Bacterial metabolism rescues the inhibition of intestinal drug absorption by food and drug additives

Food and drug products contain diverse and abundant small-molecule additives (excipients) with unclear impacts on human physiology, drug safety, and response. Here, we evaluate their potential impact on intestinal drug absorption. By screening 136 unique compounds for inhibition of the key intestina...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 117; no. 27; pp. 16009 - 16018
Main Authors Zou, Ling, Spanogiannopoulos, Peter, Pieper, Lindsey M., Chien, Huan-Chieh, Cai, Wenlong, Khuri, Natalia, Pottel, Joshua, Vora, Bianca, Ni, Zhanglin, Tsakalozou, Eleftheria, Zhang, Wenjun, Shoichet, Brian K., Giacomini, Kathleen M., Turnbaugh, Peter J.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 07.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Food and drug products contain diverse and abundant small-molecule additives (excipients) with unclear impacts on human physiology, drug safety, and response. Here, we evaluate their potential impact on intestinal drug absorption. By screening 136 unique compounds for inhibition of the key intestinal transporter OATP2B1 we identified and validated 24 potent OATP2B1 inhibitors, characterized by higher molecular weight and hydrophobicity compared to poor or noninhibitors. OATP2B1 inhibitors were also enriched for dyes, including 8 azo (R−N=N−R′) dyes. Pharmacokinetic studies in mice confirmed that FD&C Red No. 40, a common azo dye excipient and a potent inhibitor of OATP2B1, decreased the plasma level of the OATP2B1 substrate fexofenadine, suggesting that FD&C Red No. 40 has the potential to block drug absorption through OATP2B1 inhibition in vivo. However, the gut microbiomes of multiple unrelated healthy individuals as well as diverse human gut bacterial isolates were capable of inactivating the identified azo dye excipients, producing metabolites that no longer inhibit OATP2B1 transport. These results support a beneficial role for the microbiome in limiting the unintended effects of food and drug additives in the intestine and provide a framework for the data-driven selection of excipients. Furthermore, the ubiquity and genetic diversity of gut bacterial azoreductases coupled to experiments in conventionally raised and gnotobiotic mice suggest that variations in gut microbial community structure may be less important to consider relative to the high concentrations of azo dyes in food products, which have the potential to saturate gut bacterial enzymatic activity.
AbstractList Food and drug products contain diverse and abundant small-molecule additives (excipients) with unclear impacts on human physiology, drug safety, and response. Here, we evaluate their potential impact on intestinal drug absorption. By screening 136 unique compounds for inhibition of the key intestinal transporter OATP2B1 we identified and validated 24 potent OATP2B1 inhibitors, characterized by higher molecular weight and hydrophobicity compared to poor or noninhibitors. OATP2B1 inhibitors were also enriched for dyes, including 8 azo (R−N=N−R′) dyes. Pharmacokinetic studies in mice confirmed that FD&C Red No. 40, a common azo dye excipient and a potent inhibitor of OATP2B1, decreased the plasma level of the OATP2B1 substrate fexofenadine, suggesting that FD&C Red No. 40 has the potential to block drug absorption through OATP2B1 inhibition in vivo. However, the gut microbiomes of multiple unrelated healthy individuals as well as diverse human gut bacterial isolates were capable of inactivating the identified azo dye excipients, producing metabolites that no longer inhibit OATP2B1 transport. These results support a beneficial role for the microbiome in limiting the unintended effects of food and drug additives in the intestine and provide a framework for the data-driven selection of excipients. Furthermore, the ubiquity and genetic diversity of gut bacterial azoreductases coupled to experiments in conventionally raised and gnotobiotic mice suggest that variations in gut microbial community structure may be less important to consider relative to the high concentrations of azo dyes in food products, which have the potential to saturate gut bacterial enzymatic activity.
Food and drug products contain diverse and abundant small-molecule additives (excipients) with unclear impacts on human physiology, drug safety, and response. Here, we evaluate their potential impact on intestinal drug absorption. By screening 136 unique compounds for inhibition of the key intestinal transporter OATP2B1 we identified and validated 24 potent OATP2B1 inhibitors, characterized by higher molecular weight and hydrophobicity compared to poor or noninhibitors. OATP2B1 inhibitors were also enriched for dyes, including 8 azo (R-N=N-R') dyes. Pharmacokinetic studies in mice confirmed that FD&C Red No. 40, a common azo dye excipient and a potent inhibitor of OATP2B1, decreased the plasma level of the OATP2B1 substrate fexofenadine, suggesting that FD&C Red No. 40 has the potential to block drug absorption through OATP2B1 inhibition in vivo. However, the gut microbiomes of multiple unrelated healthy individuals as well as diverse human gut bacterial isolates were capable of inactivating the identified azo dye excipients, producing metabolites that no longer inhibit OATP2B1 transport. These results support a beneficial role for the microbiome in limiting the unintended effects of food and drug additives in the intestine and provide a framework for the data-driven selection of excipients. Furthermore, the ubiquity and genetic diversity of gut bacterial azoreductases coupled to experiments in conventionally raised and gnotobiotic mice suggest that variations in gut microbial community structure may be less important to consider relative to the high concentrations of azo dyes in food products, which have the potential to saturate gut bacterial enzymatic activity.Food and drug products contain diverse and abundant small-molecule additives (excipients) with unclear impacts on human physiology, drug safety, and response. Here, we evaluate their potential impact on intestinal drug absorption. By screening 136 unique compounds for inhibition of the key intestinal transporter OATP2B1 we identified and validated 24 potent OATP2B1 inhibitors, characterized by higher molecular weight and hydrophobicity compared to poor or noninhibitors. OATP2B1 inhibitors were also enriched for dyes, including 8 azo (R-N=N-R') dyes. Pharmacokinetic studies in mice confirmed that FD&C Red No. 40, a common azo dye excipient and a potent inhibitor of OATP2B1, decreased the plasma level of the OATP2B1 substrate fexofenadine, suggesting that FD&C Red No. 40 has the potential to block drug absorption through OATP2B1 inhibition in vivo. However, the gut microbiomes of multiple unrelated healthy individuals as well as diverse human gut bacterial isolates were capable of inactivating the identified azo dye excipients, producing metabolites that no longer inhibit OATP2B1 transport. These results support a beneficial role for the microbiome in limiting the unintended effects of food and drug additives in the intestine and provide a framework for the data-driven selection of excipients. Furthermore, the ubiquity and genetic diversity of gut bacterial azoreductases coupled to experiments in conventionally raised and gnotobiotic mice suggest that variations in gut microbial community structure may be less important to consider relative to the high concentrations of azo dyes in food products, which have the potential to saturate gut bacterial enzymatic activity.
Food and drug products are supplemented with small molecules called excipients that are assumed to be inert. In this study, we screened a collection of common oral excipients and identified 24 that inhibit intestinal drug transport, including the common excipient FD&C Red No. 40, which decreased drug absorption in mice. Excipient inhibitors were enriched for azo dyes, which human gut bacteria could metabolize, producing metabolites that no longer inhibit intestinal drug transporter activity. This work demonstrates the unintended consequences of oral excipients and a beneficial role for the gut microbiome in limiting these unfavorable effects. Food and drug products contain diverse and abundant small-molecule additives (excipients) with unclear impacts on human physiology, drug safety, and response. Here, we evaluate their potential impact on intestinal drug absorption. By screening 136 unique compounds for inhibition of the key intestinal transporter OATP2B1 we identified and validated 24 potent OATP2B1 inhibitors, characterized by higher molecular weight and hydrophobicity compared to poor or noninhibitors. OATP2B1 inhibitors were also enriched for dyes, including 8 azo (R−N=N−R′) dyes. Pharmacokinetic studies in mice confirmed that FD&C Red No. 40, a common azo dye excipient and a potent inhibitor of OATP2B1, decreased the plasma level of the OATP2B1 substrate fexofenadine, suggesting that FD&C Red No. 40 has the potential to block drug absorption through OATP2B1 inhibition in vivo. However, the gut microbiomes of multiple unrelated healthy individuals as well as diverse human gut bacterial isolates were capable of inactivating the identified azo dye excipients, producing metabolites that no longer inhibit OATP2B1 transport. These results support a beneficial role for the microbiome in limiting the unintended effects of food and drug additives in the intestine and provide a framework for the data-driven selection of excipients. Furthermore, the ubiquity and genetic diversity of gut bacterial azoreductases coupled to experiments in conventionally raised and gnotobiotic mice suggest that variations in gut microbial community structure may be less important to consider relative to the high concentrations of azo dyes in food products, which have the potential to saturate gut bacterial enzymatic activity.
Food and drug products contain diverse and abundant small-molecule additives (excipients) with unclear impacts on human physiology, drug safety, and response. Here, we evaluate their potential impact on intestinal drug absorption. By screening 136 unique compounds for inhibition of the key intestinal transporter OATP2B1 we identified and validated 24 potent OATP2B1 inhibitors, characterized by higher molecular weight and hydrophobicity compared to poor or noninhibitors. OATP2B1 inhibitors were also enriched for dyes, including 8 azo (R-N=N-R') dyes. Pharmacokinetic studies in mice confirmed that FD&C Red No. 40, a common azo dye excipient and a potent inhibitor of OATP2B1, decreased the plasma level of the OATP2B1 substrate fexofenadine, suggesting that FD&C Red No. 40 has the potential to block drug absorption through OATP2B1 inhibition in vivo. However, the gut microbiomes of multiple unrelated healthy individuals as well as diverse human gut bacterial isolates were capable of inactivating the identified azo dye excipients, producing metabolites that no longer inhibit OATP2B1 transport. These results support a beneficial role for the microbiome in limiting the unintended effects of food and drug additives in the intestine and provide a framework for the data-driven selection of excipients. Furthermore, the ubiquity and genetic diversity of gut bacterial azoreductases coupled to experiments in conventionally raised and gnotobiotic mice suggest that variations in gut microbial community structure may be less important to consider relative to the high concentrations of azo dyes in food products, which have the potential to saturate gut bacterial enzymatic activity.
Author Khuri, Natalia
Ni, Zhanglin
Vora, Bianca
Giacomini, Kathleen M.
Pieper, Lindsey M.
Pottel, Joshua
Zou, Ling
Zhang, Wenjun
Chien, Huan-Chieh
Shoichet, Brian K.
Turnbaugh, Peter J.
Tsakalozou, Eleftheria
Cai, Wenlong
Spanogiannopoulos, Peter
Author_xml – sequence: 1
  givenname: Ling
  surname: Zou
  fullname: Zou, Ling
– sequence: 2
  givenname: Peter
  surname: Spanogiannopoulos
  fullname: Spanogiannopoulos, Peter
– sequence: 3
  givenname: Lindsey M.
  surname: Pieper
  fullname: Pieper, Lindsey M.
– sequence: 4
  givenname: Huan-Chieh
  surname: Chien
  fullname: Chien, Huan-Chieh
– sequence: 5
  givenname: Wenlong
  surname: Cai
  fullname: Cai, Wenlong
– sequence: 6
  givenname: Natalia
  surname: Khuri
  fullname: Khuri, Natalia
– sequence: 7
  givenname: Joshua
  surname: Pottel
  fullname: Pottel, Joshua
– sequence: 8
  givenname: Bianca
  surname: Vora
  fullname: Vora, Bianca
– sequence: 9
  givenname: Zhanglin
  surname: Ni
  fullname: Ni, Zhanglin
– sequence: 10
  givenname: Eleftheria
  surname: Tsakalozou
  fullname: Tsakalozou, Eleftheria
– sequence: 11
  givenname: Wenjun
  surname: Zhang
  fullname: Zhang, Wenjun
– sequence: 12
  givenname: Brian K.
  surname: Shoichet
  fullname: Shoichet, Brian K.
– sequence: 13
  givenname: Kathleen M.
  surname: Giacomini
  fullname: Giacomini, Kathleen M.
– sequence: 14
  givenname: Peter J.
  surname: Turnbaugh
  fullname: Turnbaugh, Peter J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32571913$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1v1DAYhC1URLeFMydQJC5c0vq1nTi5IEHFl1SJC5wtf3a9SuzFdir13-Ow2wKVOEXR-8xoPHOGTkIMFqGXgC8Ac3q5DzJfwEgwGygAf4I2gEdoezbiE7TBmPB2YISdorOcdxjjsRvwM3RKScdhBLpB5oPUxSYvp2a2Rao4-Tw3yWa92NyUrW182Hrli4-hia7-FZuLD5U3ablppMox7X9f1V3jYjSNDOZ4M6bqbm1-jp46OWX74vg9Rz8-ffx-9aW9_vb569X761Z3QEtrHOWYaGpdB71Vo7LYgGFQn2SUYg7AEMm1csowRgapXc96qTXpnXauJ_QcvTv47hc1W6NtKElOYp_8LNOdiNKLfy_Bb8VNvBWcdh0GXg3eHg1S_FkLKGL2WdtpksHGJQvCoCc9ATZW9M0jdBeXVHtZKUIwH-iwJnr9d6KHKPcDVKA7ADrFnJN1Qvsi1z5rQD8JwGIdWqxDiz9DV93lI9299f8Vrw6KXS4xPeCkH2mtm9NfNoi3qg
CitedBy_id crossref_primary_10_1002_cpt_2236
crossref_primary_10_1016_j_biopsych_2023_06_004
crossref_primary_10_1093_bib_bbac160
crossref_primary_10_1208_s12248_022_00711_3
crossref_primary_10_1208_s12248_022_00713_1
crossref_primary_10_3390_pharmaceutics16050647
crossref_primary_10_1016_j_jare_2023_07_002
crossref_primary_10_1111_mmi_15151
crossref_primary_10_1016_j_cmet_2021_04_015
crossref_primary_10_1093_nar_gkad818
crossref_primary_10_1074_jbc_REV120_009132
crossref_primary_10_1021_acs_molpharmaceut_0c00507
crossref_primary_10_1021_acs_molpharmaceut_0c00903
crossref_primary_10_1208_s12248_021_00631_8
crossref_primary_10_3389_fnut_2024_1420358
crossref_primary_10_1080_19490976_2024_2410476
crossref_primary_10_1128_mbio_01573_23
crossref_primary_10_1002_cpt_2644
crossref_primary_10_1371_journal_ppat_1009024
crossref_primary_10_1002_cpt_2647
crossref_primary_10_1038_s41575_024_00893_5
crossref_primary_10_1002_psp4_12913
crossref_primary_10_1016_j_isci_2024_110122
crossref_primary_10_1080_19490976_2024_2387400
crossref_primary_10_1002_cpt_2627
crossref_primary_10_1038_s42255_022_00656_z
crossref_primary_10_1002_med_22077
crossref_primary_10_1016_j_jconrel_2022_08_012
crossref_primary_10_1126_scitranslmed_adg8357
crossref_primary_10_1093_carcin_bgae057
crossref_primary_10_3390_microorganisms12020242
crossref_primary_10_1038_s41467_023_39264_0
crossref_primary_10_1038_s41587_022_01628_0
crossref_primary_10_1124_dmd_121_000669
crossref_primary_10_1016_j_abb_2024_110025
crossref_primary_10_1038_s41467_022_35309_y
crossref_primary_10_1124_dmd_121_000706
crossref_primary_10_3389_fmicb_2022_828359
crossref_primary_10_1080_03602532_2023_2262161
crossref_primary_10_1016_j_mtbio_2025_101445
crossref_primary_10_1016_j_anaerobe_2023_102783
Cites_doi 10.2174/092986652106140425120614
10.1021/acs.jcim.6b00505
10.1007/s11095-012-0767-8
10.1126/scitranslmed.aan4116
10.1021/acs.molpharmaceut.8b00482
10.1152/ajprenal.00272.2005
10.3109/10408419209114557
10.1080/00498250802017715
10.1038/nrmicro.2016.17
10.1371/journal.pone.0006958
10.1016/j.bios.2004.04.011
10.1038/nrd3028
10.1021/acs.jcim.6b00720
10.1124/dmd.119.087619
10.1038/nature08506
10.1111/j.1365-2125.2012.04324.x
10.1067/mcp.2002.121152
10.1124/dmd.105.004192
10.1074/jbc.M104483200
10.1021/acs.molpharmaceut.5b00664
10.1038/nature14232
10.1124/dmd.118.083402
10.1099/mic.0.2008/019877-0
10.1021/mp500210c
10.1093/nar/gky901
10.1007/s00228-014-1705-y
10.1111/nure.12023
10.1016/S0278-6915(97)00060-4
10.1128/aem.35.3.558-562.1978
10.1093/nar/gkv951
10.1002/cpt.458
10.1021/acs.molpharmaceut.7b00563
10.1021/mp200026v
10.18773/austprescr.2011.060
10.1021/mp3001815
10.1016/j.jmb.2007.08.048
10.1136/gutjnl-2011-301104
10.1124/pr.118.015768
10.1016/j.phrs.2012.07.009
10.1093/nar/19.24.6823
10.1126/science.aag2770
10.1208/s12248-008-9010-2
10.1177/108705719900400206
10.1080/19440049.2017.1308018
10.3389/fphys.2018.01534
10.1021/mp200103h
ContentType Journal Article
Copyright Copyright National Academy of Sciences Jul 7, 2020
2020
Copyright_xml – notice: Copyright National Academy of Sciences Jul 7, 2020
– notice: 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1920483117
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Virology and AIDS Abstracts
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 16018
ExternalDocumentID PMC7355017
32571913
10_1073_pnas_1920483117
26935167
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, U.S. Gov't, P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: FDA HHS
  grantid: U01 FD005978
– fundername: NCI NIH HHS
  grantid: R21 CA227232
– fundername: FDA HHS
  grantid: U01 FD004979
– fundername: NIAID NIH HHS
  grantid: T32 AI060537
– fundername: CIHR
– fundername: NHLBI NIH HHS
  grantid: R01 HL122593
– fundername: HHS | U.S. Food and Drug Administration (FDA)
  grantid: U01FD005978
– fundername: HHS | NIH | National Cancer Institute (NCI)
  grantid: R21CA227232
– fundername: HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
  grantid: R01HL122593
– fundername: HHS | U.S. Food and Drug Administration (FDA)
  grantid: U01FD004979
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c513t-df3702c3ef516eb9be0d1d41109dbb4f11d2a7cbfbd4428acf646acc26fcff623
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:02:03 EDT 2025
Fri Jul 11 16:32:37 EDT 2025
Mon Jun 30 08:33:23 EDT 2025
Thu Apr 03 07:05:44 EDT 2025
Thu Apr 24 23:12:45 EDT 2025
Tue Jul 01 03:40:24 EDT 2025
Thu May 29 09:13:16 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 27
Keywords azoreductases
food additives
drug absorption
excipients
human gut microbiome
Language English
License Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c513t-df3702c3ef516eb9be0d1d41109dbb4f11d2a7cbfbd4428acf646acc26fcff623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: L.Z., P.S., Z.N., E.T., K.M.G., and P.J.T. designed research; L.Z., P.S., L.M.P., H.-C.C., W.C., N.K., and J.P. performed research; W.C. and W.Z. contributed new reagents/analytic tools; L.Z., P.S., L.M.P., H.-C.C., W.C., N.K., J.P., B.V., W.Z., B.K.S., K.M.G., and P.J.T. analyzed data; and L.Z., P.S., L.M.P., K.M.G., and P.J.T. wrote the paper.
Edited by Lora V. Hooper, The University of Texas Southwestern Medical Center, Dallas, TX, and approved May 20, 2020 (received for review November 21, 2019)
1L.Z. and P.S. contributed equally to this work.
ORCID 0000-0002-0128-7950
0000-0002-4455-4713
0000-0002-0888-2875
0000-0001-8041-5430
0000-0001-9031-8124
0000-0001-9348-972X
0000-0003-0826-7730
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7355017
PMID 32571913
PQID 2422078382
PQPubID 42026
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7355017
proquest_miscellaneous_2416262149
proquest_journals_2422078382
pubmed_primary_32571913
crossref_citationtrail_10_1073_pnas_1920483117
crossref_primary_10_1073_pnas_1920483117
jstor_primary_26935167
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-07
PublicationDateYYYYMMDD 2020-07-07
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-07
  day: 07
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2020
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
Macwana S. R. (e_1_3_3_29_2) 2010; 12
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
References_xml – ident: e_1_3_3_27_2
  doi: 10.2174/092986652106140425120614
– ident: e_1_3_3_47_2
  doi: 10.1021/acs.jcim.6b00505
– ident: e_1_3_3_16_2
  doi: 10.1007/s11095-012-0767-8
– ident: e_1_3_3_1_2
  doi: 10.1126/scitranslmed.aan4116
– ident: e_1_3_3_38_2
  doi: 10.1021/acs.molpharmaceut.8b00482
– ident: e_1_3_3_45_2
  doi: 10.1152/ajprenal.00272.2005
– ident: e_1_3_3_23_2
  doi: 10.3109/10408419209114557
– ident: e_1_3_3_41_2
  doi: 10.1080/00498250802017715
– ident: e_1_3_3_2_2
  doi: 10.1038/nrmicro.2016.17
– ident: e_1_3_3_34_2
  doi: 10.1371/journal.pone.0006958
– ident: e_1_3_3_24_2
  doi: 10.1016/j.bios.2004.04.011
– ident: e_1_3_3_12_2
  doi: 10.1038/nrd3028
– ident: e_1_3_3_15_2
  doi: 10.1021/acs.jcim.6b00720
– ident: e_1_3_3_17_2
  doi: 10.1124/dmd.119.087619
– ident: e_1_3_3_36_2
  doi: 10.1038/nature08506
– ident: e_1_3_3_10_2
  doi: 10.1111/j.1365-2125.2012.04324.x
– ident: e_1_3_3_18_2
  doi: 10.1067/mcp.2002.121152
– ident: e_1_3_3_20_2
  doi: 10.1124/dmd.105.004192
– ident: e_1_3_3_30_2
  doi: 10.1074/jbc.M104483200
– ident: e_1_3_3_13_2
  doi: 10.1021/acs.molpharmaceut.5b00664
– ident: e_1_3_3_5_2
  doi: 10.1038/nature14232
– ident: e_1_3_3_48_2
– ident: e_1_3_3_4_2
  doi: 10.1124/dmd.118.083402
– ident: e_1_3_3_28_2
  doi: 10.1099/mic.0.2008/019877-0
– ident: e_1_3_3_43_2
  doi: 10.1021/mp500210c
– ident: e_1_3_3_32_2
  doi: 10.1093/nar/gky901
– ident: e_1_3_3_9_2
  doi: 10.1007/s00228-014-1705-y
– ident: e_1_3_3_19_2
  doi: 10.1111/nure.12023
– ident: e_1_3_3_25_2
  doi: 10.1016/S0278-6915(97)00060-4
– ident: e_1_3_3_22_2
  doi: 10.1128/aem.35.3.558-562.1978
– ident: e_1_3_3_46_2
  doi: 10.1093/nar/gkv951
– ident: e_1_3_3_11_2
  doi: 10.1002/cpt.458
– ident: e_1_3_3_37_2
  doi: 10.1021/acs.molpharmaceut.7b00563
– ident: e_1_3_3_8_2
  doi: 10.1021/mp200026v
– ident: e_1_3_3_6_2
  doi: 10.18773/austprescr.2011.060
– ident: e_1_3_3_39_2
  doi: 10.1021/mp3001815
– ident: e_1_3_3_31_2
  doi: 10.1016/j.jmb.2007.08.048
– ident: e_1_3_3_35_2
  doi: 10.1136/gutjnl-2011-301104
– ident: e_1_3_3_44_2
  doi: 10.1124/pr.118.015768
– ident: e_1_3_3_21_2
  doi: 10.1016/j.phrs.2012.07.009
– ident: e_1_3_3_26_2
  doi: 10.1093/nar/19.24.6823
– volume: 12
  start-page: 43
  year: 2010
  ident: e_1_3_3_29_2
  article-title: Identification and isolation of an azoreductase from Enterococcus faecium
  publication-title: Curr. Issues Mol. Biol.
– ident: e_1_3_3_3_2
  doi: 10.1126/science.aag2770
– ident: e_1_3_3_40_2
  doi: 10.1208/s12248-008-9010-2
– ident: e_1_3_3_14_2
  doi: 10.1177/108705719900400206
– ident: e_1_3_3_42_2
  doi: 10.1080/19440049.2017.1308018
– ident: e_1_3_3_33_2
  doi: 10.3389/fphys.2018.01534
– ident: e_1_3_3_7_2
  doi: 10.1021/mp200103h
SSID ssj0009580
Score 2.520898
Snippet Food and drug products contain diverse and abundant small-molecule additives (excipients) with unclear impacts on human physiology, drug safety, and response....
Food and drug products are supplemented with small molecules called excipients that are assumed to be inert. In this study, we screened a collection of common...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16009
SubjectTerms Absorption
Additives
Animals
Anti-Allergic Agents - metabolism
Anti-Allergic Agents - pharmacokinetics
ATP Binding Cassette Transporter, Subfamily B - genetics
ATP-Binding Cassette Sub-Family B Member 4
Azo Compounds
Azo dyes
Bacteria
Bacteria - isolation & purification
Bacteria - metabolism
Biological Sciences
Community structure
Digestive system
Drug additives
Dyes
Enzymatic activity
Excipients
Excipients - metabolism
Excipients - pharmacokinetics
Female
Fexofenadine
Food
Food additives
Food Additives - metabolism
Food Additives - pharmacokinetics
Food dyes
Gastrointestinal Microbiome - physiology
Gastrointestinal tract
Genetic diversity
Gnotobiotic
Histamine H1 Antagonists, Non-Sedating - metabolism
Histamine H1 Antagonists, Non-Sedating - pharmacokinetics
Humans
Hydrophobicity
Intestinal Absorption - drug effects
Intestinal Absorption - physiology
Intestinal microflora
Intestine
Male
Metabolites
Mice
Mice, Inbred BALB C
Mice, Knockout
Microbiomes
Microorganisms
Molecular weight
Organic Anion Transporters - metabolism
Pharmacokinetics
Pharmacovigilance
Substrates
Terfenadine - analogs & derivatives
Title Bacterial metabolism rescues the inhibition of intestinal drug absorption by food and drug additives
URI https://www.jstor.org/stable/26935167
https://www.ncbi.nlm.nih.gov/pubmed/32571913
https://www.proquest.com/docview/2422078382
https://www.proquest.com/docview/2416262149
https://pubmed.ncbi.nlm.nih.gov/PMC7355017
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKuHBBDBh0DGQkDkNVSm2n-XEcCFQhrephkyYukR3ba6QqqZrmAP8e_xjPsfOrbNLgEjWxayV5Xz6_Zz9_RuiDlipWPGaenDPq-VpEXsRVDGTIZpFSItLULHC-XAaLa__7zfxmNPrdy1qq9mKa_rpzXcn_WBWugV3NKtl_sGzbKFyA32BfOIKF4fggG3-2Usv1ApA9WHNjdryA-DmtjHDD2uiBrDORNU6hkYaAL9r4n3JX3U64KIudpQxh8jaLWrbVlUlZZxWVfe911fZ2ZZNbsGwGEy-6pSmOL8qJN1ktu42OfxSVGwW47ebseQ7cy_O82BbVxqb8DVKGV5naWlSZ0YMSGOxy2qUkZJY0FxXPPXO27g9iQMRaD5D2iZlCZ-nb5dRTZbkYXBkv8O1uoi1Zk7CHSisr4LiXgO8W9zpyOLfU_lcvAbRmtjbOeTkFB9eI6jfNDvS4D_rJNnuxnrcPWWIaSLoGHqHHFGKVOrt00Vd-juw6KPeEjb5UyD4d3MHANbLZsXfFPYfpuz1_6OoZeuoCGXxhUXmMRip_jo4b0-Nzp2f-8QWSLUxxB1PsYIoBRLiDKS407mCKDRRxB1MsfmIDUwwwdWUNTF-i629fr74sPLe5h5fOCdt7UrNwRlOm9JwESsRCzSSRvhHAlUL4mhBJeZgKLaQPITJPdeAHPE1poFOtwWk_QUd5kavXCEOEI2moZ3PBpa9mFN54FOpQAA9FMXhgYzRt3muSOuV7swHLJrnHkmN03v5ha0Vf7q96UhuqrUeDmMETQcFZY7nEUUaZgD9Mzbx5RMfofVsMhG5m6XiuisrUIQENKPHjMXplDd02zqCDJTFhYxQOINBWMGLxw5I8W9ei8SEEFtD7nj780d6gJ92neoaO9rtKvQUPfC_e1Qj_A1_H39M
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bacterial+metabolism+rescues+the+inhibition+of+intestinal+drug+absorption+by+food+and+drug+additives&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Zou%2C+Ling&rft.au=Spanogiannopoulos%2C+Peter&rft.au=Pieper%2C+Lindsey+M.&rft.au=Chien%2C+Huan-Chieh&rft.date=2020-07-07&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=27&rft.spage=16009&rft.epage=16018&rft_id=info:doi/10.1073%2Fpnas.1920483117&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1920483117
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon