Neurophysiological Investigation of Spontaneous Correlated and Anticorrelated Fluctuations of the BOLD Signal

Analyses of intrinsic fMRI BOLD signal fluctuations reliably reveal correlated and anticorrelated functional networks in the brain. Because the BOLD signal is an indirect measure of neuronal activity and anticorrelations can be introduced by preprocessing steps, such as global signal regression, the...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 33; no. 15; pp. 6333 - 6342
Main Authors Keller, Corey J., Bickel, Stephan, Honey, Christopher J., Groppe, David M., Entz, Laszlo, Craddock, R. Cameron, Lado, Fred A., Kelly, Clare, Milham, Michael, Mehta, Ashesh D.
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 10.04.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Analyses of intrinsic fMRI BOLD signal fluctuations reliably reveal correlated and anticorrelated functional networks in the brain. Because the BOLD signal is an indirect measure of neuronal activity and anticorrelations can be introduced by preprocessing steps, such as global signal regression, the neurophysiological significance of correlated and anticorrelated BOLD fluctuations is a source of debate. Here, we address this question by examining the correspondence between the spatial organization of correlated BOLD fluctuations and correlated fluctuations in electrophysiological high γ power signals recorded directly from the cortical surface of 5 patients. We demonstrate that both positive and negative BOLD correlations have neurophysiological correlates reflected in fluctuations of spontaneous neuronal activity. Although applying global signal regression to BOLD signals results in some BOLD anticorrelations that are not apparent in the ECoG data, it enhances the neuronal-hemodynamic correspondence overall. Together, these findings provide support for the neurophysiological fidelity of BOLD correlations and anticorrelations.
AbstractList Analyses of intrinsic fMRI BOLD signal fluctuations reliably reveal correlated and anticorrelated functional networks in the brain. Because the BOLD signal is an indirect measure of neuronal activity and anticorrelations can be introduced by preprocessing steps, such as global signal regression, the neurophysiological significance of correlated and anticorrelated BOLD fluctuations is a source of debate. Here, we address this question by examining the correspondence between the spatial organization of correlated BOLD fluctuations and correlated fluctuations in electrophysiological high γ power signals recorded directly from the cortical surface of 5 patients. We demonstrate that both positive and negative BOLD correlations have neurophysiological correlates reflected in fluctuations of spontaneous neuronal activity. Although applying global signal regression to BOLD signals results in some BOLD anticorrelations that are not apparent in the ECoG data, it enhances the neuronal-hemodynamic correspondence overall. Together, these findings provide support for the neurophysiological fidelity of BOLD correlations and anticorrelations.
Analyses of intrinsic fMRI BOLD signal fluctuations reliably reveal correlated and anticorrelated functional networks in the brain. Because the BOLD signal is an indirect measure of neuronal activity and anticorrelations can be introduced by preprocessing steps, such as global signal regression, the neurophysiological significance of correlated and anticorrelated BOLD fluctuations is a source of debate. Here, we address this question by examining the correspondence between the spatial organization of correlated BOLD fluctuations and correlated fluctuations in electrophysiological high γ power signals recorded directly from the cortical surface of 5 patients. We demonstrate that both positive and negative BOLD correlations have neurophysiological correlates reflected in fluctuations of spontaneous neuronal activity. Although applying global signal regression to BOLD signals results in some BOLD anticorrelations that are not apparent in the ECoG data, it enhances the neuronal-hemodynamic correspondence overall. Together, these findings provide support for the neurophysiological fidelity of BOLD correlations and anticorrelations.Analyses of intrinsic fMRI BOLD signal fluctuations reliably reveal correlated and anticorrelated functional networks in the brain. Because the BOLD signal is an indirect measure of neuronal activity and anticorrelations can be introduced by preprocessing steps, such as global signal regression, the neurophysiological significance of correlated and anticorrelated BOLD fluctuations is a source of debate. Here, we address this question by examining the correspondence between the spatial organization of correlated BOLD fluctuations and correlated fluctuations in electrophysiological high γ power signals recorded directly from the cortical surface of 5 patients. We demonstrate that both positive and negative BOLD correlations have neurophysiological correlates reflected in fluctuations of spontaneous neuronal activity. Although applying global signal regression to BOLD signals results in some BOLD anticorrelations that are not apparent in the ECoG data, it enhances the neuronal-hemodynamic correspondence overall. Together, these findings provide support for the neurophysiological fidelity of BOLD correlations and anticorrelations.
Analyses of intrinsic fMRI BOLD signal fluctuations reliably reveal correlated and anticorrelated functional networks in the brain. Because the BOLD signal is an indirect measure of neuronal activity and anticorrelations can be introduced by preprocessing steps, such as global signal regression, the neurophysiological significance of correlated and anticorrelated BOLD fluctuations is a source of debate. Here, we address this question by examining the correspondence between the spatial organization of correlated BOLD fluctuations and correlated fluctuations in electrophysiological high gamma power signals recorded directly from the cortical surface of 5 patients. We demonstrate that both positive and negative BOLD correlations have neurophysiological correlates reflected in fluctuations of spontaneous neuronal activity. Although applying global signal regression to BOLD signals results in some BOLD anticorrelations that are not apparent in the ECoG data, it enhances the neuronal-hemodynamic correspondence overall. Together, these findings provide support for the neurophysiological fidelity of BOLD correlations and anticorrelations.
Author Entz, Laszlo
Craddock, R. Cameron
Bickel, Stephan
Milham, Michael
Keller, Corey J.
Kelly, Clare
Mehta, Ashesh D.
Groppe, David M.
Lado, Fred A.
Honey, Christopher J.
Author_xml – sequence: 1
  givenname: Corey J.
  surname: Keller
  fullname: Keller, Corey J.
– sequence: 2
  givenname: Stephan
  surname: Bickel
  fullname: Bickel, Stephan
– sequence: 3
  givenname: Christopher J.
  surname: Honey
  fullname: Honey, Christopher J.
– sequence: 4
  givenname: David M.
  surname: Groppe
  fullname: Groppe, David M.
– sequence: 5
  givenname: Laszlo
  surname: Entz
  fullname: Entz, Laszlo
– sequence: 6
  givenname: R. Cameron
  surname: Craddock
  fullname: Craddock, R. Cameron
– sequence: 7
  givenname: Fred A.
  surname: Lado
  fullname: Lado, Fred A.
– sequence: 8
  givenname: Clare
  surname: Kelly
  fullname: Kelly, Clare
– sequence: 9
  givenname: Michael
  surname: Milham
  fullname: Milham, Michael
– sequence: 10
  givenname: Ashesh D.
  surname: Mehta
  fullname: Mehta, Ashesh D.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23575832$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1PGzEUtBAVJCl_Ae2xlw3-WK93papSGkibKiJSA2fLa3sTV46d2l4k_j0bArRwyelJfjPzxjNDcOq80wBcIjhGFJOrX7c397-Xq-l8XFSE5QiPMUTkBAz6bZ3jAqJTMICYwbwsWHEOhjH-gRAyiNgZOMeEMloRPADbW90Fv9s8RuOtXxspbDZ3DzomsxbJeJf5NlvtvEvCad_FbOpD0FYkrTLhVDZxych_TzPbydQ9E-OemTY6-75cXGcrs3bCfgafWmGjvniZI3A_u7mb_swXyx_z6WSRS4pIytu2FbQQuJC9S0SQYrKCjWKI1kyVUJU1pVTVlS4qjLDCjApRNZI0lWggloSMwLeD7q5rtlpJ7VIQlu-C2YrwyL0w_P3GmQ1f-wdOSooxZb3AlxeB4P92fRp8a6LU1h5S4IhSVBJECTwOJZTUdVX0PxuBy_9tvfl5raMHfD0AZPAxBt1yadJzmr1LYzmCfN8-f2uf79vnCPN9-z29_EB_vXCE-ATxzbbP
CitedBy_id crossref_primary_10_1002_brb3_863
crossref_primary_10_1073_pnas_2113887118
crossref_primary_10_1007_s11682_018_0004_0
crossref_primary_10_1016_j_neuroimage_2016_06_036
crossref_primary_10_1038_s42003_021_02497_0
crossref_primary_10_1002_hbm_23099
crossref_primary_10_1016_j_dcn_2021_100928
crossref_primary_10_1177_1545968318818902
crossref_primary_10_1523_JNEUROSCI_0217_18_2018
crossref_primary_10_1523_JNEUROSCI_0492_14_2014
crossref_primary_10_1016_j_neuroimage_2017_01_054
crossref_primary_10_1016_j_pscychresns_2018_06_004
crossref_primary_10_1136_jnnp_2013_307127
crossref_primary_10_1089_brain_2015_0362
crossref_primary_10_7554_eLife_62324
crossref_primary_10_1016_j_bpsc_2019_12_020
crossref_primary_10_1016_j_neuroimage_2017_07_001
crossref_primary_10_1016_j_jneumeth_2018_07_001
crossref_primary_10_1016_j_neuron_2013_09_038
crossref_primary_10_1016_j_neuroimage_2015_03_062
crossref_primary_10_1016_j_neuroimage_2020_116896
crossref_primary_10_1016_j_neuroimage_2013_05_079
crossref_primary_10_1155_2022_6197505
crossref_primary_10_1016_j_neuroimage_2014_02_014
crossref_primary_10_1002_hbm_22675
crossref_primary_10_1016_j_neuroimage_2013_08_048
crossref_primary_10_1093_scan_nst185
crossref_primary_10_1093_sleep_zsy108
crossref_primary_10_1162_jocn_a_00517
crossref_primary_10_1089_brain_2014_0236
crossref_primary_10_1089_brain_2014_0244
crossref_primary_10_5692_clinicalneurol_54_1139
crossref_primary_10_1016_j_neuroimage_2018_05_005
crossref_primary_10_1162_netn_a_00037
crossref_primary_10_1523_JNEUROSCI_0579_23_2023
crossref_primary_10_3389_fnins_2015_00044
crossref_primary_10_1016_j_jad_2024_08_120
crossref_primary_10_1162_netn_a_00034
crossref_primary_10_7717_peerj_367
crossref_primary_10_1038_s41467_019_14166_2
crossref_primary_10_1038_s41598_020_60406_7
crossref_primary_10_1016_j_neuroimage_2017_09_010
crossref_primary_10_1016_j_pscychresns_2024_111846
crossref_primary_10_7554_eLife_95680_3
crossref_primary_10_1038_s44220_023_00046_8
crossref_primary_10_1371_journal_pone_0118143
crossref_primary_10_1016_j_bpsc_2017_09_010
crossref_primary_10_1152_jn_00850_2014
crossref_primary_10_1038_s41467_024_51839_z
crossref_primary_10_1038_s43587_021_00125_4
crossref_primary_10_1016_j_neuroimage_2015_06_022
crossref_primary_10_1016_j_neuroimage_2016_08_037
crossref_primary_10_1002_wsbm_1348
crossref_primary_10_1016_j_neuroimage_2017_03_045
crossref_primary_10_1016_j_dcn_2015_08_003
crossref_primary_10_1016_j_tics_2018_02_002
crossref_primary_10_1093_cercor_bhy201
crossref_primary_10_1523_JNEUROSCI_0079_18_2018
crossref_primary_10_1016_j_neuroimage_2015_12_043
crossref_primary_10_1089_brain_2014_0250
crossref_primary_10_1089_brain_2013_0168
crossref_primary_10_1007_s00787_025_02651_7
crossref_primary_10_1007_s11065_014_9252_y
crossref_primary_10_1016_j_neuroimage_2013_07_057
crossref_primary_10_1038_srep23639
crossref_primary_10_1016_j_neuroimage_2020_116998
crossref_primary_10_1016_j_bbr_2025_115459
crossref_primary_10_1177_1362361319888104
crossref_primary_10_1016_j_neuroimage_2017_02_036
crossref_primary_10_1016_j_neuroimage_2018_02_036
crossref_primary_10_1093_cercor_bhw139
crossref_primary_10_1093_cercor_bhx107
crossref_primary_10_1016_j_cub_2014_08_024
crossref_primary_10_1002_hbm_22850
crossref_primary_10_1002_hbm_23543
crossref_primary_10_1016_j_neuroimage_2013_04_083
crossref_primary_10_1038_s41598_018_26317_4
crossref_primary_10_1038_srep39906
crossref_primary_10_1093_cercor_bhab144
crossref_primary_10_1016_j_neuroimage_2017_11_030
crossref_primary_10_1093_brain_awae199
crossref_primary_10_3171_2018_4_JNS172588
crossref_primary_10_1016_j_neuroimage_2016_03_033
crossref_primary_10_1109_TMI_2024_3351907
crossref_primary_10_1016_j_nicl_2014_05_004
crossref_primary_10_1523_ENEURO_0163_16_2016
crossref_primary_10_1523_JNEUROSCI_0598_16_2016
crossref_primary_10_1016_j_cortex_2018_05_004
crossref_primary_10_1038_s41593_018_0108_2
crossref_primary_10_1016_j_neuron_2014_09_007
crossref_primary_10_1089_brain_2018_0596
crossref_primary_10_1016_j_neuroimage_2014_09_058
crossref_primary_10_1073_pnas_2105031118
crossref_primary_10_1016_j_neuroimage_2021_118788
crossref_primary_10_3389_fnsys_2016_00007
crossref_primary_10_1089_brain_2013_0210
crossref_primary_10_1002_hbm_23499
crossref_primary_10_1016_j_dib_2018_08_198
crossref_primary_10_1016_j_neuroimage_2015_02_061
crossref_primary_10_1016_j_neuroimage_2017_03_023
crossref_primary_10_1016_S1474_4422_15_00093_9
crossref_primary_10_1038_nrn_2016_113
crossref_primary_10_1002_hbm_23693
crossref_primary_10_1523_JNEUROSCI_0741_16_2016
crossref_primary_10_1002_mp_13522
crossref_primary_10_1162_netn_a_00244
crossref_primary_10_1007_s00429_015_1069_9
crossref_primary_10_3389_fnagi_2018_00107
crossref_primary_10_1002_wcs_1553
crossref_primary_10_1016_j_tics_2013_09_014
crossref_primary_10_1007_s10548_018_0692_1
crossref_primary_10_3389_fnagi_2016_00330
crossref_primary_10_1016_j_neuron_2017_10_012
crossref_primary_10_1016_j_neuroimage_2021_117781
crossref_primary_10_3934_Neuroscience_2020005
crossref_primary_10_1016_j_dcn_2014_12_005
crossref_primary_10_1093_cercor_bhad351
crossref_primary_10_1093_cercor_bhab175
crossref_primary_10_1371_journal_pone_0071163
crossref_primary_10_1002_hbm_24892
crossref_primary_10_1523_JNEUROSCI_4229_13_2014
crossref_primary_10_3171_2018_2_PEDS17549
crossref_primary_10_1016_j_neuroimage_2016_09_038
crossref_primary_10_1162_netn_a_00114
crossref_primary_10_1007_s11547_024_01776_0
crossref_primary_10_1002_jnr_24669
crossref_primary_10_1016_j_clinph_2014_09_009
crossref_primary_10_7554_eLife_95680
crossref_primary_10_1007_s10072_020_04737_3
crossref_primary_10_1016_j_neuroimage_2013_09_050
crossref_primary_10_1016_j_nicl_2020_102188
crossref_primary_10_1038_srep07376
crossref_primary_10_1093_braincomms_fcad069
crossref_primary_10_1073_pnas_1608434113
crossref_primary_10_1002_hbm_23037
crossref_primary_10_1002_hbm_22900
crossref_primary_10_1016_j_pscychresns_2017_05_003
crossref_primary_10_1007_s11682_016_9527_4
crossref_primary_10_1093_texcom_tgad015
crossref_primary_10_1016_j_nicl_2015_08_004
crossref_primary_10_1002_brb3_286
crossref_primary_10_3389_fnhum_2016_00311
crossref_primary_10_1016_j_neuroimage_2017_07_061
crossref_primary_10_1016_j_neuron_2020_07_020
crossref_primary_10_1177_0271678X15615133
crossref_primary_10_1016_j_neuroimage_2015_07_021
crossref_primary_10_1111_nyas_12360
crossref_primary_10_1038_s41598_017_05425_7
crossref_primary_10_1162_jocn_a_00533
crossref_primary_10_1007_s00429_024_02847_8
crossref_primary_10_1007_s11682_018_9869_1
crossref_primary_10_1016_j_neuroimage_2021_118459
crossref_primary_10_1038_s41598_021_93190_z
crossref_primary_10_1073_pnas_1405003111
crossref_primary_10_1016_j_neuroimage_2017_09_063
crossref_primary_10_1016_j_neuroimage_2014_11_034
crossref_primary_10_1093_cercor_bhv007
crossref_primary_10_1016_j_clinph_2019_04_008
crossref_primary_10_1016_j_bbr_2015_08_014
crossref_primary_10_1016_j_neuroimage_2020_117001
crossref_primary_10_1016_j_pscychresns_2015_03_003
crossref_primary_10_1523_JNEUROSCI_2785_20_2021
crossref_primary_10_1093_cercor_bhac044
crossref_primary_10_1093_cercor_bhy114
crossref_primary_10_1016_j_neuroimage_2016_11_052
crossref_primary_10_1016_j_neuroimage_2017_05_004
crossref_primary_10_1162_jocn_a_01470
crossref_primary_10_1016_j_neuroimage_2021_118466
crossref_primary_10_1016_j_neuron_2015_03_018
crossref_primary_10_1016_j_nicl_2023_103351
crossref_primary_10_1016_j_neuroimage_2019_04_016
crossref_primary_10_1016_j_neuroimage_2021_118104
crossref_primary_10_1007_s11682_017_9715_x
crossref_primary_10_1016_j_medp_2024_100048
crossref_primary_10_1016_j_neuroimage_2016_08_018
crossref_primary_10_1016_j_mri_2019_01_009
crossref_primary_10_1093_cercor_bhaa143
crossref_primary_10_1038_s41467_018_06876_w
crossref_primary_10_1038_s42003_024_06732_2
crossref_primary_10_1136_svn_2017_000080
crossref_primary_10_1016_j_neuroimage_2016_12_018
Cites_doi 10.1523/JNEUROSCI.1457-11.2011
10.1093/biomet/93.3.491
10.1073/pnas.0913110107
10.1214/ss/1063994977
10.1016/j.biopsych.2012.04.028
10.1523/JNEUROSCI.6401-09.2010
10.1002/hbm.20323
10.1016/j.neuroimage.2011.08.009
10.1073/pnas.1121329109
10.1016/j.neuroimage.2011.11.046
10.1073/pnas.0902071106
10.1016/j.neuroimage.2004.07.051
10.1016/j.neuroimage.2010.08.063
10.1073/pnas.0705843104
10.1016/j.neuroimage.2011.10.059
10.1016/j.neuroimage.2008.09.036
10.1016/j.neuroimage.2005.12.057
10.1523/JNEUROSCI.17-11-04302.1997
10.1016/j.neuroimage.2007.08.008
10.1016/j.neuroimage.2011.08.048
10.1016/j.eplepsyres.2009.12.001
10.1152/jn.90777.2008
10.1093/cercor/bhi016
10.2307/2171849
10.1073/pnas.0807010105
10.1089/brain.2012.0080
10.1016/j.neuroimage.2007.04.042
10.1523/JNEUROSCI.0810-09.2009
10.1016/j.neuroimage.2004.07.027
10.1016/j.neuroimage.2011.07.044
10.1073/pnas.0905267106
10.1016/j.mri.2009.02.004
10.1016/j.neuroimage.2010.05.073
10.1016/j.neuron.2012.08.011
10.1162/jocn_a_00077
10.1523/JNEUROSCI.0877-12.2012
10.1006/cbmr.1996.0014
10.1016/j.neuroimage.2011.10.018
10.1093/cercor/bhs010
10.1016/j.neuron.2012.03.031
10.1212/WNL.57.11.2045
10.1002/hbm.20577
10.1016/j.neubiorev.2008.09.002
10.1016/j.neuroimage.2009.05.012
10.1006/nimg.1998.0395
10.1073/pnas.0135058100
10.1098/rstb.2002.1114
10.1016/j.neuroimage.2009.04.048
10.1126/science.1110913
10.1111/j.2517-6161.1995.tb02031.x
10.1073/pnas.0811168106
10.1016/j.neuroimage.2009.05.005
10.2307/2529826
10.1016/j.neuroimage.2003.11.025
10.1073/pnas.1019750108
10.1038/35084005
10.1093/cercor/bhn256
10.1523/JNEUROSCI.3886-06.2007
10.1523/JNEUROSCI.4867-08.2009
10.1073/pnas.0504136102
10.1038/nn.2177
10.1523/JNEUROSCI.2483-11.2011
10.1093/brain/awr223
10.1126/science.1154735
10.1523/JNEUROSCI.2041-09.2009
ContentType Journal Article
Copyright Copyright © 2013 the authors 0270-6474/13/336333-10$15.00/0 2013
Copyright_xml – notice: Copyright © 2013 the authors 0270-6474/13/336333-10$15.00/0 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1523/JNEUROSCI.4837-12.2013
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList
CrossRef
MEDLINE - Academic
Neurosciences Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 6342
ExternalDocumentID PMC3652257
23575832
10_1523_JNEUROSCI_4837_12_2013
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: F31NS080357-01
– fundername: NINDS NIH HHS
  grantid: F31 NS080357
– fundername: NIGMS NIH HHS
  grantid: T32 GM007288
– fundername: NIGMS NIH HHS
  grantid: T32-GM007288
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
53G
5GY
5RE
5VS
AAFWJ
AAJMC
AAYXX
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
ADHGD
AENEX
AETEA
AFCFT
AFOSN
AFSQR
AHWXS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
MVM
OK1
P0W
P2P
QZG
R.V
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
XJT
YBU
YHG
YKV
YNH
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
ID FETCH-LOGICAL-c513t-fffa54a24c758131d7c80bd71597d60d69555d98e48212d275aa8bc3b8ab02c33
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 14:07:33 EDT 2025
Thu Jul 10 18:53:50 EDT 2025
Fri Jul 11 12:43:52 EDT 2025
Thu Apr 03 07:03:11 EDT 2025
Tue Jul 01 03:46:58 EDT 2025
Thu Apr 24 23:12:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c513t-fffa54a24c758131d7c80bd71597d60d69555d98e48212d275aa8bc3b8ab02c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: C.J.K., S.B., and A.D.M. designed research; C.J.K. and D.M.G. performed research; C.J.K. and C.J.H. analyzed data; C.J.K., S.B., C.J.H., D.M.G., L.E., R.C.C., F.A.L., C.K., M.M., and A.D.M. wrote the paper.
OpenAccessLink https://www.jneurosci.org/content/jneuro/33/15/6333.full.pdf
PMID 23575832
PQID 1353998451
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3652257
proquest_miscellaneous_1551631530
proquest_miscellaneous_1353998451
pubmed_primary_23575832
crossref_citationtrail_10_1523_JNEUROSCI_4837_12_2013
crossref_primary_10_1523_JNEUROSCI_4837_12_2013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-04-10
2013-Apr-10
20130410
PublicationDateYYYYMMDD 2013-04-10
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2013
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References 2023041304031936000_33.15.6333.9
2023041304031936000_33.15.6333.41
2023041304031936000_33.15.6333.42
2023041304031936000_33.15.6333.7
2023041304031936000_33.15.6333.43
2023041304031936000_33.15.6333.8
2023041304031936000_33.15.6333.44
2023041304031936000_33.15.6333.40
2023041304031936000_33.15.6333.1
2023041304031936000_33.15.6333.5
2023041304031936000_33.15.6333.6
2023041304031936000_33.15.6333.3
2023041304031936000_33.15.6333.4
2023041304031936000_33.15.6333.49
2023041304031936000_33.15.6333.45
2023041304031936000_33.15.6333.46
2023041304031936000_33.15.6333.47
2023041304031936000_33.15.6333.48
2023041304031936000_33.15.6333.52
2023041304031936000_33.15.6333.53
2023041304031936000_33.15.6333.10
2023041304031936000_33.15.6333.54
2023041304031936000_33.15.6333.11
2023041304031936000_33.15.6333.55
2023041304031936000_33.15.6333.50
2023041304031936000_33.15.6333.51
Kanwisher (2023041304031936000_33.15.6333.29) 1997; 17
2023041304031936000_33.15.6333.16
2023041304031936000_33.15.6333.17
2023041304031936000_33.15.6333.18
2023041304031936000_33.15.6333.19
2023041304031936000_33.15.6333.12
2023041304031936000_33.15.6333.56
2023041304031936000_33.15.6333.13
2023041304031936000_33.15.6333.57
2023041304031936000_33.15.6333.14
2023041304031936000_33.15.6333.58
2023041304031936000_33.15.6333.15
2023041304031936000_33.15.6333.59
2023041304031936000_33.15.6333.63
2023041304031936000_33.15.6333.20
2023041304031936000_33.15.6333.64
2023041304031936000_33.15.6333.21
2023041304031936000_33.15.6333.65
2023041304031936000_33.15.6333.22
2023041304031936000_33.15.6333.66
2023041304031936000_33.15.6333.60
2023041304031936000_33.15.6333.61
2023041304031936000_33.15.6333.62
Benjamini (2023041304031936000_33.15.6333.2) 1995; 57
2023041304031936000_33.15.6333.27
2023041304031936000_33.15.6333.28
2023041304031936000_33.15.6333.23
2023041304031936000_33.15.6333.24
2023041304031936000_33.15.6333.25
2023041304031936000_33.15.6333.26
2023041304031936000_33.15.6333.30
2023041304031936000_33.15.6333.31
2023041304031936000_33.15.6333.32
2023041304031936000_33.15.6333.33
2023041304031936000_33.15.6333.38
2023041304031936000_33.15.6333.39
2023041304031936000_33.15.6333.34
2023041304031936000_33.15.6333.35
2023041304031936000_33.15.6333.36
2023041304031936000_33.15.6333.37
References_xml – ident: 2023041304031936000_33.15.6333.11
  doi: 10.1523/JNEUROSCI.1457-11.2011
– ident: 2023041304031936000_33.15.6333.3
  doi: 10.1093/biomet/93.3.491
– ident: 2023041304031936000_33.15.6333.57
  doi: 10.1073/pnas.0913110107
– ident: 2023041304031936000_33.15.6333.51
  doi: 10.1214/ss/1063994977
– ident: 2023041304031936000_33.15.6333.22
  doi: 10.1016/j.biopsych.2012.04.028
– ident: 2023041304031936000_33.15.6333.44
  doi: 10.1523/JNEUROSCI.6401-09.2010
– ident: 2023041304031936000_33.15.6333.35
  doi: 10.1002/hbm.20323
– ident: 2023041304031936000_33.15.6333.37
  doi: 10.1016/j.neuroimage.2011.08.009
– ident: 2023041304031936000_33.15.6333.19
– ident: 2023041304031936000_33.15.6333.62
  doi: 10.1073/pnas.1121329109
– ident: 2023041304031936000_33.15.6333.17
  doi: 10.1016/j.neuroimage.2011.11.046
– ident: 2023041304031936000_33.15.6333.46
  doi: 10.1073/pnas.0902071106
– ident: 2023041304031936000_33.15.6333.59
  doi: 10.1016/j.neuroimage.2004.07.051
– ident: 2023041304031936000_33.15.6333.61
  doi: 10.1016/j.neuroimage.2010.08.063
– ident: 2023041304031936000_33.15.6333.18
  doi: 10.1073/pnas.0705843104
– ident: 2023041304031936000_33.15.6333.36
  doi: 10.1016/j.neuroimage.2011.10.059
– ident: 2023041304031936000_33.15.6333.48
  doi: 10.1016/j.neuroimage.2008.09.036
– ident: 2023041304031936000_33.15.6333.41
  doi: 10.1016/j.neuroimage.2005.12.057
– volume: 17
  start-page: 4302
  year: 1997
  ident: 2023041304031936000_33.15.6333.29
  article-title: The fusiform face area: a module in human extrastriate cortex specialized for face perception
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.17-11-04302.1997
– ident: 2023041304031936000_33.15.6333.31
  doi: 10.1016/j.neuroimage.2007.08.008
– ident: 2023041304031936000_33.15.6333.8
  doi: 10.1016/j.neuroimage.2011.08.048
– ident: 2023041304031936000_33.15.6333.42
  doi: 10.1016/j.eplepsyres.2009.12.001
– ident: 2023041304031936000_33.15.6333.21
  doi: 10.1152/jn.90777.2008
– ident: 2023041304031936000_33.15.6333.56
  doi: 10.1093/cercor/bhi016
– ident: 2023041304031936000_33.15.6333.25
  doi: 10.2307/2171849
– ident: 2023041304031936000_33.15.6333.26
  doi: 10.1073/pnas.0807010105
– ident: 2023041304031936000_33.15.6333.55
  doi: 10.1089/brain.2012.0080
– ident: 2023041304031936000_33.15.6333.1
  doi: 10.1016/j.neuroimage.2007.04.042
– ident: 2023041304031936000_33.15.6333.32
  doi: 10.1523/JNEUROSCI.0810-09.2009
– ident: 2023041304031936000_33.15.6333.16
  doi: 10.1016/j.neuroimage.2004.07.027
– ident: 2023041304031936000_33.15.6333.63
  doi: 10.1016/j.neuroimage.2011.07.044
– ident: 2023041304031936000_33.15.6333.60
  doi: 10.1073/pnas.0905267106
– ident: 2023041304031936000_33.15.6333.4
  doi: 10.1016/j.mri.2009.02.004
– ident: 2023041304031936000_33.15.6333.23
  doi: 10.1016/j.neuroimage.2010.05.073
– ident: 2023041304031936000_33.15.6333.28
  doi: 10.1016/j.neuron.2012.08.011
– ident: 2023041304031936000_33.15.6333.33
  doi: 10.1162/jocn_a_00077
– ident: 2023041304031936000_33.15.6333.54
  doi: 10.1523/JNEUROSCI.0877-12.2012
– ident: 2023041304031936000_33.15.6333.12
  doi: 10.1006/cbmr.1996.0014
– ident: 2023041304031936000_33.15.6333.53
  doi: 10.1016/j.neuroimage.2011.10.018
– ident: 2023041304031936000_33.15.6333.43
  doi: 10.1093/cercor/bhs010
– ident: 2023041304031936000_33.15.6333.15
  doi: 10.1016/j.neuron.2012.03.031
– ident: 2023041304031936000_33.15.6333.13
  doi: 10.1212/WNL.57.11.2045
– ident: 2023041304031936000_33.15.6333.5
  doi: 10.1002/hbm.20577
– ident: 2023041304031936000_33.15.6333.7
  doi: 10.1016/j.neubiorev.2008.09.002
– ident: 2023041304031936000_33.15.6333.9
  doi: 10.1016/j.neuroimage.2009.05.012
– ident: 2023041304031936000_33.15.6333.14
  doi: 10.1006/nimg.1998.0395
– ident: 2023041304031936000_33.15.6333.24
  doi: 10.1073/pnas.0135058100
– ident: 2023041304031936000_33.15.6333.38
  doi: 10.1098/rstb.2002.1114
– ident: 2023041304031936000_33.15.6333.10
  doi: 10.1016/j.neuroimage.2009.04.048
– ident: 2023041304031936000_33.15.6333.47
  doi: 10.1126/science.1110913
– volume: 57
  start-page: 289
  year: 1995
  ident: 2023041304031936000_33.15.6333.2
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J R Stat Soc B
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: 2023041304031936000_33.15.6333.27
  doi: 10.1073/pnas.0811168106
– ident: 2023041304031936000_33.15.6333.64
  doi: 10.1016/j.neuroimage.2009.05.005
– ident: 2023041304031936000_33.15.6333.6
  doi: 10.2307/2529826
– ident: 2023041304031936000_33.15.6333.65
  doi: 10.1016/j.neuroimage.2003.11.025
– ident: 2023041304031936000_33.15.6333.30
  doi: 10.1073/pnas.1019750108
– ident: 2023041304031936000_33.15.6333.39
  doi: 10.1038/35084005
– ident: 2023041304031936000_33.15.6333.58
  doi: 10.1093/cercor/bhn256
– ident: 2023041304031936000_33.15.6333.45
  doi: 10.1523/JNEUROSCI.3886-06.2007
– ident: 2023041304031936000_33.15.6333.52
  doi: 10.1523/JNEUROSCI.4867-08.2009
– ident: 2023041304031936000_33.15.6333.20
  doi: 10.1073/pnas.0504136102
– ident: 2023041304031936000_33.15.6333.49
  doi: 10.1038/nn.2177
– ident: 2023041304031936000_33.15.6333.50
  doi: 10.1523/JNEUROSCI.2483-11.2011
– ident: 2023041304031936000_33.15.6333.66
  doi: 10.1093/brain/awr223
– ident: 2023041304031936000_33.15.6333.34
  doi: 10.1126/science.1154735
– ident: 2023041304031936000_33.15.6333.40
  doi: 10.1523/JNEUROSCI.2041-09.2009
SSID ssj0007017
Score 2.5118787
Snippet Analyses of intrinsic fMRI BOLD signal fluctuations reliably reveal correlated and anticorrelated functional networks in the brain. Because the BOLD signal is...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6333
SubjectTerms Adult
Brain Mapping - methods
Brain Mapping - statistics & numerical data
Brain Waves - physiology
Cerebral Cortex - blood supply
Cerebral Cortex - physiology
Electrodes, Implanted
Electroencephalography - methods
Electroencephalography - statistics & numerical data
Female
Humans
Image Interpretation, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Magnetic Resonance Imaging - statistics & numerical data
Male
Neural Pathways - physiology
Neurons - physiology
Neurophysiology - methods
ROC Curve
Title Neurophysiological Investigation of Spontaneous Correlated and Anticorrelated Fluctuations of the BOLD Signal
URI https://www.ncbi.nlm.nih.gov/pubmed/23575832
https://www.proquest.com/docview/1353998451
https://www.proquest.com/docview/1551631530
https://pubmed.ncbi.nlm.nih.gov/PMC3652257
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFAeOjfMlIiJcqXezY-XisOkZX2EDqJu0tchxnDHVphdqH8bfxx3GXD8ddp8F4iVonvia5X89n--53hLyXkYrBDxWeyovCE5pxLwmE8nQSF4wVeRJW6WNHx-HkVEzP5Fmv99uJWlqvsqH-dWNeyf9oFdpAr5glewfNWqHQAJ9Bv3AEDcPxn3RcMWtUaxPWhDm8GbUnOFsuSnAADYa6jrEUx1yhk4nr5aMSJHZNB_M1ZpPY0LgqdODrl_3B7OK8vZUfHbgcV9YhxTSdBbdJhguAy2A67NbjwXLMbYhZB8_Jogk9cxgPnH6f4FmXxgbiD46G7pIFlo8QXhO8Wls2HsGcVdTleYamsby82uphrmmuOTJaCErH0IZBc840X2uOrq0BQVbEFNNjjIucjQ-HSKDvMczAY0E3BLbb_tdGRhuviDMlkJRaOSnKSRlPUc49cp_DJAXrZ-wffrZ-QORX9Z7twzb56SBn7-b72XSNtuY718N2HT_o5BF52Gidjmo0PiY9Uz4hu6NSrRaXV_QD_dbC8WqXXG4DlG4AlC4K6gCUdgClAFC6CVDqAhR7AkApApTWAH1KTg8-nownXlPfw9OSBSuvKAolheJCw6SVBSyPdOxneQQedpSHfh4mUso8iY2IwcHKeSSVijMdZLHKfK6D4BnZKQGZLwgV3CSKKc1NDvNj4SsjsyIRnBuucqZVn8j21aa6Ib_HGizz9HbV9sme7bes6V_-2uNdq7kULDVuv9WvMMUKM0kSC8luuQb3rQPwQvw-eV5r2_4uElNJGID7JNrAgb0AmeI3z5QX3yvG-AAsLozNL-_8NK_Ig-4P_JrsrH6uzRvwwlfZ2wrsfwDr4t0X
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neurophysiological+Investigation+of+Spontaneous+Correlated+and+Anticorrelated+Fluctuations+of+the+BOLD+Signal&rft.jtitle=The+Journal+of+neuroscience&rft.au=Keller%2C+Corey+J.&rft.au=Bickel%2C+Stephan&rft.au=Honey%2C+Christopher+J.&rft.au=Groppe%2C+David+M.&rft.date=2013-04-10&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=33&rft.issue=15&rft.spage=6333&rft.epage=6342&rft_id=info:doi/10.1523%2FJNEUROSCI.4837-12.2013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1523_JNEUROSCI_4837_12_2013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon