Cortical Pitch Regions in Humans Respond Primarily to Resolved Harmonics and Are Located in Specific Tonotopic Regions of Anterior Auditory Cortex

Pitch is a defining perceptual property of many real-world sounds, including music and speech. Classically, theories of pitch perception have differentiated between temporal and spectral cues. These cues are rendered distinct by the frequency resolution of the ear, such that some frequencies produce...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 33; no. 50; pp. 19451 - 19469
Main Authors Norman-Haignere, Sam, Kanwisher, Nancy, McDermott, Josh H.
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 11.12.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pitch is a defining perceptual property of many real-world sounds, including music and speech. Classically, theories of pitch perception have differentiated between temporal and spectral cues. These cues are rendered distinct by the frequency resolution of the ear, such that some frequencies produce “resolved” peaks of excitation in the cochlea, whereas others are “unresolved,” providing a pitch cue only via their temporal fluctuations. Despite longstanding interest, the neural structures that process pitch, and their relationship to these cues, have remained controversial. Here, using fMRI in humans, we report the following: (1) consistent with previous reports, all subjects exhibited pitch-sensitive cortical regions that responded substantially more to harmonic tones than frequency-matched noise; (2) the response of these regions was mainly driven by spectrally resolved harmonics, although they also exhibited a weak but consistent response to unresolved harmonics relative to noise; (3) the response of pitch-sensitive regions to a parametric manipulation of resolvability tracked psychophysical discrimination thresholds for the same stimuli; and (4) pitch-sensitive regions were localized to specific tonotopic regions of anterior auditory cortex, extending from a low-frequency region of primary auditory cortex into a more anterior and less frequency-selective region of nonprimary auditory cortex. These results demonstrate that cortical pitch responses are located in a stereotyped region of anterior auditory cortex and are predominantly driven by resolved frequency components in a way that mirrors behavior.
AbstractList Pitch is a defining perceptual property of many real-world sounds, including music and speech. Classically, theories of pitch perception have differentiated between temporal and spectral cues. These cues are rendered distinct by the frequency resolution of the ear, such that some frequencies produce "resolved" peaks of excitation in the cochlea, whereas others are "unresolved," providing a pitch cue only via their temporal fluctuations. Despite longstanding interest, the neural structures that process pitch, and their relationship to these cues, have remained controversial. Here, using fMRI in humans, we report the following: (1) consistent with previous reports, all subjects exhibited pitch-sensitive cortical regions that responded substantially more to harmonic tones than frequency-matched noise; (2) the response of these regions was mainly driven by spectrally resolved harmonics, although they also exhibited a weak but consistent response to unresolved harmonics relative to noise; (3) the response of pitch-sensitive regions to a parametric manipulation of resolvability tracked psychophysical discrimination thresholds for the same stimuli; and (4) pitch-sensitive regions were localized to specific tonotopic regions of anterior auditory cortex, extending from a low-frequency region of primary auditory cortex into a more anterior and less frequency-selective region of nonprimary auditory cortex. These results demonstrate that cortical pitch responses are located in a stereotyped region of anterior auditory cortex and are predominantly driven by resolved frequency components in a way that mirrors behavior.
Pitch is a defining perceptual property of many real-world sounds, including music and speech. Classically, theories of pitch perception have differentiated between temporal and spectral cues. These cues are rendered distinct by the frequency resolution of the ear, such that some frequencies produce "resolved" peaks of excitation in the cochlea, whereas others are "unresolved," providing a pitch cue only via their temporal fluctuations. Despite longstanding interest, the neural structures that process pitch, and their relationship to these cues, have remained controversial. Here, using fMRI in humans, we report the following: (1) consistent with previous reports, all subjects exhibited pitch-sensitive cortical regions that responded substantially more to harmonic tones than frequency-matched noise; (2) the response of these regions was mainly driven by spectrally resolved harmonics, although they also exhibited a weak but consistent response to unresolved harmonics relative to noise; (3) the response of pitch-sensitive regions to a parametric manipulation of resolvability tracked psychophysical discrimination thresholds for the same stimuli; and (4) pitch-sensitive regions were localized to specific tonotopic regions of anterior auditory cortex, extending from a low-frequency region of primary auditory cortex into a more anterior and less frequency-selective region of nonprimary auditory cortex. These results demonstrate that cortical pitch responses are located in a stereotyped region of anterior auditory cortex and are predominantly driven by resolved frequency components in a way that mirrors behavior.Pitch is a defining perceptual property of many real-world sounds, including music and speech. Classically, theories of pitch perception have differentiated between temporal and spectral cues. These cues are rendered distinct by the frequency resolution of the ear, such that some frequencies produce "resolved" peaks of excitation in the cochlea, whereas others are "unresolved," providing a pitch cue only via their temporal fluctuations. Despite longstanding interest, the neural structures that process pitch, and their relationship to these cues, have remained controversial. Here, using fMRI in humans, we report the following: (1) consistent with previous reports, all subjects exhibited pitch-sensitive cortical regions that responded substantially more to harmonic tones than frequency-matched noise; (2) the response of these regions was mainly driven by spectrally resolved harmonics, although they also exhibited a weak but consistent response to unresolved harmonics relative to noise; (3) the response of pitch-sensitive regions to a parametric manipulation of resolvability tracked psychophysical discrimination thresholds for the same stimuli; and (4) pitch-sensitive regions were localized to specific tonotopic regions of anterior auditory cortex, extending from a low-frequency region of primary auditory cortex into a more anterior and less frequency-selective region of nonprimary auditory cortex. These results demonstrate that cortical pitch responses are located in a stereotyped region of anterior auditory cortex and are predominantly driven by resolved frequency components in a way that mirrors behavior.
Author McDermott, Josh H.
Norman-Haignere, Sam
Kanwisher, Nancy
Author_xml – sequence: 1
  givenname: Sam
  surname: Norman-Haignere
  fullname: Norman-Haignere, Sam
– sequence: 2
  givenname: Nancy
  surname: Kanwisher
  fullname: Kanwisher, Nancy
– sequence: 3
  givenname: Josh H.
  surname: McDermott
  fullname: McDermott, Josh H.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24336712$$D View this record in MEDLINE/PubMed
BookMark eNqFUt1u0zAYtdAQ6wavMPmSm5TPP4kTCSFV1aBDFZu67dpyXGczSuxiOxN9DZ4Yh60TcLMrf_L58bF9TtCR884gdEZgTkrKPnz9dn67ubxeXsxpXUNB2JwCYa_QLKNNQTmQIzQDKqCouODH6CTG7wAggIg36JhyxipB6Az9WvqQrFY9vrJJ3-ONubPeRWwdXo2DytPGxJ13W3wV7KCC7fc4-WnT9w9mi1cqDN5ZHbHKnEUweO21ShnJDtc7o21nNb7xzie_y9PB33d44ZIJ1ge8GLc2-bDHUxbz8y163ak-mndP6ym6_Xx-s1wV68svF8vFutAlYanomqYuWw4tZ4rTsqVEG8ZBCwWmbequa4US0JHKKKZb1VBgQKqWaMK6pgPDTtGnR9_d2A5mq41LQfVy9-eee-mVlf8izt7LO_8gWUOqSkA2eP9kEPyP0cQkBxu16XvljB-jJGVJKlryunqZyoUoyxo4ydSzv2M95zn8WSZ8fCTo4GMMppPaJpXys-aUtpcE5FQR-VwROVVEEianimR59Z_8cMILwt8t3sO7
CitedBy_id crossref_primary_10_1523_JNEUROSCI_1533_21_2021
crossref_primary_10_1016_j_bandl_2016_09_008
crossref_primary_10_1162_jocn_a_02092
crossref_primary_10_1371_journal_pone_0155291
crossref_primary_10_1523_JNEUROSCI_2989_14_2014
crossref_primary_10_3389_fnins_2014_00368
crossref_primary_10_1038_s41598_019_50042_1
crossref_primary_10_1146_annurev_neuro_072116_031302
crossref_primary_10_1002_hbm_23254
crossref_primary_10_1371_journal_pbio_2005127
crossref_primary_10_1016_j_nicl_2021_102823
crossref_primary_10_7554_eLife_41626
crossref_primary_10_1016_j_heares_2014_03_001
crossref_primary_10_1016_j_neuroimage_2016_01_050
crossref_primary_10_3389_fnins_2014_00406
crossref_primary_10_1016_j_neubiorev_2017_11_017
crossref_primary_10_1523_JNEUROSCI_0960_21_2021
crossref_primary_10_1016_j_conb_2016_02_001
crossref_primary_10_1073_pnas_2313831121
crossref_primary_10_1016_j_neuroimage_2019_116076
crossref_primary_10_1146_annurev_psych_122216_011635
crossref_primary_10_1371_journal_pcbi_1005338
crossref_primary_10_1016_j_neuroimage_2014_07_005
crossref_primary_10_1371_journal_pcbi_1006820
crossref_primary_10_1073_pnas_1607519114
crossref_primary_10_1371_journal_pcbi_1005617
crossref_primary_10_1016_j_cortex_2023_10_020
crossref_primary_10_1016_j_neuroimage_2017_08_051
crossref_primary_10_3389_fnins_2022_828546
crossref_primary_10_1016_j_neuroimage_2019_03_008
crossref_primary_10_1038_s41467_021_27366_6
crossref_primary_10_1126_sciadv_adk0010
crossref_primary_10_1523_JNEUROSCI_2336_16_2016
crossref_primary_10_1073_pnas_2008956117
crossref_primary_10_1016_j_neuron_2015_11_035
crossref_primary_10_1016_j_cortex_2019_07_005
crossref_primary_10_5937_Engrami1801028P
crossref_primary_10_3390_biology12121522
crossref_primary_10_1016_j_neuron_2018_03_044
crossref_primary_10_1523_JNEUROSCI_3969_13_2014
crossref_primary_10_1073_pnas_1802246115
crossref_primary_10_1162_opmi_a_00131
crossref_primary_10_1523_JNEUROSCI_1111_24_2025
crossref_primary_10_1080_02643294_2020_1765753
crossref_primary_10_1016_j_neuropsychologia_2016_12_003
crossref_primary_10_1093_cercor_bhad186
crossref_primary_10_1016_j_neuroimage_2017_11_020
crossref_primary_10_1080_02643294_2022_2085085
crossref_primary_10_1523_JNEUROSCI_1507_17_2017
crossref_primary_10_1016_j_neuroimage_2022_118879
crossref_primary_10_1152_jn_00588_2020
crossref_primary_10_1523_JNEUROSCI_1265_16_2016
crossref_primary_10_1016_j_heares_2023_108697
crossref_primary_10_1162_imag_a_00160
crossref_primary_10_1016_j_cobeha_2018_06_003
crossref_primary_10_1073_pnas_1516120113
crossref_primary_10_1523_JNEUROSCI_1200_19_2019
crossref_primary_10_1016_j_brainres_2015_10_048
crossref_primary_10_3389_fpsyg_2019_03051
crossref_primary_10_1016_j_neuroimage_2022_119791
crossref_primary_10_3389_fnins_2019_01165
crossref_primary_10_3389_fnins_2019_01042
crossref_primary_10_1038_s41593_023_01442_0
crossref_primary_10_1111_ejn_14510
crossref_primary_10_1016_j_neuroimage_2017_07_057
crossref_primary_10_1121_1_5088504
crossref_primary_10_1007_s13311_018_00692_2
crossref_primary_10_1016_j_neuroimage_2014_07_044
crossref_primary_10_1016_j_neuroimage_2014_07_042
crossref_primary_10_1523_JNEUROSCI_2705_15_2016
crossref_primary_10_3389_fncom_2019_00095
crossref_primary_10_1016_j_ynirp_2022_100093
crossref_primary_10_1016_j_brainres_2015_10_035
crossref_primary_10_1007_s10162_021_00807_1
crossref_primary_10_1038_s41593_022_01114_5
crossref_primary_10_1093_cercor_bhad087
crossref_primary_10_1002_hbm_26583
crossref_primary_10_1007_s10162_021_00828_w
crossref_primary_10_1038_s41593_019_0410_7
crossref_primary_10_3389_fnhum_2016_00154
crossref_primary_10_3389_fnins_2019_00516
crossref_primary_10_1016_j_bandc_2019_103614
crossref_primary_10_1016_j_clinph_2015_04_002
crossref_primary_10_1016_j_neuroimage_2016_08_023
crossref_primary_10_1016_j_cognition_2022_105327
crossref_primary_10_1016_j_pneurobio_2020_101887
crossref_primary_10_1038_nn_4021
crossref_primary_10_1016_j_cub_2022_01_069
crossref_primary_10_1038_s41562_017_0261_8
crossref_primary_10_1126_science_aaf3777
crossref_primary_10_1016_j_cortex_2021_06_004
crossref_primary_10_3389_fnsys_2017_00035
crossref_primary_10_1016_j_neuroimage_2023_120060
crossref_primary_10_1016_j_neuroimage_2021_118745
crossref_primary_10_1587_transinf_2015EDP7138
crossref_primary_10_3389_fnhum_2018_00009
crossref_primary_10_1121_1_5065392
crossref_primary_10_1093_scan_nsw066
crossref_primary_10_1002_hbm_23214
Cites_doi 10.1152/jn.01105.2011
10.1016/S1364-6613(00)01816-7
10.1007/0-387-28958-5
10.1016/j.neuroimage.2010.02.079
10.1016/j.neuroimage.2010.01.046
10.1016/j.neuroimage.2011.02.006
10.1523/JNEUROSCI.0020-13.2013
10.1523/JNEUROSCI.0383-04.2004
10.1016/0378-5955(90)90170-T
10.1016/B978-0-08-041847-6.50054-X
10.1097/WNR.0b013e328342ba30
10.1523/JNEUROSCI.3815-12.2012
10.1121/1.1912375
10.1121/1.3372751
10.1016/j.neuroimage.2011.08.098
10.1109/TIT.1970.1054411
10.1016/j.neuroimage.2004.07.051
10.1093/cercor/bhr065
10.1016/j.neuroimage.2010.05.015
10.1152/jn.00271.2005
10.1093/cercor/bhs289
10.1152/jn.00804.2011
10.1016/j.tics.2006.07.005
10.1007/s10334-008-0132-4
10.1523/JNEUROSCI.2074-11.2011
10.1523/JNEUROSCI.2563-12.2012
10.1523/JNEUROSCI.1388-12.2012
10.1177/1073858410371009
10.1111/j.1467-9280.2008.02235.x
10.1007/s00221-008-1286-z
10.1093/cercor/bhj027
10.1121/1.409970
10.1016/j.neuroimage.2005.01.007
10.1523/JNEUROSCI.3813-12.2012
10.7551/mitpress/1072.001.0001
10.1016/j.cub.2010.04.019
10.1016/j.neuroimage.2004.01.025
10.1523/JNEUROSCI.4145-08.2009
10.1121/1.2214151
10.1371/journal.pone.0005183
10.1006/nimg.2000.0715
10.1037//0033-295X.85.4.341
10.1093/brain/117.6.1283
10.1016/j.neuroimage.2006.03.050
10.1093/cercor/bhs003
10.1121/1.409971
10.1121/1.1910361
10.1038/nature03867
10.1097/WNR.0b013e32802b70ce
10.1002/(SICI)1097-0193(1999)7:3<213::AID-HBM5>3.0.CO;2-N
10.1121/1.400725
10.1006/nimg.2001.0949
10.1093/cercor/bhn108
10.1016/j.neuroimage.2009.06.060
10.1121/1.1928005
10.1016/S0093-934X(03)00350-X
10.1007/978-94-009-9144-6_47
10.1111/j.1460-9568.2006.05240.x
10.1093/cercor/13.7.765
10.1006/nimg.1998.0396
10.1121/1.399297
10.1016/j.conb.2006.07.001
10.1016/j.cub.2010.04.044
10.1016/S1361-8415(01)00036-6
10.3109/03005364000000131
10.1121/1.1914648
10.1523/JNEUROSCI.23-13-05799.2003
10.1121/1.1910396
10.1121/1.1914448
10.1016/S0896-6273(02)01060-7
10.1038/1637
10.1523/JNEUROSCI.2000-11.2011
10.1152/jn.01125.2002
10.3389/fnsys.2013.00001
10.3389/fnsys.2013.00062
10.1152/jn.00281.2009
10.1016/j.neuroimage.2009.09.045
10.1121/1.1904268
10.1523/JNEUROSCI.3814-12.2012
10.1016/j.neuroimage.2006.01.021
ContentType Journal Article
Copyright Copyright © 2013 the authors 0270-6474/13/3319451-19$15.00/0 2013
Copyright_xml – notice: Copyright © 2013 the authors 0270-6474/13/3319451-19$15.00/0 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1523/JNEUROSCI.2880-13.2013
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList Neurosciences Abstracts
CrossRef
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 19469
ExternalDocumentID PMC3916670
24336712
10_1523_JNEUROSCI_2880_13_2013
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01 EY013455
– fundername: NEI NIH HHS
  grantid: EY13455
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
53G
5GY
5RE
5VS
AAFWJ
AAJMC
AAYXX
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
ADHGD
AENEX
AETEA
AFCFT
AFOSN
AFSQR
AHWXS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
MVM
OK1
P0W
P2P
QZG
R.V
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
XJT
YBU
YHG
YKV
YNH
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
ID FETCH-LOGICAL-c513t-f9985b40b43a425b21ce340c7a0eb98ffb7a70f16ea3cba9203016b1c13f9f0e3
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 13:49:02 EDT 2025
Fri Jul 11 16:51:48 EDT 2025
Sun Aug 24 03:59:13 EDT 2025
Thu Apr 03 07:05:30 EDT 2025
Thu Apr 24 22:53:49 EDT 2025
Tue Jul 01 03:47:07 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 50
Keywords periodicity
fMRI
auditory cortex
tonotopy
pitch
resolved harmonics
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c513t-f9985b40b43a425b21ce340c7a0eb98ffb7a70f16ea3cba9203016b1c13f9f0e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: S.V.N.-H., N.K., and J.M. designed research; S.V.N.-H. performed research; S.V.N.-H. analyzed data; S.V.N.-H., N.K., and J.M. wrote the paper.
OpenAccessLink https://www.jneurosci.org/content/jneuro/33/50/19451.full.pdf
PMID 24336712
PQID 1477558041
PQPubID 23479
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3916670
proquest_miscellaneous_1551625486
proquest_miscellaneous_1477558041
pubmed_primary_24336712
crossref_citationtrail_10_1523_JNEUROSCI_2880_13_2013
crossref_primary_10_1523_JNEUROSCI_2880_13_2013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-12-11
PublicationDateYYYYMMDD 2013-12-11
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2013
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References 2023041304082636000_33.50.19451.41
2023041304082636000_33.50.19451.40
2023041304082636000_33.50.19451.84
2023041304082636000_33.50.19451.83
2023041304082636000_33.50.19451.81
2023041304082636000_33.50.19451.80
2023041304082636000_33.50.19451.49
2023041304082636000_33.50.19451.48
2023041304082636000_33.50.19451.47
2023041304082636000_33.50.19451.46
2023041304082636000_33.50.19451.45
2023041304082636000_33.50.19451.43
2023041304082636000_33.50.19451.42
2023041304082636000_33.50.19451.30
2023041304082636000_33.50.19451.74
2023041304082636000_33.50.19451.73
2023041304082636000_33.50.19451.72
2023041304082636000_33.50.19451.71
2023041304082636000_33.50.19451.70
2023041304082636000_33.50.19451.39
2023041304082636000_33.50.19451.3
2023041304082636000_33.50.19451.38
2023041304082636000_33.50.19451.2
2023041304082636000_33.50.19451.37
2023041304082636000_33.50.19451.5
2023041304082636000_33.50.19451.36
2023041304082636000_33.50.19451.4
2023041304082636000_33.50.19451.35
2023041304082636000_33.50.19451.79
2023041304082636000_33.50.19451.7
2023041304082636000_33.50.19451.34
2023041304082636000_33.50.19451.78
2023041304082636000_33.50.19451.6
2023041304082636000_33.50.19451.33
2023041304082636000_33.50.19451.77
2023041304082636000_33.50.19451.9
2023041304082636000_33.50.19451.32
2023041304082636000_33.50.19451.76
2023041304082636000_33.50.19451.8
2023041304082636000_33.50.19451.31
2023041304082636000_33.50.19451.75
2023041304082636000_33.50.19451.63
2023041304082636000_33.50.19451.62
Warren (2023041304082636000_33.50.19451.82) 2003; 23
2023041304082636000_33.50.19451.61
2023041304082636000_33.50.19451.60
2023041304082636000_33.50.19451.1
2023041304082636000_33.50.19451.29
2023041304082636000_33.50.19451.28
2023041304082636000_33.50.19451.27
2023041304082636000_33.50.19451.26
2023041304082636000_33.50.19451.25
2023041304082636000_33.50.19451.69
2023041304082636000_33.50.19451.24
2023041304082636000_33.50.19451.68
2023041304082636000_33.50.19451.23
2023041304082636000_33.50.19451.67
2023041304082636000_33.50.19451.22
2023041304082636000_33.50.19451.66
2023041304082636000_33.50.19451.21
2023041304082636000_33.50.19451.65
2023041304082636000_33.50.19451.20
2023041304082636000_33.50.19451.64
2023041304082636000_33.50.19451.52
2023041304082636000_33.50.19451.51
2023041304082636000_33.50.19451.50
2023041304082636000_33.50.19451.19
2023041304082636000_33.50.19451.18
2023041304082636000_33.50.19451.17
2023041304082636000_33.50.19451.16
Levitt (2023041304082636000_33.50.19451.44) 1971; 46
2023041304082636000_33.50.19451.15
2023041304082636000_33.50.19451.59
2023041304082636000_33.50.19451.14
2023041304082636000_33.50.19451.58
2023041304082636000_33.50.19451.13
2023041304082636000_33.50.19451.57
2023041304082636000_33.50.19451.12
2023041304082636000_33.50.19451.56
2023041304082636000_33.50.19451.11
2023041304082636000_33.50.19451.55
2023041304082636000_33.50.19451.10
2023041304082636000_33.50.19451.54
2023041304082636000_33.50.19451.53
5541744 - J Acoust Soc Am. 1971 Feb;49(2):Suppl 2:467
23152599 - J Neurosci. 2012 Nov 14;32(46):16149-61
17435596 - Neuroreport. 2007 Mar 5;18(4):323-7
11849614 - Trends Cogn Sci. 2002 Jan 1;6(1):37-46
12816892 - Cereb Cortex. 2003 Jul;13(7):765-72
16530430 - Neuroimage. 2006 Jul 1;31(3):968-80
20096790 - Neuroimage. 2010 Apr 15;50(3):1202-11
21178644 - Neuroreport. 2011 Feb 16;22(3):111-5
15282286 - J Neurosci. 2004 Jul 28;24(30):6810-5
20211739 - Neuroimage. 2010 Jun;51(2):808-16
15501092 - Neuroimage. 2004;23 Suppl 1:S208-19
6040810 - J Acoust Soc Am. 1967 Feb;41(2):506-12
16151180 - Cereb Cortex. 2006 Jun;16(6):835-48
9931269 - Neuroimage. 1999 Feb;9(2):195-207
16899397 - Trends Cogn Sci. 2006 Sep;10(9):424-30
23641203 - Front Syst Neurosci. 2013 Apr 30;7:11
23015423 - J Neurosci. 2012 Sep 26;32(39):13339-42
21994373 - J Neurosci. 2011 Oct 12;31(41):14565-76
19121136 - Psychol Sci. 2008 Dec;19(12):1263-71
23015424 - J Neurosci. 2012 Sep 26;32(39):13343-7
4780803 - J Acoust Soc Am. 1973 Dec;54(6):1496-516
20530254 - Neuroscientist. 2010 Aug;16(4):453-69
20605456 - Curr Biol. 2010 Jun 22;20(12):1128-32
14614108 - J Neurophysiol. 2004 Mar;91(3):1282-96
23055490 - J Neurosci. 2012 Oct 10;32(41):14205-16
10194620 - Hum Brain Mapp. 1999;7(3):213-23
21976491 - J Neurosci. 2011 Oct 5;31(40):14067-75
16121182 - Nature. 2005 Aug 25;436(7054):1161-5
17229108 - Eur J Neurosci. 2006 Dec;24(12):3601-10
20147419 - J Neurophysiol. 2010 Apr;103(4):1809-22
19365552 - PLoS One. 2009;4(4):e5183
18716815 - MAGMA. 2008 Sep;21(5):317-25
15193604 - Neuroimage. 2004 Jun;22(2):755-66
20483377 - Neuroimage. 2010 Oct 1;52(4):1410-9
23015422 - J Neurosci. 2012 Sep 26;32(39):13335-8
15862224 - Neuroimage. 2005 May 15;26(1):243-50
11771990 - Neuroimage. 2002 Jan;15(1):207-16
20493704 - Curr Biol. 2010 Jun 8;20(11):1035-41
4833699 - J Acoust Soc Am. 1974 May;55(5):1061-9
15068910 - Brain Lang. 2004 May;89(2):277-89
22457459 - J Neurophysiol. 2012 Jun;107(12):3458-67
12441063 - Neuron. 2002 Nov 14;36(4):767-76
22314043 - Cereb Cortex. 2013 Feb;23(2):249-54
16733092 - Neuroimage. 2006 Aug 15;32(2):968-77
10997450 - Br J Audiol. 2000 Aug;34(4):205-24
6045077 - J Acoust Soc Am. 1967 Mar;41(3):676-89
7820566 - Brain. 1994 Dec;117 ( Pt 6):1283-301
18236034 - Exp Brain Res. 2008 May;187(1):97-105
16018484 - J Acoust Soc Am. 2005 Jun;117(6):3816-31
19782757 - Neuroimage. 2010 Jan 15;49(2):1641-9
2228789 - Hear Res. 1990 Aug 1;47(1-2):103-38
16014796 - J Neurophysiol. 2005 Nov;94(5):3181-91
16938942 - J Acoust Soc Am. 2006 Aug;120(2):585-8
21315158 - Neuroimage. 2011 Jul 1;57(1):293-300
11516708 - Med Image Anal. 2001 Jun;5(2):143-56
19228981 - J Neurosci. 2009 Feb 18;29(7):2283-96
11305897 - Neuroimage. 2001 Apr;13(4):684-701
22989579 - Cereb Cortex. 2013 Dec;23(12):2987-93
21925281 - Neuroimage. 2012 Jan 16;59(2):1904-11
10196534 - Nat Neurosci. 1998 Sep;1(5):422-7
24106464 - Front Syst Neurosci. 2013 Oct 02;7:62
22049331 - J Neurophysiol. 2012 Feb;107(3):743-6
16842992 - Curr Opin Neurobiol. 2006 Aug;16(4):391-9
8046144 - J Acoust Soc Am. 1994 Jun;95(6):3529-40
18603609 - Cereb Cortex. 2009 Mar;19(3):576-85
19573611 - Neuroimage. 2009 Oct 15;48(1):63-72
23785145 - J Neurosci. 2013 Jun 19;33(25):10312-23
12843284 - J Neurosci. 2003 Jul 2;23(13):5799-804
21709174 - Cereb Cortex. 2012 Apr;22(4):745-53
20649221 - J Acoust Soc Am. 2010 Jul;128(1):257-69
References_xml – ident: 2023041304082636000_33.50.19451.74
  doi: 10.1152/jn.01105.2011
– ident: 2023041304082636000_33.50.19451.84
  doi: 10.1016/S1364-6613(00)01816-7
– ident: 2023041304082636000_33.50.19451.62
  doi: 10.1007/0-387-28958-5
– ident: 2023041304082636000_33.50.19451.22
  doi: 10.1016/j.neuroimage.2010.02.079
– ident: 2023041304082636000_33.50.19451.39
  doi: 10.1016/j.neuroimage.2010.01.046
– ident: 2023041304082636000_33.50.19451.43
  doi: 10.1016/j.neuroimage.2011.02.006
– ident: 2023041304082636000_33.50.19451.21
  doi: 10.1523/JNEUROSCI.0020-13.2013
– ident: 2023041304082636000_33.50.19451.60
  doi: 10.1523/JNEUROSCI.0383-04.2004
– ident: 2023041304082636000_33.50.19451.23
  doi: 10.1016/0378-5955(90)90170-T
– ident: 2023041304082636000_33.50.19451.57
  doi: 10.1016/B978-0-08-041847-6.50054-X
– ident: 2023041304082636000_33.50.19451.1
  doi: 10.1097/WNR.0b013e328342ba30
– ident: 2023041304082636000_33.50.19451.56
  doi: 10.1523/JNEUROSCI.3815-12.2012
– volume: 46
  start-page: 467
  year: 1971
  ident: 2023041304082636000_33.50.19451.44
  article-title: Transformed up-down methods in psychoacoustics
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.1912375
– ident: 2023041304082636000_33.50.19451.51
  doi: 10.1121/1.3372751
– ident: 2023041304082636000_33.50.19451.18
– ident: 2023041304082636000_33.50.19451.69
  doi: 10.1016/j.neuroimage.2011.08.098
– ident: 2023041304082636000_33.50.19451.68
  doi: 10.1109/TIT.1970.1054411
– ident: 2023041304082636000_33.50.19451.73
  doi: 10.1016/j.neuroimage.2004.07.051
– ident: 2023041304082636000_33.50.19451.2
  doi: 10.1093/cercor/bhr065
– ident: 2023041304082636000_33.50.19451.59
  doi: 10.1016/j.neuroimage.2010.05.015
– ident: 2023041304082636000_33.50.19451.36
  doi: 10.1152/jn.00271.2005
– ident: 2023041304082636000_33.50.19451.65
  doi: 10.1093/cercor/bhs289
– ident: 2023041304082636000_33.50.19451.6
  doi: 10.1152/jn.00804.2011
– ident: 2023041304082636000_33.50.19451.63
– ident: 2023041304082636000_33.50.19451.55
  doi: 10.1016/j.tics.2006.07.005
– ident: 2023041304082636000_33.50.19451.66
  doi: 10.1007/s10334-008-0132-4
– ident: 2023041304082636000_33.50.19451.80
  doi: 10.1523/JNEUROSCI.2074-11.2011
– ident: 2023041304082636000_33.50.19451.10
  doi: 10.1523/JNEUROSCI.2563-12.2012
– ident: 2023041304082636000_33.50.19451.52
  doi: 10.1523/JNEUROSCI.1388-12.2012
– ident: 2023041304082636000_33.50.19451.12
  doi: 10.1177/1073858410371009
– ident: 2023041304082636000_33.50.19451.47
  doi: 10.1111/j.1467-9280.2008.02235.x
– ident: 2023041304082636000_33.50.19451.67
  doi: 10.1007/s00221-008-1286-z
– ident: 2023041304082636000_33.50.19451.14
  doi: 10.1093/cercor/bhj027
– ident: 2023041304082636000_33.50.19451.70
  doi: 10.1121/1.409970
– ident: 2023041304082636000_33.50.19451.79
  doi: 10.1016/j.neuroimage.2005.01.007
– ident: 2023041304082636000_33.50.19451.28
  doi: 10.1523/JNEUROSCI.3813-12.2012
– ident: 2023041304082636000_33.50.19451.75
  doi: 10.7551/mitpress/1072.001.0001
– ident: 2023041304082636000_33.50.19451.48
  doi: 10.1016/j.cub.2010.04.019
– ident: 2023041304082636000_33.50.19451.32
  doi: 10.1016/j.neuroimage.2004.01.025
– ident: 2023041304082636000_33.50.19451.45
  doi: 10.1523/JNEUROSCI.4145-08.2009
– ident: 2023041304082636000_33.50.19451.24
  doi: 10.1121/1.2214151
– ident: 2023041304082636000_33.50.19451.83
  doi: 10.1371/journal.pone.0005183
– ident: 2023041304082636000_33.50.19451.54
  doi: 10.1006/nimg.2000.0715
– ident: 2023041304082636000_33.50.19451.17
  doi: 10.1037//0033-295X.85.4.341
– ident: 2023041304082636000_33.50.19451.61
  doi: 10.1093/brain/117.6.1283
– ident: 2023041304082636000_33.50.19451.4
  doi: 10.1016/j.neuroimage.2006.03.050
– ident: 2023041304082636000_33.50.19451.78
  doi: 10.1093/cercor/bhs003
– ident: 2023041304082636000_33.50.19451.13
  doi: 10.1121/1.409971
– ident: 2023041304082636000_33.50.19451.72
  doi: 10.1121/1.1910361
– ident: 2023041304082636000_33.50.19451.7
  doi: 10.1038/nature03867
– ident: 2023041304082636000_33.50.19451.33
  doi: 10.1097/WNR.0b013e32802b70ce
– ident: 2023041304082636000_33.50.19451.35
  doi: 10.1002/(SICI)1097-0193(1999)7:3<213::AID-HBM5>3.0.CO;2-N
– ident: 2023041304082636000_33.50.19451.49
  doi: 10.1121/1.400725
– ident: 2023041304082636000_33.50.19451.31
  doi: 10.1006/nimg.2001.0949
– ident: 2023041304082636000_33.50.19451.34
  doi: 10.1093/cercor/bhn108
– ident: 2023041304082636000_33.50.19451.27
  doi: 10.1016/j.neuroimage.2009.06.060
– ident: 2023041304082636000_33.50.19451.46
  doi: 10.1121/1.1928005
– ident: 2023041304082636000_33.50.19451.50
  doi: 10.1016/S0093-934X(03)00350-X
– ident: 2023041304082636000_33.50.19451.71
– ident: 2023041304082636000_33.50.19451.19
  doi: 10.1007/978-94-009-9144-6_47
– ident: 2023041304082636000_33.50.19451.37
  doi: 10.1111/j.1460-9568.2006.05240.x
– ident: 2023041304082636000_33.50.19451.42
  doi: 10.1093/cercor/13.7.765
– ident: 2023041304082636000_33.50.19451.20
  doi: 10.1006/nimg.1998.0396
– ident: 2023041304082636000_33.50.19451.38
  doi: 10.1121/1.399297
– ident: 2023041304082636000_33.50.19451.8
  doi: 10.1016/j.conb.2006.07.001
– ident: 2023041304082636000_33.50.19451.30
  doi: 10.1016/j.cub.2010.04.044
– ident: 2023041304082636000_33.50.19451.41
  doi: 10.1016/S1361-8415(01)00036-6
– ident: 2023041304082636000_33.50.19451.53
  doi: 10.3109/03005364000000131
– ident: 2023041304082636000_33.50.19451.77
  doi: 10.1121/1.1914648
– ident: 2023041304082636000_33.50.19451.40
– volume: 23
  start-page: 5799
  year: 2003
  ident: 2023041304082636000_33.50.19451.82
  article-title: Distinct mechanisms for processing spatial sequences and pitch sequences in the human auditory brain
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-13-05799.2003
– ident: 2023041304082636000_33.50.19451.25
  doi: 10.1121/1.1910396
– ident: 2023041304082636000_33.50.19451.26
  doi: 10.1121/1.1914448
– ident: 2023041304082636000_33.50.19451.58
  doi: 10.1016/S0896-6273(02)01060-7
– ident: 2023041304082636000_33.50.19451.29
  doi: 10.1038/1637
– ident: 2023041304082636000_33.50.19451.15
  doi: 10.1523/JNEUROSCI.2000-11.2011
– ident: 2023041304082636000_33.50.19451.76
  doi: 10.1152/jn.01125.2002
– ident: 2023041304082636000_33.50.19451.5
  doi: 10.3389/fnsys.2013.00001
– ident: 2023041304082636000_33.50.19451.3
  doi: 10.3389/fnsys.2013.00062
– ident: 2023041304082636000_33.50.19451.9
  doi: 10.1152/jn.00281.2009
– ident: 2023041304082636000_33.50.19451.64
  doi: 10.1016/j.neuroimage.2009.09.045
– ident: 2023041304082636000_33.50.19451.11
  doi: 10.1121/1.1904268
– ident: 2023041304082636000_33.50.19451.81
  doi: 10.1523/JNEUROSCI.3814-12.2012
– ident: 2023041304082636000_33.50.19451.16
  doi: 10.1016/j.neuroimage.2006.01.021
– reference: 21976491 - J Neurosci. 2011 Oct 5;31(40):14067-75
– reference: 20096790 - Neuroimage. 2010 Apr 15;50(3):1202-11
– reference: 19121136 - Psychol Sci. 2008 Dec;19(12):1263-71
– reference: 10997450 - Br J Audiol. 2000 Aug;34(4):205-24
– reference: 18716815 - MAGMA. 2008 Sep;21(5):317-25
– reference: 16121182 - Nature. 2005 Aug 25;436(7054):1161-5
– reference: 15068910 - Brain Lang. 2004 May;89(2):277-89
– reference: 16733092 - Neuroimage. 2006 Aug 15;32(2):968-77
– reference: 22989579 - Cereb Cortex. 2013 Dec;23(12):2987-93
– reference: 16018484 - J Acoust Soc Am. 2005 Jun;117(6):3816-31
– reference: 17435596 - Neuroreport. 2007 Mar 5;18(4):323-7
– reference: 11516708 - Med Image Anal. 2001 Jun;5(2):143-56
– reference: 11305897 - Neuroimage. 2001 Apr;13(4):684-701
– reference: 11849614 - Trends Cogn Sci. 2002 Jan 1;6(1):37-46
– reference: 21315158 - Neuroimage. 2011 Jul 1;57(1):293-300
– reference: 23785145 - J Neurosci. 2013 Jun 19;33(25):10312-23
– reference: 19365552 - PLoS One. 2009;4(4):e5183
– reference: 14614108 - J Neurophysiol. 2004 Mar;91(3):1282-96
– reference: 23055490 - J Neurosci. 2012 Oct 10;32(41):14205-16
– reference: 22314043 - Cereb Cortex. 2013 Feb;23(2):249-54
– reference: 20605456 - Curr Biol. 2010 Jun 22;20(12):1128-32
– reference: 23015424 - J Neurosci. 2012 Sep 26;32(39):13343-7
– reference: 20483377 - Neuroimage. 2010 Oct 1;52(4):1410-9
– reference: 10194620 - Hum Brain Mapp. 1999;7(3):213-23
– reference: 21994373 - J Neurosci. 2011 Oct 12;31(41):14565-76
– reference: 19228981 - J Neurosci. 2009 Feb 18;29(7):2283-96
– reference: 15193604 - Neuroimage. 2004 Jun;22(2):755-66
– reference: 12816892 - Cereb Cortex. 2003 Jul;13(7):765-72
– reference: 21925281 - Neuroimage. 2012 Jan 16;59(2):1904-11
– reference: 15501092 - Neuroimage. 2004;23 Suppl 1:S208-19
– reference: 21709174 - Cereb Cortex. 2012 Apr;22(4):745-53
– reference: 18603609 - Cereb Cortex. 2009 Mar;19(3):576-85
– reference: 15862224 - Neuroimage. 2005 May 15;26(1):243-50
– reference: 24106464 - Front Syst Neurosci. 2013 Oct 02;7:62
– reference: 15282286 - J Neurosci. 2004 Jul 28;24(30):6810-5
– reference: 17229108 - Eur J Neurosci. 2006 Dec;24(12):3601-10
– reference: 21178644 - Neuroreport. 2011 Feb 16;22(3):111-5
– reference: 16014796 - J Neurophysiol. 2005 Nov;94(5):3181-91
– reference: 4833699 - J Acoust Soc Am. 1974 May;55(5):1061-9
– reference: 23015423 - J Neurosci. 2012 Sep 26;32(39):13339-42
– reference: 11771990 - Neuroimage. 2002 Jan;15(1):207-16
– reference: 6040810 - J Acoust Soc Am. 1967 Feb;41(2):506-12
– reference: 12843284 - J Neurosci. 2003 Jul 2;23(13):5799-804
– reference: 7820566 - Brain. 1994 Dec;117 ( Pt 6):1283-301
– reference: 5541744 - J Acoust Soc Am. 1971 Feb;49(2):Suppl 2:467+
– reference: 19573611 - Neuroimage. 2009 Oct 15;48(1):63-72
– reference: 23152599 - J Neurosci. 2012 Nov 14;32(46):16149-61
– reference: 16151180 - Cereb Cortex. 2006 Jun;16(6):835-48
– reference: 2228789 - Hear Res. 1990 Aug 1;47(1-2):103-38
– reference: 22049331 - J Neurophysiol. 2012 Feb;107(3):743-6
– reference: 20211739 - Neuroimage. 2010 Jun;51(2):808-16
– reference: 12441063 - Neuron. 2002 Nov 14;36(4):767-76
– reference: 16530430 - Neuroimage. 2006 Jul 1;31(3):968-80
– reference: 20147419 - J Neurophysiol. 2010 Apr;103(4):1809-22
– reference: 18236034 - Exp Brain Res. 2008 May;187(1):97-105
– reference: 23641203 - Front Syst Neurosci. 2013 Apr 30;7:11
– reference: 16938942 - J Acoust Soc Am. 2006 Aug;120(2):585-8
– reference: 6045077 - J Acoust Soc Am. 1967 Mar;41(3):676-89
– reference: 20493704 - Curr Biol. 2010 Jun 8;20(11):1035-41
– reference: 10196534 - Nat Neurosci. 1998 Sep;1(5):422-7
– reference: 16899397 - Trends Cogn Sci. 2006 Sep;10(9):424-30
– reference: 9931269 - Neuroimage. 1999 Feb;9(2):195-207
– reference: 20530254 - Neuroscientist. 2010 Aug;16(4):453-69
– reference: 22457459 - J Neurophysiol. 2012 Jun;107(12):3458-67
– reference: 4780803 - J Acoust Soc Am. 1973 Dec;54(6):1496-516
– reference: 8046144 - J Acoust Soc Am. 1994 Jun;95(6):3529-40
– reference: 20649221 - J Acoust Soc Am. 2010 Jul;128(1):257-69
– reference: 19782757 - Neuroimage. 2010 Jan 15;49(2):1641-9
– reference: 23015422 - J Neurosci. 2012 Sep 26;32(39):13335-8
– reference: 16842992 - Curr Opin Neurobiol. 2006 Aug;16(4):391-9
SSID ssj0007017
Score 2.4603565
Snippet Pitch is a defining perceptual property of many real-world sounds, including music and speech. Classically, theories of pitch perception have differentiated...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 19451
SubjectTerms Acoustic Stimulation - methods
Adult
Auditory Cortex - physiology
Auditory Pathways - physiology
Female
Functional Neuroimaging
Humans
Magnetic Resonance Imaging
Male
Pitch Discrimination - physiology
Pitch Perception - physiology
Title Cortical Pitch Regions in Humans Respond Primarily to Resolved Harmonics and Are Located in Specific Tonotopic Regions of Anterior Auditory Cortex
URI https://www.ncbi.nlm.nih.gov/pubmed/24336712
https://www.proquest.com/docview/1477558041
https://www.proquest.com/docview/1551625486
https://pubmed.ncbi.nlm.nih.gov/PMC3916670
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCgPIILy0S4hI5tXdtr32MIlAIKAKRSr1ZXnedRmrsKnV4_Qz-Fn-Kmd31xmmrQrlEiWOPH_N5Z2Z35htCXrOCl7zgvgfmiEGAorAbYCq8SEhWHqdlInPN9jmLJ4fh9Cg66vV-d7KWNo0cFj-vrCv5H63CNtArVsneQLNOKGyA76Bf-AQNw-c_6Xhcr81U9KclPHx4VIs2MVzPzWMJCGbAYjkAckrgTAa4mjhjf_oVHM1Jvl4hM66haR6t1eBjjQlSSMdkGtOXy2Iwr6u6qc90wv2iTZsboT6W9XowwqoOXKfHa1Hfu77utupM-7sd5kwHppmuWfAm-XJRKTsbnq-cEcirb64zuzYDnTltsCg212Ran58MJsPu_EXAMRfEjq9mmGMCAtjQ9OoZKjsMM73uE3THaUOYYfFo2GrtqBukoWWtVe1v0__lkn2INE_FdIZpkl_G74cMhi8v4Jjix7cWsc0CuGAoXfoiBk4gKXNyMpSTBTxDObfIbQYxC7bT-PB5S10vfN3-2d2uLVcHOQdXX8-up3Qp_LmYxdtxi-b3yF2rXzoy4LxPeqp6QPZHVd7Uqx_0DdUZxnrpZp_8avFKNV6pxRNdVtTglVq8UodX2tS0xSt1eKWAVzilohavKKHFK3V4dfLrkrZ4pS1eqcHrQ3L47u18PPFsTxCviALeeGWaJpEMfRnyHMyNZEGheOgXIveVTJOylCIXfhnEKueFzFOGIX8sgyLgZVr6ij8ie1VdqSeEijIuwlRwCPiPwS1HX1gypRJfBtIXIumTqH3-WWEJ87Fvy2l2vf775MAdd2YoY_56xKtWvRmM7rhkl1eq3pxDYC5EFCFH2DX74Fo3i8Ik7pPHBhLuvCzkPBYB6xOxAxa3A7LL7_5TLU80yzxW5MfCf3rju3lG7mzf8-dkr1lv1Avw3Bv5Ur8RfwD3z-5W
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cortical+Pitch+Regions+in+Humans+Respond+Primarily+to+Resolved+Harmonics+and+Are+Located+in+Specific+Tonotopic+Regions+of+Anterior+Auditory+Cortex&rft.jtitle=The+Journal+of+neuroscience&rft.au=Norman-Haignere%2C+Sam&rft.au=Kanwisher%2C+Nancy&rft.au=McDermott%2C+Josh+H.&rft.date=2013-12-11&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=33&rft.issue=50&rft.spage=19451&rft.epage=19469&rft_id=info:doi/10.1523%2FJNEUROSCI.2880-13.2013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1523_JNEUROSCI_2880_13_2013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon