Repetitive Magnetic Stimulation Induces Functional and Structural Plasticity of Excitatory Postsynapses in Mouse Organotypic Hippocampal Slice Cultures
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that can alter cortical excitability in human subjects for hours beyond the stimulation period. It thus has potential as a therapeutic tool in neuropsychiatric disorders associated with alterations in co...
Saved in:
Published in | The Journal of neuroscience Vol. 32; no. 48; pp. 17514 - 17523 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society for Neuroscience
28.11.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0270-6474 1529-2401 1529-2401 |
DOI | 10.1523/JNEUROSCI.0409-12.2012 |
Cover
Loading…
Abstract | Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that can alter cortical excitability in human subjects for hours beyond the stimulation period. It thus has potential as a therapeutic tool in neuropsychiatric disorders associated with alterations in cortical excitability. However, rTMS-induced neural plasticity remains insufficiently understood at the cellular level. To learn more about the effects of repetitive magnetic stimulation (rMS), we established an
in vitro
model of rMS using mouse organotypic entorhino-hippocampal slice cultures. We assessed the outcome of a high-frequency (10 Hz) rMS protocol on functional and structural properties of excitatory synapses in mature hippocampal CA1 pyramidal neurons. Whole-cell patch-clamp recordings, immunohistochemistry, and time-lapse imaging techniques revealed that rMS induces a long-lasting increase in glutamatergic synaptic strength, which is accompanied by structural remodeling of dendritic spines. The effects of rMS on spine size were predominantly seen in small spines, suggesting differential effects of rMS on subpopulations of spines. Furthermore, our data indicate that rMS-induced postsynaptic changes depend on the NMDA receptor-mediated accumulation of GluA1-containing AMPA receptors. These results provide first experimental evidence that rMS induces coordinated functional and structural plasticity of excitatory postsynapses, which is consistent with a long-term potentiation of synaptic transmission. |
---|---|
AbstractList | Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that can alter cortical excitability in human subjects for hours beyond the stimulation period. It thus has potential as a therapeutic tool in neuropsychiatric disorders associated with alterations in cortical excitability. However, rTMS-induced neural plasticity remains insufficiently understood at the cellular level. To learn more about the effects of repetitive magnetic stimulation (rMS), we established an
in vitro
model of rMS using mouse organotypic entorhino-hippocampal slice cultures. We assessed the outcome of a high-frequency (10 Hz) rMS protocol on functional and structural properties of excitatory synapses in mature hippocampal CA1 pyramidal neurons. Whole-cell patch-clamp recordings, immunohistochemistry, and time-lapse imaging techniques revealed that rMS induces a long-lasting increase in glutamatergic synaptic strength, which is accompanied by structural remodeling of dendritic spines. The effects of rMS on spine size were predominantly seen in small spines, suggesting differential effects of rMS on subpopulations of spines. Furthermore, our data indicate that rMS-induced postsynaptic changes depend on the NMDA receptor-mediated accumulation of GluA1-containing AMPA receptors. These results provide first experimental evidence that rMS induces coordinated functional and structural plasticity of excitatory postsynapses, which is consistent with a long-term potentiation of synaptic transmission. Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that can alter cortical excitability in human subjects for hours beyond the stimulation period. It thus has potential as a therapeutic tool in neuropsychiatric disorders associated with alterations in cortical excitability. However, rTMS-induced neural plasticity remains insufficiently understood at the cellular level. To learn more about the effects of repetitive magnetic stimulation (rMS), we established an in vitro model of rMS using mouse organotypic entorhino-hippocampal slice cultures. We assessed the outcome of a high-frequency (10 Hz) rMS protocol on functional and structural properties of excitatory synapses in mature hippocampal CA1 pyramidal neurons. Whole-cell patch-clamp recordings, immunohistochemistry, and time-lapse imaging techniques revealed that rMS induces a long-lasting increase in glutamatergic synaptic strength, which is accompanied by structural remodeling of dendritic spines. The effects of rMS on spine size were predominantly seen in small spines, suggesting differential effects of rMS on subpopulations of spines. Furthermore, our data indicate that rMS-induced postsynaptic changes depend on the NMDA receptor-mediated accumulation of GluA1-containing AMPA receptors. These results provide first experimental evidence that rMS induces coordinated functional and structural plasticity of excitatory postsynapses, which is consistent with a long-term potentiation of synaptic transmission. Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that can alter cortical excitability in human subjects for hours beyond the stimulation period. It thus has potential as a therapeutic tool in neuropsychiatric disorders associated with alterations in cortical excitability. However, rTMS-induced neural plasticity remains insufficiently understood at the cellular level. To learn more about the effects of repetitive magnetic stimulation (rMS), we established an in vitro model of rMS using mouse organotypic entorhino-hippocampal slice cultures. We assessed the outcome of a high-frequency (10 Hz) rMS protocol on functional and structural properties of excitatory synapses in mature hippocampal CA1 pyramidal neurons. Whole-cell patch-clamp recordings, immunohistochemistry, and time-lapse imaging techniques revealed that rMS induces a long-lasting increase in glutamatergic synaptic strength, which is accompanied by structural remodeling of dendritic spines. The effects of rMS on spine size were predominantly seen in small spines, suggesting differential effects of rMS on subpopulations of spines. Furthermore, our data indicate that rMS-induced postsynaptic changes depend on the NMDA receptor-mediated accumulation of GluA1-containing AMPA receptors. These results provide first experimental evidence that rMS induces coordinated functional and structural plasticity of excitatory postsynapses, which is consistent with a long-term potentiation of synaptic transmission.Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that can alter cortical excitability in human subjects for hours beyond the stimulation period. It thus has potential as a therapeutic tool in neuropsychiatric disorders associated with alterations in cortical excitability. However, rTMS-induced neural plasticity remains insufficiently understood at the cellular level. To learn more about the effects of repetitive magnetic stimulation (rMS), we established an in vitro model of rMS using mouse organotypic entorhino-hippocampal slice cultures. We assessed the outcome of a high-frequency (10 Hz) rMS protocol on functional and structural properties of excitatory synapses in mature hippocampal CA1 pyramidal neurons. Whole-cell patch-clamp recordings, immunohistochemistry, and time-lapse imaging techniques revealed that rMS induces a long-lasting increase in glutamatergic synaptic strength, which is accompanied by structural remodeling of dendritic spines. The effects of rMS on spine size were predominantly seen in small spines, suggesting differential effects of rMS on subpopulations of spines. Furthermore, our data indicate that rMS-induced postsynaptic changes depend on the NMDA receptor-mediated accumulation of GluA1-containing AMPA receptors. These results provide first experimental evidence that rMS induces coordinated functional and structural plasticity of excitatory postsynapses, which is consistent with a long-term potentiation of synaptic transmission. |
Author | Lenz, Maximilian Müller-Dahlhaus, Florian Rosskopp, Johannes Deller, Thomas Vlachos, Andreas Ziemann, Ulf |
Author_xml | – sequence: 1 givenname: Andreas surname: Vlachos fullname: Vlachos, Andreas – sequence: 2 givenname: Florian surname: Müller-Dahlhaus fullname: Müller-Dahlhaus, Florian – sequence: 3 givenname: Johannes surname: Rosskopp fullname: Rosskopp, Johannes – sequence: 4 givenname: Maximilian surname: Lenz fullname: Lenz, Maximilian – sequence: 5 givenname: Ulf surname: Ziemann fullname: Ziemann, Ulf – sequence: 6 givenname: Thomas surname: Deller fullname: Deller, Thomas |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23197741$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUk1v1DAQtVAR3bb8hcpHLtl6nMROJISEVlu6qGWrbnu2HMdZjBI7xE5Ffkn_Lg79EHCBk8ee997MeN4ROrDOaoROgSwhp-nZ5y_ru5vtbrVZkoyUCdAlJUBfoUXMlgnNCBygBaGcJCzj2SE68v4bIYQT4G_QIU2h5DyDBXq40b0OJph7ja_k3sZY4V0w3djKYJzFG1uPSnt8Plo1P8gWS1tHyDCqMA7xet1KH1kmTNg1eP0jRjK4YcLXzgc_Wdn7yDcWX7nRa7wd9tK6MPWx0IXpe6dk10eZXWuUxquxjaran6DXjWy9fvt0HqO78_Xt6iK53H7arD5eJiqHNCSqgUISLYHVWclpVeV5QQpFmhzKmtcZ4ZpVVcxrVZaK1FXN8kzRtCQgSymz9Bh9eNTtx6rTtdI2xJlEP5hODpNw0og_M9Z8FXt3LxijUDAWBd49CQzu-6h9EJ3xSrettDrOKyDPgQH_LyilAGlaFDP09Pe2Xvp5XlwEvH8EqMF5P-hG_Pr2uKDYpWkFEDH7RLz4RMw-iSXE7JNIZ3_Rnyv8g_gTAv7H7Q |
CitedBy_id | crossref_primary_10_3233_JAD_170057 crossref_primary_10_1007_s10548_013_0277_y crossref_primary_10_1097_WNP_0000000000000784 crossref_primary_10_1038_s41593_017_0054_4 crossref_primary_10_3390_ijms242216456 crossref_primary_10_1016_j_brs_2019_10_007 crossref_primary_10_1016_j_neulet_2018_02_045 crossref_primary_10_1038_s41598_024_55915_8 crossref_primary_10_1051_medsci_2022108 crossref_primary_10_3390_bs13110942 crossref_primary_10_1038_s41467_024_51443_1 crossref_primary_10_1038_srep38234 crossref_primary_10_1016_j_neuroscience_2016_08_030 crossref_primary_10_1016_j_brs_2021_09_004 crossref_primary_10_1016_j_resp_2021_103704 crossref_primary_10_1515_nf_2016_A103 crossref_primary_10_1016_j_brainres_2024_149391 crossref_primary_10_3389_fncel_2024_1374555 crossref_primary_10_1038_s41598_018_22385_8 crossref_primary_10_1111_cns_14498 crossref_primary_10_1016_j_biopsych_2022_08_028 crossref_primary_10_3390_cells12162062 crossref_primary_10_3390_cells13020114 crossref_primary_10_5535_arm_2019_43_1_62 crossref_primary_10_1016_j_clinph_2020_10_003 crossref_primary_10_1088_1741_2552_acc097 crossref_primary_10_1016_j_nlm_2014_11_002 crossref_primary_10_3389_fnagi_2022_984708 crossref_primary_10_1186_s12974_020_01747_y crossref_primary_10_4103_1673_5374_153676 crossref_primary_10_1016_j_jad_2023_03_093 crossref_primary_10_1515_nf_2016_1103 crossref_primary_10_3389_fpsyt_2024_1458696 crossref_primary_10_1038_s41386_022_01453_8 crossref_primary_10_1177_1073858414526645 crossref_primary_10_1007_s40501_020_00230_y crossref_primary_10_1016_j_neuroimage_2022_119386 crossref_primary_10_1371_journal_pone_0131020 crossref_primary_10_3389_fneur_2018_00050 crossref_primary_10_1002_jnr_24792 crossref_primary_10_3389_fnins_2020_00137 crossref_primary_10_3389_fpsyt_2023_976921 crossref_primary_10_1111_cns_12762 crossref_primary_10_1016_j_neuroimage_2021_117959 crossref_primary_10_7554_eLife_65536 crossref_primary_10_1016_j_brs_2020_12_007 crossref_primary_10_1159_000538690 crossref_primary_10_3390_brainsci12070929 crossref_primary_10_4103_NRR_NRR_D_23_01201 crossref_primary_10_3389_fncir_2016_00026 crossref_primary_10_1109_ACCESS_2020_3033029 crossref_primary_10_1016_j_brs_2025_03_012 crossref_primary_10_3389_fneur_2018_00285 crossref_primary_10_1007_s11910_018_0913_8 crossref_primary_10_1038_srep14769 crossref_primary_10_1007_s13295_014_0056_6 crossref_primary_10_3389_fpsyt_2023_1137681 crossref_primary_10_1016_j_neubiorev_2021_10_040 crossref_primary_10_1016_j_brs_2020_01_005 crossref_primary_10_1155_2014_684238 crossref_primary_10_1176_appi_ajp_20241151 crossref_primary_10_1016_j_brs_2021_03_016 crossref_primary_10_1371_journal_pone_0139892 crossref_primary_10_1007_s00429_014_0859_9 crossref_primary_10_1093_cercor_bht421 crossref_primary_10_1016_j_biopsych_2024_06_010 crossref_primary_10_1016_j_neures_2021_05_015 crossref_primary_10_1016_j_brs_2023_10_006 crossref_primary_10_1016_j_expneurol_2014_04_033 crossref_primary_10_1016_j_neurom_2021_09_003 crossref_primary_10_3389_fimmu_2020_614509 crossref_primary_10_1016_j_brs_2022_09_014 crossref_primary_10_1038_nrn_2017_113 crossref_primary_10_3389_fpsyg_2019_00529 crossref_primary_10_1177_1073858415618897 crossref_primary_10_12688_f1000research_2_180_v1 crossref_primary_10_12688_f1000research_2_180_v2 crossref_primary_10_1101_sqb_2018_83_038158 crossref_primary_10_1038_mp_2016_161 crossref_primary_10_1016_j_brs_2021_11_009 crossref_primary_10_1371_journal_pone_0208747 crossref_primary_10_3389_fncir_2016_00096 crossref_primary_10_3389_fneur_2023_1064718 crossref_primary_10_1017_sjp_2016_89 crossref_primary_10_1093_cercor_bhab281 crossref_primary_10_3389_fnhum_2024_1462211 crossref_primary_10_1016_j_brs_2024_08_003 crossref_primary_10_3390_biom11030359 crossref_primary_10_1016_j_psychres_2021_113970 crossref_primary_10_1016_j_clinph_2017_09_007 crossref_primary_10_1126_sciadv_ado6705 crossref_primary_10_3390_cells12111525 crossref_primary_10_3390_ijms26020825 crossref_primary_10_3390_brainsci14060603 crossref_primary_10_1371_journal_pcbi_1011027 crossref_primary_10_1038_s41598_025_88536_w crossref_primary_10_3390_brainsci8070129 crossref_primary_10_1016_j_brs_2016_01_006 crossref_primary_10_1016_j_expneurol_2017_06_019 crossref_primary_10_1523_JNEUROSCI_1824_22_2023 crossref_primary_10_1016_j_jad_2024_03_061 crossref_primary_10_1038_s41583_024_00876_0 crossref_primary_10_1523_ENEURO_0235_19_2019 crossref_primary_10_1371_journal_pone_0170528 crossref_primary_10_1016_j_alcohol_2018_05_011 crossref_primary_10_1016_j_neubiorev_2018_12_012 crossref_primary_10_1080_10715762_2018_1434313 crossref_primary_10_1002_glia_23620 crossref_primary_10_1016_j_neuroscience_2014_09_041 crossref_primary_10_3233_RNN_130359 crossref_primary_10_1038_s41598_023_32985_8 crossref_primary_10_1523_JNEUROSCI_2226_22_2023 crossref_primary_10_3389_fphys_2017_00457 crossref_primary_10_3389_fncel_2022_1082211 crossref_primary_10_3389_fncir_2023_1124221 crossref_primary_10_1111_pcn_12547 crossref_primary_10_3892_ijmm_2018_3922 crossref_primary_10_3389_fnhum_2016_00683 crossref_primary_10_1007_s40846_023_00810_2 crossref_primary_10_1016_j_brs_2014_09_012 crossref_primary_10_1093_braincomms_fcae437 crossref_primary_10_7759_cureus_76569 crossref_primary_10_1002_acn3_277 crossref_primary_10_1016_j_physbeh_2017_05_033 crossref_primary_10_1113_JP277507 crossref_primary_10_1093_cercor_bhaa244 crossref_primary_10_3389_fncir_2016_00073 crossref_primary_10_1016_j_biopsych_2022_01_021 crossref_primary_10_1038_s41598_018_23979_y crossref_primary_10_1038_s41598_018_31536_w crossref_primary_10_7717_peerj_4501 crossref_primary_10_3389_fnhum_2015_00303 crossref_primary_10_1088_2057_1976_aab525 crossref_primary_10_3390_biology11030473 crossref_primary_10_1002_glia_24383 crossref_primary_10_1371_journal_pone_0126949 crossref_primary_10_1016_j_jneumeth_2021_109261 crossref_primary_10_4103_ATN_ATN_D_24_00021 crossref_primary_10_1016_j_brainresbull_2013_07_005 crossref_primary_10_1016_j_brs_2021_10_001 crossref_primary_10_1109_TMAG_2021_3077976 crossref_primary_10_1038_ncomms10020 crossref_primary_10_3389_fnins_2023_1177283 crossref_primary_10_1162_imag_a_00264 crossref_primary_10_1016_j_crneur_2022_100033 crossref_primary_10_1007_s00221_018_05468_w crossref_primary_10_1007_s11596_015_1505_3 crossref_primary_10_1002_dneu_22205 crossref_primary_10_1177_1545968319834898 crossref_primary_10_1113_JP283244 crossref_primary_10_1016_j_cortex_2021_02_024 crossref_primary_10_1371_journal_pone_0081482 crossref_primary_10_3389_fnhum_2021_639640 crossref_primary_10_1016_j_brs_2017_02_012 crossref_primary_10_1016_j_expneurol_2023_114461 crossref_primary_10_1177_10738584221118262 crossref_primary_10_3389_fneur_2022_909264 crossref_primary_10_1097_YCT_0000000000001123 crossref_primary_10_17816_ACEN_1152 crossref_primary_10_1016_j_brs_2019_06_028 crossref_primary_10_1038_s44220_024_00271_9 crossref_primary_10_1002_nep3_40 crossref_primary_10_1016_j_clinph_2021_05_008 crossref_primary_10_1523_JNEUROSCI_0258_16_2016 crossref_primary_10_1016_j_brs_2016_11_009 crossref_primary_10_1038_srep23420 crossref_primary_10_1016_j_nlm_2016_08_016 |
Cites_doi | 10.1111/j.1749-6632.1999.tb11316.x 10.1016/0006-8993(84)90275-0 10.1002/cne.1199 10.1038/nature02617 10.1523/JNEUROSCI.0603-08.2008 10.1007/s00406-011-0217-3 10.1523/JNEUROSCI.5528-08.2009 10.1073/pnas.0905110106 10.1177/1545968311423265 10.1038/375400a0 10.1016/S0896-6273(03)00640-8 10.1038/10172 10.1371/journal.pone.0032883 10.1126/science.283.5409.1923 10.1038/nature06416 10.1523/JNEUROSCI.1379-10.2011 10.1177/1545968309345270 10.1007/s00221-004-2140-6 10.1016/0165-0270(91)90128-M 10.1016/0896-6273(95)90046-2 10.1113/jphysiol.2003.050153 10.1007/s10548-009-0115-4 10.1016/j.neuron.2004.11.016 10.1523/JNEUROSCI.23-33-10645.2003 10.1523/JNEUROSCI.19-08-03198.1999 10.1038/361031a0 10.1113/jphysiol.1983.sp014478 10.1038/nn.3004 10.1038/4548 10.1016/j.neuron.2009.07.020 10.1038/nn736 10.1002/cne.20539 10.1046/j.1460-9568.2003.02696.x 10.1016/0301-0082(94)00040-O 10.1152/jn.1995.73.3.1282 10.1523/JNEUROSCI.12-07-02685.1992 10.1016/S0896-6273(03)00206-X 10.1038/nrn1882 10.1002/bem.20211 10.1016/j.neuroimage.2011.05.065 10.1523/JNEUROSCI.19-08-02876.1999 10.1007/s00221-007-0991-3 10.1038/nrn2169 10.1523/JNEUROSCI.6751-10.2011 10.1007/s00221-009-1961-8 10.1016/j.brs.2008.06.006 10.1002/cne.23017 10.1038/nrn2501 10.1016/S0893-133X(00)00191-3 10.1038/19978 10.1016/j.neuron.2007.06.026 10.1016/j.brs.2008.11.002 10.1016/S0896-6273(00)00084-2 10.1007/s11064-005-8829-5 10.1111/j.1528-1167.2011.03113.x 10.1016/S0166-2236(97)01122-3 10.1016/S0301-0082(97)00044-0 10.1016/S1474-4422(08)70190-X 10.1002/hipo.20373 |
ContentType | Journal Article |
Copyright | Copyright © 2012 the authors 0270-6474/12/3217514-10$15.00/0 2012 |
Copyright_xml | – notice: Copyright © 2012 the authors 0270-6474/12/3217514-10$15.00/0 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.1523/JNEUROSCI.0409-12.2012 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | CrossRef MEDLINE Neurosciences Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 17523 |
ExternalDocumentID | PMC6621866 23197741 10_1523_JNEUROSCI_0409_12_2012 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .55 18M 2WC 34G 39C 3O- 53G 5GY 5RE 5VS AAFWJ AAJMC AAYXX ABBAR ABIVO ACGUR ACNCT ADBBV ADCOW ADHGD AENEX AETEA AFCFT AFOSN AFSQR AHWXS ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 HYE H~9 KQ8 L7B MVM OK1 P0W P2P QZG R.V RHI RPM TFN TR2 W8F WH7 WOQ X7M XJT YBU YHG YKV YNH YSK AFHIN AIZTS CGR CUY CVF ECM EIF NPM RHF 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c513t-cf18a0ea16d4972bb55808c0f519d7d407e6bbea1ec99c0dbd654c23901a9aa43 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 18:20:35 EDT 2025 Fri Jul 11 11:48:00 EDT 2025 Fri Jul 11 09:44:35 EDT 2025 Wed Feb 19 02:34:41 EST 2025 Tue Jul 01 03:46:54 EDT 2025 Thu Apr 24 23:00:18 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 48 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c513t-cf18a0ea16d4972bb55808c0f519d7d407e6bbea1ec99c0dbd654c23901a9aa43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 A.V. and F.M.-D. contributed equally to this work. Author contributions: A.V., F.M.-D., U.Z., and T.D. designed research; A.V., F.M.-D., J.R., and M.L. performed research; A.V., F.M.-D., J.R., and M.L. analyzed data; A.V., F.M.-D., U.Z., and T.D. wrote the paper. U.Z. and T.D. contributed equally to this work. |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/32/48/17514.full.pdf |
PMID | 23197741 |
PQID | 1221133886 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6621866 proquest_miscellaneous_1551617866 proquest_miscellaneous_1221133886 pubmed_primary_23197741 crossref_citationtrail_10_1523_JNEUROSCI_0409_12_2012 crossref_primary_10_1523_JNEUROSCI_0409_12_2012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-11-28 2012-Nov-28 20121128 |
PublicationDateYYYYMMDD | 2012-11-28 |
PublicationDate_xml | – month: 11 year: 2012 text: 2012-11-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2012 |
Publisher | Society for Neuroscience |
Publisher_xml | – name: Society for Neuroscience |
References | 2023041304002043000_32.48.17514.50 2023041304002043000_32.48.17514.11 2023041304002043000_32.48.17514.55 2023041304002043000_32.48.17514.12 2023041304002043000_32.48.17514.56 2023041304002043000_32.48.17514.13 2023041304002043000_32.48.17514.57 2023041304002043000_32.48.17514.14 2023041304002043000_32.48.17514.58 2023041304002043000_32.48.17514.51 2023041304002043000_32.48.17514.52 2023041304002043000_32.48.17514.53 2023041304002043000_32.48.17514.10 2023041304002043000_32.48.17514.54 2023041304002043000_32.48.17514.19 2023041304002043000_32.48.17514.15 2023041304002043000_32.48.17514.59 2023041304002043000_32.48.17514.16 2023041304002043000_32.48.17514.17 2023041304002043000_32.48.17514.18 Harris (2023041304002043000_32.48.17514.22) 1992; 12 2023041304002043000_32.48.17514.60 Collingridge (2023041304002043000_32.48.17514.7) 1983; 334 2023041304002043000_32.48.17514.23 2023041304002043000_32.48.17514.24 2023041304002043000_32.48.17514.25 2023041304002043000_32.48.17514.20 2023041304002043000_32.48.17514.21 2023041304002043000_32.48.17514.26 Debanne (2023041304002043000_32.48.17514.8) 1995; 73 2023041304002043000_32.48.17514.27 2023041304002043000_32.48.17514.29 2023041304002043000_32.48.17514.1 2023041304002043000_32.48.17514.2 2023041304002043000_32.48.17514.3 2023041304002043000_32.48.17514.4 2023041304002043000_32.48.17514.33 2023041304002043000_32.48.17514.5 2023041304002043000_32.48.17514.34 2023041304002043000_32.48.17514.6 2023041304002043000_32.48.17514.35 2023041304002043000_32.48.17514.36 2023041304002043000_32.48.17514.9 2023041304002043000_32.48.17514.30 Levkovitz (2023041304002043000_32.48.17514.32) 1999; 19 2023041304002043000_32.48.17514.37 2023041304002043000_32.48.17514.38 2023041304002043000_32.48.17514.39 Kirov (2023041304002043000_32.48.17514.31) 1999; 19 Jourdain (2023041304002043000_32.48.17514.28) 2003; 23 2023041304002043000_32.48.17514.44 2023041304002043000_32.48.17514.45 2023041304002043000_32.48.17514.46 2023041304002043000_32.48.17514.47 2023041304002043000_32.48.17514.40 2023041304002043000_32.48.17514.41 2023041304002043000_32.48.17514.42 2023041304002043000_32.48.17514.43 2023041304002043000_32.48.17514.48 2023041304002043000_32.48.17514.49 |
References_xml | – ident: 2023041304002043000_32.48.17514.48 doi: 10.1111/j.1749-6632.1999.tb11316.x – ident: 2023041304002043000_32.48.17514.21 doi: 10.1016/0006-8993(84)90275-0 – ident: 2023041304002043000_32.48.17514.6 doi: 10.1002/cne.1199 – ident: 2023041304002043000_32.48.17514.37 doi: 10.1038/nature02617 – ident: 2023041304002043000_32.48.17514.59 doi: 10.1523/JNEUROSCI.0603-08.2008 – ident: 2023041304002043000_32.48.17514.24 doi: 10.1007/s00406-011-0217-3 – ident: 2023041304002043000_32.48.17514.55 doi: 10.1523/JNEUROSCI.5528-08.2009 – ident: 2023041304002043000_32.48.17514.25 doi: 10.1073/pnas.0905110106 – ident: 2023041304002043000_32.48.17514.58 doi: 10.1177/1545968311423265 – ident: 2023041304002043000_32.48.17514.33 doi: 10.1038/375400a0 – ident: 2023041304002043000_32.48.17514.5 doi: 10.1016/S0896-6273(03)00640-8 – ident: 2023041304002043000_32.48.17514.46 – ident: 2023041304002043000_32.48.17514.49 doi: 10.1038/10172 – ident: 2023041304002043000_32.48.17514.57 doi: 10.1371/journal.pone.0032883 – ident: 2023041304002043000_32.48.17514.35 doi: 10.1126/science.283.5409.1923 – ident: 2023041304002043000_32.48.17514.23 doi: 10.1038/nature06416 – ident: 2023041304002043000_32.48.17514.3 doi: 10.1523/JNEUROSCI.1379-10.2011 – ident: 2023041304002043000_32.48.17514.10 doi: 10.1177/1545968309345270 – ident: 2023041304002043000_32.48.17514.53 doi: 10.1007/s00221-004-2140-6 – ident: 2023041304002043000_32.48.17514.47 doi: 10.1016/0165-0270(91)90128-M – ident: 2023041304002043000_32.48.17514.27 doi: 10.1016/0896-6273(95)90046-2 – ident: 2023041304002043000_32.48.17514.40 doi: 10.1113/jphysiol.2003.050153 – ident: 2023041304002043000_32.48.17514.51 doi: 10.1007/s10548-009-0115-4 – ident: 2023041304002043000_32.48.17514.41 doi: 10.1016/j.neuron.2004.11.016 – volume: 23 start-page: 10645 year: 2003 ident: 2023041304002043000_32.48.17514.28 article-title: Calcium/calmodulin-dependent protein kinase II contributes to activity-dependent filopodia growth and spine formation publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-33-10645.2003 – volume: 19 start-page: 3198 year: 1999 ident: 2023041304002043000_32.48.17514.32 article-title: Long-term effects of transcranial magnetic stimulation on hippocampal reactivity to afferent stimulation publication-title: J Neurosci doi: 10.1523/JNEUROSCI.19-08-03198.1999 – ident: 2023041304002043000_32.48.17514.4 doi: 10.1038/361031a0 – volume: 334 start-page: 33 year: 1983 ident: 2023041304002043000_32.48.17514.7 article-title: Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus publication-title: J Physiol doi: 10.1113/jphysiol.1983.sp014478 – ident: 2023041304002043000_32.48.17514.39 doi: 10.1038/nn.3004 – ident: 2023041304002043000_32.48.17514.38 doi: 10.1038/4548 – ident: 2023041304002043000_32.48.17514.34 doi: 10.1016/j.neuron.2009.07.020 – ident: 2023041304002043000_32.48.17514.36 doi: 10.1038/nn736 – ident: 2023041304002043000_32.48.17514.2 doi: 10.1002/cne.20539 – ident: 2023041304002043000_32.48.17514.44 doi: 10.1046/j.1460-9568.2003.02696.x – ident: 2023041304002043000_32.48.17514.16 doi: 10.1016/0301-0082(94)00040-O – volume: 73 start-page: 1282 year: 1995 ident: 2023041304002043000_32.48.17514.8 article-title: Physiology and pharmacology of unitary synaptic connections between pairs of cells in areas CA3 and CA1 of rat hippocampal slice cultures publication-title: J Neurophysiol doi: 10.1152/jn.1995.73.3.1282 – volume: 12 start-page: 2685 year: 1992 ident: 2023041304002043000_32.48.17514.22 article-title: Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation publication-title: J Neurosci doi: 10.1523/JNEUROSCI.12-07-02685.1992 – ident: 2023041304002043000_32.48.17514.17 doi: 10.1016/S0896-6273(03)00206-X – ident: 2023041304002043000_32.48.17514.15 doi: 10.1038/nrn1882 – ident: 2023041304002043000_32.48.17514.1 doi: 10.1002/bem.20211 – ident: 2023041304002043000_32.48.17514.43 doi: 10.1016/j.neuroimage.2011.05.065 – volume: 19 start-page: 2876 year: 1999 ident: 2023041304002043000_32.48.17514.31 article-title: Slices have more synapses than perfusion-fixed hippocampus from both young and mature rats publication-title: J Neurosci doi: 10.1523/JNEUROSCI.19-08-02876.1999 – ident: 2023041304002043000_32.48.17514.50 doi: 10.1007/s00221-007-0991-3 – ident: 2023041304002043000_32.48.17514.42 doi: 10.1038/nrn2169 – ident: 2023041304002043000_32.48.17514.19 doi: 10.1523/JNEUROSCI.6751-10.2011 – ident: 2023041304002043000_32.48.17514.52 doi: 10.1007/s00221-009-1961-8 – ident: 2023041304002043000_32.48.17514.60 doi: 10.1016/j.brs.2008.06.006 – ident: 2023041304002043000_32.48.17514.56 doi: 10.1002/cne.23017 – ident: 2023041304002043000_32.48.17514.30 doi: 10.1038/nrn2501 – ident: 2023041304002043000_32.48.17514.29 doi: 10.1016/S0893-133X(00)00191-3 – ident: 2023041304002043000_32.48.17514.13 doi: 10.1038/19978 – ident: 2023041304002043000_32.48.17514.20 doi: 10.1016/j.neuron.2007.06.026 – ident: 2023041304002043000_32.48.17514.45 doi: 10.1016/j.brs.2008.11.002 – ident: 2023041304002043000_32.48.17514.14 doi: 10.1016/S0896-6273(00)00084-2 – ident: 2023041304002043000_32.48.17514.26 doi: 10.1007/s11064-005-8829-5 – ident: 2023041304002043000_32.48.17514.11 doi: 10.1111/j.1528-1167.2011.03113.x – ident: 2023041304002043000_32.48.17514.18 doi: 10.1016/S0166-2236(97)01122-3 – ident: 2023041304002043000_32.48.17514.9 doi: 10.1016/S0301-0082(97)00044-0 – ident: 2023041304002043000_32.48.17514.12 doi: 10.1016/S1474-4422(08)70190-X – ident: 2023041304002043000_32.48.17514.54 doi: 10.1002/hipo.20373 |
SSID | ssj0007017 |
Score | 2.5055745 |
Snippet | Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that can alter cortical excitability in human subjects for... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 17514 |
SubjectTerms | Animals Dendritic Spines - physiology Excitatory Postsynaptic Potentials - physiology Hippocampus - cytology Hippocampus - physiology Mice Miniature Postsynaptic Potentials - physiology Neuronal Plasticity - physiology Neurons - cytology Neurons - physiology Patch-Clamp Techniques Synapses - physiology Synaptic Transmission - physiology Transcranial Magnetic Stimulation |
Title | Repetitive Magnetic Stimulation Induces Functional and Structural Plasticity of Excitatory Postsynapses in Mouse Organotypic Hippocampal Slice Cultures |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23197741 https://www.proquest.com/docview/1221133886 https://www.proquest.com/docview/1551617866 https://pubmed.ncbi.nlm.nih.gov/PMC6621866 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFAeNSbjIS4qXKlqSxkzyOwjQGm4TY0N4i23HWQpNGSiut-yP8Hv4Z5zjOpWxcX6IqsR2p35fjY_s75xDyUmUs0sJVTgCzgRNoLhzp-ZkjWaixXKHMGMY7Hx3zg9Pg8IydDQbfe6ql1VLuqMtr40r-B1W4B7hilOw_INsOCjfgN-ALV0AYrn-FMXjPGCSG4p9cnBcYjziCTza3JblGsN5eoeIKJy-752f2yU3OWJNvowTnGXXVtS5DXygMOcNj93JRLat1IcrKKLZGuENga0AtlusSM2PPyhImQjAn8xE4q2Af6iweVpT4paNhz-ntpc9sGfV5jhVbqlZeKVo3_wiP8V9PMFrReSOm86lYmWb7KBsUvRi2qvq6KEsrLRYwdbRDfNDFZR2TdDHLZ_Oml93n8HwM-LNx49raZt8cBnl9491tjq6anJ3WFINfVIenXpkkmElWcXiMWslPk3c7YMewJATq_Px-BwC7zA11wAlGP9nrJs1Wytg8ukFu-rBSwSIa7z92CetDsHg2MB1eu3v9SzEjtR1m0z26sub5Wbrb84VO7pDbFk-6VzPyLhno4h7Z3iuAOvmavqJGVmzOa7bJt46ktCEp7ZGUWpLSjqQUSEo7ktKOpHSR0Y6ktE9SGIcaktIeSWmPpNSQlDYkvU9O99-eTA4cWw3EUcwbLx2VeZFwtfB4GsShLyVjkRspN4M1SBqmgRtqLiU81yqOlZvKlLNA-binJ2IhgvEDslUsCv2IUFeMI6miKGChDHjqx5GvecwyrhgfiyAeEtaAkCibKh8rtswTXDIDjkmLY4I4Jp6fII5Dstv2K-tkMX_s8aLBOAG7jod1otDwZ0ED38P9o4j_pg2ecnthxKHNw5oX7XsbQg1JuMGYtgHmld98UsymJr8851iojj_-5ZhPyK3uC31KtoAQ-hn45kv53LD_B00_8Jw |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Repetitive+magnetic+stimulation+induces+functional+and+structural+plasticity+of+excitatory+postsynapses+in+mouse+organotypic+hippocampal+slice+cultures&rft.jtitle=The+Journal+of+neuroscience&rft.au=Vlachos%2C+Andreas&rft.au=M%C3%BCller-Dahlhaus%2C+Florian&rft.au=Rosskopp%2C+Johannes&rft.au=Lenz%2C+Maximilian&rft.date=2012-11-28&rft.eissn=1529-2401&rft.volume=32&rft.issue=48&rft.spage=17514&rft_id=info:doi/10.1523%2FJNEUROSCI.0409-12.2012&rft_id=info%3Apmid%2F23197741&rft.externalDocID=23197741 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |