaoXKKUS5RyF2WCX_85_hP6mF0CYA98twNu_2Ml2_Xl-d70N2NFrj0 |
CitedBy_id | crossref_primary_10_1093_hmg_ddab155 crossref_primary_10_1021_acschemneuro_3c00479 crossref_primary_10_1002_dneu_22854 crossref_primary_10_1016_j_isci_2023_106277 crossref_primary_10_3390_ijms222312859 crossref_primary_10_3390_biomedicines10051006 crossref_primary_10_1002_jnr_24775 crossref_primary_10_1021_acs_jproteome_9b00622 crossref_primary_10_1073_pnas_2215906120 crossref_primary_10_3390_genes11060694 crossref_primary_10_1016_j_expneurol_2023_114656 crossref_primary_10_3389_fnagi_2020_00209 crossref_primary_10_1186_s40478_019_0862_8 crossref_primary_10_1126_sciadv_abi5811 crossref_primary_10_1186_s40035_021_00232_7 crossref_primary_10_1002_alz_13901 crossref_primary_10_1016_j_ejphar_2024_176762 crossref_primary_10_1016_j_freeradbiomed_2022_09_027 crossref_primary_10_3390_biomedicines9101453 crossref_primary_10_1007_s12031_022_02066_y crossref_primary_10_1016_j_expneurol_2021_113719 crossref_primary_10_1186_s13195_023_01372_w crossref_primary_10_1038_s41598_020_76384_9 crossref_primary_10_1007_s11064_023_03873_4 crossref_primary_10_1371_journal_pone_0241315 crossref_primary_10_3390_cells13121024 crossref_primary_10_1038_s41419_022_04904_8 crossref_primary_10_1016_j_conb_2020_02_007 crossref_primary_10_3389_fncel_2021_673549 crossref_primary_10_3390_ijms232214456 crossref_primary_10_1371_journal_pone_0255958 crossref_primary_10_1096_fj_201900070R crossref_primary_10_1093_jnen_nlab056 crossref_primary_10_3390_ijms23084288 crossref_primary_10_1292_jvms_20_0603 crossref_primary_10_3390_ijms23074028 crossref_primary_10_1093_brain_awad148 crossref_primary_10_1093_brain_awaa356 crossref_primary_10_3390_ijms232214290 crossref_primary_10_3390_neuroglia1020025 crossref_primary_10_1038_s41589_021_00748_z crossref_primary_10_1038_s43587_023_00363_8 crossref_primary_10_1002_glia_24494 crossref_primary_10_1111_cns_14278 crossref_primary_10_1002_glia_24375 crossref_primary_10_1038_s41467_023_43629_w crossref_primary_10_1152_ajprenal_00289_2018 crossref_primary_10_1002_dvdy_577 crossref_primary_10_3389_fnmol_2023_1117065 crossref_primary_10_3390_antiox10121862 |
Cites_doi | 10.1016/S0304-3940(99)00461-9 10.1046/j.1471-4159.1996.66052019.x 10.1016/j.ceca.2017.01.008 10.1371/journal.pone.0122513 10.1186/1471-2199-11-93 10.1016/j.neuroscience.2013.01.007 10.1038/sdata.2017.33 10.1038/nsmb.3014 10.1073/pnas.0703368104 10.1002/glia.23198 10.3233/JAD-160093 10.1016/j.neuron.2015.11.013 10.1007/978-1-62703-622-1_4 10.1177/1087057113475480 10.1038/nature17623 10.1038/nchembio.2266 10.1016/S1096-7192(02)00114-2 10.1038/nrm1197 10.1016/0006-8993(84)90358-5 10.1016/S0022-2275(20)40540-1 10.1073/pnas.1219004110 10.1016/j.ejpain.2007.03.008 10.1073/pnas.68.11.2757 10.1002/glia.23136 10.1097/00005072-199906000-00007 10.1097/00001756-200006050-00039 10.1126/scisignal.aad1089 10.1006/bbrc.1994.2558 10.1073/pnas.91.20.9593 10.1016/j.nbd.2007.02.009 10.1016/S0169-328X(99)00092-3 10.1007/BF01965545 10.1016/j.neuron.2017.06.029 10.1021/bi9013775 10.1113/expphysiol.2004.029173 10.1523/JNEUROSCI.1860-14.2014 10.1016/S0304-3940(99)00325-0 10.1242/jcs.176115 10.1016/S0092-8674(01)00407-X 10.3389/fphar.2015.00275 10.1006/bbrc.1997.7673 10.1016/j.pain.2005.11.013 10.1016/S0304-3940(99)00902-7 10.1016/j.nbd.2017.07.006 10.1046/j.1471-4159.1996.66052197.x |
ContentType | Journal Article |
Copyright | 2018 The Authors. GLIA Published by Wiley Periodicals, Inc. 2018 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2018 The Authors. GLIA Published by Wiley Periodicals, Inc. – notice: 2018 Wiley Periodicals, Inc. |
DBID | 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7T7 7TK 7U9 8FD C1K FR3 H94 K9. M7N P64 7X8 5PM |
DOI | 10.1002/glia.23480 |
DatabaseName | Wiley Open Access Wiley-Blackwell Backfiles (Open access) Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley-Blackwell Titles (Open access) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
DocumentTitleAlternate | Liu et al |
EISSN | 1098-1136 |
EndPage | 2426 |
ExternalDocumentID | 10_1002_glia_23480 30260505 GLIA23480 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council funderid: BB/L019396/1 – fundername: Medical Research Council funderid: MR/L020661/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/L019396/1 – fundername: Medical Research Council grantid: MR/L020661/1 |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GAKWD GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ X7M XG1 XV2 ZGI ZXP ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7T7 7TK 7U9 8FD C1K FR3 H94 K9. M7N P64 7X8 5PM |
ID | FETCH-LOGICAL-c5140-ab21ca958b019b59ba725b28ef7c1b65cfbea11fe5e52c7008d2463c9cd94e953 |
IEDL.DBID | 24P |
ISSN | 0894-1491 |
IngestDate | Tue Sep 17 20:57:36 EDT 2024 Fri Aug 16 06:10:04 EDT 2024 Thu Oct 10 22:13:27 EDT 2024 Fri Aug 23 03:36:35 EDT 2024 Sat Sep 28 08:20:45 EDT 2024 Sat Aug 24 01:10:37 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | orphan receptors GPR37 astroprotection Saposin C neuroprotection PKA GPR37L1 prosaptide cAMP astrocyte |
Language | English |
License | Attribution 2018 The Authors. GLIA Published by Wiley Periodicals, Inc. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5140-ab21ca958b019b59ba725b28ef7c1b65cfbea11fe5e52c7008d2463c9cd94e953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Funding information Biotechnology and Biological Sciences Research Council, Grant/Award Number: BB/L019396/1; Medical Research Council, Grant/Award Number: MR/L020661/1 Sergey Kasparov and Anja G. Teschemacher contributed equally to this study. |
ORCID | 0000-0002-1824-1764 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fglia.23480 |
PMID | 30260505 |
PQID | 2139612820 |
PQPubID | 996331 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6492175 proquest_miscellaneous_2113271035 proquest_journals_2139612820 crossref_primary_10_1002_glia_23480 pubmed_primary_30260505 wiley_primary_10_1002_glia_23480_GLIA23480 |
PublicationCentury | 2000 |
PublicationDate | November 2018 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: November 2018 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Hoboken |
PublicationTitle | Glia |
PublicationTitleAlternate | Glia |
PublicationYear | 2018 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2010; 11 2007; 104 2017; 64 2015; 6 2017; 4 2000; 278 2005; 90 2016; 129 1971; 68 2017; 66 1999; 270 2014; 1071 2017; 65 2002; 76 2015; 10 1999; 69 2016; 53 2008; 12 1984; 306 1999; 267 1992; 33 2009; 48 2001; 105 2017; 95 2013; 18 1994; 204 1998; 19 1997; 240 2013; 236 2000; 11 2015; 22 2017; 13 1999; 58 2003; 4 2006; 121 1981; 37 2013; 110 2016; 532 1994; 91 2014; 34 2016; 9 2007; 26 2017; 106 2016; 89 1996; 66 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_4_1 Campana W. M. (e_1_2_6_5_1) 1998; 19 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_26_1 e_1_2_6_47_1 |
References_xml | – volume: 19 start-page: 237 year: 1998 end-page: 244 article-title: Prosaptide prevents paclitaxel neurotoxicity publication-title: Neurotoxicology – volume: 33 start-page: 1255 year: 1992 end-page: 1267 article-title: Saposins: Structure, function, distribution, and molecular genetics publication-title: Journal of Lipid Research – volume: 37 start-page: 19 year: 1981 end-page: 21 article-title: Effect of prostaglandins and dibutyryl cyclic AMP on the morphology of cells in primary astroglial cultures and on metabolic enzymes of GABA and glutamate metabolism publication-title: Experientia – volume: 26 start-page: 606 year: 2007 end-page: 614 article-title: Effects of gender on nigral gene expression and parkinson disease publication-title: Neurobiology of Disease – volume: 10 start-page: e0122513 year: 2015 article-title: Fourth‐generation epac‐based FRET sensors for cAMP feature exceptional brightness, photostability and dynamic range: Characterization of dedicated sensors for FLIM, for ratiometry and with high affinity publication-title: PLoS One – volume: 1071 start-page: 49 year: 2014 end-page: 58 article-title: Detecting cAMP with an EPAC‐based FRET sensor in single living cells publication-title: Methods in Molecular Biology – volume: 105 start-page: 891 year: 2001 end-page: 902 article-title: An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of parkin publication-title: Cell – volume: 90 start-page: 71 year: 2005 end-page: 78 article-title: Differences in transductional tropism of adenoviral and lentiviral vectors in the rat brainstem publication-title: Experimental Physiology – volume: 121 start-page: 14 year: 2006 end-page: 21 article-title: Therapeutic efficacy of prosaposin‐derived peptide on different models of allodynia publication-title: Pain – volume: 104 start-page: 9846 year: 2007 end-page: 9851 article-title: GPR37 associates with the dopamine transporter to modulate dopamine uptake and behavioral responses to dopaminergic drugs publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 4 start-page: 170033 year: 2017 article-title: Transcriptomic profiling of 39 commonly‐used neuroblastoma cell lines publication-title: Scientific Data – volume: 9 start-page: ra36 year: 2016 article-title: Metalloprotease cleavage of the N terminus of the orphan G protein‐coupled receptor GPR37L1 reduces its constitutive activity publication-title: Science Signaling – volume: 89 start-page: 37 year: 2016 end-page: 53 article-title: Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse publication-title: Neuron – volume: 66 start-page: 2197 year: 1996 end-page: 2200 article-title: A hydrophilic peptide comprising 18 amino acid residues of the prosaposin sequence has neurotrophic activity in vitro and in vivo publication-title: Journal of Neurochemistry – volume: 91 start-page: 9593 year: 1994 end-page: 9596 article-title: Identification of prosaposin as a neurotrophic factor publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 53 start-page: 1173 year: 2016 end-page: 1192 article-title: An 18‐mer peptide derived from prosaposin ameliorates the effects of Abeta1‐42 neurotoxicity on hippocampal neurogenesis and memory deficit in mice publication-title: Journal of Alzheimer's Disease – volume: 204 start-page: 994 year: 1994 end-page: 1000 article-title: Protection by prosaposin against ischemia‐induced learning disability and neuronal loss publication-title: Biochemical and Biophysical Research Communications – volume: 306 start-page: 85 year: 1984 end-page: 95 article-title: Dibutyryl cyclic AMP causes intermediate filament accumulation and actin reorganization in astrocytes publication-title: Brain Research – volume: 12 start-page: 76 year: 2008 end-page: 81 article-title: Central action of prosaptide TX14(a) against gp120‐induced allodynia in rats publication-title: European Journal of Pain – volume: 110 start-page: 9529 year: 2013 end-page: 9534 article-title: GPR37 and GPR37L1 are receptors for the neuroprotective and glioprotective factors prosaptide and prosaposin publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 4 start-page: 733 year: 2003 end-page: 738 article-title: Epac: A new cAMP target and new avenues in cAMP research publication-title: Nature Reviews. Molecular Cell Biology – volume: 129 start-page: 1366 year: 2016 end-page: 1377 article-title: The Parkinson's‐disease‐associated receptor GPR37 undergoes metalloproteinase‐mediated N‐terminal cleavage and ectodomain shedding publication-title: Journal of Cell Science – volume: 64 start-page: 91 year: 2017 end-page: 101 article-title: Exploring the Ca(2+)‐dependent synaptic dynamics in vibro‐dissociated cells publication-title: Cell Calcium – volume: 76 start-page: 271 year: 2002 end-page: 286 article-title: Prosaposin: Threshold rescue and analysis of the "neuritogenic" region in transgenic mice publication-title: Molecular Genetics and Metabolism – volume: 236 start-page: 373 year: 2013 end-page: 393 article-title: Attenuation of MPTP/MPP(+) toxicity in vivo and in vitro by an 18‐mer peptide derived from prosaposin publication-title: Neuroscience – volume: 22 start-page: 362 year: 2015 end-page: 369 article-title: PRESTO‐Tango as an open‐source resource for interrogation of the druggable human GPCRome publication-title: Nature Structural & Molecular Biology – volume: 65 start-page: 1205 year: 2017 end-page: 1226 article-title: Astroglia as a cellular target for neuroprotection and treatment of neuro‐psychiatric disorders publication-title: Glia – volume: 532 start-page: 195 year: 2016 end-page: 200 article-title: Astrocyte scar formation aids central nervous system axon regeneration publication-title: Nature – volume: 58 start-page: 628 year: 1999 end-page: 636 article-title: Prosaposin gene expression and the efficacy of a prosaposin‐derived peptide in preventing structural and functional disorders of peripheral nerve in diabetic rats publication-title: Journal of Neuropathology and Experimental Neurology – volume: 95 start-page: 531 year: 2017 end-page: 549 article-title: Neural circuit‐specialized astrocytes: Transcriptomic, proteomic, morphological, and functional evidence publication-title: Neuron – volume: 66 start-page: 2019 year: 1996 end-page: 2025 article-title: Prosaposin facilitates sciatic nerve regeneration in vivo publication-title: Journal of Neurochemistry – volume: 13 start-page: 235 year: 2017 end-page: 242 article-title: Orphan receptor ligand discovery by pickpocketing pharmacological neighbors publication-title: Nature Chemical Biology – volume: 6 start-page: 275 year: 2015 article-title: Drug discovery opportunities at the endothelin B receptor‐related orphan G protein‐coupled receptors, GPR37 and GPR37L1 publication-title: Frontiers in Pharmacology – volume: 278 start-page: 120 year: 2000 end-page: 122 article-title: Prosaptide D5 reverses hyperalgesia: Inhibition of calcium channels through a pertussis toxin‐sensitive G‐protein mechanism in the rat publication-title: Neuroscience Letters – volume: 66 start-page: 47 year: 2017 end-page: 61 article-title: G protein‐coupled receptor 37‐like 1 modulates astrocyte glutamate transporters and neuronal NMDA receptors and is neuroprotective in ischemia publication-title: Glia – volume: 68 start-page: 2757 year: 1971 end-page: 2760 article-title: Regulation of adenosine 3′:5′‐cyclic monophosphate concentration in cultured human astrocytoma cells by catecholamines and histamine publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 270 start-page: 29 year: 1999 end-page: 32 article-title: Reversal of thermal hyperalgesia in a rat partial sciatic nerve ligation model by prosaptide TX14(A) publication-title: Neuroscience Letters – volume: 267 start-page: 73 year: 1999 end-page: 76 article-title: Administration of prosaposin ameliorates spatial learning disturbance and reduces cavity formation following stab wounds in rat brain publication-title: Neuroscience Letters – volume: 106 start-page: 181 year: 2017 end-page: 190 article-title: GPR37L1 modulates seizure susceptibility: Evidence from mouse studies and analyses of a human GPR37L1 variant publication-title: Neurobiology of Disease – volume: 11 start-page: 93 year: 2010 article-title: Cell‐ and region‐specific miR30‐based gene knock‐down with temporal control in the rat brain publication-title: BMC Molecular Biology – volume: 11 start-page: 1791 year: 2000 end-page: 1794 article-title: Neuroprotective effect of retro‐inverso prosaptide D5 on focal cerebral ischemia in rat publication-title: NeuroReport – volume: 18 start-page: 599 year: 2013 end-page: 609 article-title: Screening beta‐Arrestin recruitment for the identification of natural ligands for orphan G‐protein‐coupled receptors publication-title: Journal of Biomolecular Screening – volume: 240 start-page: 415 year: 1997 end-page: 418 article-title: Prosaposin receptor: Evidence for a G‐protein‐associated receptor publication-title: Biochemical and Biophysical Research Communications – volume: 69 start-page: 73 year: 1999 end-page: 83 article-title: Molecular cloning and characterization of two putative G protein‐coupled receptors which are highly expressed in the central nervous system publication-title: Brain Research. Molecular Brain Research – volume: 34 start-page: 11929 year: 2014 end-page: 11947 article-title: An RNA‐sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex publication-title: The Journal of Neuroscience – volume: 48 start-page: 10286 year: 2009 end-page: 10297 article-title: GPR37 surface expression enhancement via N‐terminal truncation or protein‐protein interactions publication-title: Biochemistry – ident: e_1_2_6_39_1 doi: 10.1016/S0304-3940(99)00461-9 – ident: e_1_2_6_26_1 doi: 10.1046/j.1471-4159.1996.66052019.x – ident: e_1_2_6_29_1 doi: 10.1016/j.ceca.2017.01.008 – ident: e_1_2_6_24_1 doi: 10.1371/journal.pone.0122513 – ident: e_1_2_6_32_1 doi: 10.1186/1471-2199-11-93 – ident: e_1_2_6_12_1 doi: 10.1016/j.neuroscience.2013.01.007 – ident: e_1_2_6_16_1 doi: 10.1038/sdata.2017.33 – ident: e_1_2_6_28_1 doi: 10.1038/nsmb.3014 – ident: e_1_2_6_34_1 doi: 10.1073/pnas.0703368104 – ident: e_1_2_6_22_1 doi: 10.1002/glia.23198 – ident: e_1_2_6_13_1 doi: 10.3233/JAD-160093 – ident: e_1_2_6_47_1 doi: 10.1016/j.neuron.2015.11.013 – ident: e_1_2_6_25_1 doi: 10.1007/978-1-62703-622-1_4 – ident: e_1_2_6_42_1 doi: 10.1177/1087057113475480 – ident: e_1_2_6_2_1 doi: 10.1038/nature17623 – ident: e_1_2_6_37_1 doi: 10.1038/nchembio.2266 – ident: e_1_2_6_43_1 doi: 10.1016/S1096-7192(02)00114-2 – ident: e_1_2_6_3_1 doi: 10.1038/nrm1197 – ident: e_1_2_6_15_1 doi: 10.1016/0006-8993(84)90358-5 – ident: e_1_2_6_23_1 doi: 10.1016/S0022-2275(20)40540-1 – ident: e_1_2_6_36_1 doi: 10.1073/pnas.1219004110 – ident: e_1_2_6_20_1 doi: 10.1016/j.ejpain.2007.03.008 – ident: e_1_2_6_8_1 doi: 10.1073/pnas.68.11.2757 – ident: e_1_2_6_31_1 doi: 10.1002/glia.23136 – ident: e_1_2_6_4_1 doi: 10.1097/00005072-199906000-00007 – ident: e_1_2_6_33_1 doi: 10.1097/00001756-200006050-00039 – ident: e_1_2_6_9_1 doi: 10.1126/scisignal.aad1089 – ident: e_1_2_6_40_1 doi: 10.1006/bbrc.1994.2558 – ident: e_1_2_6_38_1 doi: 10.1073/pnas.91.20.9593 – ident: e_1_2_6_6_1 doi: 10.1016/j.nbd.2007.02.009 – ident: e_1_2_6_30_1 doi: 10.1016/S0169-328X(99)00092-3 – ident: e_1_2_6_44_1 doi: 10.1007/BF01965545 – ident: e_1_2_6_7_1 doi: 10.1016/j.neuron.2017.06.029 – ident: e_1_2_6_11_1 doi: 10.1021/bi9013775 – ident: e_1_2_6_10_1 doi: 10.1113/expphysiol.2004.029173 – ident: e_1_2_6_46_1 doi: 10.1523/JNEUROSCI.1860-14.2014 – ident: e_1_2_6_18_1 doi: 10.1016/S0304-3940(99)00325-0 – ident: e_1_2_6_35_1 doi: 10.1242/jcs.176115 – ident: e_1_2_6_19_1 doi: 10.1016/S0092-8674(01)00407-X – ident: e_1_2_6_41_1 doi: 10.3389/fphar.2015.00275 – ident: e_1_2_6_17_1 doi: 10.1006/bbrc.1997.7673 – ident: e_1_2_6_21_1 doi: 10.1016/j.pain.2005.11.013 – volume: 19 start-page: 237 year: 1998 ident: e_1_2_6_5_1 article-title: Prosaptide prevents paclitaxel neurotoxicity publication-title: Neurotoxicology contributor: fullname: Campana W. M. – ident: e_1_2_6_45_1 doi: 10.1016/S0304-3940(99)00902-7 – ident: e_1_2_6_14_1 doi: 10.1016/j.nbd.2017.07.006 – ident: e_1_2_6_27_1 doi: 10.1046/j.1471-4159.1996.66052197.x |
SSID | ssj0011497 |
Score | 2.5164568 |
Snippet | Discovery of neuroprotective pathways is one of the major priorities for neuroscience. Astrocytes are natural neuroprotectors and it is likely that brain... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2414 |
SubjectTerms | Adjuvants, Immunologic - pharmacology Animal models Animals Animals, Newborn astrocyte Astrocytes Astrocytes - drug effects astroprotection Brain cAMP Cell Movement - drug effects Cells, Cultured Cerebral Cortex - cytology Colforsin - pharmacology Cyclic AMP - analogs & derivatives Cyclic AMP - metabolism Cyclic AMP - pharmacology Drug development Embryo, Mammalian GPR37 GPR37L1 HEK293 Cells Humans L-Lactate Dehydrogenase - metabolism Nerve Growth Factors - pharmacology Nervous system Neurons - drug effects Neuroprotection Neuroprotective Agents - chemistry Neuroprotective Agents - pharmacology orphan receptors Oxidative stress PKA prosaptide Protein kinase A Proteins Rats Rats, Wistar Receptors Receptors, G-Protein-Coupled - genetics Receptors, G-Protein-Coupled - metabolism RNA Interference - physiology Saposin C Saposins - chemistry Saposins - metabolism Water - pharmacology Wounds and Injuries - drug therapy |
Title | Glio‐ and neuro‐protection by prosaposin is mediated by orphan G‐protein coupled receptors GPR37L1 and GPR37 |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fglia.23480 https://www.ncbi.nlm.nih.gov/pubmed/30260505 https://www.proquest.com/docview/2139612820 https://search.proquest.com/docview/2113271035 https://pubmed.ncbi.nlm.nih.gov/PMC6492175 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS-QwFL2Ivviy7Kq7W1cl4rIPC12n-Wgb8GXwY1RkEdmBeStJmurAmA4zzoNv-xP2N_pLvEln6g6C4EtJSUJKTm9ybnJzAvA9T0vOSnRyuK5EzJkRsayyKrY2yVJtmJ-ifLTF7_S8zy8HYrACR4uzMI0-RLvg5i0jjNfewJWeHr6Iht6OhuoXZTxHh33NS8Z45XzKr9s9BOT-jc6n5DGmk1aclB6-1F2ejl5xzNehkv9T2DAHnX2ED3PySLoN2p9gxboN2Ow6dJzvH8kPEsI5wzr5Jkx6o2H99PcfUa4kQbUSX-aqDIgF0Y8E36bKR205MpyScIYE-afPqbH3lSO9RRUsYerZeIS5OELasb-ih_Sub1h2lYQGQnoL-menf47P4_kFC7ERPqxTaZoYJUWukehpIbXKqNA0t1VmEp0KU2mrkqSywgpqMqQLJeUpM9KUklsp2GdYdbWzX4Eomto8Zzk1aQcRL6XoYB00eIl8sFOWERws-rkYNzoaRaOYTAuPRhHQiGBnAUExt6VpQZGkIg9DqhLBfpuNVuC3NpSz9cyXQa8ayRITEXxpEGubYV42DYleBNkSlm0Br7C9nOOGd0FpO-USXTas-TOg_saXF72ri25Ibb-n8DdYRwaWN4cbd2D1YTKzu8hyHvRe-JnxeXJDnwG4evuh |
link.rule.ids | 230,315,783,787,888,1378,11574,27936,27937,46064,46306,46488,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZQe4ALLZSfQAEjEAekbDf-SeLjCuhuYalQ1Uq9Rbbj0FW3zqq7eygnHoFn5EmYcbIpSyUkuNmyR0nsGfsbZ_wNIa_ztBS8BCdHmErGglsZqyqrYueSLDWW4xaF0RaH6ehEfDyVp21sDt6FafghugM3tIywXqOB44H03jVr6NfpRPcYFzl47Jtg7xwzN7w_6tijAOmrhuhTiRjKScdOyvauZdf3oxsg82as5O8YNmxC-1tNptV54C7E2JPz3nJhevbbH8yO__192-RuC0_poNGne-SW8_fJzsCDa35xRd_QEDAaTuJ3yOVwOql_fv9BtS9p4MWESsv7ALNNzRWF2lxjXJinkzkNt1QA4WJLDfOrPR2uRKCHrZezKbTCGuxmmASIDr8c8WychAeE8gNysv_h-N0oblM4xFZi4Kg2LLFaydwAlDRSGZ0xaVjuqswmJpW2Mk4nSeWkk8xmAEhKJlJulS2VcEryh2TD1949JlSz1OU5z5lN-6BTpZJ9kIElRQHi7JdlRF6tJrKYNUwdRcPJzAocyiIMZUR2V3NctNY6LxjAYEB6AIYi8rJrBjvDnyfau3qJfcBvBzjGZUQeNSrRPYYjMRtAyYhka8rSdUAO7_UWPzkLXN6pUOAUguTboAt_efNiOD4YhNKTf-n8gtweHX8eF-ODw09PyR3Ae3lzlXKXbCwul-4ZYKqFeR4s5xfWRR9F |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VRUJcKFB-AgWMQByQst34J4mlXlbAbgurqqqo1AuKbMehKxZn1d09lBOPwDPyJB07m5SlEhLcbNmWHc-M_Y0z_gzwKk9Lzkp0criuRMyZEbGssiq2NslSbZjfony0xWG6f8I_nIrTDdhr78I0_BDdgZu3jLBeewOfldXuFWnol-lE9SjjOTrsN3iK0NdDouOOPAqBvmx4PiWPMZ105KR096rt-nZ0DWNeD5X8HcKGPWi4BZ_b0TehJ197y4Xume9_EDv-7-fdgdsrcEoGjTbdhQ3r7sH2wKFj_u2CvCYhXDScw2_D-Wg6qX_9-EmUK0lgxcTMivUBZU30BcHcXPmoMEcmcxLuqCC-9SU1Slc5MmqbYA1TL2dTLMUV2M78E0BkdHTMsnESOgjp-3AyfP_p7X68esAhNsKHjSpNE6OkyDUCSS2kVhkVmua2ykyiU2EqbVWSVFZYQU2GcKSkKEkjTSm5lYI9gE1XO_sIiKKpzXOWU5P2UaNKKfrYBhcUiXizX5YRvGzlWMwano6iYWSmhZ_KIkxlBDutiIuVrc4LiiAYcR5CoQhedMVoZf7XiXK2Xvo66LUjGGMigoeNRnTdME_LhkAygmxNV7oKnsF7vcRNzgKTd8oluoTY8k1Qhb-MvBiNDwYh9fhfKj-Hm0fvhsX44PDjE7iFYC9v7lHuwObifGmfIqBa6GfBbi4Bbzkd9A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glio%E2%80%90+and+neuro%E2%80%90protection+by+prosaposin+is+mediated+by+orphan+G%E2%80%90protein+coupled+receptors+GPR37L1+and+GPR37&rft.jtitle=Glia&rft.au=Liu%2C+Beihui&rft.au=Mosienko%2C+Valentina&rft.au=Barbara+Vaccari+Cardoso&rft.au=Prokudina%2C+Daria&rft.date=2018-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0894-1491&rft.eissn=1098-1136&rft.volume=66&rft.issue=11&rft.spage=2414&rft.epage=2426&rft_id=info:doi/10.1002%2Fglia.23480&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1491&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1491&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1491&client=summon |