Graph Theoretical Analysis of EEG Functional Connectivity Patterns and Fusion with Physiological Signals for Emotion Recognition

Emotion recognition is a key attribute for realizing advances in human–computer interaction, especially when using non-intrusive physiological sensors, such as electroencephalograph (EEG) and electrocardiograph. Although functional connectivity of EEG has been utilized for emotion recognition, the g...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 21; p. 8198
Main Authors Xefteris, Vasileios-Rafail, Tsanousa, Athina, Georgakopoulou, Nefeli, Diplaris, Sotiris, Vrochidis, Stefanos, Kompatsiaris, Ioannis
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 26.10.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Emotion recognition is a key attribute for realizing advances in human–computer interaction, especially when using non-intrusive physiological sensors, such as electroencephalograph (EEG) and electrocardiograph. Although functional connectivity of EEG has been utilized for emotion recognition, the graph theory analysis of EEG connectivity patterns has not been adequately explored. The exploitation of brain network characteristics could provide valuable information regarding emotions, while the combination of EEG and peripheral physiological signals can reveal correlation patterns of human internal state. In this work, a graph theoretical analysis of EEG functional connectivity patterns along with fusion between EEG and peripheral physiological signals for emotion recognition has been proposed. After extracting functional connectivity from EEG signals, both global and local graph theory features are extracted. Those features are concatenated with statistical features from peripheral physiological signals and fed to different classifiers and a Convolutional Neural Network (CNN) for emotion recognition. The average accuracy on the DEAP dataset using CNN was 55.62% and 57.38% for subject-independent valence and arousal classification, respectively, and 83.94% and 83.87% for subject-dependent classification. Those scores went up to 75.44% and 78.77% for subject-independent classification and 88.27% and 90.84% for subject-dependent classification using a feature selection algorithm, exceeding the current state-of-the-art results.
AbstractList Emotion recognition is a key attribute for realizing advances in human–computer interaction, especially when using non-intrusive physiological sensors, such as electroencephalograph (EEG) and electrocardiograph. Although functional connectivity of EEG has been utilized for emotion recognition, the graph theory analysis of EEG connectivity patterns has not been adequately explored. The exploitation of brain network characteristics could provide valuable information regarding emotions, while the combination of EEG and peripheral physiological signals can reveal correlation patterns of human internal state. In this work, a graph theoretical analysis of EEG functional connectivity patterns along with fusion between EEG and peripheral physiological signals for emotion recognition has been proposed. After extracting functional connectivity from EEG signals, both global and local graph theory features are extracted. Those features are concatenated with statistical features from peripheral physiological signals and fed to different classifiers and a Convolutional Neural Network (CNN) for emotion recognition. The average accuracy on the DEAP dataset using CNN was 55.62% and 57.38% for subject-independent valence and arousal classification, respectively, and 83.94% and 83.87% for subject-dependent classification. Those scores went up to 75.44% and 78.77% for subject-independent classification and 88.27% and 90.84% for subject-dependent classification using a feature selection algorithm, exceeding the current state-of-the-art results.
Emotion recognition is a key attribute for realizing advances in human-computer interaction, especially when using non-intrusive physiological sensors, such as electroencephalograph (EEG) and electrocardiograph. Although functional connectivity of EEG has been utilized for emotion recognition, the graph theory analysis of EEG connectivity patterns has not been adequately explored. The exploitation of brain network characteristics could provide valuable information regarding emotions, while the combination of EEG and peripheral physiological signals can reveal correlation patterns of human internal state. In this work, a graph theoretical analysis of EEG functional connectivity patterns along with fusion between EEG and peripheral physiological signals for emotion recognition has been proposed. After extracting functional connectivity from EEG signals, both global and local graph theory features are extracted. Those features are concatenated with statistical features from peripheral physiological signals and fed to different classifiers and a Convolutional Neural Network (CNN) for emotion recognition. The average accuracy on the DEAP dataset using CNN was 55.62% and 57.38% for subject-independent valence and arousal classification, respectively, and 83.94% and 83.87% for subject-dependent classification. Those scores went up to 75.44% and 78.77% for subject-independent classification and 88.27% and 90.84% for subject-dependent classification using a feature selection algorithm, exceeding the current state-of-the-art results.Emotion recognition is a key attribute for realizing advances in human-computer interaction, especially when using non-intrusive physiological sensors, such as electroencephalograph (EEG) and electrocardiograph. Although functional connectivity of EEG has been utilized for emotion recognition, the graph theory analysis of EEG connectivity patterns has not been adequately explored. The exploitation of brain network characteristics could provide valuable information regarding emotions, while the combination of EEG and peripheral physiological signals can reveal correlation patterns of human internal state. In this work, a graph theoretical analysis of EEG functional connectivity patterns along with fusion between EEG and peripheral physiological signals for emotion recognition has been proposed. After extracting functional connectivity from EEG signals, both global and local graph theory features are extracted. Those features are concatenated with statistical features from peripheral physiological signals and fed to different classifiers and a Convolutional Neural Network (CNN) for emotion recognition. The average accuracy on the DEAP dataset using CNN was 55.62% and 57.38% for subject-independent valence and arousal classification, respectively, and 83.94% and 83.87% for subject-dependent classification. Those scores went up to 75.44% and 78.77% for subject-independent classification and 88.27% and 90.84% for subject-dependent classification using a feature selection algorithm, exceeding the current state-of-the-art results.
Audience Academic
Author Vrochidis, Stefanos
Diplaris, Sotiris
Xefteris, Vasileios-Rafail
Tsanousa, Athina
Georgakopoulou, Nefeli
Kompatsiaris, Ioannis
AuthorAffiliation Centre for Research and Technology Hellas, Information Technologies Institute, 6th Km Charilaou-Thermi, 57001 Thessaloniki, Greece
AuthorAffiliation_xml – name: Centre for Research and Technology Hellas, Information Technologies Institute, 6th Km Charilaou-Thermi, 57001 Thessaloniki, Greece
Author_xml – sequence: 1
  givenname: Vasileios-Rafail
  orcidid: 0000-0002-7394-8412
  surname: Xefteris
  fullname: Xefteris, Vasileios-Rafail
– sequence: 2
  givenname: Athina
  orcidid: 0000-0001-6599-4446
  surname: Tsanousa
  fullname: Tsanousa, Athina
– sequence: 3
  givenname: Nefeli
  orcidid: 0000-0002-0729-8992
  surname: Georgakopoulou
  fullname: Georgakopoulou, Nefeli
– sequence: 4
  givenname: Sotiris
  surname: Diplaris
  fullname: Diplaris, Sotiris
– sequence: 5
  givenname: Stefanos
  orcidid: 0000-0002-2505-9178
  surname: Vrochidis
  fullname: Vrochidis, Stefanos
– sequence: 6
  givenname: Ioannis
  orcidid: 0000-0001-6447-9020
  surname: Kompatsiaris
  fullname: Kompatsiaris, Ioannis
BookMark eNptkk1vGyEQhldVquajPfQfIPXSHpywwC5wqWRZjhMpUqM2PSPMDmusNbiwm8i3_vSwcfrhtOLAMLzvAwxzWhz54KEo3pf4nFKJLxIhpBSlFK-Kk5IRNhGE4KO_4uPiNKU1xoRSKt4Ux7SmdSVkfVL8XES9XaG7FYQIvTO6Q1Ovu11yCQWL5vMFuhy86V3IWTQL3kNe3Lt-h25130P0CWnfZFHKEvTg-hW6XWV76EL7hPvm2mxNyIaI5pswktBXMKH1bozfFq9t3oZ3z_NZ8f1yfje7mtx8WVzPpjcTU5W0n4DlrAEmRWOFrDCAwUsupdQVx7zBBizjhjFmYVlTYjWvgYs6h4RrZrikZ8X1ntsEvVbb6DY67lTQTj0lQmyVjrkAHShRyWZpsLaELpkwRjRNCUIyycEKQXhmfd6ztsNyA40B30fdHUAPd7xbqTbcK1lXNSEsAz4-A2L4MUDq1cYlA12nPYQhqXxGJTiV9Sj98EK6DkMcKzqqGM9Dln9Urc4PcN6GfK4ZoWrKWV1RWlbjvc__o8qjgY0zuaesy_kDw8XeYGJIKYJVxvV6_LZsdJ0qsRobUP1uwOz49MLxqyr_ah8BS6rbog
CitedBy_id crossref_primary_10_1142_S0219477524500512
crossref_primary_10_1002_widm_1563
crossref_primary_10_1109_ACCESS_2024_3506157
crossref_primary_10_1109_ACCESS_2024_3394036
crossref_primary_10_1007_s00521_024_09479_3
Cites_doi 10.1145/3129340
10.3390/s19092212
10.1080/02533839.2013.799946
10.1109/WACV.2016.7477679
10.1038/30918
10.1016/j.neuropsychologia.2014.01.002
10.1109/ACCESS.2021.3083519
10.3390/s20216155
10.1109/BIBM.2017.8217815
10.1109/34.954607
10.38094/jastt20291
10.3390/s18020401
10.1016/j.ins.2016.08.047
10.1109/ICCAIS.2012.6466585
10.1007/s12559-021-09953-3
10.1186/s40537-020-00289-7
10.1109/ICECE.2018.8636698
10.1109/IJCNN.2018.8489125
10.1007/11816102_77
10.1007/978-3-319-70093-9_86
10.1109/ACIIAsia.2018.8470381
10.1016/j.inffus.2018.11.001
10.1109/ICSEC.2015.7401452
10.4304/jsw.6.8.1529-1536
10.1109/JSTSP.2017.2764438
10.1016/j.neucom.2021.08.067
10.1016/j.inffus.2018.10.009
10.1109/CVPRW.2017.282
10.3390/s22010130
10.1145/3383972.3384003
10.1002/ar.20965
10.1002/brb3.1269
10.1109/ACCESS.2021.3049516
10.1109/ICASSP40776.2020.9053985
10.1109/ECBIOS51820.2021.9510858
10.1007/978-1-4614-3501-3_39
10.1007/s12652-017-0636-8
10.1016/j.neuroimage.2009.10.003
10.3389/fnbot.2019.00037
10.1109/ACCESS.2020.3021994
10.1007/s11042-017-5485-0
10.1016/j.bspc.2019.101646
10.1097/00004691-200101000-00010
10.1016/j.bspc.2021.102755
10.3390/s19061423
10.1088/1741-2552/ac49a7
10.1038/nrn3214
10.1162/netn_a_00177
10.1109/TBME.2010.2048568
10.5383/JUSPN.10.01.004
10.3390/s19204541
10.1016/j.bspc.2018.08.035
10.1109/ACCESS.2019.2927768
10.1007/s12193-016-0222-y
10.1109/T-AFFC.2011.15
10.1109/RCAR.2016.7784015
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s22218198
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic



CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_859dbc0af23b48cc8dd1e89497ef8827
PMC9656224
A746533157
10_3390_s22218198
GrantInformation_xml – fundername: EC-funded research and innovation programme H2020 Mindspaces: “Art-driven adaptive outdoors and indoors design”
  grantid: 825079
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c513t-ef74de498df8950eec0b7999a5707d0cef47c444feb632fa76e78663227a4c793
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:26:35 EDT 2025
Thu Aug 21 18:39:37 EDT 2025
Fri Jul 11 15:50:38 EDT 2025
Fri Jul 25 20:45:02 EDT 2025
Thu Jul 03 03:20:39 EDT 2025
Tue Jul 01 05:43:22 EDT 2025
Tue Jul 01 01:19:29 EDT 2025
Thu Apr 24 23:07:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c513t-ef74de498df8950eec0b7999a5707d0cef47c444feb632fa76e78663227a4c793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6599-4446
0000-0002-0729-8992
0000-0002-7394-8412
0000-0001-6447-9020
0000-0002-2505-9178
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22218198
PMID 36365896
PQID 2734747491
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_859dbc0af23b48cc8dd1e89497ef8827
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9656224
proquest_miscellaneous_2735873964
proquest_journals_2734747491
gale_infotracmisc_A746533157
gale_infotracacademiconefile_A746533157
crossref_citationtrail_10_3390_s22218198
crossref_primary_10_3390_s22218198
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221026
PublicationDateYYYYMMDD 2022-10-26
PublicationDate_xml – month: 10
  year: 2022
  text: 20221026
  day: 26
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Latha (ref_33) 2016; 11
ref_14
ref_57
Citron (ref_49) 2014; 56
ref_56
Lin (ref_58) 2010; 57
(ref_41) 2017; 11
Joshi (ref_62) 2021; 68
(ref_13) 2021; 9
ref_15
ref_59
Padfield (ref_17) 2021; 463
Kar (ref_26) 2019; 78
Zhao (ref_38) 2019; 15
ref_61
Kumar (ref_4) 2019; 52
Zhang (ref_43) 2020; 8
ref_24
Schuller (ref_25) 2018; 61
Wu (ref_12) 2022; 19
ref_21
ref_20
Xing (ref_63) 2019; 13
Doma (ref_29) 2020; 7
Delahoz (ref_9) 2020; 55
Samara (ref_5) 2019; 10
ref_27
Jeong (ref_51) 2001; 18
Picard (ref_1) 1997; 29
Akinloye (ref_2) 2020; 9
Jerritta (ref_32) 2014; 37
Yang (ref_31) 2011; 6
Padfield (ref_16) 2021; 13
ref_36
Haartsen (ref_22) 2019; 9
ref_35
ref_34
Astolfi (ref_53) 2009; 292
Zhao (ref_28) 2019; 47
ref_30
ref_39
ref_37
Rubinov (ref_54) 2010; 52
Abdullah (ref_10) 2021; 2
Hassan (ref_47) 2019; 51
Pandey (ref_60) 2019; 35
Flores (ref_3) 2018; 12
Watts (ref_52) 1998; 393
Jalili (ref_19) 2017; 384
Picard (ref_6) 2001; 23
Zaki (ref_50) 2018; 10
ref_46
ref_42
Wang (ref_11) 2019; 7
Bullmore (ref_55) 2012; 13
ref_40
Zhang (ref_44) 2021; 9
ref_48
ref_8
Koelstra (ref_23) 2011; 3
Anagnostopoulou (ref_18) 2021; 5
Tzirakis (ref_45) 2017; 11
ref_7
References_xml – volume: 61
  start-page: 90
  year: 2018
  ident: ref_25
  article-title: Speech emotion recognition: Two decades in a nutshell, benchmarks, and ongoing trends
  publication-title: Commun. ACM
  doi: 10.1145/3129340
– ident: ref_61
  doi: 10.3390/s19092212
– volume: 37
  start-page: 385
  year: 2014
  ident: ref_32
  article-title: Emotion recognition from facial EMG signals using higher order statistics and principal component analysis
  publication-title: J. Chin. Inst. Eng.
  doi: 10.1080/02533839.2013.799946
– ident: ref_46
  doi: 10.1109/WACV.2016.7477679
– volume: 393
  start-page: 440
  year: 1998
  ident: ref_52
  article-title: Collective dynamics of ‘small-world’networks
  publication-title: Nature
  doi: 10.1038/30918
– volume: 56
  start-page: 79
  year: 2014
  ident: ref_49
  article-title: Emotional valence and arousal affect reading in an interactive way: Neuroimaging evidence for an approach-withdrawal framework
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2014.01.002
– volume: 9
  start-page: 78060
  year: 2021
  ident: ref_13
  article-title: Impact of EEG Parameters Detecting Dementia Diseases: A Systematic Review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3083519
– ident: ref_57
  doi: 10.3390/s20216155
– ident: ref_7
  doi: 10.1109/BIBM.2017.8217815
– volume: 23
  start-page: 1175
  year: 2001
  ident: ref_6
  article-title: Toward machine emotional intelligence: Analysis of affective physiological state
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.954607
– volume: 2
  start-page: 52
  year: 2021
  ident: ref_10
  article-title: Multimodal emotion recognition using deep learning
  publication-title: J. Appl. Sci. Technol. Trends
  doi: 10.38094/jastt20291
– ident: ref_24
  doi: 10.3390/s18020401
– volume: 384
  start-page: 145
  year: 2017
  ident: ref_19
  article-title: Graph theoretical analysis of Alzheimer’s disease: Discrimination of AD patients from healthy subjects
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.08.047
– ident: ref_59
  doi: 10.1109/ICCAIS.2012.6466585
– volume: 13
  start-page: 1484
  year: 2021
  ident: ref_16
  article-title: Multi-segment majority voting decision fusion for MI EEG brain-computer interfacing
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-021-09953-3
– volume: 7
  start-page: 1
  year: 2020
  ident: ref_29
  article-title: A comparative analysis of machine learning methods for emotion recognition using EEG and peripheral physiological signals
  publication-title: J. Big Data
  doi: 10.1186/s40537-020-00289-7
– ident: ref_21
  doi: 10.1109/ICECE.2018.8636698
– ident: ref_35
  doi: 10.1109/IJCNN.2018.8489125
– volume: 15
  start-page: 1
  year: 2019
  ident: ref_38
  article-title: Personalized emotion recognition by personality-aware high-order learning of physiological signals
  publication-title: Acm Trans. Multimed. Comput. Commun. Appl. TOMM
– ident: ref_42
  doi: 10.1007/11816102_77
– ident: ref_48
  doi: 10.1007/978-3-319-70093-9_86
– ident: ref_36
  doi: 10.1109/ACIIAsia.2018.8470381
– volume: 52
  start-page: 41
  year: 2019
  ident: ref_4
  article-title: Fusion of EEG response and sentiment analysis of products review to predict customer satisfaction
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.11.001
– ident: ref_39
  doi: 10.1109/ICSEC.2015.7401452
– volume: 6
  start-page: 1529
  year: 2011
  ident: ref_31
  article-title: Emotion Recognition of EMG Based on Improved LM BP Neural Network and SVM
  publication-title: J. Softw.
  doi: 10.4304/jsw.6.8.1529-1536
– volume: 11
  start-page: 1301
  year: 2017
  ident: ref_45
  article-title: End-to-end multimodal emotion recognition using deep neural networks
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2017.2764438
– volume: 463
  start-page: 566
  year: 2021
  ident: ref_17
  article-title: Sparse learning of band power features with genetic channel selection for effective classification of EEG signals
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.08.067
– volume: 51
  start-page: 10
  year: 2019
  ident: ref_47
  article-title: Human emotion recognition using deep belief network architecture
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.10.009
– ident: ref_20
– ident: ref_27
  doi: 10.1109/CVPRW.2017.282
– ident: ref_56
  doi: 10.3390/s22010130
– ident: ref_30
  doi: 10.1145/3383972.3384003
– volume: 292
  start-page: 2023
  year: 2009
  ident: ref_53
  article-title: Evaluation of the brain network organization from EEG signals: A preliminary evidence in stroke patient
  publication-title: Anat. Rec. Adv. Integr. Anat. Evol. Biol. Adv. Integr. Anat. Evol. Biol.
  doi: 10.1002/ar.20965
– volume: 9
  start-page: e01269
  year: 2019
  ident: ref_22
  article-title: Test-retest reliability of EEG network characteristics in infants
  publication-title: Brain Behav.
  doi: 10.1002/brb3.1269
– volume: 29
  start-page: 1729
  year: 1997
  ident: ref_1
  article-title: EEG-detected olfactory imagery to reveal covert consciousness in minimally conscious state
  publication-title: Brain Inj.
– volume: 9
  start-page: 7943
  year: 2021
  ident: ref_44
  article-title: Multimodal emotion recognition using a hierarchical fusion convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3049516
– volume: 9
  start-page: e00514
  year: 2020
  ident: ref_2
  article-title: Development of an affective-based e-healthcare system for autistic children
  publication-title: Sci. Afr.
– ident: ref_8
  doi: 10.1109/ICASSP40776.2020.9053985
– ident: ref_34
  doi: 10.1109/ECBIOS51820.2021.9510858
– ident: ref_40
  doi: 10.1007/978-1-4614-3501-3_39
– volume: 10
  start-page: 2175
  year: 2019
  ident: ref_5
  article-title: Affective state detection via facial expression analysis within a human–computer interaction context
  publication-title: J. Ambient. Intell. Humaniz. Comput.
  doi: 10.1007/s12652-017-0636-8
– volume: 52
  start-page: 1059
  year: 2010
  ident: ref_54
  article-title: Complex network measures of brain connectivity: Uses and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 13
  start-page: 37
  year: 2019
  ident: ref_63
  article-title: SAE+ LSTM: A New framework for emotion recognition from multi-channel EEG
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2019.00037
– volume: 11
  start-page: 12767
  year: 2016
  ident: ref_33
  article-title: Multirate Analysis and Neural Network Based Classification of Human Emotions Using Facial Electromyography Signals
  publication-title: ARPN J. Eng. Appl. Sci.
– volume: 8
  start-page: 164130
  year: 2020
  ident: ref_43
  article-title: Expression-EEG based collaborative multimodal emotion recognition using deep autoencoder
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3021994
– volume: 78
  start-page: 4789
  year: 2019
  ident: ref_26
  article-title: Face expression recognition system based on ripplet transform type II and least square SVM
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-017-5485-0
– volume: 55
  start-page: 101646
  year: 2020
  ident: ref_9
  article-title: A machine learning model for emotion recognition from physiological signals
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2019.101646
– volume: 18
  start-page: 58
  year: 2001
  ident: ref_51
  article-title: Nonlinear dynamic analysis of the EEG in patients with Alzheimer’s disease and vascular dementia
  publication-title: J. Clin. Neurophysiol.
  doi: 10.1097/00004691-200101000-00010
– volume: 68
  start-page: 102755
  year: 2021
  ident: ref_62
  article-title: EEG based emotion detection using fourth order spectral moment and deep learning
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2021.102755
– volume: 12
  start-page: 66
  year: 2018
  ident: ref_3
  article-title: Induction of emotional states in educational video games through a fuzzy control system
  publication-title: IEEE Trans. Affect. Comput.
– ident: ref_15
  doi: 10.3390/s19061423
– volume: 19
  start-page: 016012
  year: 2022
  ident: ref_12
  article-title: Investigating EEG-based functional connectivity patterns for multimodal emotion recognition
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ac49a7
– volume: 13
  start-page: 336
  year: 2012
  ident: ref_55
  article-title: The economy of brain network organization
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3214
– volume: 5
  start-page: 274
  year: 2021
  ident: ref_18
  article-title: Computerized physical and cognitive training improves the functional architecture of the brain in adults with Down syndrome: A network science EEG study
  publication-title: Netw. Neurosci.
  doi: 10.1162/netn_a_00177
– volume: 57
  start-page: 1798
  year: 2010
  ident: ref_58
  article-title: EEG-Based Emotion Recognition in Music Listening
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2048568
– volume: 10
  start-page: 27
  year: 2018
  ident: ref_50
  article-title: Home Automation using EMOTIV: Controlling TV by Brainwaves
  publication-title: J. Ubiquitous Syst. Pervasive Netw.
  doi: 10.5383/JUSPN.10.01.004
– ident: ref_14
  doi: 10.3390/s19204541
– volume: 47
  start-page: 312
  year: 2019
  ident: ref_28
  article-title: Speech emotion recognition using deep 1D & 2D CNN LSTM networks
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2018.08.035
– volume: 7
  start-page: 93711
  year: 2019
  ident: ref_11
  article-title: Phase-locking value based graph convolutional neural networks for emotion recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2927768
– volume: 11
  start-page: 9
  year: 2017
  ident: ref_41
  article-title: SVM-based feature selection methods for emotion recognition from multimodal data
  publication-title: J. Multimodal User Interfaces
  doi: 10.1007/s12193-016-0222-y
– volume: 3
  start-page: 18
  year: 2011
  ident: ref_23
  article-title: Deap: A database for emotion analysis; using physiological signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.15
– ident: ref_37
  doi: 10.1109/RCAR.2016.7784015
– volume: 35
  start-page: 1730
  year: 2019
  ident: ref_60
  article-title: Subject independent emotion recognition from EEG using VMD and deep learning
  publication-title: J. King Saud-Univ.-Comput. Inf. Sci.
SSID ssj0023338
Score 2.4209745
Snippet Emotion recognition is a key attribute for realizing advances in human–computer interaction, especially when using non-intrusive physiological sensors, such as...
Emotion recognition is a key attribute for realizing advances in human-computer interaction, especially when using non-intrusive physiological sensors, such as...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 8198
SubjectTerms Accuracy
Algorithms
Alzheimer's disease
Artificial intelligence
Classification
Datasets
Deep learning
Discriminant analysis
EEG
Electroencephalography
Electromyography
emotion recognition
Emotions
functional connectivity
graph theory
Heart rate
Machine learning
Methods
multimodal fusion
multimodal physiological signals
Neural networks
Physiological aspects
Physiology
Product development
Sensors
Support vector machines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT-WAoIAIlMogJLhEdZxJbB8L2m2FBELQSr1Zjj-gUpVF7PbOT2fGSbYbQOLCJYd4Itmemcwba_yGsVfKCBd1F0pIkPARRYlhGMpWBnDSh6rNRxcfPrZnF_D-srncafVFNWEDPfCwcce6MaHzwiVZd6C91yFUURswKiZEh_keOca8KZkaU60aM6-BR6jGpP54jVEQQ5nRs-iTSfr__BX_Xh65E2-W99m9ESjyk2GCD9id2B-wuzv0gQ_Zz1Nim-bnt3cR-cQxwleJLxanfIlhazjt47mkxQ_NIvinTKvZr7nrAwrRkRmnI1meK0KnHyL_cvWV-JU5Ilu-GBr-8M9TydGqf8Qulovzd2fl2FGh9E1Vb8qYFIQIRoekTSNi9KJTCBFdo4QKwscEygOgyrq2lsmpNiqNmERK5cCjKz9me_2qj08Yx-8R2ogqQYzgfXRaQ9Ul6YxRxnWiYG-mnbZ-pBunrhfXFtMOUordKqVgL7ei3weOjb8JvSV1bQWIFju_QGOxo7HYfxlLwV6Tsi05L07Gu_EOAi6JaLDsiSK6ubpqUPJwJolO5-fDk7nY0enXlpiCMDsDUxXsxXaYvqRCtj6ubrJMo1VtWiiYmpnZbGXzkf7qWyb-Ngi-EXI9_R9b8YztS7rJgWFYtodsb_PjJj5HfLXpjrIr_QIMRydt
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeIpAQQYhwSWq4zixfUIF7bZCAiFopb1Zjh-lEkpKd3vnpzPjOLsNIC45xBPlMR7PN5PxN4S8lprZoDpfiigiHAIrwQ2LsuVeWO581abUxafP7fGp-LhqVjnhts5lldOamBZqPzjMkR8gDQtAX6Grdxc_S-wahX9XcwuNm-QWUpdhSZdc7QKuGuKvkU2ohtD-YA2-EByaVjMflKj6_16Q_yySvOZ1lvfI3QwX6eGo3_vkRugfkDvXSAQfkl9HyDlNT3Y7EunENEKHSBeLI7oE5zXm_GgqbHFjywj6JZFr9mtqew9CmDijmJilqS50Whbpt_MzZFmmgG_pYmz7Q79OhUdD_4icLhcnH47L3FehdE1Vb8oQpfBBaOWj0g0LwbFOAlC0jWTSMxeikE4IUFzX1jxa2QapAJlwLq1wYNCPyV4_9OEJoXA9ABxWRRGCcC5YpUTVRW61ltp2rCBvpy9tXCYdx94XPwwEH6gUs1VKQV5tRS9Gpo1_Cb1HdW0FkBw7nRguz0y2NaMa7TvHbOR1J5RzyvsqKC20DBECClmQN6hsgyYMD-Ns3okAr4RkWOZQIulcXTUguT-TBNNz8-Fpuphs-muzm6gFebkdxiuxnK0Pw1WSaZSsdSsKImfTbPZm85H-_Hui_9YAwQF4Pf3_zZ-R2xx3aoCb5e0-2dtcXoXngJ823YtkJL8BupQeTA
  priority: 102
  providerName: ProQuest
Title Graph Theoretical Analysis of EEG Functional Connectivity Patterns and Fusion with Physiological Signals for Emotion Recognition
URI https://www.proquest.com/docview/2734747491
https://www.proquest.com/docview/2735873964
https://pubmed.ncbi.nlm.nih.gov/PMC9656224
https://doaj.org/article/859dbc0af23b48cc8dd1e89497ef8827
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71IaFyQDxFSlkZhASXQB5ObB8QalF2K6RWVelKe4scP0qlKqG7Wwlu_HTGzoMN9MQlh3gsJR5PvpnJ-BuAN0xE0vBKh9RSixcThQjDNMwTTWWidJz71MXJaX48p18W2WIL-h6b3QKu7gztXD-p-fL6_Y-bn5_Q4D-6iBND9g8rxDgEKsG3YRcBiTn7PKHDz4QkxTCsJRUai-_BvTRPEYIdY_8GKnny_n8_0X-XTW7g0PQhPOgcSHLYavwRbJn6MdzfoBV8Ar9mjoWaXPw5o0h67hHSWFIUMzJFOGuzgMSXuqi2iQQ583Sb9YrIWqOQS6URl6olvlK0_1CSr1eXbv0IerykaBsBkfO-FKmpn8J8Wlx8Pg67TguhyuJ0HRrLqDZUcG25yCJjVFQxdB1lxiKmI2UsZYpSVGWVp4mVLDeMo6-SJExShSb-DHbqpjbPgeB8dHmi2FJjqFJGck7jyiZSCCZkFQXwrl_pUnU05K4bxnWJ4YjTTznoJ4DXg-j3lnvjLqEjp65BwNFl-xvN8rLsrK_kmdCViqRN0opypbjWseGCCmYshhgsgLdO2aXbZvgwSnZnE_CVHD1WecgcDV0aZyh5MJJEY1Tj4X67lP1eLh2DEEZtVMQBvBqG3UxX4Fab5tbLZJylIqcBsNE2G73ZeKS--uYJwQU65eiK7f_3zBewl7hjHYjJSX4AO-vlrXmJzta6msA2WzC88ulsArtHxenZ-cQnLibeyH4DrsIxaA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiKcIFDAIBJeojuPE9gGhArvd0ocQbKW9pY4fpRJKSncrxI1fxG9kJo_dBhC3XvawnmiTjGe-mdnxN4Q8l5oZr0oXiyACfHgWAwyLOOdOGG5dkjeli_2DfHIoPsyy2Rr51Z-FwbbK3ic2jtrVFmvkm0jDAqGv0Mmb028xTo3Cf1f7ERrtttj1P75DyjZ_vfMe9PuC8_Fo-m4Sd1MFYpsl6SL2QQrnhVYuKJ0x7y0rJYRJJpNMOmZ9ENIKAbdd5ikPRuZeKsBlzqURViL5Erj8KwC8DC1KzlYJXgr5XstelKaabc4BewFAtRpgXjMa4G8A-LMp8wLKjW-SG114Srfa_XSLrPnqNrl-gbTwDvm5jRzXdLo6AUl7ZhNaBzoabdMxgGVbY6RNI41tR1TQjw2ZZzWnpnIghIU6ioVg2vSh9m6Yfj45RlZnCvE0HbVjhuinvtGpru6Sw0t54_fIelVX_j6hcD0EVCwJwnthrTdKiaQM3GgttSlZRF71b7qwHck5ztr4WkCyg0oplkqJyLOl6GnL7PEvobeorqUAknE3X9Rnx0Vn24XKtCstM4GnpVDWKucSr7TQ0gdIYGREXqKyC3QZcDPWdCcf4JGQfKvYkkhylyYZSG4MJMHU7XC53y5F52rmxcowIvJ0uYxXYvtc5evzRiZTMtW5iIgcbLPBkw1XqpMvDd24hpAfAr0H___xJ-TqZLq_V-ztHOw-JNc4nhIBiOf5BllfnJ37RxC7LcrHjcFQcnTZFvobwKFbSQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIiE4IJ4itIBBILhE6zhObB8QKnS3LYWqglbaW-r4USqhpO1uhbjxu_h1zOSx2wDi1ksO8eThjOeZ8TeEvJCaGa9KF4sgAhw8i8EMizjnThhuXZI3qYtPe_n2ofgwzaYr5Fe_FwbLKnud2ChqV1vMkY8QhgVcX6GTUejKIvY3J29Pz2LsIIV_Wvt2Gu0S2fU_vkP4Nnuzswm8fsn5ZHzwfjvuOgzENkvSeeyDFM4LrVxQOmPeW1ZKcJlMJpl0zPogpBUCplDmKQ9G5l4qsNGcSyOsRCAmUP_XZAp3A1mS02Wwl0Ls1yIZpalmoxnYYTCmWg3sX9Mm4G9j8GeB5iWLN7lNbnWuKt1o19YdsuKru-TmJQDDe-TnFuJd04Plbkjao5zQOtDxeItOwHC2-UbaFNXYtl0F3W-APasZNZUDIkzaUUwK06YmtVfJ9MvJMSI8U_Ct6bhtOUQ_90VPdXWfHF7JF39AVqu68g8JhevBuWJJEN4La71RSiRl4EZrqU3JIvK6_9KF7QDPse_GtwICH2RKsWBKRJ4vSE9blI9_Eb1Ddi0IEJi7OVGfHxednBcq0660zASelkJZq5xLvNJCSx8gmJEReYXMLlB9wMtY0-2CgCkhEFexIRHwLk0yoFwfUILY2-Fwv1yKTu3MiqWQROTZYhivxFK6ytcXDU2mZKpzERE5WGaDmQ1HqpOvDfS4BvcfnL5H_3_4U3IdZLP4uLO3u0ZucNwwAtae5-tkdX5-4R-DGzcvnzTyQsnRVQvob7A3X38
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+Theoretical+Analysis+of+EEG+Functional+Connectivity+Patterns+and+Fusion+with+Physiological+Signals+for+Emotion+Recognition&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Xefteris%2C+Vasileios-Rafail&rft.au=Tsanousa%2C+Athina&rft.au=Georgakopoulou%2C+Nefeli&rft.au=Diplaris%2C+Sotiris&rft.date=2022-10-26&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=22&rft.issue=21&rft_id=info:doi/10.3390%2Fs22218198&rft_id=info%3Apmid%2F36365896&rft.externalDocID=PMC9656224
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon