Enhancing Detection of SSVEPs for a High-Speed Brain Speller Using Task-Related Component Analysis

Objective: This study proposes and evaluates a novel data-driven spatial filtering approach for enhancing steady-state visual evoked potentials (SSVEPs) detection toward a high-speed brain-computer interface (BCI) speller. Methods: Task-related component analysis (TRCA), which can enhance reproducib...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 65; no. 1; pp. 104 - 112
Main Authors Nakanishi, Masaki, Wang, Yijun, Chen, Xiaogang, Wang, Yu-Te, Gao, Xiaorong, Jung, Tzyy-Ping
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective: This study proposes and evaluates a novel data-driven spatial filtering approach for enhancing steady-state visual evoked potentials (SSVEPs) detection toward a high-speed brain-computer interface (BCI) speller. Methods: Task-related component analysis (TRCA), which can enhance reproducibility of SSVEPs across multiple trials, was employed to improve the signal-to-noise ratio (SNR) of SSVEP signals by removing background electroencephalographic (EEG) activities. An ensemble method was further developed to integrate TRCA filters corresponding to multiple stimulation frequencies. This study conducted a comparison of BCI performance between the proposed TRCA-based method and an extended canonical correlation analysis (CCA)-based method using a 40-class SSVEP dataset recorded from 12 subjects. An online BCI speller was further implemented using a cue-guided target selection task with 20 subjects and a free-spelling task with 10 of the subjects. Results: The offline comparison results indicate that the proposed TRCA-based approach can significantly improve the classification accuracy compared with the extended CCA-based method. Furthermore, the online BCI speller achieved averaged information transfer rates (ITRs) of 325.33 ± 38.17 bits/min with the cue-guided task and 198.67 ± 50.48 bits/min with the free-spelling task. Conclusion: This study validated the efficiency of the proposed TRCA-based method in implementing a high-speed SSVEP-based BCI. Significance: The high-speed SSVEP-based BCIs using the TRCA method have great potential for various applications in communication and control.
AbstractList This study proposes and evaluates a novel data-driven spatial filtering approach for enhancing steady-state visual evoked potentials (SSVEPs) detection toward a high-speed brain-computer interface (BCI) speller.OBJECTIVEThis study proposes and evaluates a novel data-driven spatial filtering approach for enhancing steady-state visual evoked potentials (SSVEPs) detection toward a high-speed brain-computer interface (BCI) speller.Task-related component analysis (TRCA), which can enhance reproducibility of SSVEPs across multiple trials, was employed to improve the signal-to-noise ratio (SNR) of SSVEP signals by removing background electroencephalographic (EEG) activities. An ensemble method was further developed to integrate TRCA filters corresponding to multiple stimulation frequencies. This study conducted a comparison of BCI performance between the proposed TRCA-based method and an extended canonical correlation analysis (CCA)-based method using a 40-class SSVEP dataset recorded from 12 subjects. An online BCI speller was further implemented using a cue-guided target selection task with 20 subjects and a free-spelling task with 10 of the subjects.METHODSTask-related component analysis (TRCA), which can enhance reproducibility of SSVEPs across multiple trials, was employed to improve the signal-to-noise ratio (SNR) of SSVEP signals by removing background electroencephalographic (EEG) activities. An ensemble method was further developed to integrate TRCA filters corresponding to multiple stimulation frequencies. This study conducted a comparison of BCI performance between the proposed TRCA-based method and an extended canonical correlation analysis (CCA)-based method using a 40-class SSVEP dataset recorded from 12 subjects. An online BCI speller was further implemented using a cue-guided target selection task with 20 subjects and a free-spelling task with 10 of the subjects.The offline comparison results indicate that the proposed TRCA-based approach can significantly improve the classification accuracy compared with the extended CCA-based method. Furthermore, the online BCI speller achieved averaged information transfer rates (ITRs) of 325.33 ± 38.17 bits/min with the cue-guided task and 198.67 ± 50.48 bits/min with the free-spelling task.RESULTSThe offline comparison results indicate that the proposed TRCA-based approach can significantly improve the classification accuracy compared with the extended CCA-based method. Furthermore, the online BCI speller achieved averaged information transfer rates (ITRs) of 325.33 ± 38.17 bits/min with the cue-guided task and 198.67 ± 50.48 bits/min with the free-spelling task.This study validated the efficiency of the proposed TRCA-based method in implementing a high-speed SSVEP-based BCI.CONCLUSIONThis study validated the efficiency of the proposed TRCA-based method in implementing a high-speed SSVEP-based BCI.The high-speed SSVEP-based BCIs using the TRCA method have great potential for various applications in communication and control.SIGNIFICANCEThe high-speed SSVEP-based BCIs using the TRCA method have great potential for various applications in communication and control.
Objective: This study proposes and evaluates a novel data-driven spatial filtering approach for enhancing steady-state visual evoked potentials (SSVEPs) detection toward a high-speed brain-computer interface (BCI) speller. Methods: Task-related component analysis (TRCA), which can enhance reproducibility of SSVEPs across multiple trials, was employed to improve the signal-to-noise ratio (SNR) of SSVEP signals by removing background electroencephalographic (EEG) activities. An ensemble method was further developed to integrate TRCA filters corresponding to multiple stimulation frequencies. This study conducted a comparison of BCI performance between the proposed TRCA-based method and an extended canonical correlation analysis (CCA)-based method using a 40-class SSVEP dataset recorded from 12 subjects. An online BCI speller was further implemented using a cue-guided target selection task with 20 subjects and a free-spelling task with 10 of the subjects. Results: The offline comparison results indicate that the proposed TRCA-based approach can significantly improve the classification accuracy compared with the extended CCA-based method. Furthermore, the online BCI speller achieved averaged information transfer rates (ITRs) of 325.33 ± 38.17 bits/min with the cue-guided task and 198.67 ± 50.48 bits/min with the free-spelling task. Conclusion: This study validated the efficiency of the proposed TRCA-based method in implementing a high-speed SSVEP-based BCI. Significance: The high-speed SSVEP-based BCIs using the TRCA method have great potential for various applications in communication and control.
This study proposes and evaluates a novel data-driven spatial filtering approach for enhancing steady-state visual evoked potentials (SSVEPs) detection toward a high-speed brain-computer interface (BCI) speller. Task-related component analysis (TRCA), which can enhance reproducibility of SSVEPs across multiple trials, was employed to improve the signal-to-noise ratio (SNR) of SSVEP signals by removing background electroencephalographic (EEG) activities. An ensemble method was further developed to integrate TRCA filters corresponding to multiple stimulation frequencies. This study conducted a comparison of BCI performance between the proposed TRCA-based method and an extended canonical correlation analysis (CCA)-based method using a 40-class SSVEP dataset recorded from 12 subjects. An online BCI speller was further implemented using a cue-guided target selection task with 20 subjects and a free-spelling task with 10 of the subjects. The offline comparison results indicate that the proposed TRCA-based approach can significantly improve the classification accuracy compared with the extended CCA-based method. Furthermore, the online BCI speller achieved averaged information transfer rates (ITRs) of 325.33 ± 38.17 bits/min with the cue-guided task and 198.67 ± 50.48 bits/min with the free-spelling task. This study validated the efficiency of the proposed TRCA-based method in implementing a high-speed SSVEP-based BCI. The high-speed SSVEP-based BCIs using the TRCA method have great potential for various applications in communication and control.
Author Chen, Xiaogang
Nakanishi, Masaki
Gao, Xiaorong
Jung, Tzyy-Ping
Wang, Yu-Te
Wang, Yijun
Author_xml – sequence: 1
  givenname: Masaki
  surname: Nakanishi
  fullname: Nakanishi, Masaki
  organization: Swartz Center for Computational NeuroscienceInstitute for Neural Computation, University of California
– sequence: 2
  givenname: Yijun
  surname: Wang
  fullname: Wang, Yijun
  email: wangyj@semi.ac.cn
  organization: State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Xiaogang
  surname: Chen
  fullname: Chen, Xiaogang
  organization: Institute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical College
– sequence: 4
  givenname: Yu-Te
  surname: Wang
  fullname: Wang, Yu-Te
  organization: Swartz Center for Computational NeuroscienceInstitute for Neural Computation, University of California
– sequence: 5
  givenname: Xiaorong
  surname: Gao
  fullname: Gao, Xiaorong
  organization: Department of Biomedical EngineeringTsinghua University
– sequence: 6
  givenname: Tzyy-Ping
  surname: Jung
  fullname: Jung, Tzyy-Ping
  organization: Swartz Center for Computational NeuroscienceInstitute for Neural Computation, University of California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28436836$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFvEzEQhS1URNPCD0BIyBIXLht2vPbae0FqQ6BIRSCScrUc72zisrGDvUHqv8erpBX0wMm2_L2nN_POyIkPHgl5CeUUoGzeLS-_zKesBDlldcMVqCdkAkKogokKTsikLEEVDWv4KTlL6TY_ueL1M3LKFK9qVdUTspr7jfHW-TX9gAPawQVPQ0cXix_zb4l2IVJDr9x6Uyx2iC29jMZ5mu99j5HepFG4NOln8R17M2RgFra7nNIP9MKb_i659Jw87Uyf8MXxPCc3H-fL2VVx_fXT59nFdWEFVEOBK2mFBODWWgNs1XGlyhZwBY1tKxSsbRvJVC1Mw4RhTckZihZaqHknWVtX5-T9wXe3X22xtTlDNL3eRbc18U4H4_S_P95t9Dr81kKqSjGZDd4eDWL4tcc06K1LNk9qPIZ90qAa4KLmlcjom0fobdjHPHDSDCTnquRipF7_neghyv36MyAPgI0hpYidtm4wYwc5oOs1lHosWo9F67FofSw6K-GR8t78f5pXB41DxAde5k3WHKo_ySqyxA
CODEN IEBEAX
CitedBy_id crossref_primary_10_1088_2057_1976_ab42d9
crossref_primary_10_3389_fnins_2024_1367932
crossref_primary_10_1007_s11227_024_06027_7
crossref_primary_10_1088_1741_2552_abcb6e
crossref_primary_10_1109_JIOT_2024_3367690
crossref_primary_10_1109_TNSRE_2023_3275547
crossref_primary_10_1109_TBME_2022_3212192
crossref_primary_10_3389_fnins_2020_568000
crossref_primary_10_1088_1741_2552_ac494f
crossref_primary_10_1088_1361_6501_ad25e6
crossref_primary_10_1088_1741_2552_acacca
crossref_primary_10_1109_JBHI_2024_3439391
crossref_primary_10_1088_1741_2552_ace8bd
crossref_primary_10_1016_j_eswa_2021_114961
crossref_primary_10_1109_TNSRE_2023_3276745
crossref_primary_10_1016_j_bspc_2023_104664
crossref_primary_10_1109_JSEN_2020_3017491
crossref_primary_10_1088_1741_2552_acf242
crossref_primary_10_1016_j_inffus_2021_09_019
crossref_primary_10_1007_s11517_024_03193_x
crossref_primary_10_1088_1741_2552_ad3679
crossref_primary_10_1109_TNSRE_2023_3308779
crossref_primary_10_1109_ACCESS_2019_2925078
crossref_primary_10_1109_TIM_2022_3219497
crossref_primary_10_3390_s23229127
crossref_primary_10_1016_j_inffus_2025_103069
crossref_primary_10_1109_TNSRE_2022_3175177
crossref_primary_10_1587_transinf_2018EDL8122
crossref_primary_10_1016_j_neunet_2023_12_029
crossref_primary_10_1016_j_bspc_2022_104171
crossref_primary_10_1016_j_bspc_2020_101898
crossref_primary_10_3390_brainsci12020234
crossref_primary_10_1109_TNSRE_2023_3309543
crossref_primary_10_1109_TBME_2019_2929745
crossref_primary_10_1038_s41598_024_84534_6
crossref_primary_10_1109_JBHI_2024_3373332
crossref_primary_10_1088_1741_2552_acbee0
crossref_primary_10_1016_j_eswa_2023_119736
crossref_primary_10_1088_1741_2552_acbdc0
crossref_primary_10_3389_fnagi_2022_1004188
crossref_primary_10_3390_s21165309
crossref_primary_10_3390_s22207715
crossref_primary_10_1109_TNSRE_2022_3225878
crossref_primary_10_1038_s41598_022_12733_0
crossref_primary_10_1088_1741_2552_ace380
crossref_primary_10_1109_TSMC_2020_3041382
crossref_primary_10_3390_s20216321
crossref_primary_10_1109_ACCESS_2022_3188855
crossref_primary_10_1007_s11571_021_09676_z
crossref_primary_10_1016_j_measurement_2022_111524
crossref_primary_10_1088_1741_2552_abaa9b
crossref_primary_10_1088_2057_1976_ab87e6
crossref_primary_10_1049_joe_2018_9071
crossref_primary_10_1109_TBME_2020_2975614
crossref_primary_10_1109_TNSRE_2020_3019276
crossref_primary_10_3389_fnrgo_2022_824780
crossref_primary_10_1109_TITS_2023_3345855
crossref_primary_10_1109_TNSRE_2022_3144216
crossref_primary_10_1038_s42256_019_0091_7
crossref_primary_10_1016_j_eswa_2024_125364
crossref_primary_10_1038_s41598_022_14026_y
crossref_primary_10_1080_2326263X_2022_2134623
crossref_primary_10_3389_fninf_2022_997068
crossref_primary_10_1109_ACCESS_2023_3347336
crossref_primary_10_1109_TBME_2024_3487133
crossref_primary_10_1016_j_bspc_2024_106932
crossref_primary_10_1109_TCBB_2020_3024228
crossref_primary_10_1109_TFUZZ_2019_2905823
crossref_primary_10_1088_1741_2552_ac284a
crossref_primary_10_1109_TNSRE_2023_3274121
crossref_primary_10_1080_10447318_2022_2093445
crossref_primary_10_1016_j_artmed_2023_102680
crossref_primary_10_1016_j_imu_2020_100490
crossref_primary_10_1016_j_neuroimage_2024_120548
crossref_primary_10_3390_brainsci11040450
crossref_primary_10_3390_app132413350
crossref_primary_10_1016_j_bspc_2020_101888
crossref_primary_10_3390_computers8020033
crossref_primary_10_1109_TNSRE_2020_2968307
crossref_primary_10_1109_TBME_2023_3333435
crossref_primary_10_3390_s21041315
crossref_primary_10_3390_electronics13142767
crossref_primary_10_1109_TBME_2018_2799661
crossref_primary_10_1109_TIM_2022_3146950
crossref_primary_10_1016_j_neunet_2025_107133
crossref_primary_10_1109_TIFS_2019_2912272
crossref_primary_10_3389_fnbot_2020_00025
crossref_primary_10_3389_fnhum_2022_943070
crossref_primary_10_1016_j_aei_2020_101046
crossref_primary_10_1016_j_neucom_2020_03_048
crossref_primary_10_1109_TCSII_2022_3177616
crossref_primary_10_1016_j_jneumeth_2023_109982
crossref_primary_10_1016_j_compbiomed_2022_105521
crossref_primary_10_1016_j_cmpb_2024_108425
crossref_primary_10_1088_1742_6596_1631_1_012172
crossref_primary_10_3390_s18030794
crossref_primary_10_1109_JBHI_2023_3278747
crossref_primary_10_1109_TNSRE_2018_2851318
crossref_primary_10_1038_s41598_024_67853_6
crossref_primary_10_1016_j_neuroimage_2023_120446
crossref_primary_10_1109_TIM_2021_3085944
crossref_primary_10_3389_fnhum_2022_834959
crossref_primary_10_3389_fnins_2023_1133933
crossref_primary_10_1109_TCBB_2021_3052811
crossref_primary_10_1088_1741_2552_ac40a1
crossref_primary_10_1108_IR_03_2021_0062
crossref_primary_10_1109_TNSRE_2020_2968579
crossref_primary_10_1088_1741_2552_ab6a67
crossref_primary_10_1007_s11704_021_0587_2
crossref_primary_10_3390_s20123588
crossref_primary_10_1145_3457950
crossref_primary_10_1088_1741_2552_ab4dc6
crossref_primary_10_3389_fnins_2020_00717
crossref_primary_10_1109_JIOT_2024_3488957
crossref_primary_10_3390_s20154186
crossref_primary_10_1007_s11571_023_10035_3
crossref_primary_10_3389_fninf_2021_750839
crossref_primary_10_1109_TNSRE_2022_3215695
crossref_primary_10_1088_1741_2552_ac823e
crossref_primary_10_1038_s41598_019_41158_5
crossref_primary_10_1109_JSEN_2023_3287983
crossref_primary_10_1109_TCDS_2021_3096812
crossref_primary_10_1016_j_bspc_2023_104826
crossref_primary_10_1109_TBME_2024_3406603
crossref_primary_10_1088_1741_2552_ac9e75
crossref_primary_10_1109_TBME_2020_2975552
crossref_primary_10_3390_electronics10050560
crossref_primary_10_1016_j_bspc_2024_106063
crossref_primary_10_1088_1741_2552_acdf85
crossref_primary_10_3389_fnhum_2022_815163
crossref_primary_10_3389_fnhum_2021_773603
crossref_primary_10_1007_s10586_024_04492_6
crossref_primary_10_1109_TNSRE_2022_3183087
crossref_primary_10_3389_fnins_2023_1246940
crossref_primary_10_1016_j_bspc_2023_104817
crossref_primary_10_3390_brainsci8040057
crossref_primary_10_1088_1741_2552_adbfc1
crossref_primary_10_1016_j_dsp_2022_103573
crossref_primary_10_1109_TBME_2021_3105331
crossref_primary_10_1088_1757_899X_981_3_032019
crossref_primary_10_1016_j_bspc_2022_103482
crossref_primary_10_1109_JSEN_2024_3492198
crossref_primary_10_1109_TBME_2024_3458389
crossref_primary_10_1016_j_neuroimage_2019_04_049
crossref_primary_10_3390_s21165269
crossref_primary_10_1152_jn_00029_2024
crossref_primary_10_1109_JBHI_2018_2878048
crossref_primary_10_1109_TBCAS_2022_3190689
crossref_primary_10_1016_j_bspc_2024_106282
crossref_primary_10_1016_j_eswa_2025_127208
crossref_primary_10_1109_JBHI_2023_3277612
crossref_primary_10_1016_j_bspc_2025_107554
crossref_primary_10_1007_s11571_024_10134_9
crossref_primary_10_1093_nsr_nwad048
crossref_primary_10_1109_TIM_2022_3218102
crossref_primary_10_1109_TNSRE_2022_3162029
crossref_primary_10_1109_TNSRE_2021_3073918
crossref_primary_10_1109_TNSRE_2018_2848222
crossref_primary_10_1109_JIOT_2024_3431233
crossref_primary_10_1142_S0129065720500203
crossref_primary_10_1007_s12559_022_10051_1
crossref_primary_10_1016_j_compbiomed_2020_103729
crossref_primary_10_1109_TNSRE_2021_3133853
crossref_primary_10_1109_TNSRE_2025_3526950
crossref_primary_10_1007_s11571_021_09669_y
crossref_primary_10_1088_1741_2552_ac2bb7
crossref_primary_10_1109_ACCESS_2021_3124238
crossref_primary_10_1088_1741_2552_aac605
crossref_primary_10_1088_1741_2552_ac6b57
crossref_primary_10_3389_fnhum_2022_908050
crossref_primary_10_1016_j_compbiomed_2023_107806
crossref_primary_10_1007_s11517_025_03340_y
crossref_primary_10_1016_j_bspc_2023_104629
crossref_primary_10_1088_1741_2552_abfdfa
crossref_primary_10_1109_TNSRE_2020_3038718
crossref_primary_10_1109_JBHI_2024_3416488
crossref_primary_10_3389_fncom_2019_00024
crossref_primary_10_1049_ell2_12540
crossref_primary_10_1109_TBME_2023_3318578
crossref_primary_10_1109_JIOT_2024_3488745
crossref_primary_10_3389_fnins_2020_579469
crossref_primary_10_1109_TNSRE_2020_2974272
crossref_primary_10_1109_TNSRE_2023_3280081
crossref_primary_10_1109_TNSRE_2020_2974271
crossref_primary_10_1038_s41597_023_02841_5
crossref_primary_10_1007_s11571_020_09616_3
crossref_primary_10_1007_s12652_020_01962_8
crossref_primary_10_1016_j_compbiomed_2023_106968
crossref_primary_10_1109_TNSRE_2023_3245079
crossref_primary_10_3389_fnhum_2022_875851
crossref_primary_10_1016_j_bspc_2019_101607
crossref_primary_10_1109_TBME_2024_3387469
crossref_primary_10_1371_journal_pone_0218177
crossref_primary_10_1109_TNSRE_2023_3241629
crossref_primary_10_1088_1741_2552_acb105
crossref_primary_10_1016_j_bspc_2021_103162
crossref_primary_10_1515_bmt_2019_0262
crossref_primary_10_3390_s22155631
crossref_primary_10_1109_TNSRE_2022_3179971
crossref_primary_10_1038_s41597_024_03023_7
crossref_primary_10_3389_fncom_2022_868642
crossref_primary_10_1109_JIOT_2023_3273163
crossref_primary_10_1109_TSMC_2020_2964684
crossref_primary_10_1109_TNSRE_2018_2826541
crossref_primary_10_1016_j_neubiorev_2022_104783
crossref_primary_10_1016_j_bspc_2023_105931
crossref_primary_10_1016_j_dsp_2021_103101
crossref_primary_10_1088_1741_2552_ac0bfa
crossref_primary_10_1109_TBME_2022_3198639
crossref_primary_10_1016_j_bspc_2023_104717
crossref_primary_10_1016_j_ifacsc_2024_100246
crossref_primary_10_1109_ACCESS_2019_2941642
crossref_primary_10_1088_1741_2552_ab16f9
crossref_primary_10_1088_1741_2552_ad4091
crossref_primary_10_3390_s23146310
crossref_primary_10_1088_1741_2552_ac35ac
crossref_primary_10_1109_TIM_2024_3476551
crossref_primary_10_1016_j_eswa_2024_124706
crossref_primary_10_26599_BSA_2022_9050004
crossref_primary_10_1088_1741_2552_ab2b7d
crossref_primary_10_26599_BSA_2022_9050002
crossref_primary_10_1016_j_bspc_2021_103222
crossref_primary_10_1016_j_neucom_2019_10_049
crossref_primary_10_1007_s11431_020_1839_5
crossref_primary_10_1109_TNNLS_2020_3027773
crossref_primary_10_1088_1741_2552_ac4a3e
crossref_primary_10_1109_TNSRE_2023_3260842
crossref_primary_10_1109_TBME_2021_3049853
crossref_primary_10_1109_JIOT_2018_2866341
crossref_primary_10_1109_COMST_2024_3396847
crossref_primary_10_1007_s44275_024_00017_w
crossref_primary_10_1088_1741_2552_ad9778
crossref_primary_10_1038_s41598_020_74143_4
crossref_primary_10_1016_j_bspc_2021_103449
crossref_primary_10_3389_fnins_2018_00680
crossref_primary_10_1007_s00034_021_01686_w
crossref_primary_10_1088_1741_2552_adaa1e
crossref_primary_10_1109_TASE_2021_3054741
crossref_primary_10_3389_fnins_2023_1161511
crossref_primary_10_1016_j_tics_2021_04_003
crossref_primary_10_1088_1741_2552_ac9861
crossref_primary_10_1109_JBHI_2023_3321722
crossref_primary_10_1109_TNSRE_2023_3281416
crossref_primary_10_1016_j_neucom_2022_02_084
crossref_primary_10_1088_1741_2552_ac36aa
crossref_primary_10_3389_fnhum_2022_859259
crossref_primary_10_1109_TNSRE_2024_3419013
crossref_primary_10_1109_TNSRE_2023_3243290
crossref_primary_10_1109_TNSRE_2023_3288397
crossref_primary_10_3390_s23031304
crossref_primary_10_1109_TNSRE_2023_3266488
crossref_primary_10_1109_TNSRE_2021_3104825
crossref_primary_10_1016_j_jneumeth_2022_109502
crossref_primary_10_1109_TNSRE_2023_3337525
crossref_primary_10_1371_journal_pone_0226048
crossref_primary_10_1002_jdn_10166
crossref_primary_10_3390_s20030891
crossref_primary_10_1109_TNSRE_2025_3528409
crossref_primary_10_1007_s11831_021_09684_6
crossref_primary_10_1038_s41467_023_39814_6
crossref_primary_10_1109_TNSRE_2022_3218682
crossref_primary_10_1080_27706710_2024_2418650
crossref_primary_10_1088_1741_2552_ad7f89
crossref_primary_10_1109_TNSRE_2020_3038209
crossref_primary_10_1038_s41598_024_56130_1
crossref_primary_10_3389_fnins_2023_1178283
crossref_primary_10_1109_TNSRE_2019_2941349
crossref_primary_10_1016_j_cmpb_2019_02_015
crossref_primary_10_3390_electronics8121554
crossref_primary_10_3389_fnins_2021_716051
crossref_primary_10_3390_info13040186
crossref_primary_10_1007_s12559_021_09941_7
crossref_primary_10_1088_2057_1976_aaea5c
crossref_primary_10_1016_j_jneumeth_2024_110357
crossref_primary_10_1360_TB_2022_0338
crossref_primary_10_1109_JIOT_2021_3113910
crossref_primary_10_1109_TNSRE_2023_3328917
crossref_primary_10_1109_TIM_2024_3374314
crossref_primary_10_1109_TNSRE_2022_3208717
crossref_primary_10_1080_27706710_2024_2383860
crossref_primary_10_1109_TCYB_2019_2924237
crossref_primary_10_1088_1741_2552_ac1ed2
crossref_primary_10_1109_TNSRE_2022_3175307
crossref_primary_10_1109_TNSRE_2023_3323351
crossref_primary_10_1016_j_apacoust_2024_110291
crossref_primary_10_1016_j_bspc_2021_102797
crossref_primary_10_1109_TNSRE_2022_3142736
crossref_primary_10_1016_j_jneumeth_2022_109652
crossref_primary_10_1016_j_jneumeth_2022_109535
crossref_primary_10_1109_ACCESS_2022_3205734
crossref_primary_10_1088_1741_2552_acb50e
crossref_primary_10_1088_1741_2552_ac3044
crossref_primary_10_1109_TNSRE_2024_3503772
crossref_primary_10_3389_fnhum_2021_675091
crossref_primary_10_1109_TNNLS_2021_3118468
crossref_primary_10_1016_j_eswa_2024_123679
crossref_primary_10_1109_TNSRE_2025_3527629
crossref_primary_10_3389_fnhum_2023_1103935
crossref_primary_10_1007_s10489_022_04226_4
crossref_primary_10_3389_fnhum_2023_1070404
crossref_primary_10_1109_TNSRE_2023_3246359
crossref_primary_10_1016_j_neunet_2024_106313
crossref_primary_10_1109_ACCESS_2021_3120623
crossref_primary_10_3390_mi16030340
crossref_primary_10_1088_1741_2552_ad775f
crossref_primary_10_1016_j_measurement_2024_115167
crossref_primary_10_1088_1741_2552_ab2373
crossref_primary_10_1109_TNSRE_2019_2897323
crossref_primary_10_1109_TNSRE_2022_3217789
crossref_primary_10_1109_TCDS_2022_3209801
crossref_primary_10_1109_TNSRE_2023_3250953
crossref_primary_10_1088_1741_2552_ab5760
crossref_primary_10_1088_1741_2552_ac81ee
crossref_primary_10_1016_j_bspc_2020_102042
crossref_primary_10_1109_TNSRE_2020_2983275
crossref_primary_10_1109_TNNLS_2021_3135696
crossref_primary_10_1016_j_eswa_2023_122155
crossref_primary_10_1016_j_medntd_2023_100213
crossref_primary_10_1088_2057_1976_ad567f
crossref_primary_10_1109_TNSRE_2023_3235804
crossref_primary_10_1016_j_eswa_2022_117574
crossref_primary_10_1109_JSEN_2022_3173433
crossref_primary_10_1093_gigascience_giz002
crossref_primary_10_1109_TNSRE_2021_3114340
crossref_primary_10_1109_JBHI_2024_3514794
crossref_primary_10_11834_jig_230031
crossref_primary_10_1016_j_jneumeth_2022_109688
crossref_primary_10_1109_LRA_2024_3518301
crossref_primary_10_1109_TNSRE_2023_3243786
crossref_primary_10_1080_27706710_2023_2181102
crossref_primary_10_1109_TNSRE_2021_3073134
crossref_primary_10_1088_1741_2552_ad8963
crossref_primary_10_1016_j_heliyon_2024_e26521
crossref_primary_10_3389_fnbot_2023_1146415
crossref_primary_10_1016_j_artmed_2025_103100
crossref_primary_10_1088_1741_2552_acf7f6
crossref_primary_10_1109_ACCESS_2020_3012283
crossref_primary_10_1016_j_bspc_2023_105466
crossref_primary_10_1016_j_bspc_2023_105220
crossref_primary_10_1049_tje2_12363
crossref_primary_10_1109_ACCESS_2019_2912997
crossref_primary_10_26599_BSA_2023_9050010
crossref_primary_10_1088_1741_2552_aaca6e
crossref_primary_10_32604_cmc_2024_049898
crossref_primary_10_26599_BSA_2023_9050018
crossref_primary_10_1162_imag_a_00223
crossref_primary_10_1109_TNSRE_2024_3424410
crossref_primary_10_1088_1741_2552_abf397
crossref_primary_10_1016_j_measurement_2024_114959
crossref_primary_10_1049_el_2020_2532
crossref_primary_10_1088_1741_2552_ac127f
crossref_primary_10_1016_j_bspc_2023_105332
crossref_primary_10_1109_TBME_2019_2900555
crossref_primary_10_1109_JBHI_2023_3244277
crossref_primary_10_1109_TNSRE_2023_3305202
crossref_primary_10_26599_BSA_2023_9050020
crossref_primary_10_3389_fnins_2022_863359
crossref_primary_10_1016_j_jneumeth_2022_109597
crossref_primary_10_1038_s41598_019_56962_2
crossref_primary_10_1109_TBME_2022_3227036
crossref_primary_10_1088_1741_2552_aaf594
crossref_primary_10_1088_1741_2552_ab123a
crossref_primary_10_3389_fnhum_2022_1016862
crossref_primary_10_3390_s21041256
crossref_primary_10_1109_TBME_2021_3133594
crossref_primary_10_1088_1741_2552_abe7cf
crossref_primary_10_1080_2326263X_2021_1900032
crossref_primary_10_1109_ACCESS_2019_2946301
crossref_primary_10_1016_j_neunet_2024_106734
crossref_primary_10_1016_j_neuroscience_2021_08_010
crossref_primary_10_1016_j_neunet_2023_04_045
crossref_primary_10_1109_TNSRE_2023_3307814
crossref_primary_10_1007_s11571_022_09923_x
crossref_primary_10_1016_j_compbiomed_2023_107488
crossref_primary_10_1109_THMS_2023_3273538
crossref_primary_10_1016_j_eswa_2024_123492
crossref_primary_10_1109_TNSRE_2021_3057938
crossref_primary_10_1016_j_isci_2024_110164
crossref_primary_10_1038_s41597_022_01372_9
crossref_primary_10_1088_1741_2552_ad1054
crossref_primary_10_1109_JIOT_2024_3406837
crossref_primary_10_3389_fnhum_2020_00103
crossref_primary_10_3389_fnbot_2022_855825
crossref_primary_10_1016_j_neuroimage_2024_120937
crossref_primary_10_1088_1741_2552_ac6ae5
crossref_primary_10_1088_1741_2552_aad46f
crossref_primary_10_1142_S0129065718500284
crossref_primary_10_3233_ICA_180586
crossref_primary_10_1088_1741_2552_ac0b51
crossref_primary_10_1371_journal_pone_0221909
crossref_primary_10_1088_1741_2552_ad0b8f
crossref_primary_10_1016_j_bspc_2021_102982
crossref_primary_10_1109_TIM_2023_3284952
crossref_primary_10_1109_TBCAS_2019_2927551
crossref_primary_10_1007_s11432_022_3440_5
crossref_primary_10_1016_j_bspc_2024_106868
crossref_primary_10_1109_TBME_2021_3110440
crossref_primary_10_1088_1741_2552_ab914e
crossref_primary_10_3390_electronics8101080
crossref_primary_10_1016_j_isci_2024_111030
crossref_primary_10_1016_j_matpr_2021_06_409
crossref_primary_10_1109_TNSRE_2023_3324148
crossref_primary_10_3233_JIFS_201280
crossref_primary_10_3389_fnins_2021_600543
crossref_primary_10_1109_TNSRE_2023_3245654
crossref_primary_10_1038_s41598_019_55166_y
crossref_primary_10_1109_JBHI_2024_3454158
crossref_primary_10_1038_s41598_024_59348_1
crossref_primary_10_1088_1741_2552_ac8dc5
crossref_primary_10_1109_ACCESS_2024_3509275
crossref_primary_10_1109_TNSRE_2023_3299350
Cites_doi 10.1109/TNSRE.2015.2403270
10.1109/TNSRE.2013.2279680
10.1142/S0129065714500130
10.1088/1741-2560/12/4/046008
10.1371/journal.pone.0140703
10.1163/156856897X00357
10.1136/bjo.74.4.255-a
10.1016/S1388-2457(00)00386-2
10.1142/S0129065714500191
10.1016/j.neuroimage.2006.11.004
10.1007/978-3-642-24955-6_35
10.1016/j.neubiorev.2006.06.007
10.1016/0013-4694(88)90149-6
10.1017/S0048577200980259
10.1088/1741-2560/6/4/046002
10.3389/fnpro.2010.00003
10.1109/MEMB.2008.923958
10.1016/j.neuroimage.2014.02.036
10.1016/j.pneurobio.2009.11.005
10.1016/j.neuroimage.2012.08.044
10.1109/TBME.2006.889197
10.1049/el.2010.0923
10.1167/9.7.8
10.1109/TBME.2014.2300164
10.1007/978-3-319-39955-3_24
10.1007/s10548-006-0267-4
10.1109/TNSRE.2006.875576
10.1371/journal.pone.0099235
10.1109/TBME.2013.2265260
10.1080/2326263X.2014.944469
10.1109/TBME.2014.2320948
10.1088/1741-2560/12/4/046006
10.1073/pnas.1508080112
10.1109/TBME.2002.803536
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1109/TBME.2017.2694818
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 112
ExternalDocumentID PMC5783827
28436836
10_1109_TBME_2017_2694818
7904641
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Young Talents Lift Project of Chinese Association of Science and Technology
– fundername: Army Research Laboratory
  grantid: (W911NF-10-2-0022)
  funderid: 10.13039/100006754
– fundername: Recruitment Program for Young Professionals and National Natural Science Foundation of China
  grantid: 61671424
– fundername: National Natural Science Foundation of China
  grantid: 61603416
  funderid: 10.13039/501100001809
– fundername: National Institute of Healths
  grantid: 1R21EY025056-01
– fundername: NEI NIH HHS
  grantid: R21 EY025056
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c513t-eb7c57114ccca12bf4880d1eb19cd3e52dd972865a925a29042e5d1d164f72d63
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Thu Aug 21 18:43:08 EDT 2025
Fri Jul 11 02:01:12 EDT 2025
Mon Jun 30 08:30:33 EDT 2025
Mon Jul 21 06:05:40 EDT 2025
Tue Jul 01 03:28:29 EDT 2025
Thu Apr 24 22:58:23 EDT 2025
Wed Aug 27 02:30:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c513t-eb7c57114ccca12bf4880d1eb19cd3e52dd972865a925a29042e5d1d164f72d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5783827
PMID 28436836
PQID 2174480455
PQPubID 85474
PageCount 9
ParticipantIDs ieee_primary_7904641
proquest_journals_2174480455
crossref_citationtrail_10_1109_TBME_2017_2694818
crossref_primary_10_1109_TBME_2017_2694818
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5783827
proquest_miscellaneous_1891456435
pubmed_primary_28436836
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref2
ref17
ref38
ref16
ref19
gao (ref1) 2014; 61
regan (ref27) 1990; 74
ref24
ref23
ref26
ref25
ref20
wang (ref18) 0
ref22
ref28
ref29
ref8
chen (ref10) 0
ref7
ref9
ref4
makeig (ref21) 1996
ref3
ref6
ref5
nakanishi (ref34) 0
References_xml – ident: ref6
  doi: 10.1109/TNSRE.2015.2403270
– ident: ref16
  doi: 10.1109/TNSRE.2013.2279680
– ident: ref17
  doi: 10.1142/S0129065714500130
– ident: ref30
  doi: 10.1088/1741-2560/12/4/046008
– ident: ref19
  doi: 10.1371/journal.pone.0140703
– ident: ref29
  doi: 10.1163/156856897X00357
– volume: 74
  start-page: 255
  year: 1990
  ident: ref27
  article-title: Human brain electrophysiology: Evoked potentials and evoked magnetic fields in science and medicine
  publication-title: Brit J Ophthalmol
  doi: 10.1136/bjo.74.4.255-a
– ident: ref23
  doi: 10.1016/S1388-2457(00)00386-2
– start-page: 3993
  year: 0
  ident: ref10
  article-title: Hybrid frequency and phase coding for a high-speed SSVEP-based BCI speller
  publication-title: Proc 36th Ann Int Conf IEEE Eng Med Biol Soc
– ident: ref4
  doi: 10.1142/S0129065714500191
– ident: ref24
  doi: 10.1016/j.neuroimage.2006.11.004
– ident: ref15
  doi: 10.1007/978-3-642-24955-6_35
– ident: ref20
  doi: 10.1016/j.neubiorev.2006.06.007
– ident: ref38
  doi: 10.1016/0013-4694(88)90149-6
– ident: ref22
  doi: 10.1017/S0048577200980259
– ident: ref14
  doi: 10.1088/1741-2560/6/4/046002
– ident: ref37
  doi: 10.3389/fnpro.2010.00003
– ident: ref3
  doi: 10.1109/MEMB.2008.923958
– ident: ref26
  doi: 10.1016/j.neuroimage.2014.02.036
– ident: ref28
  doi: 10.1016/j.pneurobio.2009.11.005
– ident: ref25
  doi: 10.1016/j.neuroimage.2012.08.044
– ident: ref13
  doi: 10.1109/TBME.2006.889197
– ident: ref7
  doi: 10.1049/el.2010.0923
– ident: ref32
  doi: 10.1167/9.7.8
– volume: 61
  start-page: 1436
  year: 2014
  ident: ref1
  article-title: Visual and auditory brain-computer interfaces
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2300164
– ident: ref36
  doi: 10.1007/978-3-319-39955-3_24
– start-page: 145
  year: 1996
  ident: ref21
  article-title: Independent component analysis of electroencephalographic data
  publication-title: Advances in neural information processing systems
– ident: ref31
  doi: 10.1007/s10548-006-0267-4
– ident: ref12
  doi: 10.1109/TNSRE.2006.875576
– ident: ref8
  doi: 10.1371/journal.pone.0099235
– ident: ref5
  doi: 10.1109/TBME.2013.2265260
– start-page: 3037
  year: 0
  ident: ref18
  article-title: Enhancing detection of steady-state visual evoked potentials using individual training data
  publication-title: Proc 36th Ann Int Conf IEEE Eng Med Biol Soc
– ident: ref9
  doi: 10.1080/2326263X.2014.944469
– ident: ref33
  doi: 10.1109/TBME.2014.2320948
– ident: ref35
  doi: 10.1088/1741-2560/12/4/046006
– start-page: 1057
  year: 0
  ident: ref34
  article-title: A dynamic stopping method for improve performance of steady-state visual evoked potential based brain-computer interfaces
  publication-title: Proc 37th Ann Int Conf IEEE Eng Med Biol Soc
– ident: ref2
  doi: 10.1073/pnas.1508080112
– ident: ref11
  doi: 10.1109/TBME.2002.803536
SSID ssj0014846
Score 2.6801467
Snippet Objective: This study proposes and evaluates a novel data-driven spatial filtering approach for enhancing steady-state visual evoked potentials (SSVEPs)...
This study proposes and evaluates a novel data-driven spatial filtering approach for enhancing steady-state visual evoked potentials (SSVEPs) detection toward...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104
SubjectTerms Adult
Algorithms
Background noise
Biomedical monitoring
Brain
Brain - physiology
Brain-Computer Interfaces
Brain-computer interfaces (BCI)
Calibration
Computer applications
Correlation analysis
EEG
Electroencephalography
electroencephalography (EEG)
Electroencephalography - methods
Evoked Potentials, Visual - physiology
Female
Filtering
Frequency shift keying
High speed
Human-computer interface
Humans
Implants
Information transfer
Internet
Male
Monitoring
Reproducibility
Signal Processing, Computer-Assisted
Spatial data
Spatial filtering
steady-state visual evoked potentials (SSVEP)
Task Performance and Analysis
task-related component analysis (TRCA)
Visual evoked potentials
Visualization
Young Adult
Title Enhancing Detection of SSVEPs for a High-Speed Brain Speller Using Task-Related Component Analysis
URI https://ieeexplore.ieee.org/document/7904641
https://www.ncbi.nlm.nih.gov/pubmed/28436836
https://www.proquest.com/docview/2174480455
https://www.proquest.com/docview/1891456435
https://pubmed.ncbi.nlm.nih.gov/PMC5783827
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9wwDLeAhwkegMHYOmAK0p6m9WjT5tI88nEITboJ6Q7EW5UmKUxMPcT1XvjrZ6cffAihvVWq26ayHdux_TPAd-oHjTBiQw6IIkyNdKEqCxXSCDt0JwRaWepGHv8enl-mv67F9RL87HthnHO--MwN6NLn8u3MLOio7FAqSsRhrLOMgVvTq9VnDNKsacqJYlRgrtI2gxlH6nB6PB5REZccUNsmWihCAM4Iet0DMz-ZIz9f5S1X83XF5DMTdLYB427xTeXJ3WBRFwPz-ArX8X__bhPWW1-UHTXC8xGWXLUFa88QCrfgw7jNvW9DMapuCZyjumGnrvYVXBWblWwyuRpdzBk6v0wzKhsJJ_doEtkxDZ9gE8ruuAfmSxPYVM_vQl9_hwS0Fc0qXBPrkFE-weXZaHpyHrYTGkIj4qQOXSGNkBhSGRSEmBclbQc2xv1fGZs4wa1VknpfteJCc_xB7oSNLcZopeR2mOzASoVf-gKMm2yYWpSYUrpUG60tikpBY0G44zqKAog6RuWmhS-nKRp_cx_GRConNufE5rxlcwA_-kfuG-yO94i3iSU9YcuNAPY6achb7Z7nFMalGTrDIoCD_jbqJSVbdOVmi3keZyomqJ4EaT43wtO_uxO-AOQLseoJCPP75Z3qz63H_sYNNsm4_Pr2andhlZMC-COiPVipHxZuH52muvjmteUfdAgPrg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VIvE48Gh5BAoYCS5I2SZOvI4PHCjdaku7FdJuUW8hsZ22KspWTVYIfgt_hf_GjPOgrSpulbhFivOyv_HMZGa-AXhD9aABemy4AiL3Yy2tr4pc-dTCDs0JgVqWqpEne8PxfvzpQBwswa--FsZa65LP7IAOXSzfzPWCfpWtS0WBuLBNodyxP76jg1a9397E1XzL-dZo9nHstz0EfC3CqPZtLrWQaPRrfNWQ5wUB1oS4QyltIiu4MUpSdWamuMg4PoBbYUKDXkQhuRlGeN8bcBPtDMGb6rA-RhEnTRlQEOKWwVXcxkzDQK3PNiYjShuTAyoURZ1InMMJkb07Kui_CtB1dLnKuL2co3lO6W3dh9_ddDW5LieDRZ0P9M9LTJL_63w-gHuttc0-NOLxEJZsuQJ3z3EwrsCtSZtdsAr5qDwi-pHykG3a2uWolWxesOn0y-hzxdC8ZxmjxBh_eopKn21Qew02pfiVPWMu-YLNsurEdxmGOIA223mJc8A67pdHsH8t3_sYlkt80lNgXCfD2KBMFNLGmc4yg8KQU-MTbnkWBB4EHTBS3RK0U5-Qb6lz1AKVEqxSglXawsqDd_0lpw07yb8GrxIE-oHt6nuw1qEvbfevKiVHNU7Q3BcevO5P485D4aSstPNFlYaJComMKMIxTxqw9vfuwO6BvADjfgCxml88Ux4fOXZzVCFRwuWzq9_2Fdwezya76e723s5zuMNJ-NwPsTVYrs8W9gWaiHX-0kkqg6_XDeU_D7Vsvg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Detection+of+SSVEPs+for+a+High-Speed+Brain+Speller+Using+Task-Related+Component+Analysis&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Nakanishi%2C+Masaki&rft.au=Wang%2C+Yijun&rft.au=Chen%2C+Xiaogang&rft.au=Wang%2C+Yu-Te&rft.date=2018-01-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=65&rft.issue=1&rft.spage=104&rft_id=info:doi/10.1109%2FTBME.2017.2694818&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon