Initial findings in traumatic peripheral nerve injury and repair with diffusion tensor imaging
Objective Management of peripheral nerve injuries requires physicians to rely on qualitative measures from patient history, electromyography, and physical exam. Determining a successful nerve repair can take months to years for proximal injuries, and the resulting delays in clinical decision‐making...
Saved in:
Published in | Annals of clinical and translational neurology Vol. 8; no. 2; pp. 332 - 347 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.02.2021
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Objective
Management of peripheral nerve injuries requires physicians to rely on qualitative measures from patient history, electromyography, and physical exam. Determining a successful nerve repair can take months to years for proximal injuries, and the resulting delays in clinical decision‐making can lead to a negative impact on patient outcomes. Early identification of a failed nerve repair could prevent permanent muscle atrophy and loss of function. This study aims to test the feasibility of performing diffusion tensor imaging (DTI) to evaluate injury and recovery following repair of wrist trauma. We hypothesize that DTI provides a noninvasive and reliable assessment of regeneration, which may improve clinical decision‐making and alter the clinical course of surgical interventions.
Methods
Clinical and MRI measurements from subjects with traumatic peripheral nerve injury, carpal tunnel syndrome, and healthy control subjects were compared to evaluate the relationship between DTI metrics and injury severity.
Results
Fractional anisotropy from DTI was sensitive to differences between damaged and healthy nerves, damaged and compressed nerves, and injured and healthy contralateral nerves. Longitudinal measurements in two injury subjects also related to clinical outcomes. Implications of other diffusion measures are also discussed.
Interpretation
DTI is a sensitive tool for wrist nerve injuries and can be utilized for monitoring nerve recovery. Across three subjects with nerve injuries, this study has shown how DTI can detect abnormalities between injured and healthy nerves, measure recovery, and determine if re‐operation was successful. Additional comparisons to carpal tunnel syndrome and healthy nerves show that DTI is sensitive to the degree of impairment. |
---|---|
Bibliography: | This research was supported by grants from the National Institute of Health/National Institute of Neurological Disease and Stroke R01 NS097821 (RDD) and Department of Defense W81XWH‐15‐JPC‐8/CRMRP‐NMSIRA, MR150075 (WPT). Funding Information ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Case Study-2 ObjectType-Feature-4 content type line 23 ObjectType-Report-1 ObjectType-Article-3 These authors supervised this work equally |
ISSN: | 2328-9503 2328-9503 |
DOI: | 10.1002/acn3.51270 |