Enhancing Detection of SSVEPs for a High-Speed Brain Speller Using Task-Related Component Analysis
Objective: This study proposes and evaluates a novel data-driven spatial filtering approach for enhancing steady-state visual evoked potentials (SSVEPs) detection toward a high-speed brain-computer interface (BCI) speller. Methods: Task-related component analysis (TRCA), which can enhance reproducib...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 65; no. 1; pp. 104 - 112 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective: This study proposes and evaluates a novel data-driven spatial filtering approach for enhancing steady-state visual evoked potentials (SSVEPs) detection toward a high-speed brain-computer interface (BCI) speller. Methods: Task-related component analysis (TRCA), which can enhance reproducibility of SSVEPs across multiple trials, was employed to improve the signal-to-noise ratio (SNR) of SSVEP signals by removing background electroencephalographic (EEG) activities. An ensemble method was further developed to integrate TRCA filters corresponding to multiple stimulation frequencies. This study conducted a comparison of BCI performance between the proposed TRCA-based method and an extended canonical correlation analysis (CCA)-based method using a 40-class SSVEP dataset recorded from 12 subjects. An online BCI speller was further implemented using a cue-guided target selection task with 20 subjects and a free-spelling task with 10 of the subjects. Results: The offline comparison results indicate that the proposed TRCA-based approach can significantly improve the classification accuracy compared with the extended CCA-based method. Furthermore, the online BCI speller achieved averaged information transfer rates (ITRs) of 325.33 ± 38.17 bits/min with the cue-guided task and 198.67 ± 50.48 bits/min with the free-spelling task. Conclusion: This study validated the efficiency of the proposed TRCA-based method in implementing a high-speed SSVEP-based BCI. Significance: The high-speed SSVEP-based BCIs using the TRCA method have great potential for various applications in communication and control. |
---|---|
AbstractList | This study proposes and evaluates a novel data-driven spatial filtering approach for enhancing steady-state visual evoked potentials (SSVEPs) detection toward a high-speed brain-computer interface (BCI) speller.OBJECTIVEThis study proposes and evaluates a novel data-driven spatial filtering approach for enhancing steady-state visual evoked potentials (SSVEPs) detection toward a high-speed brain-computer interface (BCI) speller.Task-related component analysis (TRCA), which can enhance reproducibility of SSVEPs across multiple trials, was employed to improve the signal-to-noise ratio (SNR) of SSVEP signals by removing background electroencephalographic (EEG) activities. An ensemble method was further developed to integrate TRCA filters corresponding to multiple stimulation frequencies. This study conducted a comparison of BCI performance between the proposed TRCA-based method and an extended canonical correlation analysis (CCA)-based method using a 40-class SSVEP dataset recorded from 12 subjects. An online BCI speller was further implemented using a cue-guided target selection task with 20 subjects and a free-spelling task with 10 of the subjects.METHODSTask-related component analysis (TRCA), which can enhance reproducibility of SSVEPs across multiple trials, was employed to improve the signal-to-noise ratio (SNR) of SSVEP signals by removing background electroencephalographic (EEG) activities. An ensemble method was further developed to integrate TRCA filters corresponding to multiple stimulation frequencies. This study conducted a comparison of BCI performance between the proposed TRCA-based method and an extended canonical correlation analysis (CCA)-based method using a 40-class SSVEP dataset recorded from 12 subjects. An online BCI speller was further implemented using a cue-guided target selection task with 20 subjects and a free-spelling task with 10 of the subjects.The offline comparison results indicate that the proposed TRCA-based approach can significantly improve the classification accuracy compared with the extended CCA-based method. Furthermore, the online BCI speller achieved averaged information transfer rates (ITRs) of 325.33 ± 38.17 bits/min with the cue-guided task and 198.67 ± 50.48 bits/min with the free-spelling task.RESULTSThe offline comparison results indicate that the proposed TRCA-based approach can significantly improve the classification accuracy compared with the extended CCA-based method. Furthermore, the online BCI speller achieved averaged information transfer rates (ITRs) of 325.33 ± 38.17 bits/min with the cue-guided task and 198.67 ± 50.48 bits/min with the free-spelling task.This study validated the efficiency of the proposed TRCA-based method in implementing a high-speed SSVEP-based BCI.CONCLUSIONThis study validated the efficiency of the proposed TRCA-based method in implementing a high-speed SSVEP-based BCI.The high-speed SSVEP-based BCIs using the TRCA method have great potential for various applications in communication and control.SIGNIFICANCEThe high-speed SSVEP-based BCIs using the TRCA method have great potential for various applications in communication and control. Objective: This study proposes and evaluates a novel data-driven spatial filtering approach for enhancing steady-state visual evoked potentials (SSVEPs) detection toward a high-speed brain-computer interface (BCI) speller. Methods: Task-related component analysis (TRCA), which can enhance reproducibility of SSVEPs across multiple trials, was employed to improve the signal-to-noise ratio (SNR) of SSVEP signals by removing background electroencephalographic (EEG) activities. An ensemble method was further developed to integrate TRCA filters corresponding to multiple stimulation frequencies. This study conducted a comparison of BCI performance between the proposed TRCA-based method and an extended canonical correlation analysis (CCA)-based method using a 40-class SSVEP dataset recorded from 12 subjects. An online BCI speller was further implemented using a cue-guided target selection task with 20 subjects and a free-spelling task with 10 of the subjects. Results: The offline comparison results indicate that the proposed TRCA-based approach can significantly improve the classification accuracy compared with the extended CCA-based method. Furthermore, the online BCI speller achieved averaged information transfer rates (ITRs) of 325.33 ± 38.17 bits/min with the cue-guided task and 198.67 ± 50.48 bits/min with the free-spelling task. Conclusion: This study validated the efficiency of the proposed TRCA-based method in implementing a high-speed SSVEP-based BCI. Significance: The high-speed SSVEP-based BCIs using the TRCA method have great potential for various applications in communication and control. This study proposes and evaluates a novel data-driven spatial filtering approach for enhancing steady-state visual evoked potentials (SSVEPs) detection toward a high-speed brain-computer interface (BCI) speller. Task-related component analysis (TRCA), which can enhance reproducibility of SSVEPs across multiple trials, was employed to improve the signal-to-noise ratio (SNR) of SSVEP signals by removing background electroencephalographic (EEG) activities. An ensemble method was further developed to integrate TRCA filters corresponding to multiple stimulation frequencies. This study conducted a comparison of BCI performance between the proposed TRCA-based method and an extended canonical correlation analysis (CCA)-based method using a 40-class SSVEP dataset recorded from 12 subjects. An online BCI speller was further implemented using a cue-guided target selection task with 20 subjects and a free-spelling task with 10 of the subjects. The offline comparison results indicate that the proposed TRCA-based approach can significantly improve the classification accuracy compared with the extended CCA-based method. Furthermore, the online BCI speller achieved averaged information transfer rates (ITRs) of 325.33 ± 38.17 bits/min with the cue-guided task and 198.67 ± 50.48 bits/min with the free-spelling task. This study validated the efficiency of the proposed TRCA-based method in implementing a high-speed SSVEP-based BCI. The high-speed SSVEP-based BCIs using the TRCA method have great potential for various applications in communication and control. |
Author | Chen, Xiaogang Nakanishi, Masaki Gao, Xiaorong Jung, Tzyy-Ping Wang, Yu-Te Wang, Yijun |
Author_xml | – sequence: 1 givenname: Masaki surname: Nakanishi fullname: Nakanishi, Masaki organization: Swartz Center for Computational NeuroscienceInstitute for Neural Computation, University of California – sequence: 2 givenname: Yijun surname: Wang fullname: Wang, Yijun email: wangyj@semi.ac.cn organization: State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China – sequence: 3 givenname: Xiaogang surname: Chen fullname: Chen, Xiaogang organization: Institute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical College – sequence: 4 givenname: Yu-Te surname: Wang fullname: Wang, Yu-Te organization: Swartz Center for Computational NeuroscienceInstitute for Neural Computation, University of California – sequence: 5 givenname: Xiaorong surname: Gao fullname: Gao, Xiaorong organization: Department of Biomedical EngineeringTsinghua University – sequence: 6 givenname: Tzyy-Ping surname: Jung fullname: Jung, Tzyy-Ping organization: Swartz Center for Computational NeuroscienceInstitute for Neural Computation, University of California |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28436836$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFvEzEQhS1URNPCD0BIyBIXLht2vPbae0FqQ6BIRSCScrUc72zisrGDvUHqv8erpBX0wMm2_L2nN_POyIkPHgl5CeUUoGzeLS-_zKesBDlldcMVqCdkAkKogokKTsikLEEVDWv4KTlL6TY_ueL1M3LKFK9qVdUTspr7jfHW-TX9gAPawQVPQ0cXix_zb4l2IVJDr9x6Uyx2iC29jMZ5mu99j5HepFG4NOln8R17M2RgFra7nNIP9MKb_i659Jw87Uyf8MXxPCc3H-fL2VVx_fXT59nFdWEFVEOBK2mFBODWWgNs1XGlyhZwBY1tKxSsbRvJVC1Mw4RhTckZihZaqHknWVtX5-T9wXe3X22xtTlDNL3eRbc18U4H4_S_P95t9Dr81kKqSjGZDd4eDWL4tcc06K1LNk9qPIZ90qAa4KLmlcjom0fobdjHPHDSDCTnquRipF7_neghyv36MyAPgI0hpYidtm4wYwc5oOs1lHosWo9F67FofSw6K-GR8t78f5pXB41DxAde5k3WHKo_ySqyxA |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1088_2057_1976_ab42d9 crossref_primary_10_3389_fnins_2024_1367932 crossref_primary_10_1007_s11227_024_06027_7 crossref_primary_10_1088_1741_2552_abcb6e crossref_primary_10_1109_JIOT_2024_3367690 crossref_primary_10_1109_TNSRE_2023_3275547 crossref_primary_10_1109_TBME_2022_3212192 crossref_primary_10_3389_fnins_2020_568000 crossref_primary_10_1088_1741_2552_ac494f crossref_primary_10_1088_1361_6501_ad25e6 crossref_primary_10_1088_1741_2552_acacca crossref_primary_10_1109_JBHI_2024_3439391 crossref_primary_10_1088_1741_2552_ace8bd crossref_primary_10_1016_j_eswa_2021_114961 crossref_primary_10_1109_TNSRE_2023_3276745 crossref_primary_10_1016_j_bspc_2023_104664 crossref_primary_10_1109_JSEN_2020_3017491 crossref_primary_10_1088_1741_2552_acf242 crossref_primary_10_1016_j_inffus_2021_09_019 crossref_primary_10_1007_s11517_024_03193_x crossref_primary_10_1088_1741_2552_ad3679 crossref_primary_10_1109_TNSRE_2023_3308779 crossref_primary_10_1109_ACCESS_2019_2925078 crossref_primary_10_1109_TIM_2022_3219497 crossref_primary_10_3390_s23229127 crossref_primary_10_1016_j_inffus_2025_103069 crossref_primary_10_1109_TNSRE_2022_3175177 crossref_primary_10_1587_transinf_2018EDL8122 crossref_primary_10_1016_j_neunet_2023_12_029 crossref_primary_10_1016_j_bspc_2022_104171 crossref_primary_10_1016_j_bspc_2020_101898 crossref_primary_10_3390_brainsci12020234 crossref_primary_10_1109_TNSRE_2023_3309543 crossref_primary_10_1109_TBME_2019_2929745 crossref_primary_10_1038_s41598_024_84534_6 crossref_primary_10_1109_JBHI_2024_3373332 crossref_primary_10_1088_1741_2552_acbee0 crossref_primary_10_1016_j_eswa_2023_119736 crossref_primary_10_1088_1741_2552_acbdc0 crossref_primary_10_3389_fnagi_2022_1004188 crossref_primary_10_3390_s21165309 crossref_primary_10_3390_s22207715 crossref_primary_10_1109_TNSRE_2022_3225878 crossref_primary_10_1038_s41598_022_12733_0 crossref_primary_10_1088_1741_2552_ace380 crossref_primary_10_1109_TSMC_2020_3041382 crossref_primary_10_3390_s20216321 crossref_primary_10_1109_ACCESS_2022_3188855 crossref_primary_10_1007_s11571_021_09676_z crossref_primary_10_1016_j_measurement_2022_111524 crossref_primary_10_1088_1741_2552_abaa9b crossref_primary_10_1088_2057_1976_ab87e6 crossref_primary_10_1049_joe_2018_9071 crossref_primary_10_1109_TBME_2020_2975614 crossref_primary_10_1109_TNSRE_2020_3019276 crossref_primary_10_3389_fnrgo_2022_824780 crossref_primary_10_1109_TITS_2023_3345855 crossref_primary_10_1109_TNSRE_2022_3144216 crossref_primary_10_1038_s42256_019_0091_7 crossref_primary_10_1016_j_eswa_2024_125364 crossref_primary_10_1038_s41598_022_14026_y crossref_primary_10_1080_2326263X_2022_2134623 crossref_primary_10_3389_fninf_2022_997068 crossref_primary_10_1109_ACCESS_2023_3347336 crossref_primary_10_1109_TBME_2024_3487133 crossref_primary_10_1016_j_bspc_2024_106932 crossref_primary_10_1109_TCBB_2020_3024228 crossref_primary_10_1109_TFUZZ_2019_2905823 crossref_primary_10_1088_1741_2552_ac284a crossref_primary_10_1109_TNSRE_2023_3274121 crossref_primary_10_1080_10447318_2022_2093445 crossref_primary_10_1016_j_artmed_2023_102680 crossref_primary_10_1016_j_imu_2020_100490 crossref_primary_10_1016_j_neuroimage_2024_120548 crossref_primary_10_3390_brainsci11040450 crossref_primary_10_3390_app132413350 crossref_primary_10_1016_j_bspc_2020_101888 crossref_primary_10_3390_computers8020033 crossref_primary_10_1109_TNSRE_2020_2968307 crossref_primary_10_1109_TBME_2023_3333435 crossref_primary_10_3390_s21041315 crossref_primary_10_3390_electronics13142767 crossref_primary_10_1109_TBME_2018_2799661 crossref_primary_10_1109_TIM_2022_3146950 crossref_primary_10_1016_j_neunet_2025_107133 crossref_primary_10_1109_TIFS_2019_2912272 crossref_primary_10_3389_fnbot_2020_00025 crossref_primary_10_3389_fnhum_2022_943070 crossref_primary_10_1016_j_aei_2020_101046 crossref_primary_10_1016_j_neucom_2020_03_048 crossref_primary_10_1109_TCSII_2022_3177616 crossref_primary_10_1016_j_jneumeth_2023_109982 crossref_primary_10_1016_j_compbiomed_2022_105521 crossref_primary_10_1016_j_cmpb_2024_108425 crossref_primary_10_1088_1742_6596_1631_1_012172 crossref_primary_10_3390_s18030794 crossref_primary_10_1109_JBHI_2023_3278747 crossref_primary_10_1109_TNSRE_2018_2851318 crossref_primary_10_1038_s41598_024_67853_6 crossref_primary_10_1016_j_neuroimage_2023_120446 crossref_primary_10_1109_TIM_2021_3085944 crossref_primary_10_3389_fnhum_2022_834959 crossref_primary_10_3389_fnins_2023_1133933 crossref_primary_10_1109_TCBB_2021_3052811 crossref_primary_10_1088_1741_2552_ac40a1 crossref_primary_10_1108_IR_03_2021_0062 crossref_primary_10_1109_TNSRE_2020_2968579 crossref_primary_10_1088_1741_2552_ab6a67 crossref_primary_10_1007_s11704_021_0587_2 crossref_primary_10_3390_s20123588 crossref_primary_10_1145_3457950 crossref_primary_10_1088_1741_2552_ab4dc6 crossref_primary_10_3389_fnins_2020_00717 crossref_primary_10_1109_JIOT_2024_3488957 crossref_primary_10_3390_s20154186 crossref_primary_10_1007_s11571_023_10035_3 crossref_primary_10_3389_fninf_2021_750839 crossref_primary_10_1109_TNSRE_2022_3215695 crossref_primary_10_1088_1741_2552_ac823e crossref_primary_10_1038_s41598_019_41158_5 crossref_primary_10_1109_JSEN_2023_3287983 crossref_primary_10_1109_TCDS_2021_3096812 crossref_primary_10_1016_j_bspc_2023_104826 crossref_primary_10_1109_TBME_2024_3406603 crossref_primary_10_1088_1741_2552_ac9e75 crossref_primary_10_1109_TBME_2020_2975552 crossref_primary_10_3390_electronics10050560 crossref_primary_10_1016_j_bspc_2024_106063 crossref_primary_10_1088_1741_2552_acdf85 crossref_primary_10_3389_fnhum_2022_815163 crossref_primary_10_3389_fnhum_2021_773603 crossref_primary_10_1007_s10586_024_04492_6 crossref_primary_10_1109_TNSRE_2022_3183087 crossref_primary_10_3389_fnins_2023_1246940 crossref_primary_10_1016_j_bspc_2023_104817 crossref_primary_10_3390_brainsci8040057 crossref_primary_10_1088_1741_2552_adbfc1 crossref_primary_10_1016_j_dsp_2022_103573 crossref_primary_10_1109_TBME_2021_3105331 crossref_primary_10_1088_1757_899X_981_3_032019 crossref_primary_10_1016_j_bspc_2022_103482 crossref_primary_10_1109_JSEN_2024_3492198 crossref_primary_10_1109_TBME_2024_3458389 crossref_primary_10_1016_j_neuroimage_2019_04_049 crossref_primary_10_3390_s21165269 crossref_primary_10_1152_jn_00029_2024 crossref_primary_10_1109_JBHI_2018_2878048 crossref_primary_10_1109_TBCAS_2022_3190689 crossref_primary_10_1016_j_bspc_2024_106282 crossref_primary_10_1016_j_eswa_2025_127208 crossref_primary_10_1109_JBHI_2023_3277612 crossref_primary_10_1016_j_bspc_2025_107554 crossref_primary_10_1007_s11571_024_10134_9 crossref_primary_10_1093_nsr_nwad048 crossref_primary_10_1109_TIM_2022_3218102 crossref_primary_10_1109_TNSRE_2022_3162029 crossref_primary_10_1109_TNSRE_2021_3073918 crossref_primary_10_1109_TNSRE_2018_2848222 crossref_primary_10_1109_JIOT_2024_3431233 crossref_primary_10_1142_S0129065720500203 crossref_primary_10_1007_s12559_022_10051_1 crossref_primary_10_1016_j_compbiomed_2020_103729 crossref_primary_10_1109_TNSRE_2021_3133853 crossref_primary_10_1109_TNSRE_2025_3526950 crossref_primary_10_1007_s11571_021_09669_y crossref_primary_10_1088_1741_2552_ac2bb7 crossref_primary_10_1109_ACCESS_2021_3124238 crossref_primary_10_1088_1741_2552_aac605 crossref_primary_10_1088_1741_2552_ac6b57 crossref_primary_10_3389_fnhum_2022_908050 crossref_primary_10_1016_j_compbiomed_2023_107806 crossref_primary_10_1007_s11517_025_03340_y crossref_primary_10_1016_j_bspc_2023_104629 crossref_primary_10_1088_1741_2552_abfdfa crossref_primary_10_1109_TNSRE_2020_3038718 crossref_primary_10_1109_JBHI_2024_3416488 crossref_primary_10_3389_fncom_2019_00024 crossref_primary_10_1049_ell2_12540 crossref_primary_10_1109_TBME_2023_3318578 crossref_primary_10_1109_JIOT_2024_3488745 crossref_primary_10_3389_fnins_2020_579469 crossref_primary_10_1109_TNSRE_2020_2974272 crossref_primary_10_1109_TNSRE_2023_3280081 crossref_primary_10_1109_TNSRE_2020_2974271 crossref_primary_10_1038_s41597_023_02841_5 crossref_primary_10_1007_s11571_020_09616_3 crossref_primary_10_1007_s12652_020_01962_8 crossref_primary_10_1016_j_compbiomed_2023_106968 crossref_primary_10_1109_TNSRE_2023_3245079 crossref_primary_10_3389_fnhum_2022_875851 crossref_primary_10_1016_j_bspc_2019_101607 crossref_primary_10_1109_TBME_2024_3387469 crossref_primary_10_1371_journal_pone_0218177 crossref_primary_10_1109_TNSRE_2023_3241629 crossref_primary_10_1088_1741_2552_acb105 crossref_primary_10_1016_j_bspc_2021_103162 crossref_primary_10_1515_bmt_2019_0262 crossref_primary_10_3390_s22155631 crossref_primary_10_1109_TNSRE_2022_3179971 crossref_primary_10_1038_s41597_024_03023_7 crossref_primary_10_3389_fncom_2022_868642 crossref_primary_10_1109_JIOT_2023_3273163 crossref_primary_10_1109_TSMC_2020_2964684 crossref_primary_10_1109_TNSRE_2018_2826541 crossref_primary_10_1016_j_neubiorev_2022_104783 crossref_primary_10_1016_j_bspc_2023_105931 crossref_primary_10_1016_j_dsp_2021_103101 crossref_primary_10_1088_1741_2552_ac0bfa crossref_primary_10_1109_TBME_2022_3198639 crossref_primary_10_1016_j_bspc_2023_104717 crossref_primary_10_1016_j_ifacsc_2024_100246 crossref_primary_10_1109_ACCESS_2019_2941642 crossref_primary_10_1088_1741_2552_ab16f9 crossref_primary_10_1088_1741_2552_ad4091 crossref_primary_10_3390_s23146310 crossref_primary_10_1088_1741_2552_ac35ac crossref_primary_10_1109_TIM_2024_3476551 crossref_primary_10_1016_j_eswa_2024_124706 crossref_primary_10_26599_BSA_2022_9050004 crossref_primary_10_1088_1741_2552_ab2b7d crossref_primary_10_26599_BSA_2022_9050002 crossref_primary_10_1016_j_bspc_2021_103222 crossref_primary_10_1016_j_neucom_2019_10_049 crossref_primary_10_1007_s11431_020_1839_5 crossref_primary_10_1109_TNNLS_2020_3027773 crossref_primary_10_1088_1741_2552_ac4a3e crossref_primary_10_1109_TNSRE_2023_3260842 crossref_primary_10_1109_TBME_2021_3049853 crossref_primary_10_1109_JIOT_2018_2866341 crossref_primary_10_1109_COMST_2024_3396847 crossref_primary_10_1007_s44275_024_00017_w crossref_primary_10_1088_1741_2552_ad9778 crossref_primary_10_1038_s41598_020_74143_4 crossref_primary_10_1016_j_bspc_2021_103449 crossref_primary_10_3389_fnins_2018_00680 crossref_primary_10_1007_s00034_021_01686_w crossref_primary_10_1088_1741_2552_adaa1e crossref_primary_10_1109_TASE_2021_3054741 crossref_primary_10_3389_fnins_2023_1161511 crossref_primary_10_1016_j_tics_2021_04_003 crossref_primary_10_1088_1741_2552_ac9861 crossref_primary_10_1109_JBHI_2023_3321722 crossref_primary_10_1109_TNSRE_2023_3281416 crossref_primary_10_1016_j_neucom_2022_02_084 crossref_primary_10_1088_1741_2552_ac36aa crossref_primary_10_3389_fnhum_2022_859259 crossref_primary_10_1109_TNSRE_2024_3419013 crossref_primary_10_1109_TNSRE_2023_3243290 crossref_primary_10_1109_TNSRE_2023_3288397 crossref_primary_10_3390_s23031304 crossref_primary_10_1109_TNSRE_2023_3266488 crossref_primary_10_1109_TNSRE_2021_3104825 crossref_primary_10_1016_j_jneumeth_2022_109502 crossref_primary_10_1109_TNSRE_2023_3337525 crossref_primary_10_1371_journal_pone_0226048 crossref_primary_10_1002_jdn_10166 crossref_primary_10_3390_s20030891 crossref_primary_10_1109_TNSRE_2025_3528409 crossref_primary_10_1007_s11831_021_09684_6 crossref_primary_10_1038_s41467_023_39814_6 crossref_primary_10_1109_TNSRE_2022_3218682 crossref_primary_10_1080_27706710_2024_2418650 crossref_primary_10_1088_1741_2552_ad7f89 crossref_primary_10_1109_TNSRE_2020_3038209 crossref_primary_10_1038_s41598_024_56130_1 crossref_primary_10_3389_fnins_2023_1178283 crossref_primary_10_1109_TNSRE_2019_2941349 crossref_primary_10_1016_j_cmpb_2019_02_015 crossref_primary_10_3390_electronics8121554 crossref_primary_10_3389_fnins_2021_716051 crossref_primary_10_3390_info13040186 crossref_primary_10_1007_s12559_021_09941_7 crossref_primary_10_1088_2057_1976_aaea5c crossref_primary_10_1016_j_jneumeth_2024_110357 crossref_primary_10_1360_TB_2022_0338 crossref_primary_10_1109_JIOT_2021_3113910 crossref_primary_10_1109_TNSRE_2023_3328917 crossref_primary_10_1109_TIM_2024_3374314 crossref_primary_10_1109_TNSRE_2022_3208717 crossref_primary_10_1080_27706710_2024_2383860 crossref_primary_10_1109_TCYB_2019_2924237 crossref_primary_10_1088_1741_2552_ac1ed2 crossref_primary_10_1109_TNSRE_2022_3175307 crossref_primary_10_1109_TNSRE_2023_3323351 crossref_primary_10_1016_j_apacoust_2024_110291 crossref_primary_10_1016_j_bspc_2021_102797 crossref_primary_10_1109_TNSRE_2022_3142736 crossref_primary_10_1016_j_jneumeth_2022_109652 crossref_primary_10_1016_j_jneumeth_2022_109535 crossref_primary_10_1109_ACCESS_2022_3205734 crossref_primary_10_1088_1741_2552_acb50e crossref_primary_10_1088_1741_2552_ac3044 crossref_primary_10_1109_TNSRE_2024_3503772 crossref_primary_10_3389_fnhum_2021_675091 crossref_primary_10_1109_TNNLS_2021_3118468 crossref_primary_10_1016_j_eswa_2024_123679 crossref_primary_10_1109_TNSRE_2025_3527629 crossref_primary_10_3389_fnhum_2023_1103935 crossref_primary_10_1007_s10489_022_04226_4 crossref_primary_10_3389_fnhum_2023_1070404 crossref_primary_10_1109_TNSRE_2023_3246359 crossref_primary_10_1016_j_neunet_2024_106313 crossref_primary_10_1109_ACCESS_2021_3120623 crossref_primary_10_3390_mi16030340 crossref_primary_10_1088_1741_2552_ad775f crossref_primary_10_1016_j_measurement_2024_115167 crossref_primary_10_1088_1741_2552_ab2373 crossref_primary_10_1109_TNSRE_2019_2897323 crossref_primary_10_1109_TNSRE_2022_3217789 crossref_primary_10_1109_TCDS_2022_3209801 crossref_primary_10_1109_TNSRE_2023_3250953 crossref_primary_10_1088_1741_2552_ab5760 crossref_primary_10_1088_1741_2552_ac81ee crossref_primary_10_1016_j_bspc_2020_102042 crossref_primary_10_1109_TNSRE_2020_2983275 crossref_primary_10_1109_TNNLS_2021_3135696 crossref_primary_10_1016_j_eswa_2023_122155 crossref_primary_10_1016_j_medntd_2023_100213 crossref_primary_10_1088_2057_1976_ad567f crossref_primary_10_1109_TNSRE_2023_3235804 crossref_primary_10_1016_j_eswa_2022_117574 crossref_primary_10_1109_JSEN_2022_3173433 crossref_primary_10_1093_gigascience_giz002 crossref_primary_10_1109_TNSRE_2021_3114340 crossref_primary_10_1109_JBHI_2024_3514794 crossref_primary_10_11834_jig_230031 crossref_primary_10_1016_j_jneumeth_2022_109688 crossref_primary_10_1109_LRA_2024_3518301 crossref_primary_10_1109_TNSRE_2023_3243786 crossref_primary_10_1080_27706710_2023_2181102 crossref_primary_10_1109_TNSRE_2021_3073134 crossref_primary_10_1088_1741_2552_ad8963 crossref_primary_10_1016_j_heliyon_2024_e26521 crossref_primary_10_3389_fnbot_2023_1146415 crossref_primary_10_1016_j_artmed_2025_103100 crossref_primary_10_1088_1741_2552_acf7f6 crossref_primary_10_1109_ACCESS_2020_3012283 crossref_primary_10_1016_j_bspc_2023_105466 crossref_primary_10_1016_j_bspc_2023_105220 crossref_primary_10_1049_tje2_12363 crossref_primary_10_1109_ACCESS_2019_2912997 crossref_primary_10_26599_BSA_2023_9050010 crossref_primary_10_1088_1741_2552_aaca6e crossref_primary_10_32604_cmc_2024_049898 crossref_primary_10_26599_BSA_2023_9050018 crossref_primary_10_1162_imag_a_00223 crossref_primary_10_1109_TNSRE_2024_3424410 crossref_primary_10_1088_1741_2552_abf397 crossref_primary_10_1016_j_measurement_2024_114959 crossref_primary_10_1049_el_2020_2532 crossref_primary_10_1088_1741_2552_ac127f crossref_primary_10_1016_j_bspc_2023_105332 crossref_primary_10_1109_TBME_2019_2900555 crossref_primary_10_1109_JBHI_2023_3244277 crossref_primary_10_1109_TNSRE_2023_3305202 crossref_primary_10_26599_BSA_2023_9050020 crossref_primary_10_3389_fnins_2022_863359 crossref_primary_10_1016_j_jneumeth_2022_109597 crossref_primary_10_1038_s41598_019_56962_2 crossref_primary_10_1109_TBME_2022_3227036 crossref_primary_10_1088_1741_2552_aaf594 crossref_primary_10_1088_1741_2552_ab123a crossref_primary_10_3389_fnhum_2022_1016862 crossref_primary_10_3390_s21041256 crossref_primary_10_1109_TBME_2021_3133594 crossref_primary_10_1088_1741_2552_abe7cf crossref_primary_10_1080_2326263X_2021_1900032 crossref_primary_10_1109_ACCESS_2019_2946301 crossref_primary_10_1016_j_neunet_2024_106734 crossref_primary_10_1016_j_neuroscience_2021_08_010 crossref_primary_10_1016_j_neunet_2023_04_045 crossref_primary_10_1109_TNSRE_2023_3307814 crossref_primary_10_1007_s11571_022_09923_x crossref_primary_10_1016_j_compbiomed_2023_107488 crossref_primary_10_1109_THMS_2023_3273538 crossref_primary_10_1016_j_eswa_2024_123492 crossref_primary_10_1109_TNSRE_2021_3057938 crossref_primary_10_1016_j_isci_2024_110164 crossref_primary_10_1038_s41597_022_01372_9 crossref_primary_10_1088_1741_2552_ad1054 crossref_primary_10_1109_JIOT_2024_3406837 crossref_primary_10_3389_fnhum_2020_00103 crossref_primary_10_3389_fnbot_2022_855825 crossref_primary_10_1016_j_neuroimage_2024_120937 crossref_primary_10_1088_1741_2552_ac6ae5 crossref_primary_10_1088_1741_2552_aad46f crossref_primary_10_1142_S0129065718500284 crossref_primary_10_3233_ICA_180586 crossref_primary_10_1088_1741_2552_ac0b51 crossref_primary_10_1371_journal_pone_0221909 crossref_primary_10_1088_1741_2552_ad0b8f crossref_primary_10_1016_j_bspc_2021_102982 crossref_primary_10_1109_TIM_2023_3284952 crossref_primary_10_1109_TBCAS_2019_2927551 crossref_primary_10_1007_s11432_022_3440_5 crossref_primary_10_1016_j_bspc_2024_106868 crossref_primary_10_1109_TBME_2021_3110440 crossref_primary_10_1088_1741_2552_ab914e crossref_primary_10_3390_electronics8101080 crossref_primary_10_1016_j_isci_2024_111030 crossref_primary_10_1016_j_matpr_2021_06_409 crossref_primary_10_1109_TNSRE_2023_3324148 crossref_primary_10_3233_JIFS_201280 crossref_primary_10_3389_fnins_2021_600543 crossref_primary_10_1109_TNSRE_2023_3245654 crossref_primary_10_1038_s41598_019_55166_y crossref_primary_10_1109_JBHI_2024_3454158 crossref_primary_10_1038_s41598_024_59348_1 crossref_primary_10_1088_1741_2552_ac8dc5 crossref_primary_10_1109_ACCESS_2024_3509275 crossref_primary_10_1109_TNSRE_2023_3299350 |
Cites_doi | 10.1109/TNSRE.2015.2403270 10.1109/TNSRE.2013.2279680 10.1142/S0129065714500130 10.1088/1741-2560/12/4/046008 10.1371/journal.pone.0140703 10.1163/156856897X00357 10.1136/bjo.74.4.255-a 10.1016/S1388-2457(00)00386-2 10.1142/S0129065714500191 10.1016/j.neuroimage.2006.11.004 10.1007/978-3-642-24955-6_35 10.1016/j.neubiorev.2006.06.007 10.1016/0013-4694(88)90149-6 10.1017/S0048577200980259 10.1088/1741-2560/6/4/046002 10.3389/fnpro.2010.00003 10.1109/MEMB.2008.923958 10.1016/j.neuroimage.2014.02.036 10.1016/j.pneurobio.2009.11.005 10.1016/j.neuroimage.2012.08.044 10.1109/TBME.2006.889197 10.1049/el.2010.0923 10.1167/9.7.8 10.1109/TBME.2014.2300164 10.1007/978-3-319-39955-3_24 10.1007/s10548-006-0267-4 10.1109/TNSRE.2006.875576 10.1371/journal.pone.0099235 10.1109/TBME.2013.2265260 10.1080/2326263X.2014.944469 10.1109/TBME.2014.2320948 10.1088/1741-2560/12/4/046006 10.1073/pnas.1508080112 10.1109/TBME.2002.803536 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
DOI | 10.1109/TBME.2017.2694818 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 112 |
ExternalDocumentID | PMC5783827 28436836 10_1109_TBME_2017_2694818 7904641 |
Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Young Talents Lift Project of Chinese Association of Science and Technology – fundername: Army Research Laboratory grantid: (W911NF-10-2-0022) funderid: 10.13039/100006754 – fundername: Recruitment Program for Young Professionals and National Natural Science Foundation of China grantid: 61671424 – fundername: National Natural Science Foundation of China grantid: 61603416 funderid: 10.13039/501100001809 – fundername: National Institute of Healths grantid: 1R21EY025056-01 – fundername: NEI NIH HHS grantid: R21 EY025056 |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
ID | FETCH-LOGICAL-c513t-eb7c57114ccca12bf4880d1eb19cd3e52dd972865a925a29042e5d1d164f72d63 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Thu Aug 21 18:43:08 EDT 2025 Fri Jul 11 02:01:12 EDT 2025 Mon Jun 30 08:30:33 EDT 2025 Mon Jul 21 06:05:40 EDT 2025 Tue Jul 01 03:28:29 EDT 2025 Thu Apr 24 22:58:23 EDT 2025 Wed Aug 27 02:30:44 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c513t-eb7c57114ccca12bf4880d1eb19cd3e52dd972865a925a29042e5d1d164f72d63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5783827 |
PMID | 28436836 |
PQID | 2174480455 |
PQPubID | 85474 |
PageCount | 9 |
ParticipantIDs | ieee_primary_7904641 proquest_journals_2174480455 crossref_citationtrail_10_1109_TBME_2017_2694818 crossref_primary_10_1109_TBME_2017_2694818 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5783827 proquest_miscellaneous_1891456435 pubmed_primary_28436836 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref2 ref17 ref38 ref16 ref19 gao (ref1) 2014; 61 regan (ref27) 1990; 74 ref24 ref23 ref26 ref25 ref20 wang (ref18) 0 ref22 ref28 ref29 ref8 chen (ref10) 0 ref7 ref9 ref4 makeig (ref21) 1996 ref3 ref6 ref5 nakanishi (ref34) 0 |
References_xml | – ident: ref6 doi: 10.1109/TNSRE.2015.2403270 – ident: ref16 doi: 10.1109/TNSRE.2013.2279680 – ident: ref17 doi: 10.1142/S0129065714500130 – ident: ref30 doi: 10.1088/1741-2560/12/4/046008 – ident: ref19 doi: 10.1371/journal.pone.0140703 – ident: ref29 doi: 10.1163/156856897X00357 – volume: 74 start-page: 255 year: 1990 ident: ref27 article-title: Human brain electrophysiology: Evoked potentials and evoked magnetic fields in science and medicine publication-title: Brit J Ophthalmol doi: 10.1136/bjo.74.4.255-a – ident: ref23 doi: 10.1016/S1388-2457(00)00386-2 – start-page: 3993 year: 0 ident: ref10 article-title: Hybrid frequency and phase coding for a high-speed SSVEP-based BCI speller publication-title: Proc 36th Ann Int Conf IEEE Eng Med Biol Soc – ident: ref4 doi: 10.1142/S0129065714500191 – ident: ref24 doi: 10.1016/j.neuroimage.2006.11.004 – ident: ref15 doi: 10.1007/978-3-642-24955-6_35 – ident: ref20 doi: 10.1016/j.neubiorev.2006.06.007 – ident: ref38 doi: 10.1016/0013-4694(88)90149-6 – ident: ref22 doi: 10.1017/S0048577200980259 – ident: ref14 doi: 10.1088/1741-2560/6/4/046002 – ident: ref37 doi: 10.3389/fnpro.2010.00003 – ident: ref3 doi: 10.1109/MEMB.2008.923958 – ident: ref26 doi: 10.1016/j.neuroimage.2014.02.036 – ident: ref28 doi: 10.1016/j.pneurobio.2009.11.005 – ident: ref25 doi: 10.1016/j.neuroimage.2012.08.044 – ident: ref13 doi: 10.1109/TBME.2006.889197 – ident: ref7 doi: 10.1049/el.2010.0923 – ident: ref32 doi: 10.1167/9.7.8 – volume: 61 start-page: 1436 year: 2014 ident: ref1 article-title: Visual and auditory brain-computer interfaces publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2300164 – ident: ref36 doi: 10.1007/978-3-319-39955-3_24 – start-page: 145 year: 1996 ident: ref21 article-title: Independent component analysis of electroencephalographic data publication-title: Advances in neural information processing systems – ident: ref31 doi: 10.1007/s10548-006-0267-4 – ident: ref12 doi: 10.1109/TNSRE.2006.875576 – ident: ref8 doi: 10.1371/journal.pone.0099235 – ident: ref5 doi: 10.1109/TBME.2013.2265260 – start-page: 3037 year: 0 ident: ref18 article-title: Enhancing detection of steady-state visual evoked potentials using individual training data publication-title: Proc 36th Ann Int Conf IEEE Eng Med Biol Soc – ident: ref9 doi: 10.1080/2326263X.2014.944469 – ident: ref33 doi: 10.1109/TBME.2014.2320948 – ident: ref35 doi: 10.1088/1741-2560/12/4/046006 – start-page: 1057 year: 0 ident: ref34 article-title: A dynamic stopping method for improve performance of steady-state visual evoked potential based brain-computer interfaces publication-title: Proc 37th Ann Int Conf IEEE Eng Med Biol Soc – ident: ref2 doi: 10.1073/pnas.1508080112 – ident: ref11 doi: 10.1109/TBME.2002.803536 |
SSID | ssj0014846 |
Score | 2.6801467 |
Snippet | Objective: This study proposes and evaluates a novel data-driven spatial filtering approach for enhancing steady-state visual evoked potentials (SSVEPs)... This study proposes and evaluates a novel data-driven spatial filtering approach for enhancing steady-state visual evoked potentials (SSVEPs) detection toward... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 104 |
SubjectTerms | Adult Algorithms Background noise Biomedical monitoring Brain Brain - physiology Brain-Computer Interfaces Brain-computer interfaces (BCI) Calibration Computer applications Correlation analysis EEG Electroencephalography electroencephalography (EEG) Electroencephalography - methods Evoked Potentials, Visual - physiology Female Filtering Frequency shift keying High speed Human-computer interface Humans Implants Information transfer Internet Male Monitoring Reproducibility Signal Processing, Computer-Assisted Spatial data Spatial filtering steady-state visual evoked potentials (SSVEP) Task Performance and Analysis task-related component analysis (TRCA) Visual evoked potentials Visualization Young Adult |
Title | Enhancing Detection of SSVEPs for a High-Speed Brain Speller Using Task-Related Component Analysis |
URI | https://ieeexplore.ieee.org/document/7904641 https://www.ncbi.nlm.nih.gov/pubmed/28436836 https://www.proquest.com/docview/2174480455 https://www.proquest.com/docview/1891456435 https://pubmed.ncbi.nlm.nih.gov/PMC5783827 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9wwDLeAhwkegMHYOmAK0p6m9WjT5tI88nEITboJ6Q7EW5UmKUxMPcT1XvjrZ6cffAihvVWq26ayHdux_TPAd-oHjTBiQw6IIkyNdKEqCxXSCDt0JwRaWepGHv8enl-mv67F9RL87HthnHO--MwN6NLn8u3MLOio7FAqSsRhrLOMgVvTq9VnDNKsacqJYlRgrtI2gxlH6nB6PB5REZccUNsmWihCAM4Iet0DMz-ZIz9f5S1X83XF5DMTdLYB427xTeXJ3WBRFwPz-ArX8X__bhPWW1-UHTXC8xGWXLUFa88QCrfgw7jNvW9DMapuCZyjumGnrvYVXBWblWwyuRpdzBk6v0wzKhsJJ_doEtkxDZ9gE8ruuAfmSxPYVM_vQl9_hwS0Fc0qXBPrkFE-weXZaHpyHrYTGkIj4qQOXSGNkBhSGRSEmBclbQc2xv1fGZs4wa1VknpfteJCc_xB7oSNLcZopeR2mOzASoVf-gKMm2yYWpSYUrpUG60tikpBY0G44zqKAog6RuWmhS-nKRp_cx_GRConNufE5rxlcwA_-kfuG-yO94i3iSU9YcuNAPY6achb7Z7nFMalGTrDIoCD_jbqJSVbdOVmi3keZyomqJ4EaT43wtO_uxO-AOQLseoJCPP75Z3qz63H_sYNNsm4_Pr2andhlZMC-COiPVipHxZuH52muvjmteUfdAgPrg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VIvE48Gh5BAoYCS5I2SZOvI4PHCjdaku7FdJuUW8hsZ22KspWTVYIfgt_hf_GjPOgrSpulbhFivOyv_HMZGa-AXhD9aABemy4AiL3Yy2tr4pc-dTCDs0JgVqWqpEne8PxfvzpQBwswa--FsZa65LP7IAOXSzfzPWCfpWtS0WBuLBNodyxP76jg1a9397E1XzL-dZo9nHstz0EfC3CqPZtLrWQaPRrfNWQ5wUB1oS4QyltIiu4MUpSdWamuMg4PoBbYUKDXkQhuRlGeN8bcBPtDMGb6rA-RhEnTRlQEOKWwVXcxkzDQK3PNiYjShuTAyoURZ1InMMJkb07Kui_CtB1dLnKuL2co3lO6W3dh9_ddDW5LieDRZ0P9M9LTJL_63w-gHuttc0-NOLxEJZsuQJ3z3EwrsCtSZtdsAr5qDwi-pHykG3a2uWolWxesOn0y-hzxdC8ZxmjxBh_eopKn21Qew02pfiVPWMu-YLNsurEdxmGOIA223mJc8A67pdHsH8t3_sYlkt80lNgXCfD2KBMFNLGmc4yg8KQU-MTbnkWBB4EHTBS3RK0U5-Qb6lz1AKVEqxSglXawsqDd_0lpw07yb8GrxIE-oHt6nuw1qEvbfevKiVHNU7Q3BcevO5P485D4aSstPNFlYaJComMKMIxTxqw9vfuwO6BvADjfgCxml88Ux4fOXZzVCFRwuWzq9_2Fdwezya76e723s5zuMNJ-NwPsTVYrs8W9gWaiHX-0kkqg6_XDeU_D7Vsvg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Detection+of+SSVEPs+for+a+High-Speed+Brain+Speller+Using+Task-Related+Component+Analysis&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Nakanishi%2C+Masaki&rft.au=Wang%2C+Yijun&rft.au=Chen%2C+Xiaogang&rft.au=Wang%2C+Yu-Te&rft.date=2018-01-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=65&rft.issue=1&rft.spage=104&rft_id=info:doi/10.1109%2FTBME.2017.2694818&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |