Improving cover and management factor (C-factor) estimation using remote sensing approaches for tropical regions
The Revised Universal Soil Loss Equation (RUSLE)'s cover and management factor (C-factor) is one of the most difficult factors to obtain, mainly because long-term monitoring soil erosion plots under natural rainfall are needed. Therefore, remote sensing approaches have been used as an alternati...
Saved in:
Published in | International Soil and Water Conservation Research Vol. 7; no. 4; pp. 325 - 334 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2019
KeAi Communications Co., Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Revised Universal Soil Loss Equation (RUSLE)'s cover and management factor (C-factor) is one of the most difficult factors to obtain, mainly because long-term monitoring soil erosion plots under natural rainfall are needed. Therefore, remote sensing approaches have been used as an alternative for obtaining this factor. However, there is a lack of studies comparing values of this factor computed from remote sensing approaches with measured data. In this study, we compare two widely used remote sensing approaches (CrA and CVK) to estimate the C-factor based on the Normalized Difference Vegetation Index (NDVI) with the literature (CLIT) and field experimental data. We also investigated the influence of C-factor methods on the prediction of soil loss and sediment yield (SY) using measured data in the Guariroba basin, Central-West Brazil. We obtained mean C-factor values of 0.032, 0.023 and 0.137 for CLIT, CrA and CVK, respectively. We found an average annual soil loss of 2.20 t ha−1 yr−1, 2.02 t ha−1 yr−1 and 10.07 t ha−1 yr−1 and SY values of 6875 t yr−1, 6468 t yr−1 and 33,435 t yr1, for CLIT, CrA and CVK, respectively. Our results indicated a significant improvement in soil loss and SY estimations by using the CrA approach developed for tropical regions, with a bias of 13% to the measured SY (5709 t yr−1). We conclude that the CrA method present the most suitable alternative to compute soil loss and SY in tropical regions. Furthermore, this approach allows large-scale evaluation and temporal monitoring, therefore enhancing multi spatial and temporal assessment of soil erosion processes.
[Display omitted] |
---|---|
AbstractList | The Revised Universal Soil Loss Equation (RUSLE)'s cover and management factor (C-factor) is one of the most difficult factors to obtain, mainly because long-term monitoring soil erosion plots under natural rainfall are needed. Therefore, remote sensing approaches have been used as an alternative for obtaining this factor. However, there is a lack of studies comparing values of this factor computed from remote sensing approaches with measured data. In this study, we compare two widely used remote sensing approaches (CrA and CVK) to estimate the C-factor based on the Normalized Difference Vegetation Index (NDVI) with the literature (CLIT) and field experimental data. We also investigated the influence of C-factor methods on the prediction of soil loss and sediment yield (SY) using measured data in the Guariroba basin, Central-West Brazil. We obtained mean C-factor values of 0.032, 0.023 and 0.137 for CLIT, CrA and CVK, respectively. We found an average annual soil loss of 2.20 t ha−1 yr−1, 2.02 t ha−1 yr−1 and 10.07 t ha−1 yr−1 and SY values of 6875 t yr−1, 6468 t yr−1 and 33,435 t yr1, for CLIT, CrA and CVK, respectively. Our results indicated a significant improvement in soil loss and SY estimations by using the CrA approach developed for tropical regions, with a bias of 13% to the measured SY (5709 t yr−1). We conclude that the CrA method present the most suitable alternative to compute soil loss and SY in tropical regions. Furthermore, this approach allows large-scale evaluation and temporal monitoring, therefore enhancing multi spatial and temporal assessment of soil erosion processes. Keywords: Soil erosion, RUSLE, NDVI, Landsat 8, Land use/land cover The Revised Universal Soil Loss Equation (RUSLE)'s cover and management factor (C-factor) is one of the most difficult factors to obtain, mainly because long-term monitoring soil erosion plots under natural rainfall are needed. Therefore, remote sensing approaches have been used as an alternative for obtaining this factor. However, there is a lack of studies comparing values of this factor computed from remote sensing approaches with measured data. In this study, we compare two widely used remote sensing approaches (CrA and CVK) to estimate the C-factor based on the Normalized Difference Vegetation Index (NDVI) with the literature (CLIT) and field experimental data. We also investigated the influence of C-factor methods on the prediction of soil loss and sediment yield (SY) using measured data in the Guariroba basin, Central-West Brazil. We obtained mean C-factor values of 0.032, 0.023 and 0.137 for CLIT, CrA and CVK, respectively. We found an average annual soil loss of 2.20 t ha−1 yr−1, 2.02 t ha−1 yr−1 and 10.07 t ha−1 yr−1 and SY values of 6875 t yr−1, 6468 t yr−1 and 33,435 t yr1, for CLIT, CrA and CVK, respectively. Our results indicated a significant improvement in soil loss and SY estimations by using the CrA approach developed for tropical regions, with a bias of 13% to the measured SY (5709 t yr−1). We conclude that the CrA method present the most suitable alternative to compute soil loss and SY in tropical regions. Furthermore, this approach allows large-scale evaluation and temporal monitoring, therefore enhancing multi spatial and temporal assessment of soil erosion processes. The Revised Universal Soil Loss Equation (RUSLE)'s cover and management factor (C-factor) is one of the most difficult factors to obtain, mainly because long-term monitoring soil erosion plots under natural rainfall are needed. Therefore, remote sensing approaches have been used as an alternative for obtaining this factor. However, there is a lack of studies comparing values of this factor computed from remote sensing approaches with measured data. In this study, we compare two widely used remote sensing approaches (CrA and CVK) to estimate the C-factor based on the Normalized Difference Vegetation Index (NDVI) with the literature (CLIT) and field experimental data. We also investigated the influence of C-factor methods on the prediction of soil loss and sediment yield (SY) using measured data in the Guariroba basin, Central-West Brazil. We obtained mean C-factor values of 0.032, 0.023 and 0.137 for CLIT, CrA and CVK, respectively. We found an average annual soil loss of 2.20 t ha−1 yr−1, 2.02 t ha−1 yr−1 and 10.07 t ha−1 yr−1 and SY values of 6875 t yr−1, 6468 t yr−1 and 33,435 t yr1, for CLIT, CrA and CVK, respectively. Our results indicated a significant improvement in soil loss and SY estimations by using the CrA approach developed for tropical regions, with a bias of 13% to the measured SY (5709 t yr−1). We conclude that the CrA method present the most suitable alternative to compute soil loss and SY in tropical regions. Furthermore, this approach allows large-scale evaluation and temporal monitoring, therefore enhancing multi spatial and temporal assessment of soil erosion processes. [Display omitted] |
Author | Rodrigues, Dulce Buchala Bicca Marcato Junior, José Thomé, Thais Caregnatto Almagro, André Oliveira, Paulo Tarso Sanches Pereira, Rodrigo Bahia Colman, Carina Barbosa |
Author_xml | – sequence: 1 givenname: André surname: Almagro fullname: Almagro, André email: andre.almagro@gmail.com – sequence: 2 givenname: Thais Caregnatto surname: Thomé fullname: Thomé, Thais Caregnatto email: thaisthome04@gmail.com – sequence: 3 givenname: Carina Barbosa surname: Colman fullname: Colman, Carina Barbosa email: carinabcolman@gmail.com – sequence: 4 givenname: Rodrigo Bahia surname: Pereira fullname: Pereira, Rodrigo Bahia email: rodrigoeamb@gmail.com – sequence: 5 givenname: José surname: Marcato Junior fullname: Marcato Junior, José email: jrmarcato@gmail.com – sequence: 6 givenname: Dulce Buchala Bicca surname: Rodrigues fullname: Rodrigues, Dulce Buchala Bicca email: dulcebbr@gmail.com – sequence: 7 givenname: Paulo Tarso Sanches surname: Oliveira fullname: Oliveira, Paulo Tarso Sanches email: paulotarsoms@gmail.com, paulo.t.oliveira@ufms.br |
BookMark | eNqFkT1v2zAQhjWkQNMkv6CLxnSQS_JEiRw6FEY_DATIkp04UyeXhkSqJO2i_760VXTo0C78wj0v7733TXXjg6eqesvZhjPevT9uXPph40YwrjdMbRiTN9WtYFo2HYB-XT2k5PasbfuWq66_rZbdvMRwdv5Q23CmWKMf6hk9Hmgmn-sRbQ6xftw26-ldTSm7GbMLvj6lCxdpDpnqRP56xaUIov1GqR4LmWNYnMWplB0Kk-6rVyNOiR5-73fVy-dPL9uvzdPzl93241NjJYfc7C2OIAbEVsIITABx6kl1GrjG0rxlILgU7aClFnshJUBZB9Gh7rQAuKt2q-wQ8GiWWFqOP01AZ64PIR4MxuzsREYrkpq3o1YArUZUCmEQRVa1vQLGi9bjqlWMfT8V_2Z2ydI0oadwSkZA6aQTsmelFNZSG0NKkcY_X3NmLgmZo7kmZC4JGaZMSahQ-i_KunwdcY7opv-wH1aWyjDPjqJJ1pG3NLhINhe77p_8L-j0sYU |
CitedBy_id | crossref_primary_10_3390_app11125684 crossref_primary_10_3390_ijerph20021222 crossref_primary_10_1016_j_ecolind_2023_110993 crossref_primary_10_1016_j_ijsrc_2024_08_001 crossref_primary_10_3390_rs14020400 crossref_primary_10_1007_s42452_020_03482_8 crossref_primary_10_3103_S0147687424700261 crossref_primary_10_3390_rs12071136 crossref_primary_10_3390_w13131747 crossref_primary_10_1002_ldr_5478 crossref_primary_10_3390_geosciences15010015 crossref_primary_10_1007_s12665_020_09327_2 crossref_primary_10_3390_fire7090319 crossref_primary_10_1007_s11852_022_00877_0 crossref_primary_10_1016_j_mex_2021_101569 crossref_primary_10_3390_w13081045 crossref_primary_10_2166_h2oj_2024_088 crossref_primary_10_1016_j_ecolind_2024_112385 crossref_primary_10_1007_s11069_024_07091_1 crossref_primary_10_1002_ldr_4932 crossref_primary_10_3390_su11247053 crossref_primary_10_1016_j_iswcr_2020_02_001 crossref_primary_10_1016_j_iswcr_2023_10_001 crossref_primary_10_1016_j_geodrs_2024_e00864 crossref_primary_10_1007_s11069_024_06790_z crossref_primary_10_1007_s00128_020_02896_9 crossref_primary_10_1007_s12665_021_09943_6 crossref_primary_10_1155_2021_9148138 crossref_primary_10_3390_app11219903 crossref_primary_10_1080_09593330_2024_2354121 crossref_primary_10_1002_ldr_5331 crossref_primary_10_1016_j_ecolind_2025_113084 crossref_primary_10_1016_j_ijsrc_2023_10_002 crossref_primary_10_53516_ajfr_992673 crossref_primary_10_3390_rs15112868 crossref_primary_10_1002_esp_70019 crossref_primary_10_1080_02626667_2020_1747618 crossref_primary_10_1007_s10668_024_04855_4 crossref_primary_10_1007_s12665_022_10617_0 crossref_primary_10_1016_j_iswcr_2020_12_001 crossref_primary_10_2166_h2oj_2023_083 crossref_primary_10_1590_0103_8478cr20200460 crossref_primary_10_1088_1748_9326_ac10e1 crossref_primary_10_3390_agronomy12020281 crossref_primary_10_1016_j_uclim_2023_101424 crossref_primary_10_3390_rs15030697 crossref_primary_10_1007_s12665_023_11279_2 crossref_primary_10_1038_s41598_021_86618_z crossref_primary_10_1016_j_catena_2021_105660 crossref_primary_10_22399_ijcesen_1187 crossref_primary_10_1007_s12665_024_11593_3 crossref_primary_10_1007_s42990_024_00134_6 crossref_primary_10_3390_su151310388 crossref_primary_10_1016_j_scitotenv_2021_148466 crossref_primary_10_3390_w16081073 crossref_primary_10_3390_land13111950 crossref_primary_10_1016_j_still_2021_105199 crossref_primary_10_1016_j_regsus_2024_03_006 crossref_primary_10_1016_j_iswcr_2020_07_003 crossref_primary_10_1186_s40068_020_00177_2 crossref_primary_10_1134_S1028334X23600081 crossref_primary_10_3390_rs13245019 crossref_primary_10_1016_j_still_2022_105480 crossref_primary_10_1016_j_catena_2023_107182 crossref_primary_10_1016_j_iswcr_2022_09_005 crossref_primary_10_3390_w13192707 crossref_primary_10_1186_s40562_022_00254_7 crossref_primary_10_1016_j_ophoto_2023_100050 crossref_primary_10_3390_su151410785 crossref_primary_10_1007_s41101_023_00229_5 crossref_primary_10_1016_j_jhydrol_2024_131341 crossref_primary_10_1007_s43217_024_00189_3 crossref_primary_10_1080_23311932_2024_2311802 crossref_primary_10_1590_s1413_415220200093 crossref_primary_10_1016_j_catena_2021_105682 crossref_primary_10_3390_agronomy13102527 crossref_primary_10_1016_j_rsase_2023_101089 crossref_primary_10_1007_s10661_023_12163_z crossref_primary_10_1016_j_catena_2024_108412 crossref_primary_10_3390_land11071010 crossref_primary_10_3390_s23104937 crossref_primary_10_1007_s12517_022_09502_8 crossref_primary_10_1016_j_asr_2023_01_008 crossref_primary_10_1080_10106049_2022_2076912 crossref_primary_10_1016_j_jhydrol_2023_130229 crossref_primary_10_1007_s40808_022_01467_7 crossref_primary_10_1007_s41685_022_00238_7 crossref_primary_10_1007_s12517_022_10178_3 crossref_primary_10_1007_s12524_021_01472_w crossref_primary_10_1016_j_jhydrol_2021_126432 crossref_primary_10_3390_environments9100126 crossref_primary_10_1016_j_iswcr_2021_09_004 crossref_primary_10_1016_j_still_2024_106238 crossref_primary_10_1016_j_ecofro_2024_10_010 crossref_primary_10_1016_j_scitotenv_2024_177174 crossref_primary_10_1016_j_foreco_2023_120979 crossref_primary_10_3390_land10101056 crossref_primary_10_1186_s40645_022_00512_4 crossref_primary_10_1016_j_ecoser_2025_101705 crossref_primary_10_1007_s11629_022_7549_5 crossref_primary_10_1590_1413_7054202044031419 crossref_primary_10_1016_j_ecolind_2021_108092 crossref_primary_10_1016_j_gsf_2021_101312 crossref_primary_10_1016_j_heliyon_2023_e19998 |
Cites_doi | 10.1016/S1001-6279(08)60016-5 10.1080/01431161.2013.871081 10.1016/j.geodrs.2017.06.003 10.1016/j.jhydrol.2015.06.048 10.1007/s13762-013-0341-x 10.13031/2013.30576 10.1016/j.catena.2012.08.006 10.1007/s11269-009-9540-0 10.1007/s12665-017-6388-0 10.13031/aea.31.11093 10.13031/2013.31192 10.1016/j.rse.2014.02.001 10.1002/ldr.2898 10.5194/hess-11-1633-2007 10.1007/s11368-015-1160-0 10.1016/j.rse.2011.08.026 10.1016/j.jhydrol.2010.01.024 10.1016/S0034-4257(00)00169-3 10.1038/s41598-017-08298-y 10.1016/j.rse.2006.06.018 10.1126/science.290.5495.1300b 10.1590/s0100-204x2016001200002 10.1016/j.landusepol.2017.06.028 10.1590/S0100-69162012000100008 10.3390/rs3122605 10.1002/esp.3738 10.1016/j.catena.2005.10.005 10.1016/j.scitotenv.2016.12.006 10.1007/s11269-010-9739-0 10.1016/j.rse.2018.04.008 10.1061/JYCEAJ.0003498 10.1016/j.gsf.2015.10.007 10.1016/j.cageo.2012.09.027 10.1007/s11707-011-0158-1 10.3390/rs61111127 10.1007/s11269-006-9061-z 10.1016/j.jag.2010.02.009 10.1016/j.catena.2005.03.007 10.1016/0034-4257(79)90013-0 10.1016/j.landusepol.2015.05.021 10.1016/S0167-1987(02)00114-9 10.1016/j.scitotenv.2018.11.319 10.1080/0143116021000053788 |
ContentType | Journal Article |
Copyright | 2019 International Research and Training Center on Erosion and Sedimentation and China Water and Power Press |
Copyright_xml | – notice: 2019 International Research and Training Center on Erosion and Sedimentation and China Water and Power Press |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.iswcr.2019.08.005 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EndPage | 334 |
ExternalDocumentID | oai_doaj_org_article_98e5914f983349aa88a3d25928478301 10_1016_j_iswcr_2019_08_005 S2095633919301832 |
GeographicLocations | Brazil |
GeographicLocations_xml | – name: Brazil |
GroupedDBID | 6I. AAFTH ALMA_UNASSIGNED_HOLDINGS M~E AAYXX CITATION 7S9 L.6 GROUPED_DOAJ |
ID | FETCH-LOGICAL-c513t-bcaf32daa453f3023e1e7e869319a741c0321524d9592b25533b25d26a969233 |
IEDL.DBID | DOA |
ISSN | 2095-6339 |
IngestDate | Wed Aug 27 01:23:20 EDT 2025 Thu Jul 10 23:06:40 EDT 2025 Thu Apr 24 23:13:15 EDT 2025 Tue Jul 01 03:12:19 EDT 2025 Sat Apr 29 23:29:24 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | RUSLE Soil erosion Landsat 8 NDVI Land use/land cover |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c513t-bcaf32daa453f3023e1e7e869319a741c0321524d9592b25533b25d26a969233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/98e5914f983349aa88a3d25928478301 |
PQID | 2315262570 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_98e5914f983349aa88a3d25928478301 proquest_miscellaneous_2315262570 crossref_primary_10_1016_j_iswcr_2019_08_005 crossref_citationtrail_10_1016_j_iswcr_2019_08_005 elsevier_sciencedirect_doi_10_1016_j_iswcr_2019_08_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2019 2019-12-00 20191201 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: December 2019 |
PublicationDecade | 2010 |
PublicationTitle | International Soil and Water Conservation Research |
PublicationYear | 2019 |
Publisher | Elsevier B.V KeAi Communications Co., Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Communications Co., Ltd |
References | Nearing, Romkens, Norton, Stott, Rhoton, Laflen (bib27) 2000; 290 Ganasri, Ramesh (bib11) 2016; 7 Peel, Finlayson, McMahon (bib38) 2007; 11 Oliveira, Wendland, Nearing (bib32) 2013; 100 Colman, Garcia, Pereira, Shinma, Lima, Gomes (bib6) 2018; 23 Oliveira, Nearing, Wendland (bib30) 2015; 40 Lunetta, Knight, Ediriwickrema, Lyon, Worthy (bib21) 2006; 105 Sharpley, Williams (bib43) 1990; 235 Durigon, Carvalho, Antunes, Oliveira, Fernandes (bib10) 2014; 35 Agapiou, Hadjimitsis, Papoutsa, Alexakis, Papadavid (bib1) 2011; 3 McCool, Foster, Mutchler, Meyer (bib23) 1989; 32 Oliveira, Rodrigues, Alves Sobrinho, Carvalho, Panachuki (bib31) 2012; 32 Zare, Panagopoulos, Loures (bib56) 2017; 67 Ostovari, Ghorbani-Dashtaki, Bahrami, Naderi, Dematte (bib33) 2017; 11 Wischmeier, Smith (bib54) 1978; 537 Vrieling (bib52) 2006; 65 Storey, Choate, Lee (bib47) 2014; 6 Meusburger, Bänninger, Alewell (bib24) 2010; 12 McCool, Brown, Foster, Mutchler, Meyer (bib22) 1987; 30 Almagro, Oliveira, Nearing, Hagemann (bib2) 2017; 7 Anache, Bacchi, Panachuki, Sobrinho (bib3) 2015; 34 Oliveira, Dominguez, Nearing, Oliveira (bib29) 2015; 31 Singh, Babu, Narain, Bhushan, Abrol (bib44) 1992; 47 Ladegaard-Pedersen, Sigsgaard, Kroon, Abermann, Skov, Elberling (bib18) 2017; 580 Irons, Dwyer, Barsi (bib13) 2012; 122 Schmidt, Alewell, Meusburger (bib41) 2018; 211 Vatandaşlar, Yavuz (bib51) 2017; 76 Jain, Das (bib14) 2010; 24 Sone, Gesualdo, Zamboni, Vieira, Mattos, Carvalho (bib45) 2019; 655 Trindade, de Oliveira, Anache, Wendland (bib49) 2016; 51 Dissmeyer, Foster (bib9) 1981; 36 Panagos, Borrelli, Meusburger, Alewell, Lugato, Montanarella (bib34) 2015; 48 Pandey, Chowdary, Mal (bib36) 2007; 21 Desmet, Govers (bib7) 1996; 51 Didoné, Minella, Merten (bib8) 2015; 15 Morgan (bib25) 2005 van der Knijff, Jones, Montanarella (bib17) 2000 Panagos, Borrelli, Meusburger, Yu, Klik, Lim (bib35) 2017 Zhang, Yang, Li, Liu, Moore, He (bib58) 2013; 52 Kinnell (bib15) 2010; 385 Tanyas, Kolat, Lütfi Süzen (bib48) 2015; 528 Williams, Berndt (bib53) 1972; 98 Borrelli, Meusburger, Ballabio, Panagos, Alewell (bib4) 2018; 29 Tucker (bib50) 1979; 8 van der Knijff, Jones, Montanarella (bib16) 1999 Lin, Lin, Chou (bib19) 2002; 68 Roy, Wulder, Loveland, Woodcock, Allen, Anderson (bib40) 2014; 145 Li, Wang, Liu (bib20) 2014; 11 Zhou, Wu (bib59) 2008; 23 Zhang, Xie, Liu, Lu (bib57) 2011; 5 Oliveira, Alves Sobrinho, Rodrigues, Panachuki (bib28) 2011; 25 Gurgel, Ferreira (bib12) 2010; 24 Renard, Foster, Weesies, McCool, Yoder (bib39) 1997; 404 Nearing, Jetten, Baffaut, Cerdan, Couturier, Hernandez (bib26) 2005; 61 Colman (bib5) 2018 Song, Woodcock, Seto, Lenney, Macomber (bib46) 2001; 75 Schönbrodt, Saumer, Behrens, Seeber, Scholten (bib42) 2010; 21 Zhang (10.1016/j.iswcr.2019.08.005_bib58) 2013; 52 Vrieling (10.1016/j.iswcr.2019.08.005_bib52) 2006; 65 Zhang (10.1016/j.iswcr.2019.08.005_bib57) 2011; 5 Li (10.1016/j.iswcr.2019.08.005_bib20) 2014; 11 Colman (10.1016/j.iswcr.2019.08.005_bib6) 2018; 23 Williams (10.1016/j.iswcr.2019.08.005_bib53) 1972; 98 Zhou (10.1016/j.iswcr.2019.08.005_bib59) 2008; 23 van der Knijff (10.1016/j.iswcr.2019.08.005_bib17) 2000 Colman (10.1016/j.iswcr.2019.08.005_bib5) 2018 Nearing (10.1016/j.iswcr.2019.08.005_bib26) 2005; 61 Storey (10.1016/j.iswcr.2019.08.005_bib47) 2014; 6 Tanyas (10.1016/j.iswcr.2019.08.005_bib48) 2015; 528 Jain (10.1016/j.iswcr.2019.08.005_bib14) 2010; 24 Anache (10.1016/j.iswcr.2019.08.005_bib3) 2015; 34 Wischmeier (10.1016/j.iswcr.2019.08.005_bib54) 1978; 537 Song (10.1016/j.iswcr.2019.08.005_bib46) 2001; 75 Meusburger (10.1016/j.iswcr.2019.08.005_bib24) 2010; 12 Didoné (10.1016/j.iswcr.2019.08.005_bib8) 2015; 15 Nearing (10.1016/j.iswcr.2019.08.005_bib27) 2000; 290 McCool (10.1016/j.iswcr.2019.08.005_bib23) 1989; 32 Vatandaşlar (10.1016/j.iswcr.2019.08.005_bib51) 2017; 76 Oliveira (10.1016/j.iswcr.2019.08.005_bib28) 2011; 25 Agapiou (10.1016/j.iswcr.2019.08.005_bib1) 2011; 3 Ostovari (10.1016/j.iswcr.2019.08.005_bib33) 2017; 11 Oliveira (10.1016/j.iswcr.2019.08.005_bib29) 2015; 31 Lunetta (10.1016/j.iswcr.2019.08.005_bib21) 2006; 105 Renard (10.1016/j.iswcr.2019.08.005_bib39) 1997; 404 Schmidt (10.1016/j.iswcr.2019.08.005_bib41) 2018; 211 Sharpley (10.1016/j.iswcr.2019.08.005_bib43) 1990; 235 Sone (10.1016/j.iswcr.2019.08.005_bib45) 2019; 655 Zare (10.1016/j.iswcr.2019.08.005_bib56) 2017; 67 Trindade (10.1016/j.iswcr.2019.08.005_bib49) 2016; 51 Durigon (10.1016/j.iswcr.2019.08.005_bib10) 2014; 35 Ladegaard-Pedersen (10.1016/j.iswcr.2019.08.005_bib18) 2017; 580 Peel (10.1016/j.iswcr.2019.08.005_bib38) 2007; 11 Dissmeyer (10.1016/j.iswcr.2019.08.005_bib9) 1981; 36 Gurgel (10.1016/j.iswcr.2019.08.005_bib12) 2010; 24 Lin (10.1016/j.iswcr.2019.08.005_bib19) 2002; 68 Morgan (10.1016/j.iswcr.2019.08.005_bib25) 2005 Borrelli (10.1016/j.iswcr.2019.08.005_bib4) 2018; 29 Oliveira (10.1016/j.iswcr.2019.08.005_bib30) 2015; 40 Almagro (10.1016/j.iswcr.2019.08.005_bib2) 2017; 7 Panagos (10.1016/j.iswcr.2019.08.005_bib35) 2017 Singh (10.1016/j.iswcr.2019.08.005_bib44) 1992; 47 Desmet (10.1016/j.iswcr.2019.08.005_bib7) 1996; 51 Schönbrodt (10.1016/j.iswcr.2019.08.005_bib42) 2010; 21 Oliveira (10.1016/j.iswcr.2019.08.005_bib31) 2012; 32 McCool (10.1016/j.iswcr.2019.08.005_bib22) 1987; 30 Panagos (10.1016/j.iswcr.2019.08.005_bib34) 2015; 48 Pandey (10.1016/j.iswcr.2019.08.005_bib36) 2007; 21 Roy (10.1016/j.iswcr.2019.08.005_bib40) 2014; 145 Ganasri (10.1016/j.iswcr.2019.08.005_bib11) 2016; 7 Irons (10.1016/j.iswcr.2019.08.005_bib13) 2012; 122 Oliveira (10.1016/j.iswcr.2019.08.005_bib32) 2013; 100 Kinnell (10.1016/j.iswcr.2019.08.005_bib15) 2010; 385 van der Knijff (10.1016/j.iswcr.2019.08.005_bib16) 1999 Tucker (10.1016/j.iswcr.2019.08.005_bib50) 1979; 8 |
References_xml | – volume: 40 start-page: 1524 year: 2015 end-page: 1532 ident: bib30 article-title: Orders of magnitude increase in soil erosion associated with land use change from native to cultivated vegetation in a Brazilian savannah environment publication-title: Earth Surface Processes and Landforms – volume: 24 start-page: 2091 year: 2010 end-page: 2112 ident: bib14 article-title: Estimation of sediment yield and areas of soil erosion and Deposition for watershed Prioritization using GIS and remote sensing publication-title: Water Resources Management – volume: 76 year: 2017 ident: bib51 article-title: Modeling cover management factor of RUSLE using very high-resolution satellite imagery in a semiarid watershed publication-title: Environmental Earth Sciences – volume: 21 start-page: 835 year: 2010 end-page: 845 ident: bib42 article-title: Assessing the USLE crop and management factor C for soil erosion modeling in a large mountainous watershed in Central China publication-title: Journal of Earth Sciences – year: 1999 ident: bib16 article-title: Soil erosion risk assessment in Italy – volume: 11 start-page: 1549 year: 2014 end-page: 1562 ident: bib20 article-title: Effects of land use changes on soil erosion in a fast developing area publication-title: International journal of Environmental Science and Technology – volume: 580 start-page: 582 year: 2017 end-page: 592 ident: bib18 article-title: Suspended sediment in a high-Arctic river: An appraisal of flux estimation methods publication-title: The Science of the Total Environment – volume: 15 start-page: 2334 year: 2015 end-page: 2346 ident: bib8 article-title: Quantifying soil erosion and sediment yield in a catchment in southern Brazil and implications for land conservation publication-title: Journal of Soils and Sediments – year: 2005 ident: bib25 article-title: Soil erosion and conservation – volume: 7 start-page: 1 year: 2017 end-page: 12 ident: bib2 article-title: Projected climate change impacts in rainfall erosivity over Brazil publication-title: Scientific Reports – volume: 100 start-page: 139 year: 2013 end-page: 147 ident: bib32 article-title: Rainfall erosivity in Brazil: A review publication-title: Catena – volume: 29 start-page: 1270 year: 2018 end-page: 1281 ident: bib4 article-title: Object-oriented soil erosion modelling: A possible paradigm shift from potential to actual risk assessments in agricultural environments publication-title: Land Degradation & Development – volume: 36 start-page: 235 year: 1981 end-page: 240 ident: bib9 article-title: Estimating the cover-management factor (C) in the universal soil loss equation for forest conditions publication-title: Journal of Soil & Water Conservation – volume: 290 start-page: 1300 year: 2000 end-page: 1301 ident: bib27 article-title: Measurements and models of soil loss rates publication-title: Science (80-. ) – volume: 48 start-page: 38 year: 2015 end-page: 50 ident: bib34 article-title: Estimating the soil erosion cover-management factor at the European scale publication-title: Land Use Policy – volume: 75 start-page: 230 year: 2001 end-page: 244 ident: bib46 article-title: Classification and change detection using Landsat TM Data : When and how to Correct atmospheric Effects ? publication-title: Remote Sensing of Environment – volume: 32 start-page: 1571 year: 1989 end-page: 1576 ident: bib23 article-title: Revised slope length factor for the universal soil loss equation publication-title: Transactions of the American Society of Agricultural Engineers – volume: 31 start-page: 907 year: 2015 end-page: 917 ident: bib29 article-title: A GIS-based procedure for automatically calculating soil loss from the universal soil loss equation: GISus-m publication-title: Applied Engineering in Agriculture – volume: 65 start-page: 2 year: 2006 end-page: 18 ident: bib52 article-title: Satellite remote sensing for water erosion assessment: A review publication-title: Catena – volume: 32 start-page: 69 year: 2012 end-page: 79 ident: bib31 article-title: Spatial variability of the rainfall erosive potential in the state of Mato Grosso do Sul, Brazil publication-title: Eng. Agríc. Jaboticabal – volume: 537 start-page: 67 year: 1978 ident: bib54 article-title: Predicting rainfall erosion losses - a guide to conservation planning publication-title: U S Department of Agriculture Agriculture Handbook – volume: 404 year: 1997 ident: bib39 article-title: Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE) publication-title: U S Department of Agriculture Agriculture Handbook – volume: 35 start-page: 441 year: 2014 end-page: 453 ident: bib10 article-title: NDVI time series for monitoring RUSLE cover management factor in a tropical watershed publication-title: International Journal of Remote Sensing – volume: 21 start-page: 729 year: 2007 end-page: 746 ident: bib36 article-title: Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing publication-title: Water Resources Management – volume: 23 start-page: 2018 year: 2018 ident: bib6 article-title: Different approaches to estimate the sediment yield in a tropical watershed publication-title: Rev. Bras. Recur. Hídricos – volume: 34 start-page: 32 year: 2015 end-page: 40 ident: bib3 article-title: Assessment of methods for predicting soil erodibility in soil loss modeling publication-title: Geosciências – volume: 52 start-page: 177 year: 2013 end-page: 188 ident: bib58 article-title: Extension of a GIS procedure for calculating the RUSLE equation LS factor publication-title: Computers & Geosciences – volume: 7 start-page: 953 year: 2016 end-page: 961 ident: bib11 article-title: Assessment of soil erosion by RUSLE model using remote sensing and GIS - a case study of Nethravathi Basin publication-title: Geoscience Frontiers – start-page: 1 year: 2017 end-page: 12 ident: bib35 article-title: Global rainfall erosivity assessment based on high-temporal resolution rainfall records publication-title: Scientific Report – volume: 145 start-page: 154 year: 2014 end-page: 172 ident: bib40 article-title: Landsat-8: Science and product vision for terrestrial global change research publication-title: Remote Sensing of Environment – volume: 105 start-page: 142 year: 2006 end-page: 154 ident: bib21 article-title: Land-cover change detection using multi-temporal MODIS NDVI data publication-title: Remote Sensing of Environment – volume: 24 start-page: 3595 year: 2010 end-page: 3609 ident: bib12 article-title: Annual and interannual variability of NDVI in Brazil and its connections with climate publication-title: International Journal of Remote Sensing – volume: 385 start-page: 384 year: 2010 end-page: 397 ident: bib15 article-title: Event soil loss, runoff and the universal soil loss equation family of models: A review publication-title: Journal of Hydrology – volume: 12 start-page: 201 year: 2010 end-page: 207 ident: bib24 article-title: Estimating vegetation parameter for soil erosion assessment in an alpine catchment by means of QuickBird imagery publication-title: International Journal of Applied Earth Observation and Geoinformation – volume: 51 start-page: 1918 year: 2016 end-page: 1928 ident: bib49 article-title: Variabilidade espacial da erosividade das chuvas no Brasil publication-title: Pesquisa Agropecuaria Brasileira – volume: 51 start-page: 427 year: 1996 end-page: 433 ident: bib7 article-title: A GIs procedure for automatically calculating the USLE LS factor on topographically complex landscape units publication-title: Journal of Soil & Water Conservation – volume: 30 start-page: 1387 year: 1987 end-page: 1396 ident: bib22 article-title: Revised slope steepness factor for the universal soil loss equation publication-title: Transactions of the American Society of Agricultural Engineers – volume: 98 start-page: 2087 year: 1972 end-page: 2098 ident: bib53 article-title: Sediment yield computed with universal equation publication-title: Journal of the Hydraulics Division – volume: 211 start-page: 89 year: 2018 end-page: 104 ident: bib41 article-title: Mapping spatio-temporal dynamics of the cover and management factor (C- factor) for grasslands in Switzerland publication-title: Remote Sensing of Environment – volume: 8 start-page: 127 year: 1979 end-page: 150 ident: bib50 article-title: Red and Photographic infrared l , lnear combinations for monitoring vegetation publication-title: Remote Sensing of Environment – volume: 3 start-page: 2605 year: 2011 end-page: 2629 ident: bib1 article-title: The importance of Accounting for atmospheric effects in the application of NDVI and Interpretation of satellite imagery supporting Archaeological research: The case studies of Palaepaphos and Nea Paphos Sites in Cyprus publication-title: Remote Sensing – volume: 61 start-page: 131 year: 2005 end-page: 154 ident: bib26 article-title: Modeling response of soil erosion and runoff to changes in precipitation and cover publication-title: Catena – volume: 67 start-page: 558 year: 2017 end-page: 572 ident: bib56 article-title: Land Use Policy Simulating the impacts of future land use change on soil erosion in the Kasilian watershed, Iran publication-title: Land Use Policy – volume: 47 start-page: 97 year: 1992 end-page: 99 ident: bib44 article-title: Soil erosion rates in India publication-title: Journal of Soil & Water Conservation – volume: 68 start-page: 143 year: 2002 end-page: 152 ident: bib19 article-title: Soil erosion prediction and sediment yield estimation: The Taiwan experience publication-title: Soil and Tillage Research – volume: 11 start-page: 28 year: 2017 end-page: 36 ident: bib33 article-title: Soil loss estimation using RUSLE model, GIS and remote sensing techniques: A case study from the Dembecha watershed, Northwestern Ethiopia publication-title: Geoderma Reg – volume: 528 start-page: 584 year: 2015 end-page: 598 ident: bib48 article-title: A new approach to estimate cover-management factor of RUSLE and validation of RUSLE model in the watershed of Kartalkaya Dam publication-title: Journal of Hydrology – volume: 235 year: 1990 ident: bib43 article-title: EPIC: The erosion-productivity impact calculator publication-title: U S Department of Agriculture Technical Bulletin – volume: 655 start-page: 1197 year: 2019 end-page: 1206 ident: bib45 article-title: Water provisioning improvement through payment for ecosystem services publication-title: The Science of the Total Environment – volume: 6 start-page: 11127 year: 2014 end-page: 11152 ident: bib47 article-title: Landsat 8 operational land imager on-orbit geometric calibration and performance publication-title: Remote Sensing – volume: 122 start-page: 11 year: 2012 end-page: 21 ident: bib13 article-title: The next Landsat satellite : The Landsat data Continuity Mission publication-title: Remote Sensing of Environment – volume: 11 start-page: 1633 year: 2007 end-page: 1644 ident: bib38 article-title: Updated world map of the Köppen-Geiger climate classification publication-title: Hydrology and Earth System Sciences – year: 2000 ident: bib17 article-title: Soil erosion risk assessment in europe – year: 2018 ident: bib5 article-title: Impacts of climate and land use changes on soil erosion in the Upper Paraguay Basin – volume: 23 start-page: 167 year: 2008 end-page: 173 ident: bib59 article-title: Assessment of soil erosion and sediment delivery ratio using remote sensing and GIS: A case study of upstream Chaobaihe River catchment, north China publication-title: International Journal of Sediment Research – volume: 25 start-page: 1021 year: 2011 end-page: 1036 ident: bib28 article-title: Erosion risk mapping applied to environmental zoning publication-title: Water Resources Management – volume: 5 start-page: 150 year: 2011 end-page: 161 ident: bib57 article-title: Assessment of soil erosion under woodlands using USLE in China publication-title: Frontiers of Earth Science – volume: 23 start-page: 167 year: 2008 ident: 10.1016/j.iswcr.2019.08.005_bib59 article-title: Assessment of soil erosion and sediment delivery ratio using remote sensing and GIS: A case study of upstream Chaobaihe River catchment, north China publication-title: International Journal of Sediment Research doi: 10.1016/S1001-6279(08)60016-5 – volume: 35 start-page: 441 year: 2014 ident: 10.1016/j.iswcr.2019.08.005_bib10 article-title: NDVI time series for monitoring RUSLE cover management factor in a tropical watershed publication-title: International Journal of Remote Sensing doi: 10.1080/01431161.2013.871081 – volume: 11 start-page: 28 year: 2017 ident: 10.1016/j.iswcr.2019.08.005_bib33 article-title: Soil loss estimation using RUSLE model, GIS and remote sensing techniques: A case study from the Dembecha watershed, Northwestern Ethiopia publication-title: Geoderma Reg doi: 10.1016/j.geodrs.2017.06.003 – volume: 235 year: 1990 ident: 10.1016/j.iswcr.2019.08.005_bib43 article-title: EPIC: The erosion-productivity impact calculator publication-title: U S Department of Agriculture Technical Bulletin – volume: 528 start-page: 584 year: 2015 ident: 10.1016/j.iswcr.2019.08.005_bib48 article-title: A new approach to estimate cover-management factor of RUSLE and validation of RUSLE model in the watershed of Kartalkaya Dam publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2015.06.048 – volume: 11 start-page: 1549 year: 2014 ident: 10.1016/j.iswcr.2019.08.005_bib20 article-title: Effects of land use changes on soil erosion in a fast developing area publication-title: International journal of Environmental Science and Technology doi: 10.1007/s13762-013-0341-x – volume: 30 start-page: 1387 year: 1987 ident: 10.1016/j.iswcr.2019.08.005_bib22 article-title: Revised slope steepness factor for the universal soil loss equation publication-title: Transactions of the American Society of Agricultural Engineers doi: 10.13031/2013.30576 – volume: 100 start-page: 139 year: 2013 ident: 10.1016/j.iswcr.2019.08.005_bib32 article-title: Rainfall erosivity in Brazil: A review publication-title: Catena doi: 10.1016/j.catena.2012.08.006 – year: 2018 ident: 10.1016/j.iswcr.2019.08.005_bib5 – volume: 24 start-page: 2091 year: 2010 ident: 10.1016/j.iswcr.2019.08.005_bib14 article-title: Estimation of sediment yield and areas of soil erosion and Deposition for watershed Prioritization using GIS and remote sensing publication-title: Water Resources Management doi: 10.1007/s11269-009-9540-0 – volume: 76 year: 2017 ident: 10.1016/j.iswcr.2019.08.005_bib51 article-title: Modeling cover management factor of RUSLE using very high-resolution satellite imagery in a semiarid watershed publication-title: Environmental Earth Sciences doi: 10.1007/s12665-017-6388-0 – volume: 31 start-page: 907 year: 2015 ident: 10.1016/j.iswcr.2019.08.005_bib29 article-title: A GIS-based procedure for automatically calculating soil loss from the universal soil loss equation: GISus-m publication-title: Applied Engineering in Agriculture doi: 10.13031/aea.31.11093 – volume: 34 start-page: 32 year: 2015 ident: 10.1016/j.iswcr.2019.08.005_bib3 article-title: Assessment of methods for predicting soil erodibility in soil loss modeling publication-title: Geosciências – volume: 36 start-page: 235 year: 1981 ident: 10.1016/j.iswcr.2019.08.005_bib9 article-title: Estimating the cover-management factor (C) in the universal soil loss equation for forest conditions publication-title: Journal of Soil & Water Conservation – volume: 32 start-page: 1571 year: 1989 ident: 10.1016/j.iswcr.2019.08.005_bib23 article-title: Revised slope length factor for the universal soil loss equation publication-title: Transactions of the American Society of Agricultural Engineers doi: 10.13031/2013.31192 – volume: 145 start-page: 154 year: 2014 ident: 10.1016/j.iswcr.2019.08.005_bib40 article-title: Landsat-8: Science and product vision for terrestrial global change research publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2014.02.001 – volume: 29 start-page: 1270 year: 2018 ident: 10.1016/j.iswcr.2019.08.005_bib4 article-title: Object-oriented soil erosion modelling: A possible paradigm shift from potential to actual risk assessments in agricultural environments publication-title: Land Degradation & Development doi: 10.1002/ldr.2898 – volume: 11 start-page: 1633 year: 2007 ident: 10.1016/j.iswcr.2019.08.005_bib38 article-title: Updated world map of the Köppen-Geiger climate classification publication-title: Hydrology and Earth System Sciences doi: 10.5194/hess-11-1633-2007 – volume: 15 start-page: 2334 year: 2015 ident: 10.1016/j.iswcr.2019.08.005_bib8 article-title: Quantifying soil erosion and sediment yield in a catchment in southern Brazil and implications for land conservation publication-title: Journal of Soils and Sediments doi: 10.1007/s11368-015-1160-0 – volume: 122 start-page: 11 year: 2012 ident: 10.1016/j.iswcr.2019.08.005_bib13 article-title: The next Landsat satellite : The Landsat data Continuity Mission publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2011.08.026 – volume: 385 start-page: 384 year: 2010 ident: 10.1016/j.iswcr.2019.08.005_bib15 article-title: Event soil loss, runoff and the universal soil loss equation family of models: A review publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2010.01.024 – year: 1999 ident: 10.1016/j.iswcr.2019.08.005_bib16 – volume: 75 start-page: 230 year: 2001 ident: 10.1016/j.iswcr.2019.08.005_bib46 article-title: Classification and change detection using Landsat TM Data : When and how to Correct atmospheric Effects ? publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(00)00169-3 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.iswcr.2019.08.005_bib2 article-title: Projected climate change impacts in rainfall erosivity over Brazil publication-title: Scientific Reports doi: 10.1038/s41598-017-08298-y – volume: 51 start-page: 427 year: 1996 ident: 10.1016/j.iswcr.2019.08.005_bib7 article-title: A GIs procedure for automatically calculating the USLE LS factor on topographically complex landscape units publication-title: Journal of Soil & Water Conservation – volume: 23 start-page: 2018 year: 2018 ident: 10.1016/j.iswcr.2019.08.005_bib6 article-title: Different approaches to estimate the sediment yield in a tropical watershed publication-title: Rev. Bras. Recur. Hídricos – volume: 105 start-page: 142 year: 2006 ident: 10.1016/j.iswcr.2019.08.005_bib21 article-title: Land-cover change detection using multi-temporal MODIS NDVI data publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2006.06.018 – volume: 290 start-page: 1300 year: 2000 ident: 10.1016/j.iswcr.2019.08.005_bib27 article-title: Measurements and models of soil loss rates publication-title: Science (80-. ) doi: 10.1126/science.290.5495.1300b – volume: 51 start-page: 1918 year: 2016 ident: 10.1016/j.iswcr.2019.08.005_bib49 article-title: Variabilidade espacial da erosividade das chuvas no Brasil publication-title: Pesquisa Agropecuaria Brasileira doi: 10.1590/s0100-204x2016001200002 – volume: 67 start-page: 558 year: 2017 ident: 10.1016/j.iswcr.2019.08.005_bib56 article-title: Land Use Policy Simulating the impacts of future land use change on soil erosion in the Kasilian watershed, Iran publication-title: Land Use Policy doi: 10.1016/j.landusepol.2017.06.028 – volume: 32 start-page: 69 year: 2012 ident: 10.1016/j.iswcr.2019.08.005_bib31 article-title: Spatial variability of the rainfall erosive potential in the state of Mato Grosso do Sul, Brazil publication-title: Eng. Agríc. Jaboticabal doi: 10.1590/S0100-69162012000100008 – volume: 3 start-page: 2605 year: 2011 ident: 10.1016/j.iswcr.2019.08.005_bib1 article-title: The importance of Accounting for atmospheric effects in the application of NDVI and Interpretation of satellite imagery supporting Archaeological research: The case studies of Palaepaphos and Nea Paphos Sites in Cyprus publication-title: Remote Sensing doi: 10.3390/rs3122605 – volume: 40 start-page: 1524 year: 2015 ident: 10.1016/j.iswcr.2019.08.005_bib30 article-title: Orders of magnitude increase in soil erosion associated with land use change from native to cultivated vegetation in a Brazilian savannah environment publication-title: Earth Surface Processes and Landforms doi: 10.1002/esp.3738 – volume: 65 start-page: 2 year: 2006 ident: 10.1016/j.iswcr.2019.08.005_bib52 article-title: Satellite remote sensing for water erosion assessment: A review publication-title: Catena doi: 10.1016/j.catena.2005.10.005 – volume: 580 start-page: 582 year: 2017 ident: 10.1016/j.iswcr.2019.08.005_bib18 article-title: Suspended sediment in a high-Arctic river: An appraisal of flux estimation methods publication-title: The Science of the Total Environment doi: 10.1016/j.scitotenv.2016.12.006 – volume: 25 start-page: 1021 year: 2011 ident: 10.1016/j.iswcr.2019.08.005_bib28 article-title: Erosion risk mapping applied to environmental zoning publication-title: Water Resources Management doi: 10.1007/s11269-010-9739-0 – volume: 211 start-page: 89 year: 2018 ident: 10.1016/j.iswcr.2019.08.005_bib41 article-title: Mapping spatio-temporal dynamics of the cover and management factor (C- factor) for grasslands in Switzerland publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2018.04.008 – volume: 98 start-page: 2087 year: 1972 ident: 10.1016/j.iswcr.2019.08.005_bib53 article-title: Sediment yield computed with universal equation publication-title: Journal of the Hydraulics Division doi: 10.1061/JYCEAJ.0003498 – volume: 7 start-page: 953 year: 2016 ident: 10.1016/j.iswcr.2019.08.005_bib11 article-title: Assessment of soil erosion by RUSLE model using remote sensing and GIS - a case study of Nethravathi Basin publication-title: Geoscience Frontiers doi: 10.1016/j.gsf.2015.10.007 – year: 2000 ident: 10.1016/j.iswcr.2019.08.005_bib17 – volume: 52 start-page: 177 year: 2013 ident: 10.1016/j.iswcr.2019.08.005_bib58 article-title: Extension of a GIS procedure for calculating the RUSLE equation LS factor publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2012.09.027 – volume: 47 start-page: 97 year: 1992 ident: 10.1016/j.iswcr.2019.08.005_bib44 article-title: Soil erosion rates in India publication-title: Journal of Soil & Water Conservation – volume: 5 start-page: 150 year: 2011 ident: 10.1016/j.iswcr.2019.08.005_bib57 article-title: Assessment of soil erosion under woodlands using USLE in China publication-title: Frontiers of Earth Science doi: 10.1007/s11707-011-0158-1 – start-page: 1 year: 2017 ident: 10.1016/j.iswcr.2019.08.005_bib35 article-title: Global rainfall erosivity assessment based on high-temporal resolution rainfall records publication-title: Scientific Report – volume: 6 start-page: 11127 year: 2014 ident: 10.1016/j.iswcr.2019.08.005_bib47 article-title: Landsat 8 operational land imager on-orbit geometric calibration and performance publication-title: Remote Sensing doi: 10.3390/rs61111127 – volume: 21 start-page: 729 year: 2007 ident: 10.1016/j.iswcr.2019.08.005_bib36 article-title: Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing publication-title: Water Resources Management doi: 10.1007/s11269-006-9061-z – volume: 12 start-page: 201 year: 2010 ident: 10.1016/j.iswcr.2019.08.005_bib24 article-title: Estimating vegetation parameter for soil erosion assessment in an alpine catchment by means of QuickBird imagery publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2010.02.009 – volume: 61 start-page: 131 year: 2005 ident: 10.1016/j.iswcr.2019.08.005_bib26 article-title: Modeling response of soil erosion and runoff to changes in precipitation and cover publication-title: Catena doi: 10.1016/j.catena.2005.03.007 – volume: 21 start-page: 835 year: 2010 ident: 10.1016/j.iswcr.2019.08.005_bib42 article-title: Assessing the USLE crop and management factor C for soil erosion modeling in a large mountainous watershed in Central China publication-title: Journal of Earth Sciences – year: 2005 ident: 10.1016/j.iswcr.2019.08.005_bib25 – volume: 8 start-page: 127 year: 1979 ident: 10.1016/j.iswcr.2019.08.005_bib50 article-title: Red and Photographic infrared l , lnear combinations for monitoring vegetation publication-title: Remote Sensing of Environment doi: 10.1016/0034-4257(79)90013-0 – volume: 48 start-page: 38 year: 2015 ident: 10.1016/j.iswcr.2019.08.005_bib34 article-title: Estimating the soil erosion cover-management factor at the European scale publication-title: Land Use Policy doi: 10.1016/j.landusepol.2015.05.021 – volume: 404 year: 1997 ident: 10.1016/j.iswcr.2019.08.005_bib39 article-title: Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE) publication-title: U S Department of Agriculture Agriculture Handbook – volume: 537 start-page: 67 year: 1978 ident: 10.1016/j.iswcr.2019.08.005_bib54 article-title: Predicting rainfall erosion losses - a guide to conservation planning publication-title: U S Department of Agriculture Agriculture Handbook – volume: 68 start-page: 143 year: 2002 ident: 10.1016/j.iswcr.2019.08.005_bib19 article-title: Soil erosion prediction and sediment yield estimation: The Taiwan experience publication-title: Soil and Tillage Research doi: 10.1016/S0167-1987(02)00114-9 – volume: 655 start-page: 1197 year: 2019 ident: 10.1016/j.iswcr.2019.08.005_bib45 article-title: Water provisioning improvement through payment for ecosystem services publication-title: The Science of the Total Environment doi: 10.1016/j.scitotenv.2018.11.319 – volume: 24 start-page: 3595 year: 2010 ident: 10.1016/j.iswcr.2019.08.005_bib12 article-title: Annual and interannual variability of NDVI in Brazil and its connections with climate publication-title: International Journal of Remote Sensing doi: 10.1080/0143116021000053788 |
SSID | ssib044741867 ssib039590029 |
Score | 2.4508247 |
Snippet | The Revised Universal Soil Loss Equation (RUSLE)'s cover and management factor (C-factor) is one of the most difficult factors to obtain, mainly because... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 325 |
SubjectTerms | basins Brazil Land use/land cover Landsat 8 monitoring NDVI normalized difference vegetation index prediction rain remote sensing Revised Universal Soil Loss Equation RUSLE sediment yield soil Soil erosion tropics water conservation |
Title | Improving cover and management factor (C-factor) estimation using remote sensing approaches for tropical regions |
URI | https://dx.doi.org/10.1016/j.iswcr.2019.08.005 https://www.proquest.com/docview/2315262570 https://doaj.org/article/98e5914f983349aa88a3d25928478301 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsoKq4vInhQsLhtHk2Ouigi6GkFbyFtpqJod9ld8eZvd6Zp19WDXryEPtImzEwyk3byfYwdSZsVOIQgsVaJRPoiTbzPaZUSdBXyAFbR3uHbO319L28e1MMC1RflhEV44Ci4M2tA2VRW1gghrffGeBEwZqdp1Yi4cwt93sJiCi1JWCLD_HL8UhJIS0Mni5VVooWwHQRRk-z1NH0vCR00tQ2gJ5HZLbipBs3_m7f6MW83zuhqja22USQ_j71fZ0tQb7Dx_AMBLykxk_s68Nd5eguP1Dr8eJDEoxNOCBtx6yKn_PdHPgHUHPApZbXjaQc4DlOOsS2fTUZj0iknNge01k02vLocDq6TllAhKVUqZklR-kpkwXupREVsQZBCDkZbHIceJVT2BdHcyoDiywpcbAiBZci0txoDQbHFlutRDduMlyH3le4DFHkh8bavcPCXECoDRpl-1mNZJz5XtmDjxHnx4rqssmfXyNyRzB0xYfZVj53OHxpHrI3fq1-QXuZVCSi7uYDm41rzcX-ZT4_pTquujTliLIGvevq99cPOBhyOSPrN4msYvU0dRswq08QOuPMfPdxlK9RsTKHZY8uzyRvsYyA0Kw4am8fy9uPyEwVPAoY |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+cover+and+management+factor+%28C-factor%29+estimation+using+remote+sensing+approaches+for+tropical+regions&rft.jtitle=International+Soil+and+Water+Conservation+Research&rft.au=Almagro%2C+Andr%C3%A9&rft.au=Thom%C3%A9%2C+Thais+Caregnatto&rft.au=Colman%2C+Carina+Barbosa&rft.au=Pereira%2C+Rodrigo+Bahia&rft.date=2019-12-01&rft.issn=2095-6339&rft.volume=7&rft.issue=4&rft.spage=325&rft.epage=334&rft_id=info:doi/10.1016%2Fj.iswcr.2019.08.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_iswcr_2019_08_005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-6339&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-6339&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-6339&client=summon |