Neurophysiological Investigation of Spontaneous Correlated and Anticorrelated Fluctuations of the BOLD Signal
Analyses of intrinsic fMRI BOLD signal fluctuations reliably reveal correlated and anticorrelated functional networks in the brain. Because the BOLD signal is an indirect measure of neuronal activity and anticorrelations can be introduced by preprocessing steps, such as global signal regression, the...
Saved in:
Published in | The Journal of neuroscience Vol. 33; no. 15; pp. 6333 - 6342 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society for Neuroscience
10.04.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Analyses of intrinsic fMRI BOLD signal fluctuations reliably reveal correlated and anticorrelated functional networks in the brain. Because the BOLD signal is an indirect measure of neuronal activity and anticorrelations can be introduced by preprocessing steps, such as global signal regression, the neurophysiological significance of correlated and anticorrelated BOLD fluctuations is a source of debate. Here, we address this question by examining the correspondence between the spatial organization of correlated BOLD fluctuations and correlated fluctuations in electrophysiological high γ power signals recorded directly from the cortical surface of 5 patients. We demonstrate that both positive and negative BOLD correlations have neurophysiological correlates reflected in fluctuations of spontaneous neuronal activity. Although applying global signal regression to BOLD signals results in some BOLD anticorrelations that are not apparent in the ECoG data, it enhances the neuronal-hemodynamic correspondence overall. Together, these findings provide support for the neurophysiological fidelity of BOLD correlations and anticorrelations. |
---|---|
AbstractList | Analyses of intrinsic fMRI BOLD signal fluctuations reliably reveal correlated and anticorrelated functional networks in the brain. Because the BOLD signal is an indirect measure of neuronal activity and anticorrelations can be introduced by preprocessing steps, such as global signal regression, the neurophysiological significance of correlated and anticorrelated BOLD fluctuations is a source of debate. Here, we address this question by examining the correspondence between the spatial organization of correlated BOLD fluctuations and correlated fluctuations in electrophysiological high γ power signals recorded directly from the cortical surface of 5 patients. We demonstrate that both positive and negative BOLD correlations have neurophysiological correlates reflected in fluctuations of spontaneous neuronal activity. Although applying global signal regression to BOLD signals results in some BOLD anticorrelations that are not apparent in the ECoG data, it enhances the neuronal-hemodynamic correspondence overall. Together, these findings provide support for the neurophysiological fidelity of BOLD correlations and anticorrelations. Analyses of intrinsic fMRI BOLD signal fluctuations reliably reveal correlated and anticorrelated functional networks in the brain. Because the BOLD signal is an indirect measure of neuronal activity and anticorrelations can be introduced by preprocessing steps, such as global signal regression, the neurophysiological significance of correlated and anticorrelated BOLD fluctuations is a source of debate. Here, we address this question by examining the correspondence between the spatial organization of correlated BOLD fluctuations and correlated fluctuations in electrophysiological high γ power signals recorded directly from the cortical surface of 5 patients. We demonstrate that both positive and negative BOLD correlations have neurophysiological correlates reflected in fluctuations of spontaneous neuronal activity. Although applying global signal regression to BOLD signals results in some BOLD anticorrelations that are not apparent in the ECoG data, it enhances the neuronal-hemodynamic correspondence overall. Together, these findings provide support for the neurophysiological fidelity of BOLD correlations and anticorrelations.Analyses of intrinsic fMRI BOLD signal fluctuations reliably reveal correlated and anticorrelated functional networks in the brain. Because the BOLD signal is an indirect measure of neuronal activity and anticorrelations can be introduced by preprocessing steps, such as global signal regression, the neurophysiological significance of correlated and anticorrelated BOLD fluctuations is a source of debate. Here, we address this question by examining the correspondence between the spatial organization of correlated BOLD fluctuations and correlated fluctuations in electrophysiological high γ power signals recorded directly from the cortical surface of 5 patients. We demonstrate that both positive and negative BOLD correlations have neurophysiological correlates reflected in fluctuations of spontaneous neuronal activity. Although applying global signal regression to BOLD signals results in some BOLD anticorrelations that are not apparent in the ECoG data, it enhances the neuronal-hemodynamic correspondence overall. Together, these findings provide support for the neurophysiological fidelity of BOLD correlations and anticorrelations. Analyses of intrinsic fMRI BOLD signal fluctuations reliably reveal correlated and anticorrelated functional networks in the brain. Because the BOLD signal is an indirect measure of neuronal activity and anticorrelations can be introduced by preprocessing steps, such as global signal regression, the neurophysiological significance of correlated and anticorrelated BOLD fluctuations is a source of debate. Here, we address this question by examining the correspondence between the spatial organization of correlated BOLD fluctuations and correlated fluctuations in electrophysiological high gamma power signals recorded directly from the cortical surface of 5 patients. We demonstrate that both positive and negative BOLD correlations have neurophysiological correlates reflected in fluctuations of spontaneous neuronal activity. Although applying global signal regression to BOLD signals results in some BOLD anticorrelations that are not apparent in the ECoG data, it enhances the neuronal-hemodynamic correspondence overall. Together, these findings provide support for the neurophysiological fidelity of BOLD correlations and anticorrelations. |
Author | Entz, Laszlo Craddock, R. Cameron Bickel, Stephan Milham, Michael Keller, Corey J. Kelly, Clare Mehta, Ashesh D. Groppe, David M. Lado, Fred A. Honey, Christopher J. |
Author_xml | – sequence: 1 givenname: Corey J. surname: Keller fullname: Keller, Corey J. – sequence: 2 givenname: Stephan surname: Bickel fullname: Bickel, Stephan – sequence: 3 givenname: Christopher J. surname: Honey fullname: Honey, Christopher J. – sequence: 4 givenname: David M. surname: Groppe fullname: Groppe, David M. – sequence: 5 givenname: Laszlo surname: Entz fullname: Entz, Laszlo – sequence: 6 givenname: R. Cameron surname: Craddock fullname: Craddock, R. Cameron – sequence: 7 givenname: Fred A. surname: Lado fullname: Lado, Fred A. – sequence: 8 givenname: Clare surname: Kelly fullname: Kelly, Clare – sequence: 9 givenname: Michael surname: Milham fullname: Milham, Michael – sequence: 10 givenname: Ashesh D. surname: Mehta fullname: Mehta, Ashesh D. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23575832$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUU1PGzEUtBAVJCl_Ae2xlw3-WK93papSGkibKiJSA2fLa3sTV46d2l4k_j0bArRwyelJfjPzxjNDcOq80wBcIjhGFJOrX7c397-Xq-l8XFSE5QiPMUTkBAz6bZ3jAqJTMICYwbwsWHEOhjH-gRAyiNgZOMeEMloRPADbW90Fv9s8RuOtXxspbDZ3DzomsxbJeJf5NlvtvEvCad_FbOpD0FYkrTLhVDZxych_TzPbydQ9E-OemTY6-75cXGcrs3bCfgafWmGjvniZI3A_u7mb_swXyx_z6WSRS4pIytu2FbQQuJC9S0SQYrKCjWKI1kyVUJU1pVTVlS4qjLDCjApRNZI0lWggloSMwLeD7q5rtlpJ7VIQlu-C2YrwyL0w_P3GmQ1f-wdOSooxZb3AlxeB4P92fRp8a6LU1h5S4IhSVBJECTwOJZTUdVX0PxuBy_9tvfl5raMHfD0AZPAxBt1yadJzmr1LYzmCfN8-f2uf79vnCPN9-z29_EB_vXCE-ATxzbbP |
CitedBy_id | crossref_primary_10_1002_brb3_863 crossref_primary_10_1073_pnas_2113887118 crossref_primary_10_1007_s11682_018_0004_0 crossref_primary_10_1016_j_neuroimage_2016_06_036 crossref_primary_10_1038_s42003_021_02497_0 crossref_primary_10_1002_hbm_23099 crossref_primary_10_1016_j_dcn_2021_100928 crossref_primary_10_1177_1545968318818902 crossref_primary_10_1523_JNEUROSCI_0217_18_2018 crossref_primary_10_1523_JNEUROSCI_0492_14_2014 crossref_primary_10_1016_j_neuroimage_2017_01_054 crossref_primary_10_1016_j_pscychresns_2018_06_004 crossref_primary_10_1136_jnnp_2013_307127 crossref_primary_10_1089_brain_2015_0362 crossref_primary_10_7554_eLife_62324 crossref_primary_10_1016_j_bpsc_2019_12_020 crossref_primary_10_1016_j_neuroimage_2017_07_001 crossref_primary_10_1016_j_jneumeth_2018_07_001 crossref_primary_10_1016_j_neuron_2013_09_038 crossref_primary_10_1016_j_neuroimage_2015_03_062 crossref_primary_10_1016_j_neuroimage_2020_116896 crossref_primary_10_1016_j_neuroimage_2013_05_079 crossref_primary_10_1155_2022_6197505 crossref_primary_10_1016_j_neuroimage_2014_02_014 crossref_primary_10_1002_hbm_22675 crossref_primary_10_1016_j_neuroimage_2013_08_048 crossref_primary_10_1093_scan_nst185 crossref_primary_10_1093_sleep_zsy108 crossref_primary_10_1162_jocn_a_00517 crossref_primary_10_1089_brain_2014_0236 crossref_primary_10_1089_brain_2014_0244 crossref_primary_10_5692_clinicalneurol_54_1139 crossref_primary_10_1016_j_neuroimage_2018_05_005 crossref_primary_10_1162_netn_a_00037 crossref_primary_10_1523_JNEUROSCI_0579_23_2023 crossref_primary_10_3389_fnins_2015_00044 crossref_primary_10_1016_j_jad_2024_08_120 crossref_primary_10_1162_netn_a_00034 crossref_primary_10_7717_peerj_367 crossref_primary_10_1038_s41467_019_14166_2 crossref_primary_10_1038_s41598_020_60406_7 crossref_primary_10_1016_j_neuroimage_2017_09_010 crossref_primary_10_1016_j_pscychresns_2024_111846 crossref_primary_10_7554_eLife_95680_3 crossref_primary_10_1038_s44220_023_00046_8 crossref_primary_10_1371_journal_pone_0118143 crossref_primary_10_1016_j_bpsc_2017_09_010 crossref_primary_10_1152_jn_00850_2014 crossref_primary_10_1038_s41467_024_51839_z crossref_primary_10_1038_s43587_021_00125_4 crossref_primary_10_1016_j_neuroimage_2015_06_022 crossref_primary_10_1016_j_neuroimage_2016_08_037 crossref_primary_10_1002_wsbm_1348 crossref_primary_10_1016_j_neuroimage_2017_03_045 crossref_primary_10_1016_j_dcn_2015_08_003 crossref_primary_10_1016_j_tics_2018_02_002 crossref_primary_10_1093_cercor_bhy201 crossref_primary_10_1523_JNEUROSCI_0079_18_2018 crossref_primary_10_1016_j_neuroimage_2015_12_043 crossref_primary_10_1089_brain_2014_0250 crossref_primary_10_1089_brain_2013_0168 crossref_primary_10_1007_s00787_025_02651_7 crossref_primary_10_1007_s11065_014_9252_y crossref_primary_10_1016_j_neuroimage_2013_07_057 crossref_primary_10_1038_srep23639 crossref_primary_10_1016_j_neuroimage_2020_116998 crossref_primary_10_1016_j_bbr_2025_115459 crossref_primary_10_1177_1362361319888104 crossref_primary_10_1016_j_neuroimage_2017_02_036 crossref_primary_10_1016_j_neuroimage_2018_02_036 crossref_primary_10_1093_cercor_bhw139 crossref_primary_10_1093_cercor_bhx107 crossref_primary_10_1016_j_cub_2014_08_024 crossref_primary_10_1002_hbm_22850 crossref_primary_10_1002_hbm_23543 crossref_primary_10_1016_j_neuroimage_2013_04_083 crossref_primary_10_1038_s41598_018_26317_4 crossref_primary_10_1038_srep39906 crossref_primary_10_1093_cercor_bhab144 crossref_primary_10_1016_j_neuroimage_2017_11_030 crossref_primary_10_1093_brain_awae199 crossref_primary_10_3171_2018_4_JNS172588 crossref_primary_10_1016_j_neuroimage_2016_03_033 crossref_primary_10_1109_TMI_2024_3351907 crossref_primary_10_1016_j_nicl_2014_05_004 crossref_primary_10_1523_ENEURO_0163_16_2016 crossref_primary_10_1523_JNEUROSCI_0598_16_2016 crossref_primary_10_1016_j_cortex_2018_05_004 crossref_primary_10_1038_s41593_018_0108_2 crossref_primary_10_1016_j_neuron_2014_09_007 crossref_primary_10_1089_brain_2018_0596 crossref_primary_10_1016_j_neuroimage_2014_09_058 crossref_primary_10_1073_pnas_2105031118 crossref_primary_10_1016_j_neuroimage_2021_118788 crossref_primary_10_3389_fnsys_2016_00007 crossref_primary_10_1089_brain_2013_0210 crossref_primary_10_1002_hbm_23499 crossref_primary_10_1016_j_dib_2018_08_198 crossref_primary_10_1016_j_neuroimage_2015_02_061 crossref_primary_10_1016_j_neuroimage_2017_03_023 crossref_primary_10_1016_S1474_4422_15_00093_9 crossref_primary_10_1038_nrn_2016_113 crossref_primary_10_1002_hbm_23693 crossref_primary_10_1523_JNEUROSCI_0741_16_2016 crossref_primary_10_1002_mp_13522 crossref_primary_10_1162_netn_a_00244 crossref_primary_10_1007_s00429_015_1069_9 crossref_primary_10_3389_fnagi_2018_00107 crossref_primary_10_1002_wcs_1553 crossref_primary_10_1016_j_tics_2013_09_014 crossref_primary_10_1007_s10548_018_0692_1 crossref_primary_10_3389_fnagi_2016_00330 crossref_primary_10_1016_j_neuron_2017_10_012 crossref_primary_10_1016_j_neuroimage_2021_117781 crossref_primary_10_3934_Neuroscience_2020005 crossref_primary_10_1016_j_dcn_2014_12_005 crossref_primary_10_1093_cercor_bhad351 crossref_primary_10_1093_cercor_bhab175 crossref_primary_10_1371_journal_pone_0071163 crossref_primary_10_1002_hbm_24892 crossref_primary_10_1523_JNEUROSCI_4229_13_2014 crossref_primary_10_3171_2018_2_PEDS17549 crossref_primary_10_1016_j_neuroimage_2016_09_038 crossref_primary_10_1162_netn_a_00114 crossref_primary_10_1007_s11547_024_01776_0 crossref_primary_10_1002_jnr_24669 crossref_primary_10_1016_j_clinph_2014_09_009 crossref_primary_10_7554_eLife_95680 crossref_primary_10_1007_s10072_020_04737_3 crossref_primary_10_1016_j_neuroimage_2013_09_050 crossref_primary_10_1016_j_nicl_2020_102188 crossref_primary_10_1038_srep07376 crossref_primary_10_1093_braincomms_fcad069 crossref_primary_10_1073_pnas_1608434113 crossref_primary_10_1002_hbm_23037 crossref_primary_10_1002_hbm_22900 crossref_primary_10_1016_j_pscychresns_2017_05_003 crossref_primary_10_1007_s11682_016_9527_4 crossref_primary_10_1093_texcom_tgad015 crossref_primary_10_1016_j_nicl_2015_08_004 crossref_primary_10_1002_brb3_286 crossref_primary_10_3389_fnhum_2016_00311 crossref_primary_10_1016_j_neuroimage_2017_07_061 crossref_primary_10_1016_j_neuron_2020_07_020 crossref_primary_10_1177_0271678X15615133 crossref_primary_10_1016_j_neuroimage_2015_07_021 crossref_primary_10_1111_nyas_12360 crossref_primary_10_1038_s41598_017_05425_7 crossref_primary_10_1162_jocn_a_00533 crossref_primary_10_1007_s00429_024_02847_8 crossref_primary_10_1007_s11682_018_9869_1 crossref_primary_10_1016_j_neuroimage_2021_118459 crossref_primary_10_1038_s41598_021_93190_z crossref_primary_10_1073_pnas_1405003111 crossref_primary_10_1016_j_neuroimage_2017_09_063 crossref_primary_10_1016_j_neuroimage_2014_11_034 crossref_primary_10_1093_cercor_bhv007 crossref_primary_10_1016_j_clinph_2019_04_008 crossref_primary_10_1016_j_bbr_2015_08_014 crossref_primary_10_1016_j_neuroimage_2020_117001 crossref_primary_10_1016_j_pscychresns_2015_03_003 crossref_primary_10_1523_JNEUROSCI_2785_20_2021 crossref_primary_10_1093_cercor_bhac044 crossref_primary_10_1093_cercor_bhy114 crossref_primary_10_1016_j_neuroimage_2016_11_052 crossref_primary_10_1016_j_neuroimage_2017_05_004 crossref_primary_10_1162_jocn_a_01470 crossref_primary_10_1016_j_neuroimage_2021_118466 crossref_primary_10_1016_j_neuron_2015_03_018 crossref_primary_10_1016_j_nicl_2023_103351 crossref_primary_10_1016_j_neuroimage_2019_04_016 crossref_primary_10_1016_j_neuroimage_2021_118104 crossref_primary_10_1007_s11682_017_9715_x crossref_primary_10_1016_j_medp_2024_100048 crossref_primary_10_1016_j_neuroimage_2016_08_018 crossref_primary_10_1016_j_mri_2019_01_009 crossref_primary_10_1093_cercor_bhaa143 crossref_primary_10_1038_s41467_018_06876_w crossref_primary_10_1038_s42003_024_06732_2 crossref_primary_10_1136_svn_2017_000080 crossref_primary_10_1016_j_neuroimage_2016_12_018 |
Cites_doi | 10.1523/JNEUROSCI.1457-11.2011 10.1093/biomet/93.3.491 10.1073/pnas.0913110107 10.1214/ss/1063994977 10.1016/j.biopsych.2012.04.028 10.1523/JNEUROSCI.6401-09.2010 10.1002/hbm.20323 10.1016/j.neuroimage.2011.08.009 10.1073/pnas.1121329109 10.1016/j.neuroimage.2011.11.046 10.1073/pnas.0902071106 10.1016/j.neuroimage.2004.07.051 10.1016/j.neuroimage.2010.08.063 10.1073/pnas.0705843104 10.1016/j.neuroimage.2011.10.059 10.1016/j.neuroimage.2008.09.036 10.1016/j.neuroimage.2005.12.057 10.1523/JNEUROSCI.17-11-04302.1997 10.1016/j.neuroimage.2007.08.008 10.1016/j.neuroimage.2011.08.048 10.1016/j.eplepsyres.2009.12.001 10.1152/jn.90777.2008 10.1093/cercor/bhi016 10.2307/2171849 10.1073/pnas.0807010105 10.1089/brain.2012.0080 10.1016/j.neuroimage.2007.04.042 10.1523/JNEUROSCI.0810-09.2009 10.1016/j.neuroimage.2004.07.027 10.1016/j.neuroimage.2011.07.044 10.1073/pnas.0905267106 10.1016/j.mri.2009.02.004 10.1016/j.neuroimage.2010.05.073 10.1016/j.neuron.2012.08.011 10.1162/jocn_a_00077 10.1523/JNEUROSCI.0877-12.2012 10.1006/cbmr.1996.0014 10.1016/j.neuroimage.2011.10.018 10.1093/cercor/bhs010 10.1016/j.neuron.2012.03.031 10.1212/WNL.57.11.2045 10.1002/hbm.20577 10.1016/j.neubiorev.2008.09.002 10.1016/j.neuroimage.2009.05.012 10.1006/nimg.1998.0395 10.1073/pnas.0135058100 10.1098/rstb.2002.1114 10.1016/j.neuroimage.2009.04.048 10.1126/science.1110913 10.1111/j.2517-6161.1995.tb02031.x 10.1073/pnas.0811168106 10.1016/j.neuroimage.2009.05.005 10.2307/2529826 10.1016/j.neuroimage.2003.11.025 10.1073/pnas.1019750108 10.1038/35084005 10.1093/cercor/bhn256 10.1523/JNEUROSCI.3886-06.2007 10.1523/JNEUROSCI.4867-08.2009 10.1073/pnas.0504136102 10.1038/nn.2177 10.1523/JNEUROSCI.2483-11.2011 10.1093/brain/awr223 10.1126/science.1154735 10.1523/JNEUROSCI.2041-09.2009 |
ContentType | Journal Article |
Copyright | Copyright © 2013 the authors 0270-6474/13/336333-10$15.00/0 2013 |
Copyright_xml | – notice: Copyright © 2013 the authors 0270-6474/13/336333-10$15.00/0 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.1523/JNEUROSCI.4837-12.2013 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | CrossRef MEDLINE - Academic Neurosciences Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 6342 |
ExternalDocumentID | PMC3652257 23575832 10_1523_JNEUROSCI_4837_12_2013 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: F31NS080357-01 – fundername: NINDS NIH HHS grantid: F31 NS080357 – fundername: NIGMS NIH HHS grantid: T32 GM007288 – fundername: NIGMS NIH HHS grantid: T32-GM007288 |
GroupedDBID | --- -DZ -~X .55 18M 2WC 34G 39C 53G 5GY 5RE 5VS AAFWJ AAJMC AAYXX ABBAR ABIVO ACGUR ACNCT ADBBV ADCOW ADHGD AENEX AETEA AFCFT AFOSN AFSQR AHWXS ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 HYE H~9 KQ8 L7B MVM OK1 P0W P2P QZG R.V RHI RPM TFN TR2 W8F WH7 WOQ X7M XJT YBU YHG YKV YNH YSK CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c513t-fffa54a24c758131d7c80bd71597d60d69555d98e48212d275aa8bc3b8ab02c33 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 14:07:33 EDT 2025 Thu Jul 10 18:53:50 EDT 2025 Fri Jul 11 12:43:52 EDT 2025 Thu Apr 03 07:03:11 EDT 2025 Tue Jul 01 03:46:58 EDT 2025 Thu Apr 24 23:12:01 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c513t-fffa54a24c758131d7c80bd71597d60d69555d98e48212d275aa8bc3b8ab02c33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: C.J.K., S.B., and A.D.M. designed research; C.J.K. and D.M.G. performed research; C.J.K. and C.J.H. analyzed data; C.J.K., S.B., C.J.H., D.M.G., L.E., R.C.C., F.A.L., C.K., M.M., and A.D.M. wrote the paper. |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/33/15/6333.full.pdf |
PMID | 23575832 |
PQID | 1353998451 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3652257 proquest_miscellaneous_1551631530 proquest_miscellaneous_1353998451 pubmed_primary_23575832 crossref_citationtrail_10_1523_JNEUROSCI_4837_12_2013 crossref_primary_10_1523_JNEUROSCI_4837_12_2013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-04-10 2013-Apr-10 20130410 |
PublicationDateYYYYMMDD | 2013-04-10 |
PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2013 |
Publisher | Society for Neuroscience |
Publisher_xml | – name: Society for Neuroscience |
References | 2023041304031936000_33.15.6333.9 2023041304031936000_33.15.6333.41 2023041304031936000_33.15.6333.42 2023041304031936000_33.15.6333.7 2023041304031936000_33.15.6333.43 2023041304031936000_33.15.6333.8 2023041304031936000_33.15.6333.44 2023041304031936000_33.15.6333.40 2023041304031936000_33.15.6333.1 2023041304031936000_33.15.6333.5 2023041304031936000_33.15.6333.6 2023041304031936000_33.15.6333.3 2023041304031936000_33.15.6333.4 2023041304031936000_33.15.6333.49 2023041304031936000_33.15.6333.45 2023041304031936000_33.15.6333.46 2023041304031936000_33.15.6333.47 2023041304031936000_33.15.6333.48 2023041304031936000_33.15.6333.52 2023041304031936000_33.15.6333.53 2023041304031936000_33.15.6333.10 2023041304031936000_33.15.6333.54 2023041304031936000_33.15.6333.11 2023041304031936000_33.15.6333.55 2023041304031936000_33.15.6333.50 2023041304031936000_33.15.6333.51 Kanwisher (2023041304031936000_33.15.6333.29) 1997; 17 2023041304031936000_33.15.6333.16 2023041304031936000_33.15.6333.17 2023041304031936000_33.15.6333.18 2023041304031936000_33.15.6333.19 2023041304031936000_33.15.6333.12 2023041304031936000_33.15.6333.56 2023041304031936000_33.15.6333.13 2023041304031936000_33.15.6333.57 2023041304031936000_33.15.6333.14 2023041304031936000_33.15.6333.58 2023041304031936000_33.15.6333.15 2023041304031936000_33.15.6333.59 2023041304031936000_33.15.6333.63 2023041304031936000_33.15.6333.20 2023041304031936000_33.15.6333.64 2023041304031936000_33.15.6333.21 2023041304031936000_33.15.6333.65 2023041304031936000_33.15.6333.22 2023041304031936000_33.15.6333.66 2023041304031936000_33.15.6333.60 2023041304031936000_33.15.6333.61 2023041304031936000_33.15.6333.62 Benjamini (2023041304031936000_33.15.6333.2) 1995; 57 2023041304031936000_33.15.6333.27 2023041304031936000_33.15.6333.28 2023041304031936000_33.15.6333.23 2023041304031936000_33.15.6333.24 2023041304031936000_33.15.6333.25 2023041304031936000_33.15.6333.26 2023041304031936000_33.15.6333.30 2023041304031936000_33.15.6333.31 2023041304031936000_33.15.6333.32 2023041304031936000_33.15.6333.33 2023041304031936000_33.15.6333.38 2023041304031936000_33.15.6333.39 2023041304031936000_33.15.6333.34 2023041304031936000_33.15.6333.35 2023041304031936000_33.15.6333.36 2023041304031936000_33.15.6333.37 |
References_xml | – ident: 2023041304031936000_33.15.6333.11 doi: 10.1523/JNEUROSCI.1457-11.2011 – ident: 2023041304031936000_33.15.6333.3 doi: 10.1093/biomet/93.3.491 – ident: 2023041304031936000_33.15.6333.57 doi: 10.1073/pnas.0913110107 – ident: 2023041304031936000_33.15.6333.51 doi: 10.1214/ss/1063994977 – ident: 2023041304031936000_33.15.6333.22 doi: 10.1016/j.biopsych.2012.04.028 – ident: 2023041304031936000_33.15.6333.44 doi: 10.1523/JNEUROSCI.6401-09.2010 – ident: 2023041304031936000_33.15.6333.35 doi: 10.1002/hbm.20323 – ident: 2023041304031936000_33.15.6333.37 doi: 10.1016/j.neuroimage.2011.08.009 – ident: 2023041304031936000_33.15.6333.19 – ident: 2023041304031936000_33.15.6333.62 doi: 10.1073/pnas.1121329109 – ident: 2023041304031936000_33.15.6333.17 doi: 10.1016/j.neuroimage.2011.11.046 – ident: 2023041304031936000_33.15.6333.46 doi: 10.1073/pnas.0902071106 – ident: 2023041304031936000_33.15.6333.59 doi: 10.1016/j.neuroimage.2004.07.051 – ident: 2023041304031936000_33.15.6333.61 doi: 10.1016/j.neuroimage.2010.08.063 – ident: 2023041304031936000_33.15.6333.18 doi: 10.1073/pnas.0705843104 – ident: 2023041304031936000_33.15.6333.36 doi: 10.1016/j.neuroimage.2011.10.059 – ident: 2023041304031936000_33.15.6333.48 doi: 10.1016/j.neuroimage.2008.09.036 – ident: 2023041304031936000_33.15.6333.41 doi: 10.1016/j.neuroimage.2005.12.057 – volume: 17 start-page: 4302 year: 1997 ident: 2023041304031936000_33.15.6333.29 article-title: The fusiform face area: a module in human extrastriate cortex specialized for face perception publication-title: J Neurosci doi: 10.1523/JNEUROSCI.17-11-04302.1997 – ident: 2023041304031936000_33.15.6333.31 doi: 10.1016/j.neuroimage.2007.08.008 – ident: 2023041304031936000_33.15.6333.8 doi: 10.1016/j.neuroimage.2011.08.048 – ident: 2023041304031936000_33.15.6333.42 doi: 10.1016/j.eplepsyres.2009.12.001 – ident: 2023041304031936000_33.15.6333.21 doi: 10.1152/jn.90777.2008 – ident: 2023041304031936000_33.15.6333.56 doi: 10.1093/cercor/bhi016 – ident: 2023041304031936000_33.15.6333.25 doi: 10.2307/2171849 – ident: 2023041304031936000_33.15.6333.26 doi: 10.1073/pnas.0807010105 – ident: 2023041304031936000_33.15.6333.55 doi: 10.1089/brain.2012.0080 – ident: 2023041304031936000_33.15.6333.1 doi: 10.1016/j.neuroimage.2007.04.042 – ident: 2023041304031936000_33.15.6333.32 doi: 10.1523/JNEUROSCI.0810-09.2009 – ident: 2023041304031936000_33.15.6333.16 doi: 10.1016/j.neuroimage.2004.07.027 – ident: 2023041304031936000_33.15.6333.63 doi: 10.1016/j.neuroimage.2011.07.044 – ident: 2023041304031936000_33.15.6333.60 doi: 10.1073/pnas.0905267106 – ident: 2023041304031936000_33.15.6333.4 doi: 10.1016/j.mri.2009.02.004 – ident: 2023041304031936000_33.15.6333.23 doi: 10.1016/j.neuroimage.2010.05.073 – ident: 2023041304031936000_33.15.6333.28 doi: 10.1016/j.neuron.2012.08.011 – ident: 2023041304031936000_33.15.6333.33 doi: 10.1162/jocn_a_00077 – ident: 2023041304031936000_33.15.6333.54 doi: 10.1523/JNEUROSCI.0877-12.2012 – ident: 2023041304031936000_33.15.6333.12 doi: 10.1006/cbmr.1996.0014 – ident: 2023041304031936000_33.15.6333.53 doi: 10.1016/j.neuroimage.2011.10.018 – ident: 2023041304031936000_33.15.6333.43 doi: 10.1093/cercor/bhs010 – ident: 2023041304031936000_33.15.6333.15 doi: 10.1016/j.neuron.2012.03.031 – ident: 2023041304031936000_33.15.6333.13 doi: 10.1212/WNL.57.11.2045 – ident: 2023041304031936000_33.15.6333.5 doi: 10.1002/hbm.20577 – ident: 2023041304031936000_33.15.6333.7 doi: 10.1016/j.neubiorev.2008.09.002 – ident: 2023041304031936000_33.15.6333.9 doi: 10.1016/j.neuroimage.2009.05.012 – ident: 2023041304031936000_33.15.6333.14 doi: 10.1006/nimg.1998.0395 – ident: 2023041304031936000_33.15.6333.24 doi: 10.1073/pnas.0135058100 – ident: 2023041304031936000_33.15.6333.38 doi: 10.1098/rstb.2002.1114 – ident: 2023041304031936000_33.15.6333.10 doi: 10.1016/j.neuroimage.2009.04.048 – ident: 2023041304031936000_33.15.6333.47 doi: 10.1126/science.1110913 – volume: 57 start-page: 289 year: 1995 ident: 2023041304031936000_33.15.6333.2 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J R Stat Soc B doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: 2023041304031936000_33.15.6333.27 doi: 10.1073/pnas.0811168106 – ident: 2023041304031936000_33.15.6333.64 doi: 10.1016/j.neuroimage.2009.05.005 – ident: 2023041304031936000_33.15.6333.6 doi: 10.2307/2529826 – ident: 2023041304031936000_33.15.6333.65 doi: 10.1016/j.neuroimage.2003.11.025 – ident: 2023041304031936000_33.15.6333.30 doi: 10.1073/pnas.1019750108 – ident: 2023041304031936000_33.15.6333.39 doi: 10.1038/35084005 – ident: 2023041304031936000_33.15.6333.58 doi: 10.1093/cercor/bhn256 – ident: 2023041304031936000_33.15.6333.45 doi: 10.1523/JNEUROSCI.3886-06.2007 – ident: 2023041304031936000_33.15.6333.52 doi: 10.1523/JNEUROSCI.4867-08.2009 – ident: 2023041304031936000_33.15.6333.20 doi: 10.1073/pnas.0504136102 – ident: 2023041304031936000_33.15.6333.49 doi: 10.1038/nn.2177 – ident: 2023041304031936000_33.15.6333.50 doi: 10.1523/JNEUROSCI.2483-11.2011 – ident: 2023041304031936000_33.15.6333.66 doi: 10.1093/brain/awr223 – ident: 2023041304031936000_33.15.6333.34 doi: 10.1126/science.1154735 – ident: 2023041304031936000_33.15.6333.40 doi: 10.1523/JNEUROSCI.2041-09.2009 |
SSID | ssj0007017 |
Score | 2.5118787 |
Snippet | Analyses of intrinsic fMRI BOLD signal fluctuations reliably reveal correlated and anticorrelated functional networks in the brain. Because the BOLD signal is... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 6333 |
SubjectTerms | Adult Brain Mapping - methods Brain Mapping - statistics & numerical data Brain Waves - physiology Cerebral Cortex - blood supply Cerebral Cortex - physiology Electrodes, Implanted Electroencephalography - methods Electroencephalography - statistics & numerical data Female Humans Image Interpretation, Computer-Assisted - methods Magnetic Resonance Imaging - methods Magnetic Resonance Imaging - statistics & numerical data Male Neural Pathways - physiology Neurons - physiology Neurophysiology - methods ROC Curve |
Title | Neurophysiological Investigation of Spontaneous Correlated and Anticorrelated Fluctuations of the BOLD Signal |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23575832 https://www.proquest.com/docview/1353998451 https://www.proquest.com/docview/1551631530 https://pubmed.ncbi.nlm.nih.gov/PMC3652257 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFAeOjfMlIiJcqXezY-XisOkZX2EDqJu0tchxnDHVphdqH8bfxx3GXD8ddp8F4iVonvia5X89n--53hLyXkYrBDxWeyovCE5pxLwmE8nQSF4wVeRJW6WNHx-HkVEzP5Fmv99uJWlqvsqH-dWNeyf9oFdpAr5glewfNWqHQAJ9Bv3AEDcPxn3RcMWtUaxPWhDm8GbUnOFsuSnAADYa6jrEUx1yhk4nr5aMSJHZNB_M1ZpPY0LgqdODrl_3B7OK8vZUfHbgcV9YhxTSdBbdJhguAy2A67NbjwXLMbYhZB8_Jogk9cxgPnH6f4FmXxgbiD46G7pIFlo8QXhO8Wls2HsGcVdTleYamsby82uphrmmuOTJaCErH0IZBc840X2uOrq0BQVbEFNNjjIucjQ-HSKDvMczAY0E3BLbb_tdGRhuviDMlkJRaOSnKSRlPUc49cp_DJAXrZ-wffrZ-QORX9Z7twzb56SBn7-b72XSNtuY718N2HT_o5BF52Gidjmo0PiY9Uz4hu6NSrRaXV_QD_dbC8WqXXG4DlG4AlC4K6gCUdgClAFC6CVDqAhR7AkApApTWAH1KTg8-nownXlPfw9OSBSuvKAolheJCw6SVBSyPdOxneQQedpSHfh4mUso8iY2IwcHKeSSVijMdZLHKfK6D4BnZKQGZLwgV3CSKKc1NDvNj4SsjsyIRnBuucqZVn8j21aa6Ib_HGizz9HbV9sme7bes6V_-2uNdq7kULDVuv9WvMMUKM0kSC8luuQb3rQPwQvw-eV5r2_4uElNJGID7JNrAgb0AmeI3z5QX3yvG-AAsLozNL-_8NK_Ig-4P_JrsrH6uzRvwwlfZ2wrsfwDr4t0X |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neurophysiological+Investigation+of+Spontaneous+Correlated+and+Anticorrelated+Fluctuations+of+the+BOLD+Signal&rft.jtitle=The+Journal+of+neuroscience&rft.au=Keller%2C+Corey+J.&rft.au=Bickel%2C+Stephan&rft.au=Honey%2C+Christopher+J.&rft.au=Groppe%2C+David+M.&rft.date=2013-04-10&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=33&rft.issue=15&rft.spage=6333&rft.epage=6342&rft_id=info:doi/10.1523%2FJNEUROSCI.4837-12.2013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1523_JNEUROSCI_4837_12_2013 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |