Graph Theoretical Analysis of EEG Functional Connectivity Patterns and Fusion with Physiological Signals for Emotion Recognition
Emotion recognition is a key attribute for realizing advances in human–computer interaction, especially when using non-intrusive physiological sensors, such as electroencephalograph (EEG) and electrocardiograph. Although functional connectivity of EEG has been utilized for emotion recognition, the g...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 21; p. 8198 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
26.10.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Emotion recognition is a key attribute for realizing advances in human–computer interaction, especially when using non-intrusive physiological sensors, such as electroencephalograph (EEG) and electrocardiograph. Although functional connectivity of EEG has been utilized for emotion recognition, the graph theory analysis of EEG connectivity patterns has not been adequately explored. The exploitation of brain network characteristics could provide valuable information regarding emotions, while the combination of EEG and peripheral physiological signals can reveal correlation patterns of human internal state. In this work, a graph theoretical analysis of EEG functional connectivity patterns along with fusion between EEG and peripheral physiological signals for emotion recognition has been proposed. After extracting functional connectivity from EEG signals, both global and local graph theory features are extracted. Those features are concatenated with statistical features from peripheral physiological signals and fed to different classifiers and a Convolutional Neural Network (CNN) for emotion recognition. The average accuracy on the DEAP dataset using CNN was 55.62% and 57.38% for subject-independent valence and arousal classification, respectively, and 83.94% and 83.87% for subject-dependent classification. Those scores went up to 75.44% and 78.77% for subject-independent classification and 88.27% and 90.84% for subject-dependent classification using a feature selection algorithm, exceeding the current state-of-the-art results. |
---|---|
AbstractList | Emotion recognition is a key attribute for realizing advances in human–computer interaction, especially when using non-intrusive physiological sensors, such as electroencephalograph (EEG) and electrocardiograph. Although functional connectivity of EEG has been utilized for emotion recognition, the graph theory analysis of EEG connectivity patterns has not been adequately explored. The exploitation of brain network characteristics could provide valuable information regarding emotions, while the combination of EEG and peripheral physiological signals can reveal correlation patterns of human internal state. In this work, a graph theoretical analysis of EEG functional connectivity patterns along with fusion between EEG and peripheral physiological signals for emotion recognition has been proposed. After extracting functional connectivity from EEG signals, both global and local graph theory features are extracted. Those features are concatenated with statistical features from peripheral physiological signals and fed to different classifiers and a Convolutional Neural Network (CNN) for emotion recognition. The average accuracy on the DEAP dataset using CNN was 55.62% and 57.38% for subject-independent valence and arousal classification, respectively, and 83.94% and 83.87% for subject-dependent classification. Those scores went up to 75.44% and 78.77% for subject-independent classification and 88.27% and 90.84% for subject-dependent classification using a feature selection algorithm, exceeding the current state-of-the-art results. Emotion recognition is a key attribute for realizing advances in human-computer interaction, especially when using non-intrusive physiological sensors, such as electroencephalograph (EEG) and electrocardiograph. Although functional connectivity of EEG has been utilized for emotion recognition, the graph theory analysis of EEG connectivity patterns has not been adequately explored. The exploitation of brain network characteristics could provide valuable information regarding emotions, while the combination of EEG and peripheral physiological signals can reveal correlation patterns of human internal state. In this work, a graph theoretical analysis of EEG functional connectivity patterns along with fusion between EEG and peripheral physiological signals for emotion recognition has been proposed. After extracting functional connectivity from EEG signals, both global and local graph theory features are extracted. Those features are concatenated with statistical features from peripheral physiological signals and fed to different classifiers and a Convolutional Neural Network (CNN) for emotion recognition. The average accuracy on the DEAP dataset using CNN was 55.62% and 57.38% for subject-independent valence and arousal classification, respectively, and 83.94% and 83.87% for subject-dependent classification. Those scores went up to 75.44% and 78.77% for subject-independent classification and 88.27% and 90.84% for subject-dependent classification using a feature selection algorithm, exceeding the current state-of-the-art results.Emotion recognition is a key attribute for realizing advances in human-computer interaction, especially when using non-intrusive physiological sensors, such as electroencephalograph (EEG) and electrocardiograph. Although functional connectivity of EEG has been utilized for emotion recognition, the graph theory analysis of EEG connectivity patterns has not been adequately explored. The exploitation of brain network characteristics could provide valuable information regarding emotions, while the combination of EEG and peripheral physiological signals can reveal correlation patterns of human internal state. In this work, a graph theoretical analysis of EEG functional connectivity patterns along with fusion between EEG and peripheral physiological signals for emotion recognition has been proposed. After extracting functional connectivity from EEG signals, both global and local graph theory features are extracted. Those features are concatenated with statistical features from peripheral physiological signals and fed to different classifiers and a Convolutional Neural Network (CNN) for emotion recognition. The average accuracy on the DEAP dataset using CNN was 55.62% and 57.38% for subject-independent valence and arousal classification, respectively, and 83.94% and 83.87% for subject-dependent classification. Those scores went up to 75.44% and 78.77% for subject-independent classification and 88.27% and 90.84% for subject-dependent classification using a feature selection algorithm, exceeding the current state-of-the-art results. |
Audience | Academic |
Author | Vrochidis, Stefanos Diplaris, Sotiris Xefteris, Vasileios-Rafail Tsanousa, Athina Georgakopoulou, Nefeli Kompatsiaris, Ioannis |
AuthorAffiliation | Centre for Research and Technology Hellas, Information Technologies Institute, 6th Km Charilaou-Thermi, 57001 Thessaloniki, Greece |
AuthorAffiliation_xml | – name: Centre for Research and Technology Hellas, Information Technologies Institute, 6th Km Charilaou-Thermi, 57001 Thessaloniki, Greece |
Author_xml | – sequence: 1 givenname: Vasileios-Rafail orcidid: 0000-0002-7394-8412 surname: Xefteris fullname: Xefteris, Vasileios-Rafail – sequence: 2 givenname: Athina orcidid: 0000-0001-6599-4446 surname: Tsanousa fullname: Tsanousa, Athina – sequence: 3 givenname: Nefeli orcidid: 0000-0002-0729-8992 surname: Georgakopoulou fullname: Georgakopoulou, Nefeli – sequence: 4 givenname: Sotiris surname: Diplaris fullname: Diplaris, Sotiris – sequence: 5 givenname: Stefanos orcidid: 0000-0002-2505-9178 surname: Vrochidis fullname: Vrochidis, Stefanos – sequence: 6 givenname: Ioannis orcidid: 0000-0001-6447-9020 surname: Kompatsiaris fullname: Kompatsiaris, Ioannis |
BookMark | eNptkk1vGyEQhldVquajPfQfIPXSHpywwC5wqWRZjhMpUqM2PSPMDmusNbiwm8i3_vSwcfrhtOLAMLzvAwxzWhz54KEo3pf4nFKJLxIhpBSlFK-Kk5IRNhGE4KO_4uPiNKU1xoRSKt4Ux7SmdSVkfVL8XES9XaG7FYQIvTO6Q1Ovu11yCQWL5vMFuhy86V3IWTQL3kNe3Lt-h25130P0CWnfZFHKEvTg-hW6XWV76EL7hPvm2mxNyIaI5pswktBXMKH1bozfFq9t3oZ3z_NZ8f1yfje7mtx8WVzPpjcTU5W0n4DlrAEmRWOFrDCAwUsupdQVx7zBBizjhjFmYVlTYjWvgYs6h4RrZrikZ8X1ntsEvVbb6DY67lTQTj0lQmyVjrkAHShRyWZpsLaELpkwRjRNCUIyycEKQXhmfd6ztsNyA40B30fdHUAPd7xbqTbcK1lXNSEsAz4-A2L4MUDq1cYlA12nPYQhqXxGJTiV9Sj98EK6DkMcKzqqGM9Dln9Urc4PcN6GfK4ZoWrKWV1RWlbjvc__o8qjgY0zuaesy_kDw8XeYGJIKYJVxvV6_LZsdJ0qsRobUP1uwOz49MLxqyr_ah8BS6rbog |
CitedBy_id | crossref_primary_10_1142_S0219477524500512 crossref_primary_10_1002_widm_1563 crossref_primary_10_1109_ACCESS_2024_3506157 crossref_primary_10_1109_ACCESS_2024_3394036 crossref_primary_10_1007_s00521_024_09479_3 |
Cites_doi | 10.1145/3129340 10.3390/s19092212 10.1080/02533839.2013.799946 10.1109/WACV.2016.7477679 10.1038/30918 10.1016/j.neuropsychologia.2014.01.002 10.1109/ACCESS.2021.3083519 10.3390/s20216155 10.1109/BIBM.2017.8217815 10.1109/34.954607 10.38094/jastt20291 10.3390/s18020401 10.1016/j.ins.2016.08.047 10.1109/ICCAIS.2012.6466585 10.1007/s12559-021-09953-3 10.1186/s40537-020-00289-7 10.1109/ICECE.2018.8636698 10.1109/IJCNN.2018.8489125 10.1007/11816102_77 10.1007/978-3-319-70093-9_86 10.1109/ACIIAsia.2018.8470381 10.1016/j.inffus.2018.11.001 10.1109/ICSEC.2015.7401452 10.4304/jsw.6.8.1529-1536 10.1109/JSTSP.2017.2764438 10.1016/j.neucom.2021.08.067 10.1016/j.inffus.2018.10.009 10.1109/CVPRW.2017.282 10.3390/s22010130 10.1145/3383972.3384003 10.1002/ar.20965 10.1002/brb3.1269 10.1109/ACCESS.2021.3049516 10.1109/ICASSP40776.2020.9053985 10.1109/ECBIOS51820.2021.9510858 10.1007/978-1-4614-3501-3_39 10.1007/s12652-017-0636-8 10.1016/j.neuroimage.2009.10.003 10.3389/fnbot.2019.00037 10.1109/ACCESS.2020.3021994 10.1007/s11042-017-5485-0 10.1016/j.bspc.2019.101646 10.1097/00004691-200101000-00010 10.1016/j.bspc.2021.102755 10.3390/s19061423 10.1088/1741-2552/ac49a7 10.1038/nrn3214 10.1162/netn_a_00177 10.1109/TBME.2010.2048568 10.5383/JUSPN.10.01.004 10.3390/s19204541 10.1016/j.bspc.2018.08.035 10.1109/ACCESS.2019.2927768 10.1007/s12193-016-0222-y 10.1109/T-AFFC.2011.15 10.1109/RCAR.2016.7784015 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s22218198 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) ProQuest One Community College ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_859dbc0af23b48cc8dd1e89497ef8827 PMC9656224 A746533157 10_3390_s22218198 |
GrantInformation_xml | – fundername: EC-funded research and innovation programme H2020 Mindspaces: “Art-driven adaptive outdoors and indoors design” grantid: 825079 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c513t-ef74de498df8950eec0b7999a5707d0cef47c444feb632fa76e78663227a4c793 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:26:35 EDT 2025 Thu Aug 21 18:39:37 EDT 2025 Fri Jul 11 15:50:38 EDT 2025 Fri Jul 25 20:45:02 EDT 2025 Thu Jul 03 03:20:39 EDT 2025 Tue Jul 01 05:43:22 EDT 2025 Tue Jul 01 01:19:29 EDT 2025 Thu Apr 24 23:07:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c513t-ef74de498df8950eec0b7999a5707d0cef47c444feb632fa76e78663227a4c793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6599-4446 0000-0002-0729-8992 0000-0002-7394-8412 0000-0001-6447-9020 0000-0002-2505-9178 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22218198 |
PMID | 36365896 |
PQID | 2734747491 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_859dbc0af23b48cc8dd1e89497ef8827 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9656224 proquest_miscellaneous_2735873964 proquest_journals_2734747491 gale_infotracmisc_A746533157 gale_infotracacademiconefile_A746533157 crossref_citationtrail_10_3390_s22218198 crossref_primary_10_3390_s22218198 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221026 |
PublicationDateYYYYMMDD | 2022-10-26 |
PublicationDate_xml | – month: 10 year: 2022 text: 20221026 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Latha (ref_33) 2016; 11 ref_14 ref_57 Citron (ref_49) 2014; 56 ref_56 Lin (ref_58) 2010; 57 (ref_41) 2017; 11 Joshi (ref_62) 2021; 68 (ref_13) 2021; 9 ref_15 ref_59 Padfield (ref_17) 2021; 463 Kar (ref_26) 2019; 78 Zhao (ref_38) 2019; 15 ref_61 Kumar (ref_4) 2019; 52 Zhang (ref_43) 2020; 8 ref_24 Schuller (ref_25) 2018; 61 Wu (ref_12) 2022; 19 ref_21 ref_20 Xing (ref_63) 2019; 13 Doma (ref_29) 2020; 7 Delahoz (ref_9) 2020; 55 Samara (ref_5) 2019; 10 ref_27 Jeong (ref_51) 2001; 18 Picard (ref_1) 1997; 29 Akinloye (ref_2) 2020; 9 Jerritta (ref_32) 2014; 37 Yang (ref_31) 2011; 6 Padfield (ref_16) 2021; 13 ref_36 Haartsen (ref_22) 2019; 9 ref_35 ref_34 Astolfi (ref_53) 2009; 292 Zhao (ref_28) 2019; 47 ref_30 ref_39 ref_37 Rubinov (ref_54) 2010; 52 Abdullah (ref_10) 2021; 2 Hassan (ref_47) 2019; 51 Pandey (ref_60) 2019; 35 Flores (ref_3) 2018; 12 Watts (ref_52) 1998; 393 Jalili (ref_19) 2017; 384 Picard (ref_6) 2001; 23 Zaki (ref_50) 2018; 10 ref_46 ref_42 Wang (ref_11) 2019; 7 Bullmore (ref_55) 2012; 13 ref_40 Zhang (ref_44) 2021; 9 ref_48 ref_8 Koelstra (ref_23) 2011; 3 Anagnostopoulou (ref_18) 2021; 5 Tzirakis (ref_45) 2017; 11 ref_7 |
References_xml | – volume: 61 start-page: 90 year: 2018 ident: ref_25 article-title: Speech emotion recognition: Two decades in a nutshell, benchmarks, and ongoing trends publication-title: Commun. ACM doi: 10.1145/3129340 – ident: ref_61 doi: 10.3390/s19092212 – volume: 37 start-page: 385 year: 2014 ident: ref_32 article-title: Emotion recognition from facial EMG signals using higher order statistics and principal component analysis publication-title: J. Chin. Inst. Eng. doi: 10.1080/02533839.2013.799946 – ident: ref_46 doi: 10.1109/WACV.2016.7477679 – volume: 393 start-page: 440 year: 1998 ident: ref_52 article-title: Collective dynamics of ‘small-world’networks publication-title: Nature doi: 10.1038/30918 – volume: 56 start-page: 79 year: 2014 ident: ref_49 article-title: Emotional valence and arousal affect reading in an interactive way: Neuroimaging evidence for an approach-withdrawal framework publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2014.01.002 – volume: 9 start-page: 78060 year: 2021 ident: ref_13 article-title: Impact of EEG Parameters Detecting Dementia Diseases: A Systematic Review publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3083519 – ident: ref_57 doi: 10.3390/s20216155 – ident: ref_7 doi: 10.1109/BIBM.2017.8217815 – volume: 23 start-page: 1175 year: 2001 ident: ref_6 article-title: Toward machine emotional intelligence: Analysis of affective physiological state publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.954607 – volume: 2 start-page: 52 year: 2021 ident: ref_10 article-title: Multimodal emotion recognition using deep learning publication-title: J. Appl. Sci. Technol. Trends doi: 10.38094/jastt20291 – ident: ref_24 doi: 10.3390/s18020401 – volume: 384 start-page: 145 year: 2017 ident: ref_19 article-title: Graph theoretical analysis of Alzheimer’s disease: Discrimination of AD patients from healthy subjects publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.08.047 – ident: ref_59 doi: 10.1109/ICCAIS.2012.6466585 – volume: 13 start-page: 1484 year: 2021 ident: ref_16 article-title: Multi-segment majority voting decision fusion for MI EEG brain-computer interfacing publication-title: Cogn. Comput. doi: 10.1007/s12559-021-09953-3 – volume: 7 start-page: 1 year: 2020 ident: ref_29 article-title: A comparative analysis of machine learning methods for emotion recognition using EEG and peripheral physiological signals publication-title: J. Big Data doi: 10.1186/s40537-020-00289-7 – ident: ref_21 doi: 10.1109/ICECE.2018.8636698 – ident: ref_35 doi: 10.1109/IJCNN.2018.8489125 – volume: 15 start-page: 1 year: 2019 ident: ref_38 article-title: Personalized emotion recognition by personality-aware high-order learning of physiological signals publication-title: Acm Trans. Multimed. Comput. Commun. Appl. TOMM – ident: ref_42 doi: 10.1007/11816102_77 – ident: ref_48 doi: 10.1007/978-3-319-70093-9_86 – ident: ref_36 doi: 10.1109/ACIIAsia.2018.8470381 – volume: 52 start-page: 41 year: 2019 ident: ref_4 article-title: Fusion of EEG response and sentiment analysis of products review to predict customer satisfaction publication-title: Inf. Fusion doi: 10.1016/j.inffus.2018.11.001 – ident: ref_39 doi: 10.1109/ICSEC.2015.7401452 – volume: 6 start-page: 1529 year: 2011 ident: ref_31 article-title: Emotion Recognition of EMG Based on Improved LM BP Neural Network and SVM publication-title: J. Softw. doi: 10.4304/jsw.6.8.1529-1536 – volume: 11 start-page: 1301 year: 2017 ident: ref_45 article-title: End-to-end multimodal emotion recognition using deep neural networks publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2017.2764438 – volume: 463 start-page: 566 year: 2021 ident: ref_17 article-title: Sparse learning of band power features with genetic channel selection for effective classification of EEG signals publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.08.067 – volume: 51 start-page: 10 year: 2019 ident: ref_47 article-title: Human emotion recognition using deep belief network architecture publication-title: Inf. Fusion doi: 10.1016/j.inffus.2018.10.009 – ident: ref_20 – ident: ref_27 doi: 10.1109/CVPRW.2017.282 – ident: ref_56 doi: 10.3390/s22010130 – ident: ref_30 doi: 10.1145/3383972.3384003 – volume: 292 start-page: 2023 year: 2009 ident: ref_53 article-title: Evaluation of the brain network organization from EEG signals: A preliminary evidence in stroke patient publication-title: Anat. Rec. Adv. Integr. Anat. Evol. Biol. Adv. Integr. Anat. Evol. Biol. doi: 10.1002/ar.20965 – volume: 9 start-page: e01269 year: 2019 ident: ref_22 article-title: Test-retest reliability of EEG network characteristics in infants publication-title: Brain Behav. doi: 10.1002/brb3.1269 – volume: 29 start-page: 1729 year: 1997 ident: ref_1 article-title: EEG-detected olfactory imagery to reveal covert consciousness in minimally conscious state publication-title: Brain Inj. – volume: 9 start-page: 7943 year: 2021 ident: ref_44 article-title: Multimodal emotion recognition using a hierarchical fusion convolutional neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3049516 – volume: 9 start-page: e00514 year: 2020 ident: ref_2 article-title: Development of an affective-based e-healthcare system for autistic children publication-title: Sci. Afr. – ident: ref_8 doi: 10.1109/ICASSP40776.2020.9053985 – ident: ref_34 doi: 10.1109/ECBIOS51820.2021.9510858 – ident: ref_40 doi: 10.1007/978-1-4614-3501-3_39 – volume: 10 start-page: 2175 year: 2019 ident: ref_5 article-title: Affective state detection via facial expression analysis within a human–computer interaction context publication-title: J. Ambient. Intell. Humaniz. Comput. doi: 10.1007/s12652-017-0636-8 – volume: 52 start-page: 1059 year: 2010 ident: ref_54 article-title: Complex network measures of brain connectivity: Uses and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 13 start-page: 37 year: 2019 ident: ref_63 article-title: SAE+ LSTM: A New framework for emotion recognition from multi-channel EEG publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2019.00037 – volume: 11 start-page: 12767 year: 2016 ident: ref_33 article-title: Multirate Analysis and Neural Network Based Classification of Human Emotions Using Facial Electromyography Signals publication-title: ARPN J. Eng. Appl. Sci. – volume: 8 start-page: 164130 year: 2020 ident: ref_43 article-title: Expression-EEG based collaborative multimodal emotion recognition using deep autoencoder publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3021994 – volume: 78 start-page: 4789 year: 2019 ident: ref_26 article-title: Face expression recognition system based on ripplet transform type II and least square SVM publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-017-5485-0 – volume: 55 start-page: 101646 year: 2020 ident: ref_9 article-title: A machine learning model for emotion recognition from physiological signals publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2019.101646 – volume: 18 start-page: 58 year: 2001 ident: ref_51 article-title: Nonlinear dynamic analysis of the EEG in patients with Alzheimer’s disease and vascular dementia publication-title: J. Clin. Neurophysiol. doi: 10.1097/00004691-200101000-00010 – volume: 68 start-page: 102755 year: 2021 ident: ref_62 article-title: EEG based emotion detection using fourth order spectral moment and deep learning publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2021.102755 – volume: 12 start-page: 66 year: 2018 ident: ref_3 article-title: Induction of emotional states in educational video games through a fuzzy control system publication-title: IEEE Trans. Affect. Comput. – ident: ref_15 doi: 10.3390/s19061423 – volume: 19 start-page: 016012 year: 2022 ident: ref_12 article-title: Investigating EEG-based functional connectivity patterns for multimodal emotion recognition publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ac49a7 – volume: 13 start-page: 336 year: 2012 ident: ref_55 article-title: The economy of brain network organization publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3214 – volume: 5 start-page: 274 year: 2021 ident: ref_18 article-title: Computerized physical and cognitive training improves the functional architecture of the brain in adults with Down syndrome: A network science EEG study publication-title: Netw. Neurosci. doi: 10.1162/netn_a_00177 – volume: 57 start-page: 1798 year: 2010 ident: ref_58 article-title: EEG-Based Emotion Recognition in Music Listening publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2048568 – volume: 10 start-page: 27 year: 2018 ident: ref_50 article-title: Home Automation using EMOTIV: Controlling TV by Brainwaves publication-title: J. Ubiquitous Syst. Pervasive Netw. doi: 10.5383/JUSPN.10.01.004 – ident: ref_14 doi: 10.3390/s19204541 – volume: 47 start-page: 312 year: 2019 ident: ref_28 article-title: Speech emotion recognition using deep 1D & 2D CNN LSTM networks publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2018.08.035 – volume: 7 start-page: 93711 year: 2019 ident: ref_11 article-title: Phase-locking value based graph convolutional neural networks for emotion recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2927768 – volume: 11 start-page: 9 year: 2017 ident: ref_41 article-title: SVM-based feature selection methods for emotion recognition from multimodal data publication-title: J. Multimodal User Interfaces doi: 10.1007/s12193-016-0222-y – volume: 3 start-page: 18 year: 2011 ident: ref_23 article-title: Deap: A database for emotion analysis; using physiological signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.15 – ident: ref_37 doi: 10.1109/RCAR.2016.7784015 – volume: 35 start-page: 1730 year: 2019 ident: ref_60 article-title: Subject independent emotion recognition from EEG using VMD and deep learning publication-title: J. King Saud-Univ.-Comput. Inf. Sci. |
SSID | ssj0023338 |
Score | 2.4209745 |
Snippet | Emotion recognition is a key attribute for realizing advances in human–computer interaction, especially when using non-intrusive physiological sensors, such as... Emotion recognition is a key attribute for realizing advances in human-computer interaction, especially when using non-intrusive physiological sensors, such as... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 8198 |
SubjectTerms | Accuracy Algorithms Alzheimer's disease Artificial intelligence Classification Datasets Deep learning Discriminant analysis EEG Electroencephalography Electromyography emotion recognition Emotions functional connectivity graph theory Heart rate Machine learning Methods multimodal fusion multimodal physiological signals Neural networks Physiological aspects Physiology Product development Sensors Support vector machines |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT-WAoIAIlMogJLhEdZxJbB8L2m2FBELQSr1Zjj-gUpVF7PbOT2fGSbYbQOLCJYd4Itmemcwba_yGsVfKCBd1F0pIkPARRYlhGMpWBnDSh6rNRxcfPrZnF_D-srncafVFNWEDPfCwcce6MaHzwiVZd6C91yFUURswKiZEh_keOca8KZkaU60aM6-BR6jGpP54jVEQQ5nRs-iTSfr__BX_Xh65E2-W99m9ESjyk2GCD9id2B-wuzv0gQ_Zz1Nim-bnt3cR-cQxwleJLxanfIlhazjt47mkxQ_NIvinTKvZr7nrAwrRkRmnI1meK0KnHyL_cvWV-JU5Ilu-GBr-8M9TydGqf8Qulovzd2fl2FGh9E1Vb8qYFIQIRoekTSNi9KJTCBFdo4QKwscEygOgyrq2lsmpNiqNmERK5cCjKz9me_2qj08Yx-8R2ogqQYzgfXRaQ9Ul6YxRxnWiYG-mnbZ-pBunrhfXFtMOUordKqVgL7ei3weOjb8JvSV1bQWIFju_QGOxo7HYfxlLwV6Tsi05L07Gu_EOAi6JaLDsiSK6ubpqUPJwJolO5-fDk7nY0enXlpiCMDsDUxXsxXaYvqRCtj6ubrJMo1VtWiiYmpnZbGXzkf7qWyb-Ngi-EXI9_R9b8YztS7rJgWFYtodsb_PjJj5HfLXpjrIr_QIMRydt priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeIpAQQYhwSWq4zixfUIF7bZCAiFopb1Zjh-lEkpKd3vnpzPjOLsNIC45xBPlMR7PN5PxN4S8lprZoDpfiigiHAIrwQ2LsuVeWO581abUxafP7fGp-LhqVjnhts5lldOamBZqPzjMkR8gDQtAX6Grdxc_S-wahX9XcwuNm-QWUpdhSZdc7QKuGuKvkU2ohtD-YA2-EByaVjMflKj6_16Q_yySvOZ1lvfI3QwX6eGo3_vkRugfkDvXSAQfkl9HyDlNT3Y7EunENEKHSBeLI7oE5zXm_GgqbHFjywj6JZFr9mtqew9CmDijmJilqS50Whbpt_MzZFmmgG_pYmz7Q79OhUdD_4icLhcnH47L3FehdE1Vb8oQpfBBaOWj0g0LwbFOAlC0jWTSMxeikE4IUFzX1jxa2QapAJlwLq1wYNCPyV4_9OEJoXA9ABxWRRGCcC5YpUTVRW61ltp2rCBvpy9tXCYdx94XPwwEH6gUs1VKQV5tRS9Gpo1_Cb1HdW0FkBw7nRguz0y2NaMa7TvHbOR1J5RzyvsqKC20DBECClmQN6hsgyYMD-Ns3okAr4RkWOZQIulcXTUguT-TBNNz8-Fpuphs-muzm6gFebkdxiuxnK0Pw1WSaZSsdSsKImfTbPZm85H-_Hui_9YAwQF4Pf3_zZ-R2xx3aoCb5e0-2dtcXoXngJ823YtkJL8BupQeTA priority: 102 providerName: ProQuest |
Title | Graph Theoretical Analysis of EEG Functional Connectivity Patterns and Fusion with Physiological Signals for Emotion Recognition |
URI | https://www.proquest.com/docview/2734747491 https://www.proquest.com/docview/2735873964 https://pubmed.ncbi.nlm.nih.gov/PMC9656224 https://doaj.org/article/859dbc0af23b48cc8dd1e89497ef8827 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71IaFyQDxFSlkZhASXQB5ObB8QalF2K6RWVelKe4scP0qlKqG7Wwlu_HTGzoMN9MQlh3gsJR5PvpnJ-BuAN0xE0vBKh9RSixcThQjDNMwTTWWidJz71MXJaX48p18W2WIL-h6b3QKu7gztXD-p-fL6_Y-bn5_Q4D-6iBND9g8rxDgEKsG3YRcBiTn7PKHDz4QkxTCsJRUai-_BvTRPEYIdY_8GKnny_n8_0X-XTW7g0PQhPOgcSHLYavwRbJn6MdzfoBV8Ar9mjoWaXPw5o0h67hHSWFIUMzJFOGuzgMSXuqi2iQQ583Sb9YrIWqOQS6URl6olvlK0_1CSr1eXbv0IerykaBsBkfO-FKmpn8J8Wlx8Pg67TguhyuJ0HRrLqDZUcG25yCJjVFQxdB1lxiKmI2UsZYpSVGWVp4mVLDeMo6-SJExShSb-DHbqpjbPgeB8dHmi2FJjqFJGck7jyiZSCCZkFQXwrl_pUnU05K4bxnWJ4YjTTznoJ4DXg-j3lnvjLqEjp65BwNFl-xvN8rLsrK_kmdCViqRN0opypbjWseGCCmYshhgsgLdO2aXbZvgwSnZnE_CVHD1WecgcDV0aZyh5MJJEY1Tj4X67lP1eLh2DEEZtVMQBvBqG3UxX4Fab5tbLZJylIqcBsNE2G73ZeKS--uYJwQU65eiK7f_3zBewl7hjHYjJSX4AO-vlrXmJzta6msA2WzC88ulsArtHxenZ-cQnLibeyH4DrsIxaA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiKcIFDAIBJeojuPE9gGhArvd0ocQbKW9pY4fpRJKSncrxI1fxG9kJo_dBhC3XvawnmiTjGe-mdnxN4Q8l5oZr0oXiyACfHgWAwyLOOdOGG5dkjeli_2DfHIoPsyy2Rr51Z-FwbbK3ic2jtrVFmvkm0jDAqGv0Mmb028xTo3Cf1f7ERrtttj1P75DyjZ_vfMe9PuC8_Fo-m4Sd1MFYpsl6SL2QQrnhVYuKJ0x7y0rJYRJJpNMOmZ9ENIKAbdd5ikPRuZeKsBlzqURViL5Erj8KwC8DC1KzlYJXgr5XstelKaabc4BewFAtRpgXjMa4G8A-LMp8wLKjW-SG114Srfa_XSLrPnqNrl-gbTwDvm5jRzXdLo6AUl7ZhNaBzoabdMxgGVbY6RNI41tR1TQjw2ZZzWnpnIghIU6ioVg2vSh9m6Yfj45RlZnCvE0HbVjhuinvtGpru6Sw0t54_fIelVX_j6hcD0EVCwJwnthrTdKiaQM3GgttSlZRF71b7qwHck5ztr4WkCyg0oplkqJyLOl6GnL7PEvobeorqUAknE3X9Rnx0Vn24XKtCstM4GnpVDWKucSr7TQ0gdIYGREXqKyC3QZcDPWdCcf4JGQfKvYkkhylyYZSG4MJMHU7XC53y5F52rmxcowIvJ0uYxXYvtc5evzRiZTMtW5iIgcbLPBkw1XqpMvDd24hpAfAr0H___xJ-TqZLq_V-ztHOw-JNc4nhIBiOf5BllfnJ37RxC7LcrHjcFQcnTZFvobwKFbSQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIiE4IJ4itIBBILhE6zhObB8QKnS3LYWqglbaW-r4USqhpO1uhbjxu_h1zOSx2wDi1ksO8eThjOeZ8TeEvJCaGa9KF4sgAhw8i8EMizjnThhuXZI3qYtPe_n2ofgwzaYr5Fe_FwbLKnud2ChqV1vMkY8QhgVcX6GTUejKIvY3J29Pz2LsIIV_Wvt2Gu0S2fU_vkP4Nnuzswm8fsn5ZHzwfjvuOgzENkvSeeyDFM4LrVxQOmPeW1ZKcJlMJpl0zPogpBUCplDmKQ9G5l4qsNGcSyOsRCAmUP_XZAp3A1mS02Wwl0Ls1yIZpalmoxnYYTCmWg3sX9Mm4G9j8GeB5iWLN7lNbnWuKt1o19YdsuKru-TmJQDDe-TnFuJd04Plbkjao5zQOtDxeItOwHC2-UbaFNXYtl0F3W-APasZNZUDIkzaUUwK06YmtVfJ9MvJMSI8U_Ct6bhtOUQ_90VPdXWfHF7JF39AVqu68g8JhevBuWJJEN4La71RSiRl4EZrqU3JIvK6_9KF7QDPse_GtwICH2RKsWBKRJ4vSE9blI9_Eb1Ddi0IEJi7OVGfHxednBcq0660zASelkJZq5xLvNJCSx8gmJEReYXMLlB9wMtY0-2CgCkhEFexIRHwLk0yoFwfUILY2-Fwv1yKTu3MiqWQROTZYhivxFK6ytcXDU2mZKpzERE5WGaDmQ1HqpOvDfS4BvcfnL5H_3_4U3IdZLP4uLO3u0ZucNwwAtae5-tkdX5-4R-DGzcvnzTyQsnRVQvob7A3X38 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+Theoretical+Analysis+of+EEG+Functional+Connectivity+Patterns+and+Fusion+with+Physiological+Signals+for+Emotion+Recognition&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Xefteris%2C+Vasileios-Rafail&rft.au=Tsanousa%2C+Athina&rft.au=Georgakopoulou%2C+Nefeli&rft.au=Diplaris%2C+Sotiris&rft.date=2022-10-26&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=22&rft.issue=21&rft_id=info:doi/10.3390%2Fs22218198&rft_id=info%3Apmid%2F36365896&rft.externalDocID=PMC9656224 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |