Repetitive Magnetic Stimulation Induces Functional and Structural Plasticity of Excitatory Postsynapses in Mouse Organotypic Hippocampal Slice Cultures

Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that can alter cortical excitability in human subjects for hours beyond the stimulation period. It thus has potential as a therapeutic tool in neuropsychiatric disorders associated with alterations in co...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 32; no. 48; pp. 17514 - 17523
Main Authors Vlachos, Andreas, Müller-Dahlhaus, Florian, Rosskopp, Johannes, Lenz, Maximilian, Ziemann, Ulf, Deller, Thomas
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 28.11.2012
Subjects
Online AccessGet full text
ISSN0270-6474
1529-2401
1529-2401
DOI10.1523/JNEUROSCI.0409-12.2012

Cover

Loading…
Abstract Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that can alter cortical excitability in human subjects for hours beyond the stimulation period. It thus has potential as a therapeutic tool in neuropsychiatric disorders associated with alterations in cortical excitability. However, rTMS-induced neural plasticity remains insufficiently understood at the cellular level. To learn more about the effects of repetitive magnetic stimulation (rMS), we established an in vitro model of rMS using mouse organotypic entorhino-hippocampal slice cultures. We assessed the outcome of a high-frequency (10 Hz) rMS protocol on functional and structural properties of excitatory synapses in mature hippocampal CA1 pyramidal neurons. Whole-cell patch-clamp recordings, immunohistochemistry, and time-lapse imaging techniques revealed that rMS induces a long-lasting increase in glutamatergic synaptic strength, which is accompanied by structural remodeling of dendritic spines. The effects of rMS on spine size were predominantly seen in small spines, suggesting differential effects of rMS on subpopulations of spines. Furthermore, our data indicate that rMS-induced postsynaptic changes depend on the NMDA receptor-mediated accumulation of GluA1-containing AMPA receptors. These results provide first experimental evidence that rMS induces coordinated functional and structural plasticity of excitatory postsynapses, which is consistent with a long-term potentiation of synaptic transmission.
AbstractList Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that can alter cortical excitability in human subjects for hours beyond the stimulation period. It thus has potential as a therapeutic tool in neuropsychiatric disorders associated with alterations in cortical excitability. However, rTMS-induced neural plasticity remains insufficiently understood at the cellular level. To learn more about the effects of repetitive magnetic stimulation (rMS), we established an in vitro model of rMS using mouse organotypic entorhino-hippocampal slice cultures. We assessed the outcome of a high-frequency (10 Hz) rMS protocol on functional and structural properties of excitatory synapses in mature hippocampal CA1 pyramidal neurons. Whole-cell patch-clamp recordings, immunohistochemistry, and time-lapse imaging techniques revealed that rMS induces a long-lasting increase in glutamatergic synaptic strength, which is accompanied by structural remodeling of dendritic spines. The effects of rMS on spine size were predominantly seen in small spines, suggesting differential effects of rMS on subpopulations of spines. Furthermore, our data indicate that rMS-induced postsynaptic changes depend on the NMDA receptor-mediated accumulation of GluA1-containing AMPA receptors. These results provide first experimental evidence that rMS induces coordinated functional and structural plasticity of excitatory postsynapses, which is consistent with a long-term potentiation of synaptic transmission.
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that can alter cortical excitability in human subjects for hours beyond the stimulation period. It thus has potential as a therapeutic tool in neuropsychiatric disorders associated with alterations in cortical excitability. However, rTMS-induced neural plasticity remains insufficiently understood at the cellular level. To learn more about the effects of repetitive magnetic stimulation (rMS), we established an in vitro model of rMS using mouse organotypic entorhino-hippocampal slice cultures. We assessed the outcome of a high-frequency (10 Hz) rMS protocol on functional and structural properties of excitatory synapses in mature hippocampal CA1 pyramidal neurons. Whole-cell patch-clamp recordings, immunohistochemistry, and time-lapse imaging techniques revealed that rMS induces a long-lasting increase in glutamatergic synaptic strength, which is accompanied by structural remodeling of dendritic spines. The effects of rMS on spine size were predominantly seen in small spines, suggesting differential effects of rMS on subpopulations of spines. Furthermore, our data indicate that rMS-induced postsynaptic changes depend on the NMDA receptor-mediated accumulation of GluA1-containing AMPA receptors. These results provide first experimental evidence that rMS induces coordinated functional and structural plasticity of excitatory postsynapses, which is consistent with a long-term potentiation of synaptic transmission.
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that can alter cortical excitability in human subjects for hours beyond the stimulation period. It thus has potential as a therapeutic tool in neuropsychiatric disorders associated with alterations in cortical excitability. However, rTMS-induced neural plasticity remains insufficiently understood at the cellular level. To learn more about the effects of repetitive magnetic stimulation (rMS), we established an in vitro model of rMS using mouse organotypic entorhino-hippocampal slice cultures. We assessed the outcome of a high-frequency (10 Hz) rMS protocol on functional and structural properties of excitatory synapses in mature hippocampal CA1 pyramidal neurons. Whole-cell patch-clamp recordings, immunohistochemistry, and time-lapse imaging techniques revealed that rMS induces a long-lasting increase in glutamatergic synaptic strength, which is accompanied by structural remodeling of dendritic spines. The effects of rMS on spine size were predominantly seen in small spines, suggesting differential effects of rMS on subpopulations of spines. Furthermore, our data indicate that rMS-induced postsynaptic changes depend on the NMDA receptor-mediated accumulation of GluA1-containing AMPA receptors. These results provide first experimental evidence that rMS induces coordinated functional and structural plasticity of excitatory postsynapses, which is consistent with a long-term potentiation of synaptic transmission.Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that can alter cortical excitability in human subjects for hours beyond the stimulation period. It thus has potential as a therapeutic tool in neuropsychiatric disorders associated with alterations in cortical excitability. However, rTMS-induced neural plasticity remains insufficiently understood at the cellular level. To learn more about the effects of repetitive magnetic stimulation (rMS), we established an in vitro model of rMS using mouse organotypic entorhino-hippocampal slice cultures. We assessed the outcome of a high-frequency (10 Hz) rMS protocol on functional and structural properties of excitatory synapses in mature hippocampal CA1 pyramidal neurons. Whole-cell patch-clamp recordings, immunohistochemistry, and time-lapse imaging techniques revealed that rMS induces a long-lasting increase in glutamatergic synaptic strength, which is accompanied by structural remodeling of dendritic spines. The effects of rMS on spine size were predominantly seen in small spines, suggesting differential effects of rMS on subpopulations of spines. Furthermore, our data indicate that rMS-induced postsynaptic changes depend on the NMDA receptor-mediated accumulation of GluA1-containing AMPA receptors. These results provide first experimental evidence that rMS induces coordinated functional and structural plasticity of excitatory postsynapses, which is consistent with a long-term potentiation of synaptic transmission.
Author Lenz, Maximilian
Müller-Dahlhaus, Florian
Rosskopp, Johannes
Deller, Thomas
Vlachos, Andreas
Ziemann, Ulf
Author_xml – sequence: 1
  givenname: Andreas
  surname: Vlachos
  fullname: Vlachos, Andreas
– sequence: 2
  givenname: Florian
  surname: Müller-Dahlhaus
  fullname: Müller-Dahlhaus, Florian
– sequence: 3
  givenname: Johannes
  surname: Rosskopp
  fullname: Rosskopp, Johannes
– sequence: 4
  givenname: Maximilian
  surname: Lenz
  fullname: Lenz, Maximilian
– sequence: 5
  givenname: Ulf
  surname: Ziemann
  fullname: Ziemann, Ulf
– sequence: 6
  givenname: Thomas
  surname: Deller
  fullname: Deller, Thomas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23197741$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAQtVAR3bb8hcpHLtl6nMROJISEVlu6qGWrbnu2HMdZjBI7xE5Ffkn_Lg79EHCBk8ee997MeN4ROrDOaoROgSwhp-nZ5y_ru5vtbrVZkoyUCdAlJUBfoUXMlgnNCBygBaGcJCzj2SE68v4bIYQT4G_QIU2h5DyDBXq40b0OJph7ja_k3sZY4V0w3djKYJzFG1uPSnt8Plo1P8gWS1tHyDCqMA7xet1KH1kmTNg1eP0jRjK4YcLXzgc_Wdn7yDcWX7nRa7wd9tK6MPWx0IXpe6dk10eZXWuUxquxjaran6DXjWy9fvt0HqO78_Xt6iK53H7arD5eJiqHNCSqgUISLYHVWclpVeV5QQpFmhzKmtcZ4ZpVVcxrVZaK1FXN8kzRtCQgSymz9Bh9eNTtx6rTtdI2xJlEP5hODpNw0og_M9Z8FXt3LxijUDAWBd49CQzu-6h9EJ3xSrettDrOKyDPgQH_LyilAGlaFDP09Pe2Xvp5XlwEvH8EqMF5P-hG_Pr2uKDYpWkFEDH7RLz4RMw-iSXE7JNIZ3_Rnyv8g_gTAv7H7Q
CitedBy_id crossref_primary_10_3233_JAD_170057
crossref_primary_10_1007_s10548_013_0277_y
crossref_primary_10_1097_WNP_0000000000000784
crossref_primary_10_1038_s41593_017_0054_4
crossref_primary_10_3390_ijms242216456
crossref_primary_10_1016_j_brs_2019_10_007
crossref_primary_10_1016_j_neulet_2018_02_045
crossref_primary_10_1038_s41598_024_55915_8
crossref_primary_10_1051_medsci_2022108
crossref_primary_10_3390_bs13110942
crossref_primary_10_1038_s41467_024_51443_1
crossref_primary_10_1038_srep38234
crossref_primary_10_1016_j_neuroscience_2016_08_030
crossref_primary_10_1016_j_brs_2021_09_004
crossref_primary_10_1016_j_resp_2021_103704
crossref_primary_10_1515_nf_2016_A103
crossref_primary_10_1016_j_brainres_2024_149391
crossref_primary_10_3389_fncel_2024_1374555
crossref_primary_10_1038_s41598_018_22385_8
crossref_primary_10_1111_cns_14498
crossref_primary_10_1016_j_biopsych_2022_08_028
crossref_primary_10_3390_cells12162062
crossref_primary_10_3390_cells13020114
crossref_primary_10_5535_arm_2019_43_1_62
crossref_primary_10_1016_j_clinph_2020_10_003
crossref_primary_10_1088_1741_2552_acc097
crossref_primary_10_1016_j_nlm_2014_11_002
crossref_primary_10_3389_fnagi_2022_984708
crossref_primary_10_1186_s12974_020_01747_y
crossref_primary_10_4103_1673_5374_153676
crossref_primary_10_1016_j_jad_2023_03_093
crossref_primary_10_1515_nf_2016_1103
crossref_primary_10_3389_fpsyt_2024_1458696
crossref_primary_10_1038_s41386_022_01453_8
crossref_primary_10_1177_1073858414526645
crossref_primary_10_1007_s40501_020_00230_y
crossref_primary_10_1016_j_neuroimage_2022_119386
crossref_primary_10_1371_journal_pone_0131020
crossref_primary_10_3389_fneur_2018_00050
crossref_primary_10_1002_jnr_24792
crossref_primary_10_3389_fnins_2020_00137
crossref_primary_10_3389_fpsyt_2023_976921
crossref_primary_10_1111_cns_12762
crossref_primary_10_1016_j_neuroimage_2021_117959
crossref_primary_10_7554_eLife_65536
crossref_primary_10_1016_j_brs_2020_12_007
crossref_primary_10_1159_000538690
crossref_primary_10_3390_brainsci12070929
crossref_primary_10_4103_NRR_NRR_D_23_01201
crossref_primary_10_3389_fncir_2016_00026
crossref_primary_10_1109_ACCESS_2020_3033029
crossref_primary_10_1016_j_brs_2025_03_012
crossref_primary_10_3389_fneur_2018_00285
crossref_primary_10_1007_s11910_018_0913_8
crossref_primary_10_1038_srep14769
crossref_primary_10_1007_s13295_014_0056_6
crossref_primary_10_3389_fpsyt_2023_1137681
crossref_primary_10_1016_j_neubiorev_2021_10_040
crossref_primary_10_1016_j_brs_2020_01_005
crossref_primary_10_1155_2014_684238
crossref_primary_10_1176_appi_ajp_20241151
crossref_primary_10_1016_j_brs_2021_03_016
crossref_primary_10_1371_journal_pone_0139892
crossref_primary_10_1007_s00429_014_0859_9
crossref_primary_10_1093_cercor_bht421
crossref_primary_10_1016_j_biopsych_2024_06_010
crossref_primary_10_1016_j_neures_2021_05_015
crossref_primary_10_1016_j_brs_2023_10_006
crossref_primary_10_1016_j_expneurol_2014_04_033
crossref_primary_10_1016_j_neurom_2021_09_003
crossref_primary_10_3389_fimmu_2020_614509
crossref_primary_10_1016_j_brs_2022_09_014
crossref_primary_10_1038_nrn_2017_113
crossref_primary_10_3389_fpsyg_2019_00529
crossref_primary_10_1177_1073858415618897
crossref_primary_10_12688_f1000research_2_180_v1
crossref_primary_10_12688_f1000research_2_180_v2
crossref_primary_10_1101_sqb_2018_83_038158
crossref_primary_10_1038_mp_2016_161
crossref_primary_10_1016_j_brs_2021_11_009
crossref_primary_10_1371_journal_pone_0208747
crossref_primary_10_3389_fncir_2016_00096
crossref_primary_10_3389_fneur_2023_1064718
crossref_primary_10_1017_sjp_2016_89
crossref_primary_10_1093_cercor_bhab281
crossref_primary_10_3389_fnhum_2024_1462211
crossref_primary_10_1016_j_brs_2024_08_003
crossref_primary_10_3390_biom11030359
crossref_primary_10_1016_j_psychres_2021_113970
crossref_primary_10_1016_j_clinph_2017_09_007
crossref_primary_10_1126_sciadv_ado6705
crossref_primary_10_3390_cells12111525
crossref_primary_10_3390_ijms26020825
crossref_primary_10_3390_brainsci14060603
crossref_primary_10_1371_journal_pcbi_1011027
crossref_primary_10_1038_s41598_025_88536_w
crossref_primary_10_3390_brainsci8070129
crossref_primary_10_1016_j_brs_2016_01_006
crossref_primary_10_1016_j_expneurol_2017_06_019
crossref_primary_10_1523_JNEUROSCI_1824_22_2023
crossref_primary_10_1016_j_jad_2024_03_061
crossref_primary_10_1038_s41583_024_00876_0
crossref_primary_10_1523_ENEURO_0235_19_2019
crossref_primary_10_1371_journal_pone_0170528
crossref_primary_10_1016_j_alcohol_2018_05_011
crossref_primary_10_1016_j_neubiorev_2018_12_012
crossref_primary_10_1080_10715762_2018_1434313
crossref_primary_10_1002_glia_23620
crossref_primary_10_1016_j_neuroscience_2014_09_041
crossref_primary_10_3233_RNN_130359
crossref_primary_10_1038_s41598_023_32985_8
crossref_primary_10_1523_JNEUROSCI_2226_22_2023
crossref_primary_10_3389_fphys_2017_00457
crossref_primary_10_3389_fncel_2022_1082211
crossref_primary_10_3389_fncir_2023_1124221
crossref_primary_10_1111_pcn_12547
crossref_primary_10_3892_ijmm_2018_3922
crossref_primary_10_3389_fnhum_2016_00683
crossref_primary_10_1007_s40846_023_00810_2
crossref_primary_10_1016_j_brs_2014_09_012
crossref_primary_10_1093_braincomms_fcae437
crossref_primary_10_7759_cureus_76569
crossref_primary_10_1002_acn3_277
crossref_primary_10_1016_j_physbeh_2017_05_033
crossref_primary_10_1113_JP277507
crossref_primary_10_1093_cercor_bhaa244
crossref_primary_10_3389_fncir_2016_00073
crossref_primary_10_1016_j_biopsych_2022_01_021
crossref_primary_10_1038_s41598_018_23979_y
crossref_primary_10_1038_s41598_018_31536_w
crossref_primary_10_7717_peerj_4501
crossref_primary_10_3389_fnhum_2015_00303
crossref_primary_10_1088_2057_1976_aab525
crossref_primary_10_3390_biology11030473
crossref_primary_10_1002_glia_24383
crossref_primary_10_1371_journal_pone_0126949
crossref_primary_10_1016_j_jneumeth_2021_109261
crossref_primary_10_4103_ATN_ATN_D_24_00021
crossref_primary_10_1016_j_brainresbull_2013_07_005
crossref_primary_10_1016_j_brs_2021_10_001
crossref_primary_10_1109_TMAG_2021_3077976
crossref_primary_10_1038_ncomms10020
crossref_primary_10_3389_fnins_2023_1177283
crossref_primary_10_1162_imag_a_00264
crossref_primary_10_1016_j_crneur_2022_100033
crossref_primary_10_1007_s00221_018_05468_w
crossref_primary_10_1007_s11596_015_1505_3
crossref_primary_10_1002_dneu_22205
crossref_primary_10_1177_1545968319834898
crossref_primary_10_1113_JP283244
crossref_primary_10_1016_j_cortex_2021_02_024
crossref_primary_10_1371_journal_pone_0081482
crossref_primary_10_3389_fnhum_2021_639640
crossref_primary_10_1016_j_brs_2017_02_012
crossref_primary_10_1016_j_expneurol_2023_114461
crossref_primary_10_1177_10738584221118262
crossref_primary_10_3389_fneur_2022_909264
crossref_primary_10_1097_YCT_0000000000001123
crossref_primary_10_17816_ACEN_1152
crossref_primary_10_1016_j_brs_2019_06_028
crossref_primary_10_1038_s44220_024_00271_9
crossref_primary_10_1002_nep3_40
crossref_primary_10_1016_j_clinph_2021_05_008
crossref_primary_10_1523_JNEUROSCI_0258_16_2016
crossref_primary_10_1016_j_brs_2016_11_009
crossref_primary_10_1038_srep23420
crossref_primary_10_1016_j_nlm_2016_08_016
Cites_doi 10.1111/j.1749-6632.1999.tb11316.x
10.1016/0006-8993(84)90275-0
10.1002/cne.1199
10.1038/nature02617
10.1523/JNEUROSCI.0603-08.2008
10.1007/s00406-011-0217-3
10.1523/JNEUROSCI.5528-08.2009
10.1073/pnas.0905110106
10.1177/1545968311423265
10.1038/375400a0
10.1016/S0896-6273(03)00640-8
10.1038/10172
10.1371/journal.pone.0032883
10.1126/science.283.5409.1923
10.1038/nature06416
10.1523/JNEUROSCI.1379-10.2011
10.1177/1545968309345270
10.1007/s00221-004-2140-6
10.1016/0165-0270(91)90128-M
10.1016/0896-6273(95)90046-2
10.1113/jphysiol.2003.050153
10.1007/s10548-009-0115-4
10.1016/j.neuron.2004.11.016
10.1523/JNEUROSCI.23-33-10645.2003
10.1523/JNEUROSCI.19-08-03198.1999
10.1038/361031a0
10.1113/jphysiol.1983.sp014478
10.1038/nn.3004
10.1038/4548
10.1016/j.neuron.2009.07.020
10.1038/nn736
10.1002/cne.20539
10.1046/j.1460-9568.2003.02696.x
10.1016/0301-0082(94)00040-O
10.1152/jn.1995.73.3.1282
10.1523/JNEUROSCI.12-07-02685.1992
10.1016/S0896-6273(03)00206-X
10.1038/nrn1882
10.1002/bem.20211
10.1016/j.neuroimage.2011.05.065
10.1523/JNEUROSCI.19-08-02876.1999
10.1007/s00221-007-0991-3
10.1038/nrn2169
10.1523/JNEUROSCI.6751-10.2011
10.1007/s00221-009-1961-8
10.1016/j.brs.2008.06.006
10.1002/cne.23017
10.1038/nrn2501
10.1016/S0893-133X(00)00191-3
10.1038/19978
10.1016/j.neuron.2007.06.026
10.1016/j.brs.2008.11.002
10.1016/S0896-6273(00)00084-2
10.1007/s11064-005-8829-5
10.1111/j.1528-1167.2011.03113.x
10.1016/S0166-2236(97)01122-3
10.1016/S0301-0082(97)00044-0
10.1016/S1474-4422(08)70190-X
10.1002/hipo.20373
ContentType Journal Article
Copyright Copyright © 2012 the authors 0270-6474/12/3217514-10$15.00/0 2012
Copyright_xml – notice: Copyright © 2012 the authors 0270-6474/12/3217514-10$15.00/0 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1523/JNEUROSCI.0409-12.2012
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList CrossRef
MEDLINE
Neurosciences Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 17523
ExternalDocumentID PMC6621866
23197741
10_1523_JNEUROSCI_0409_12_2012
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
3O-
53G
5GY
5RE
5VS
AAFWJ
AAJMC
AAYXX
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
ADHGD
AENEX
AETEA
AFCFT
AFOSN
AFSQR
AHWXS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
MVM
OK1
P0W
P2P
QZG
R.V
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
XJT
YBU
YHG
YKV
YNH
YSK
AFHIN
AIZTS
CGR
CUY
CVF
ECM
EIF
NPM
RHF
7X8
7TK
5PM
ID FETCH-LOGICAL-c513t-cf18a0ea16d4972bb55808c0f519d7d407e6bbea1ec99c0dbd654c23901a9aa43
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 18:20:35 EDT 2025
Fri Jul 11 11:48:00 EDT 2025
Fri Jul 11 09:44:35 EDT 2025
Wed Feb 19 02:34:41 EST 2025
Tue Jul 01 03:46:54 EDT 2025
Thu Apr 24 23:00:18 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 48
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c513t-cf18a0ea16d4972bb55808c0f519d7d407e6bbea1ec99c0dbd654c23901a9aa43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
A.V. and F.M.-D. contributed equally to this work.
Author contributions: A.V., F.M.-D., U.Z., and T.D. designed research; A.V., F.M.-D., J.R., and M.L. performed research; A.V., F.M.-D., J.R., and M.L. analyzed data; A.V., F.M.-D., U.Z., and T.D. wrote the paper.
U.Z. and T.D. contributed equally to this work.
OpenAccessLink https://www.jneurosci.org/content/jneuro/32/48/17514.full.pdf
PMID 23197741
PQID 1221133886
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6621866
proquest_miscellaneous_1551617866
proquest_miscellaneous_1221133886
pubmed_primary_23197741
crossref_citationtrail_10_1523_JNEUROSCI_0409_12_2012
crossref_primary_10_1523_JNEUROSCI_0409_12_2012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-11-28
2012-Nov-28
20121128
PublicationDateYYYYMMDD 2012-11-28
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-11-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2012
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References 2023041304002043000_32.48.17514.50
2023041304002043000_32.48.17514.11
2023041304002043000_32.48.17514.55
2023041304002043000_32.48.17514.12
2023041304002043000_32.48.17514.56
2023041304002043000_32.48.17514.13
2023041304002043000_32.48.17514.57
2023041304002043000_32.48.17514.14
2023041304002043000_32.48.17514.58
2023041304002043000_32.48.17514.51
2023041304002043000_32.48.17514.52
2023041304002043000_32.48.17514.53
2023041304002043000_32.48.17514.10
2023041304002043000_32.48.17514.54
2023041304002043000_32.48.17514.19
2023041304002043000_32.48.17514.15
2023041304002043000_32.48.17514.59
2023041304002043000_32.48.17514.16
2023041304002043000_32.48.17514.17
2023041304002043000_32.48.17514.18
Harris (2023041304002043000_32.48.17514.22) 1992; 12
2023041304002043000_32.48.17514.60
Collingridge (2023041304002043000_32.48.17514.7) 1983; 334
2023041304002043000_32.48.17514.23
2023041304002043000_32.48.17514.24
2023041304002043000_32.48.17514.25
2023041304002043000_32.48.17514.20
2023041304002043000_32.48.17514.21
2023041304002043000_32.48.17514.26
Debanne (2023041304002043000_32.48.17514.8) 1995; 73
2023041304002043000_32.48.17514.27
2023041304002043000_32.48.17514.29
2023041304002043000_32.48.17514.1
2023041304002043000_32.48.17514.2
2023041304002043000_32.48.17514.3
2023041304002043000_32.48.17514.4
2023041304002043000_32.48.17514.33
2023041304002043000_32.48.17514.5
2023041304002043000_32.48.17514.34
2023041304002043000_32.48.17514.6
2023041304002043000_32.48.17514.35
2023041304002043000_32.48.17514.36
2023041304002043000_32.48.17514.9
2023041304002043000_32.48.17514.30
Levkovitz (2023041304002043000_32.48.17514.32) 1999; 19
2023041304002043000_32.48.17514.37
2023041304002043000_32.48.17514.38
2023041304002043000_32.48.17514.39
Kirov (2023041304002043000_32.48.17514.31) 1999; 19
Jourdain (2023041304002043000_32.48.17514.28) 2003; 23
2023041304002043000_32.48.17514.44
2023041304002043000_32.48.17514.45
2023041304002043000_32.48.17514.46
2023041304002043000_32.48.17514.47
2023041304002043000_32.48.17514.40
2023041304002043000_32.48.17514.41
2023041304002043000_32.48.17514.42
2023041304002043000_32.48.17514.43
2023041304002043000_32.48.17514.48
2023041304002043000_32.48.17514.49
References_xml – ident: 2023041304002043000_32.48.17514.48
  doi: 10.1111/j.1749-6632.1999.tb11316.x
– ident: 2023041304002043000_32.48.17514.21
  doi: 10.1016/0006-8993(84)90275-0
– ident: 2023041304002043000_32.48.17514.6
  doi: 10.1002/cne.1199
– ident: 2023041304002043000_32.48.17514.37
  doi: 10.1038/nature02617
– ident: 2023041304002043000_32.48.17514.59
  doi: 10.1523/JNEUROSCI.0603-08.2008
– ident: 2023041304002043000_32.48.17514.24
  doi: 10.1007/s00406-011-0217-3
– ident: 2023041304002043000_32.48.17514.55
  doi: 10.1523/JNEUROSCI.5528-08.2009
– ident: 2023041304002043000_32.48.17514.25
  doi: 10.1073/pnas.0905110106
– ident: 2023041304002043000_32.48.17514.58
  doi: 10.1177/1545968311423265
– ident: 2023041304002043000_32.48.17514.33
  doi: 10.1038/375400a0
– ident: 2023041304002043000_32.48.17514.5
  doi: 10.1016/S0896-6273(03)00640-8
– ident: 2023041304002043000_32.48.17514.46
– ident: 2023041304002043000_32.48.17514.49
  doi: 10.1038/10172
– ident: 2023041304002043000_32.48.17514.57
  doi: 10.1371/journal.pone.0032883
– ident: 2023041304002043000_32.48.17514.35
  doi: 10.1126/science.283.5409.1923
– ident: 2023041304002043000_32.48.17514.23
  doi: 10.1038/nature06416
– ident: 2023041304002043000_32.48.17514.3
  doi: 10.1523/JNEUROSCI.1379-10.2011
– ident: 2023041304002043000_32.48.17514.10
  doi: 10.1177/1545968309345270
– ident: 2023041304002043000_32.48.17514.53
  doi: 10.1007/s00221-004-2140-6
– ident: 2023041304002043000_32.48.17514.47
  doi: 10.1016/0165-0270(91)90128-M
– ident: 2023041304002043000_32.48.17514.27
  doi: 10.1016/0896-6273(95)90046-2
– ident: 2023041304002043000_32.48.17514.40
  doi: 10.1113/jphysiol.2003.050153
– ident: 2023041304002043000_32.48.17514.51
  doi: 10.1007/s10548-009-0115-4
– ident: 2023041304002043000_32.48.17514.41
  doi: 10.1016/j.neuron.2004.11.016
– volume: 23
  start-page: 10645
  year: 2003
  ident: 2023041304002043000_32.48.17514.28
  article-title: Calcium/calmodulin-dependent protein kinase II contributes to activity-dependent filopodia growth and spine formation
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-33-10645.2003
– volume: 19
  start-page: 3198
  year: 1999
  ident: 2023041304002043000_32.48.17514.32
  article-title: Long-term effects of transcranial magnetic stimulation on hippocampal reactivity to afferent stimulation
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.19-08-03198.1999
– ident: 2023041304002043000_32.48.17514.4
  doi: 10.1038/361031a0
– volume: 334
  start-page: 33
  year: 1983
  ident: 2023041304002043000_32.48.17514.7
  article-title: Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1983.sp014478
– ident: 2023041304002043000_32.48.17514.39
  doi: 10.1038/nn.3004
– ident: 2023041304002043000_32.48.17514.38
  doi: 10.1038/4548
– ident: 2023041304002043000_32.48.17514.34
  doi: 10.1016/j.neuron.2009.07.020
– ident: 2023041304002043000_32.48.17514.36
  doi: 10.1038/nn736
– ident: 2023041304002043000_32.48.17514.2
  doi: 10.1002/cne.20539
– ident: 2023041304002043000_32.48.17514.44
  doi: 10.1046/j.1460-9568.2003.02696.x
– ident: 2023041304002043000_32.48.17514.16
  doi: 10.1016/0301-0082(94)00040-O
– volume: 73
  start-page: 1282
  year: 1995
  ident: 2023041304002043000_32.48.17514.8
  article-title: Physiology and pharmacology of unitary synaptic connections between pairs of cells in areas CA3 and CA1 of rat hippocampal slice cultures
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1995.73.3.1282
– volume: 12
  start-page: 2685
  year: 1992
  ident: 2023041304002043000_32.48.17514.22
  article-title: Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.12-07-02685.1992
– ident: 2023041304002043000_32.48.17514.17
  doi: 10.1016/S0896-6273(03)00206-X
– ident: 2023041304002043000_32.48.17514.15
  doi: 10.1038/nrn1882
– ident: 2023041304002043000_32.48.17514.1
  doi: 10.1002/bem.20211
– ident: 2023041304002043000_32.48.17514.43
  doi: 10.1016/j.neuroimage.2011.05.065
– volume: 19
  start-page: 2876
  year: 1999
  ident: 2023041304002043000_32.48.17514.31
  article-title: Slices have more synapses than perfusion-fixed hippocampus from both young and mature rats
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.19-08-02876.1999
– ident: 2023041304002043000_32.48.17514.50
  doi: 10.1007/s00221-007-0991-3
– ident: 2023041304002043000_32.48.17514.42
  doi: 10.1038/nrn2169
– ident: 2023041304002043000_32.48.17514.19
  doi: 10.1523/JNEUROSCI.6751-10.2011
– ident: 2023041304002043000_32.48.17514.52
  doi: 10.1007/s00221-009-1961-8
– ident: 2023041304002043000_32.48.17514.60
  doi: 10.1016/j.brs.2008.06.006
– ident: 2023041304002043000_32.48.17514.56
  doi: 10.1002/cne.23017
– ident: 2023041304002043000_32.48.17514.30
  doi: 10.1038/nrn2501
– ident: 2023041304002043000_32.48.17514.29
  doi: 10.1016/S0893-133X(00)00191-3
– ident: 2023041304002043000_32.48.17514.13
  doi: 10.1038/19978
– ident: 2023041304002043000_32.48.17514.20
  doi: 10.1016/j.neuron.2007.06.026
– ident: 2023041304002043000_32.48.17514.45
  doi: 10.1016/j.brs.2008.11.002
– ident: 2023041304002043000_32.48.17514.14
  doi: 10.1016/S0896-6273(00)00084-2
– ident: 2023041304002043000_32.48.17514.26
  doi: 10.1007/s11064-005-8829-5
– ident: 2023041304002043000_32.48.17514.11
  doi: 10.1111/j.1528-1167.2011.03113.x
– ident: 2023041304002043000_32.48.17514.18
  doi: 10.1016/S0166-2236(97)01122-3
– ident: 2023041304002043000_32.48.17514.9
  doi: 10.1016/S0301-0082(97)00044-0
– ident: 2023041304002043000_32.48.17514.12
  doi: 10.1016/S1474-4422(08)70190-X
– ident: 2023041304002043000_32.48.17514.54
  doi: 10.1002/hipo.20373
SSID ssj0007017
Score 2.5055745
Snippet Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that can alter cortical excitability in human subjects for...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 17514
SubjectTerms Animals
Dendritic Spines - physiology
Excitatory Postsynaptic Potentials - physiology
Hippocampus - cytology
Hippocampus - physiology
Mice
Miniature Postsynaptic Potentials - physiology
Neuronal Plasticity - physiology
Neurons - cytology
Neurons - physiology
Patch-Clamp Techniques
Synapses - physiology
Synaptic Transmission - physiology
Transcranial Magnetic Stimulation
Title Repetitive Magnetic Stimulation Induces Functional and Structural Plasticity of Excitatory Postsynapses in Mouse Organotypic Hippocampal Slice Cultures
URI https://www.ncbi.nlm.nih.gov/pubmed/23197741
https://www.proquest.com/docview/1221133886
https://www.proquest.com/docview/1551617866
https://pubmed.ncbi.nlm.nih.gov/PMC6621866
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFAeNSbjIS4qXKlqSxkzyOwjQGm4TY0N4i23HWQpNGSiut-yP8Hv4Z5zjOpWxcX6IqsR2p35fjY_s75xDyUmUs0sJVTgCzgRNoLhzp-ZkjWaixXKHMGMY7Hx3zg9Pg8IydDQbfe6ql1VLuqMtr40r-B1W4B7hilOw_INsOCjfgN-ALV0AYrn-FMXjPGCSG4p9cnBcYjziCTza3JblGsN5eoeIKJy-752f2yU3OWJNvowTnGXXVtS5DXygMOcNj93JRLat1IcrKKLZGuENga0AtlusSM2PPyhImQjAn8xE4q2Af6iweVpT4paNhz-ntpc9sGfV5jhVbqlZeKVo3_wiP8V9PMFrReSOm86lYmWb7KBsUvRi2qvq6KEsrLRYwdbRDfNDFZR2TdDHLZ_Oml93n8HwM-LNx49raZt8cBnl9491tjq6anJ3WFINfVIenXpkkmElWcXiMWslPk3c7YMewJATq_Px-BwC7zA11wAlGP9nrJs1Wytg8ukFu-rBSwSIa7z92CetDsHg2MB1eu3v9SzEjtR1m0z26sub5Wbrb84VO7pDbFk-6VzPyLhno4h7Z3iuAOvmavqJGVmzOa7bJt46ktCEp7ZGUWpLSjqQUSEo7ktKOpHSR0Y6ktE9SGIcaktIeSWmPpNSQlDYkvU9O99-eTA4cWw3EUcwbLx2VeZFwtfB4GsShLyVjkRspN4M1SBqmgRtqLiU81yqOlZvKlLNA-binJ2IhgvEDslUsCv2IUFeMI6miKGChDHjqx5GvecwyrhgfiyAeEtaAkCibKh8rtswTXDIDjkmLY4I4Jp6fII5Dstv2K-tkMX_s8aLBOAG7jod1otDwZ0ED38P9o4j_pg2ecnthxKHNw5oX7XsbQg1JuMGYtgHmld98UsymJr8851iojj_-5ZhPyK3uC31KtoAQ-hn45kv53LD_B00_8Jw
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Repetitive+magnetic+stimulation+induces+functional+and+structural+plasticity+of+excitatory+postsynapses+in+mouse+organotypic+hippocampal+slice+cultures&rft.jtitle=The+Journal+of+neuroscience&rft.au=Vlachos%2C+Andreas&rft.au=M%C3%BCller-Dahlhaus%2C+Florian&rft.au=Rosskopp%2C+Johannes&rft.au=Lenz%2C+Maximilian&rft.date=2012-11-28&rft.eissn=1529-2401&rft.volume=32&rft.issue=48&rft.spage=17514&rft_id=info:doi/10.1523%2FJNEUROSCI.0409-12.2012&rft_id=info%3Apmid%2F23197741&rft.externalDocID=23197741
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon