Improving cover and management factor (C-factor) estimation using remote sensing approaches for tropical regions

The Revised Universal Soil Loss Equation (RUSLE)'s cover and management factor (C-factor) is one of the most difficult factors to obtain, mainly because long-term monitoring soil erosion plots under natural rainfall are needed. Therefore, remote sensing approaches have been used as an alternati...

Full description

Saved in:
Bibliographic Details
Published inInternational Soil and Water Conservation Research Vol. 7; no. 4; pp. 325 - 334
Main Authors Almagro, André, Thomé, Thais Caregnatto, Colman, Carina Barbosa, Pereira, Rodrigo Bahia, Marcato Junior, José, Rodrigues, Dulce Buchala Bicca, Oliveira, Paulo Tarso Sanches
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2019
KeAi Communications Co., Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Revised Universal Soil Loss Equation (RUSLE)'s cover and management factor (C-factor) is one of the most difficult factors to obtain, mainly because long-term monitoring soil erosion plots under natural rainfall are needed. Therefore, remote sensing approaches have been used as an alternative for obtaining this factor. However, there is a lack of studies comparing values of this factor computed from remote sensing approaches with measured data. In this study, we compare two widely used remote sensing approaches (CrA and CVK) to estimate the C-factor based on the Normalized Difference Vegetation Index (NDVI) with the literature (CLIT) and field experimental data. We also investigated the influence of C-factor methods on the prediction of soil loss and sediment yield (SY) using measured data in the Guariroba basin, Central-West Brazil. We obtained mean C-factor values of 0.032, 0.023 and 0.137 for CLIT, CrA and CVK, respectively. We found an average annual soil loss of 2.20 t ha−1 yr−1, 2.02 t ha−1 yr−1 and 10.07 t ha−1 yr−1 and SY values of 6875 t yr−1, 6468 t yr−1 and 33,435 t yr1, for CLIT, CrA and CVK, respectively. Our results indicated a significant improvement in soil loss and SY estimations by using the CrA approach developed for tropical regions, with a bias of 13% to the measured SY (5709 t yr−1). We conclude that the CrA method present the most suitable alternative to compute soil loss and SY in tropical regions. Furthermore, this approach allows large-scale evaluation and temporal monitoring, therefore enhancing multi spatial and temporal assessment of soil erosion processes. [Display omitted]
AbstractList The Revised Universal Soil Loss Equation (RUSLE)'s cover and management factor (C-factor) is one of the most difficult factors to obtain, mainly because long-term monitoring soil erosion plots under natural rainfall are needed. Therefore, remote sensing approaches have been used as an alternative for obtaining this factor. However, there is a lack of studies comparing values of this factor computed from remote sensing approaches with measured data. In this study, we compare two widely used remote sensing approaches (CrA and CVK) to estimate the C-factor based on the Normalized Difference Vegetation Index (NDVI) with the literature (CLIT) and field experimental data. We also investigated the influence of C-factor methods on the prediction of soil loss and sediment yield (SY) using measured data in the Guariroba basin, Central-West Brazil. We obtained mean C-factor values of 0.032, 0.023 and 0.137 for CLIT, CrA and CVK, respectively. We found an average annual soil loss of 2.20 t ha−1 yr−1, 2.02 t ha−1 yr−1 and 10.07 t ha−1 yr−1 and SY values of 6875 t yr−1, 6468 t yr−1 and 33,435 t yr1, for CLIT, CrA and CVK, respectively. Our results indicated a significant improvement in soil loss and SY estimations by using the CrA approach developed for tropical regions, with a bias of 13% to the measured SY (5709 t yr−1). We conclude that the CrA method present the most suitable alternative to compute soil loss and SY in tropical regions. Furthermore, this approach allows large-scale evaluation and temporal monitoring, therefore enhancing multi spatial and temporal assessment of soil erosion processes. Keywords: Soil erosion, RUSLE, NDVI, Landsat 8, Land use/land cover
The Revised Universal Soil Loss Equation (RUSLE)'s cover and management factor (C-factor) is one of the most difficult factors to obtain, mainly because long-term monitoring soil erosion plots under natural rainfall are needed. Therefore, remote sensing approaches have been used as an alternative for obtaining this factor. However, there is a lack of studies comparing values of this factor computed from remote sensing approaches with measured data. In this study, we compare two widely used remote sensing approaches (CrA and CVK) to estimate the C-factor based on the Normalized Difference Vegetation Index (NDVI) with the literature (CLIT) and field experimental data. We also investigated the influence of C-factor methods on the prediction of soil loss and sediment yield (SY) using measured data in the Guariroba basin, Central-West Brazil. We obtained mean C-factor values of 0.032, 0.023 and 0.137 for CLIT, CrA and CVK, respectively. We found an average annual soil loss of 2.20 t ha−1 yr−1, 2.02 t ha−1 yr−1 and 10.07 t ha−1 yr−1 and SY values of 6875 t yr−1, 6468 t yr−1 and 33,435 t yr1, for CLIT, CrA and CVK, respectively. Our results indicated a significant improvement in soil loss and SY estimations by using the CrA approach developed for tropical regions, with a bias of 13% to the measured SY (5709 t yr−1). We conclude that the CrA method present the most suitable alternative to compute soil loss and SY in tropical regions. Furthermore, this approach allows large-scale evaluation and temporal monitoring, therefore enhancing multi spatial and temporal assessment of soil erosion processes.
The Revised Universal Soil Loss Equation (RUSLE)'s cover and management factor (C-factor) is one of the most difficult factors to obtain, mainly because long-term monitoring soil erosion plots under natural rainfall are needed. Therefore, remote sensing approaches have been used as an alternative for obtaining this factor. However, there is a lack of studies comparing values of this factor computed from remote sensing approaches with measured data. In this study, we compare two widely used remote sensing approaches (CrA and CVK) to estimate the C-factor based on the Normalized Difference Vegetation Index (NDVI) with the literature (CLIT) and field experimental data. We also investigated the influence of C-factor methods on the prediction of soil loss and sediment yield (SY) using measured data in the Guariroba basin, Central-West Brazil. We obtained mean C-factor values of 0.032, 0.023 and 0.137 for CLIT, CrA and CVK, respectively. We found an average annual soil loss of 2.20 t ha−1 yr−1, 2.02 t ha−1 yr−1 and 10.07 t ha−1 yr−1 and SY values of 6875 t yr−1, 6468 t yr−1 and 33,435 t yr1, for CLIT, CrA and CVK, respectively. Our results indicated a significant improvement in soil loss and SY estimations by using the CrA approach developed for tropical regions, with a bias of 13% to the measured SY (5709 t yr−1). We conclude that the CrA method present the most suitable alternative to compute soil loss and SY in tropical regions. Furthermore, this approach allows large-scale evaluation and temporal monitoring, therefore enhancing multi spatial and temporal assessment of soil erosion processes. [Display omitted]
Author Rodrigues, Dulce Buchala Bicca
Marcato Junior, José
Thomé, Thais Caregnatto
Almagro, André
Oliveira, Paulo Tarso Sanches
Pereira, Rodrigo Bahia
Colman, Carina Barbosa
Author_xml – sequence: 1
  givenname: André
  surname: Almagro
  fullname: Almagro, André
  email: andre.almagro@gmail.com
– sequence: 2
  givenname: Thais Caregnatto
  surname: Thomé
  fullname: Thomé, Thais Caregnatto
  email: thaisthome04@gmail.com
– sequence: 3
  givenname: Carina Barbosa
  surname: Colman
  fullname: Colman, Carina Barbosa
  email: carinabcolman@gmail.com
– sequence: 4
  givenname: Rodrigo Bahia
  surname: Pereira
  fullname: Pereira, Rodrigo Bahia
  email: rodrigoeamb@gmail.com
– sequence: 5
  givenname: José
  surname: Marcato Junior
  fullname: Marcato Junior, José
  email: jrmarcato@gmail.com
– sequence: 6
  givenname: Dulce Buchala Bicca
  surname: Rodrigues
  fullname: Rodrigues, Dulce Buchala Bicca
  email: dulcebbr@gmail.com
– sequence: 7
  givenname: Paulo Tarso Sanches
  surname: Oliveira
  fullname: Oliveira, Paulo Tarso Sanches
  email: paulotarsoms@gmail.com, paulo.t.oliveira@ufms.br
BookMark eNqFkT1v2zAQhjWkQNMkv6CLxnSQS_JEiRw6FEY_DATIkp04UyeXhkSqJO2i_760VXTo0C78wj0v7733TXXjg6eqesvZhjPevT9uXPph40YwrjdMbRiTN9WtYFo2HYB-XT2k5PasbfuWq66_rZbdvMRwdv5Q23CmWKMf6hk9Hmgmn-sRbQ6xftw26-ldTSm7GbMLvj6lCxdpDpnqRP56xaUIov1GqR4LmWNYnMWplB0Kk-6rVyNOiR5-73fVy-dPL9uvzdPzl93241NjJYfc7C2OIAbEVsIITABx6kl1GrjG0rxlILgU7aClFnshJUBZB9Gh7rQAuKt2q-wQ8GiWWFqOP01AZ64PIR4MxuzsREYrkpq3o1YArUZUCmEQRVa1vQLGi9bjqlWMfT8V_2Z2ydI0oadwSkZA6aQTsmelFNZSG0NKkcY_X3NmLgmZo7kmZC4JGaZMSahQ-i_KunwdcY7opv-wH1aWyjDPjqJJ1pG3NLhINhe77p_8L-j0sYU
CitedBy_id crossref_primary_10_3390_app11125684
crossref_primary_10_3390_ijerph20021222
crossref_primary_10_1016_j_ecolind_2023_110993
crossref_primary_10_1016_j_ijsrc_2024_08_001
crossref_primary_10_3390_rs14020400
crossref_primary_10_1007_s42452_020_03482_8
crossref_primary_10_3103_S0147687424700261
crossref_primary_10_3390_rs12071136
crossref_primary_10_3390_w13131747
crossref_primary_10_1002_ldr_5478
crossref_primary_10_3390_geosciences15010015
crossref_primary_10_1007_s12665_020_09327_2
crossref_primary_10_3390_fire7090319
crossref_primary_10_1007_s11852_022_00877_0
crossref_primary_10_1016_j_mex_2021_101569
crossref_primary_10_3390_w13081045
crossref_primary_10_2166_h2oj_2024_088
crossref_primary_10_1016_j_ecolind_2024_112385
crossref_primary_10_1007_s11069_024_07091_1
crossref_primary_10_1002_ldr_4932
crossref_primary_10_3390_su11247053
crossref_primary_10_1016_j_iswcr_2020_02_001
crossref_primary_10_1016_j_iswcr_2023_10_001
crossref_primary_10_1016_j_geodrs_2024_e00864
crossref_primary_10_1007_s11069_024_06790_z
crossref_primary_10_1007_s00128_020_02896_9
crossref_primary_10_1007_s12665_021_09943_6
crossref_primary_10_1155_2021_9148138
crossref_primary_10_3390_app11219903
crossref_primary_10_1080_09593330_2024_2354121
crossref_primary_10_1002_ldr_5331
crossref_primary_10_1016_j_ecolind_2025_113084
crossref_primary_10_1016_j_ijsrc_2023_10_002
crossref_primary_10_53516_ajfr_992673
crossref_primary_10_3390_rs15112868
crossref_primary_10_1002_esp_70019
crossref_primary_10_1080_02626667_2020_1747618
crossref_primary_10_1007_s10668_024_04855_4
crossref_primary_10_1007_s12665_022_10617_0
crossref_primary_10_1016_j_iswcr_2020_12_001
crossref_primary_10_2166_h2oj_2023_083
crossref_primary_10_1590_0103_8478cr20200460
crossref_primary_10_1088_1748_9326_ac10e1
crossref_primary_10_3390_agronomy12020281
crossref_primary_10_1016_j_uclim_2023_101424
crossref_primary_10_3390_rs15030697
crossref_primary_10_1007_s12665_023_11279_2
crossref_primary_10_1038_s41598_021_86618_z
crossref_primary_10_1016_j_catena_2021_105660
crossref_primary_10_22399_ijcesen_1187
crossref_primary_10_1007_s12665_024_11593_3
crossref_primary_10_1007_s42990_024_00134_6
crossref_primary_10_3390_su151310388
crossref_primary_10_1016_j_scitotenv_2021_148466
crossref_primary_10_3390_w16081073
crossref_primary_10_3390_land13111950
crossref_primary_10_1016_j_still_2021_105199
crossref_primary_10_1016_j_regsus_2024_03_006
crossref_primary_10_1016_j_iswcr_2020_07_003
crossref_primary_10_1186_s40068_020_00177_2
crossref_primary_10_1134_S1028334X23600081
crossref_primary_10_3390_rs13245019
crossref_primary_10_1016_j_still_2022_105480
crossref_primary_10_1016_j_catena_2023_107182
crossref_primary_10_1016_j_iswcr_2022_09_005
crossref_primary_10_3390_w13192707
crossref_primary_10_1186_s40562_022_00254_7
crossref_primary_10_1016_j_ophoto_2023_100050
crossref_primary_10_3390_su151410785
crossref_primary_10_1007_s41101_023_00229_5
crossref_primary_10_1016_j_jhydrol_2024_131341
crossref_primary_10_1007_s43217_024_00189_3
crossref_primary_10_1080_23311932_2024_2311802
crossref_primary_10_1590_s1413_415220200093
crossref_primary_10_1016_j_catena_2021_105682
crossref_primary_10_3390_agronomy13102527
crossref_primary_10_1016_j_rsase_2023_101089
crossref_primary_10_1007_s10661_023_12163_z
crossref_primary_10_1016_j_catena_2024_108412
crossref_primary_10_3390_land11071010
crossref_primary_10_3390_s23104937
crossref_primary_10_1007_s12517_022_09502_8
crossref_primary_10_1016_j_asr_2023_01_008
crossref_primary_10_1080_10106049_2022_2076912
crossref_primary_10_1016_j_jhydrol_2023_130229
crossref_primary_10_1007_s40808_022_01467_7
crossref_primary_10_1007_s41685_022_00238_7
crossref_primary_10_1007_s12517_022_10178_3
crossref_primary_10_1007_s12524_021_01472_w
crossref_primary_10_1016_j_jhydrol_2021_126432
crossref_primary_10_3390_environments9100126
crossref_primary_10_1016_j_iswcr_2021_09_004
crossref_primary_10_1016_j_still_2024_106238
crossref_primary_10_1016_j_ecofro_2024_10_010
crossref_primary_10_1016_j_scitotenv_2024_177174
crossref_primary_10_1016_j_foreco_2023_120979
crossref_primary_10_3390_land10101056
crossref_primary_10_1186_s40645_022_00512_4
crossref_primary_10_1016_j_ecoser_2025_101705
crossref_primary_10_1007_s11629_022_7549_5
crossref_primary_10_1590_1413_7054202044031419
crossref_primary_10_1016_j_ecolind_2021_108092
crossref_primary_10_1016_j_gsf_2021_101312
crossref_primary_10_1016_j_heliyon_2023_e19998
Cites_doi 10.1016/S1001-6279(08)60016-5
10.1080/01431161.2013.871081
10.1016/j.geodrs.2017.06.003
10.1016/j.jhydrol.2015.06.048
10.1007/s13762-013-0341-x
10.13031/2013.30576
10.1016/j.catena.2012.08.006
10.1007/s11269-009-9540-0
10.1007/s12665-017-6388-0
10.13031/aea.31.11093
10.13031/2013.31192
10.1016/j.rse.2014.02.001
10.1002/ldr.2898
10.5194/hess-11-1633-2007
10.1007/s11368-015-1160-0
10.1016/j.rse.2011.08.026
10.1016/j.jhydrol.2010.01.024
10.1016/S0034-4257(00)00169-3
10.1038/s41598-017-08298-y
10.1016/j.rse.2006.06.018
10.1126/science.290.5495.1300b
10.1590/s0100-204x2016001200002
10.1016/j.landusepol.2017.06.028
10.1590/S0100-69162012000100008
10.3390/rs3122605
10.1002/esp.3738
10.1016/j.catena.2005.10.005
10.1016/j.scitotenv.2016.12.006
10.1007/s11269-010-9739-0
10.1016/j.rse.2018.04.008
10.1061/JYCEAJ.0003498
10.1016/j.gsf.2015.10.007
10.1016/j.cageo.2012.09.027
10.1007/s11707-011-0158-1
10.3390/rs61111127
10.1007/s11269-006-9061-z
10.1016/j.jag.2010.02.009
10.1016/j.catena.2005.03.007
10.1016/0034-4257(79)90013-0
10.1016/j.landusepol.2015.05.021
10.1016/S0167-1987(02)00114-9
10.1016/j.scitotenv.2018.11.319
10.1080/0143116021000053788
ContentType Journal Article
Copyright 2019 International Research and Training Center on Erosion and Sedimentation and China Water and Power Press
Copyright_xml – notice: 2019 International Research and Training Center on Erosion and Sedimentation and China Water and Power Press
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.iswcr.2019.08.005
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EndPage 334
ExternalDocumentID oai_doaj_org_article_98e5914f983349aa88a3d25928478301
10_1016_j_iswcr_2019_08_005
S2095633919301832
GeographicLocations Brazil
GeographicLocations_xml – name: Brazil
GroupedDBID 6I.
AAFTH
ALMA_UNASSIGNED_HOLDINGS
M~E
AAYXX
CITATION
7S9
L.6
GROUPED_DOAJ
ID FETCH-LOGICAL-c513t-bcaf32daa453f3023e1e7e869319a741c0321524d9592b25533b25d26a969233
IEDL.DBID DOA
ISSN 2095-6339
IngestDate Wed Aug 27 01:23:20 EDT 2025
Thu Jul 10 23:06:40 EDT 2025
Thu Apr 24 23:13:15 EDT 2025
Tue Jul 01 03:12:19 EDT 2025
Sat Apr 29 23:29:24 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords RUSLE
Soil erosion
Landsat 8
NDVI
Land use/land cover
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c513t-bcaf32daa453f3023e1e7e869319a741c0321524d9592b25533b25d26a969233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/98e5914f983349aa88a3d25928478301
PQID 2315262570
PQPubID 24069
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_98e5914f983349aa88a3d25928478301
proquest_miscellaneous_2315262570
crossref_primary_10_1016_j_iswcr_2019_08_005
crossref_citationtrail_10_1016_j_iswcr_2019_08_005
elsevier_sciencedirect_doi_10_1016_j_iswcr_2019_08_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2019
2019-12-00
20191201
2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationTitle International Soil and Water Conservation Research
PublicationYear 2019
Publisher Elsevier B.V
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Communications Co., Ltd
References Nearing, Romkens, Norton, Stott, Rhoton, Laflen (bib27) 2000; 290
Ganasri, Ramesh (bib11) 2016; 7
Peel, Finlayson, McMahon (bib38) 2007; 11
Oliveira, Wendland, Nearing (bib32) 2013; 100
Colman, Garcia, Pereira, Shinma, Lima, Gomes (bib6) 2018; 23
Oliveira, Nearing, Wendland (bib30) 2015; 40
Lunetta, Knight, Ediriwickrema, Lyon, Worthy (bib21) 2006; 105
Sharpley, Williams (bib43) 1990; 235
Durigon, Carvalho, Antunes, Oliveira, Fernandes (bib10) 2014; 35
Agapiou, Hadjimitsis, Papoutsa, Alexakis, Papadavid (bib1) 2011; 3
McCool, Foster, Mutchler, Meyer (bib23) 1989; 32
Oliveira, Rodrigues, Alves Sobrinho, Carvalho, Panachuki (bib31) 2012; 32
Zare, Panagopoulos, Loures (bib56) 2017; 67
Ostovari, Ghorbani-Dashtaki, Bahrami, Naderi, Dematte (bib33) 2017; 11
Wischmeier, Smith (bib54) 1978; 537
Vrieling (bib52) 2006; 65
Storey, Choate, Lee (bib47) 2014; 6
Meusburger, Bänninger, Alewell (bib24) 2010; 12
McCool, Brown, Foster, Mutchler, Meyer (bib22) 1987; 30
Almagro, Oliveira, Nearing, Hagemann (bib2) 2017; 7
Anache, Bacchi, Panachuki, Sobrinho (bib3) 2015; 34
Oliveira, Dominguez, Nearing, Oliveira (bib29) 2015; 31
Singh, Babu, Narain, Bhushan, Abrol (bib44) 1992; 47
Ladegaard-Pedersen, Sigsgaard, Kroon, Abermann, Skov, Elberling (bib18) 2017; 580
Irons, Dwyer, Barsi (bib13) 2012; 122
Schmidt, Alewell, Meusburger (bib41) 2018; 211
Vatandaşlar, Yavuz (bib51) 2017; 76
Jain, Das (bib14) 2010; 24
Sone, Gesualdo, Zamboni, Vieira, Mattos, Carvalho (bib45) 2019; 655
Trindade, de Oliveira, Anache, Wendland (bib49) 2016; 51
Dissmeyer, Foster (bib9) 1981; 36
Panagos, Borrelli, Meusburger, Alewell, Lugato, Montanarella (bib34) 2015; 48
Pandey, Chowdary, Mal (bib36) 2007; 21
Desmet, Govers (bib7) 1996; 51
Didoné, Minella, Merten (bib8) 2015; 15
Morgan (bib25) 2005
van der Knijff, Jones, Montanarella (bib17) 2000
Panagos, Borrelli, Meusburger, Yu, Klik, Lim (bib35) 2017
Zhang, Yang, Li, Liu, Moore, He (bib58) 2013; 52
Kinnell (bib15) 2010; 385
Tanyas, Kolat, Lütfi Süzen (bib48) 2015; 528
Williams, Berndt (bib53) 1972; 98
Borrelli, Meusburger, Ballabio, Panagos, Alewell (bib4) 2018; 29
Tucker (bib50) 1979; 8
van der Knijff, Jones, Montanarella (bib16) 1999
Lin, Lin, Chou (bib19) 2002; 68
Roy, Wulder, Loveland, Woodcock, Allen, Anderson (bib40) 2014; 145
Li, Wang, Liu (bib20) 2014; 11
Zhou, Wu (bib59) 2008; 23
Zhang, Xie, Liu, Lu (bib57) 2011; 5
Oliveira, Alves Sobrinho, Rodrigues, Panachuki (bib28) 2011; 25
Gurgel, Ferreira (bib12) 2010; 24
Renard, Foster, Weesies, McCool, Yoder (bib39) 1997; 404
Nearing, Jetten, Baffaut, Cerdan, Couturier, Hernandez (bib26) 2005; 61
Colman (bib5) 2018
Song, Woodcock, Seto, Lenney, Macomber (bib46) 2001; 75
Schönbrodt, Saumer, Behrens, Seeber, Scholten (bib42) 2010; 21
Zhang (10.1016/j.iswcr.2019.08.005_bib58) 2013; 52
Vrieling (10.1016/j.iswcr.2019.08.005_bib52) 2006; 65
Zhang (10.1016/j.iswcr.2019.08.005_bib57) 2011; 5
Li (10.1016/j.iswcr.2019.08.005_bib20) 2014; 11
Colman (10.1016/j.iswcr.2019.08.005_bib6) 2018; 23
Williams (10.1016/j.iswcr.2019.08.005_bib53) 1972; 98
Zhou (10.1016/j.iswcr.2019.08.005_bib59) 2008; 23
van der Knijff (10.1016/j.iswcr.2019.08.005_bib17) 2000
Colman (10.1016/j.iswcr.2019.08.005_bib5) 2018
Nearing (10.1016/j.iswcr.2019.08.005_bib26) 2005; 61
Storey (10.1016/j.iswcr.2019.08.005_bib47) 2014; 6
Tanyas (10.1016/j.iswcr.2019.08.005_bib48) 2015; 528
Jain (10.1016/j.iswcr.2019.08.005_bib14) 2010; 24
Anache (10.1016/j.iswcr.2019.08.005_bib3) 2015; 34
Wischmeier (10.1016/j.iswcr.2019.08.005_bib54) 1978; 537
Song (10.1016/j.iswcr.2019.08.005_bib46) 2001; 75
Meusburger (10.1016/j.iswcr.2019.08.005_bib24) 2010; 12
Didoné (10.1016/j.iswcr.2019.08.005_bib8) 2015; 15
Nearing (10.1016/j.iswcr.2019.08.005_bib27) 2000; 290
McCool (10.1016/j.iswcr.2019.08.005_bib23) 1989; 32
Vatandaşlar (10.1016/j.iswcr.2019.08.005_bib51) 2017; 76
Oliveira (10.1016/j.iswcr.2019.08.005_bib28) 2011; 25
Agapiou (10.1016/j.iswcr.2019.08.005_bib1) 2011; 3
Ostovari (10.1016/j.iswcr.2019.08.005_bib33) 2017; 11
Oliveira (10.1016/j.iswcr.2019.08.005_bib29) 2015; 31
Lunetta (10.1016/j.iswcr.2019.08.005_bib21) 2006; 105
Renard (10.1016/j.iswcr.2019.08.005_bib39) 1997; 404
Schmidt (10.1016/j.iswcr.2019.08.005_bib41) 2018; 211
Sharpley (10.1016/j.iswcr.2019.08.005_bib43) 1990; 235
Sone (10.1016/j.iswcr.2019.08.005_bib45) 2019; 655
Zare (10.1016/j.iswcr.2019.08.005_bib56) 2017; 67
Trindade (10.1016/j.iswcr.2019.08.005_bib49) 2016; 51
Durigon (10.1016/j.iswcr.2019.08.005_bib10) 2014; 35
Ladegaard-Pedersen (10.1016/j.iswcr.2019.08.005_bib18) 2017; 580
Peel (10.1016/j.iswcr.2019.08.005_bib38) 2007; 11
Dissmeyer (10.1016/j.iswcr.2019.08.005_bib9) 1981; 36
Gurgel (10.1016/j.iswcr.2019.08.005_bib12) 2010; 24
Lin (10.1016/j.iswcr.2019.08.005_bib19) 2002; 68
Morgan (10.1016/j.iswcr.2019.08.005_bib25) 2005
Borrelli (10.1016/j.iswcr.2019.08.005_bib4) 2018; 29
Oliveira (10.1016/j.iswcr.2019.08.005_bib30) 2015; 40
Almagro (10.1016/j.iswcr.2019.08.005_bib2) 2017; 7
Panagos (10.1016/j.iswcr.2019.08.005_bib35) 2017
Singh (10.1016/j.iswcr.2019.08.005_bib44) 1992; 47
Desmet (10.1016/j.iswcr.2019.08.005_bib7) 1996; 51
Schönbrodt (10.1016/j.iswcr.2019.08.005_bib42) 2010; 21
Oliveira (10.1016/j.iswcr.2019.08.005_bib31) 2012; 32
McCool (10.1016/j.iswcr.2019.08.005_bib22) 1987; 30
Panagos (10.1016/j.iswcr.2019.08.005_bib34) 2015; 48
Pandey (10.1016/j.iswcr.2019.08.005_bib36) 2007; 21
Roy (10.1016/j.iswcr.2019.08.005_bib40) 2014; 145
Ganasri (10.1016/j.iswcr.2019.08.005_bib11) 2016; 7
Irons (10.1016/j.iswcr.2019.08.005_bib13) 2012; 122
Oliveira (10.1016/j.iswcr.2019.08.005_bib32) 2013; 100
Kinnell (10.1016/j.iswcr.2019.08.005_bib15) 2010; 385
van der Knijff (10.1016/j.iswcr.2019.08.005_bib16) 1999
Tucker (10.1016/j.iswcr.2019.08.005_bib50) 1979; 8
References_xml – volume: 40
  start-page: 1524
  year: 2015
  end-page: 1532
  ident: bib30
  article-title: Orders of magnitude increase in soil erosion associated with land use change from native to cultivated vegetation in a Brazilian savannah environment
  publication-title: Earth Surface Processes and Landforms
– volume: 24
  start-page: 2091
  year: 2010
  end-page: 2112
  ident: bib14
  article-title: Estimation of sediment yield and areas of soil erosion and Deposition for watershed Prioritization using GIS and remote sensing
  publication-title: Water Resources Management
– volume: 76
  year: 2017
  ident: bib51
  article-title: Modeling cover management factor of RUSLE using very high-resolution satellite imagery in a semiarid watershed
  publication-title: Environmental Earth Sciences
– volume: 21
  start-page: 835
  year: 2010
  end-page: 845
  ident: bib42
  article-title: Assessing the USLE crop and management factor C for soil erosion modeling in a large mountainous watershed in Central China
  publication-title: Journal of Earth Sciences
– year: 1999
  ident: bib16
  article-title: Soil erosion risk assessment in Italy
– volume: 11
  start-page: 1549
  year: 2014
  end-page: 1562
  ident: bib20
  article-title: Effects of land use changes on soil erosion in a fast developing area
  publication-title: International journal of Environmental Science and Technology
– volume: 580
  start-page: 582
  year: 2017
  end-page: 592
  ident: bib18
  article-title: Suspended sediment in a high-Arctic river: An appraisal of flux estimation methods
  publication-title: The Science of the Total Environment
– volume: 15
  start-page: 2334
  year: 2015
  end-page: 2346
  ident: bib8
  article-title: Quantifying soil erosion and sediment yield in a catchment in southern Brazil and implications for land conservation
  publication-title: Journal of Soils and Sediments
– year: 2005
  ident: bib25
  article-title: Soil erosion and conservation
– volume: 7
  start-page: 1
  year: 2017
  end-page: 12
  ident: bib2
  article-title: Projected climate change impacts in rainfall erosivity over Brazil
  publication-title: Scientific Reports
– volume: 100
  start-page: 139
  year: 2013
  end-page: 147
  ident: bib32
  article-title: Rainfall erosivity in Brazil: A review
  publication-title: Catena
– volume: 29
  start-page: 1270
  year: 2018
  end-page: 1281
  ident: bib4
  article-title: Object-oriented soil erosion modelling: A possible paradigm shift from potential to actual risk assessments in agricultural environments
  publication-title: Land Degradation & Development
– volume: 36
  start-page: 235
  year: 1981
  end-page: 240
  ident: bib9
  article-title: Estimating the cover-management factor (C) in the universal soil loss equation for forest conditions
  publication-title: Journal of Soil & Water Conservation
– volume: 290
  start-page: 1300
  year: 2000
  end-page: 1301
  ident: bib27
  article-title: Measurements and models of soil loss rates
  publication-title: Science (80-. )
– volume: 48
  start-page: 38
  year: 2015
  end-page: 50
  ident: bib34
  article-title: Estimating the soil erosion cover-management factor at the European scale
  publication-title: Land Use Policy
– volume: 75
  start-page: 230
  year: 2001
  end-page: 244
  ident: bib46
  article-title: Classification and change detection using Landsat TM Data : When and how to Correct atmospheric Effects ?
  publication-title: Remote Sensing of Environment
– volume: 32
  start-page: 1571
  year: 1989
  end-page: 1576
  ident: bib23
  article-title: Revised slope length factor for the universal soil loss equation
  publication-title: Transactions of the American Society of Agricultural Engineers
– volume: 31
  start-page: 907
  year: 2015
  end-page: 917
  ident: bib29
  article-title: A GIS-based procedure for automatically calculating soil loss from the universal soil loss equation: GISus-m
  publication-title: Applied Engineering in Agriculture
– volume: 65
  start-page: 2
  year: 2006
  end-page: 18
  ident: bib52
  article-title: Satellite remote sensing for water erosion assessment: A review
  publication-title: Catena
– volume: 32
  start-page: 69
  year: 2012
  end-page: 79
  ident: bib31
  article-title: Spatial variability of the rainfall erosive potential in the state of Mato Grosso do Sul, Brazil
  publication-title: Eng. Agríc. Jaboticabal
– volume: 537
  start-page: 67
  year: 1978
  ident: bib54
  article-title: Predicting rainfall erosion losses - a guide to conservation planning
  publication-title: U S Department of Agriculture Agriculture Handbook
– volume: 404
  year: 1997
  ident: bib39
  article-title: Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE)
  publication-title: U S Department of Agriculture Agriculture Handbook
– volume: 35
  start-page: 441
  year: 2014
  end-page: 453
  ident: bib10
  article-title: NDVI time series for monitoring RUSLE cover management factor in a tropical watershed
  publication-title: International Journal of Remote Sensing
– volume: 21
  start-page: 729
  year: 2007
  end-page: 746
  ident: bib36
  article-title: Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing
  publication-title: Water Resources Management
– volume: 23
  start-page: 2018
  year: 2018
  ident: bib6
  article-title: Different approaches to estimate the sediment yield in a tropical watershed
  publication-title: Rev. Bras. Recur. Hídricos
– volume: 34
  start-page: 32
  year: 2015
  end-page: 40
  ident: bib3
  article-title: Assessment of methods for predicting soil erodibility in soil loss modeling
  publication-title: Geosciências
– volume: 52
  start-page: 177
  year: 2013
  end-page: 188
  ident: bib58
  article-title: Extension of a GIS procedure for calculating the RUSLE equation LS factor
  publication-title: Computers & Geosciences
– volume: 7
  start-page: 953
  year: 2016
  end-page: 961
  ident: bib11
  article-title: Assessment of soil erosion by RUSLE model using remote sensing and GIS - a case study of Nethravathi Basin
  publication-title: Geoscience Frontiers
– start-page: 1
  year: 2017
  end-page: 12
  ident: bib35
  article-title: Global rainfall erosivity assessment based on high-temporal resolution rainfall records
  publication-title: Scientific Report
– volume: 145
  start-page: 154
  year: 2014
  end-page: 172
  ident: bib40
  article-title: Landsat-8: Science and product vision for terrestrial global change research
  publication-title: Remote Sensing of Environment
– volume: 105
  start-page: 142
  year: 2006
  end-page: 154
  ident: bib21
  article-title: Land-cover change detection using multi-temporal MODIS NDVI data
  publication-title: Remote Sensing of Environment
– volume: 24
  start-page: 3595
  year: 2010
  end-page: 3609
  ident: bib12
  article-title: Annual and interannual variability of NDVI in Brazil and its connections with climate
  publication-title: International Journal of Remote Sensing
– volume: 385
  start-page: 384
  year: 2010
  end-page: 397
  ident: bib15
  article-title: Event soil loss, runoff and the universal soil loss equation family of models: A review
  publication-title: Journal of Hydrology
– volume: 12
  start-page: 201
  year: 2010
  end-page: 207
  ident: bib24
  article-title: Estimating vegetation parameter for soil erosion assessment in an alpine catchment by means of QuickBird imagery
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 51
  start-page: 1918
  year: 2016
  end-page: 1928
  ident: bib49
  article-title: Variabilidade espacial da erosividade das chuvas no Brasil
  publication-title: Pesquisa Agropecuaria Brasileira
– volume: 51
  start-page: 427
  year: 1996
  end-page: 433
  ident: bib7
  article-title: A GIs procedure for automatically calculating the USLE LS factor on topographically complex landscape units
  publication-title: Journal of Soil & Water Conservation
– volume: 30
  start-page: 1387
  year: 1987
  end-page: 1396
  ident: bib22
  article-title: Revised slope steepness factor for the universal soil loss equation
  publication-title: Transactions of the American Society of Agricultural Engineers
– volume: 98
  start-page: 2087
  year: 1972
  end-page: 2098
  ident: bib53
  article-title: Sediment yield computed with universal equation
  publication-title: Journal of the Hydraulics Division
– volume: 211
  start-page: 89
  year: 2018
  end-page: 104
  ident: bib41
  article-title: Mapping spatio-temporal dynamics of the cover and management factor (C- factor) for grasslands in Switzerland
  publication-title: Remote Sensing of Environment
– volume: 8
  start-page: 127
  year: 1979
  end-page: 150
  ident: bib50
  article-title: Red and Photographic infrared l , lnear combinations for monitoring vegetation
  publication-title: Remote Sensing of Environment
– volume: 3
  start-page: 2605
  year: 2011
  end-page: 2629
  ident: bib1
  article-title: The importance of Accounting for atmospheric effects in the application of NDVI and Interpretation of satellite imagery supporting Archaeological research: The case studies of Palaepaphos and Nea Paphos Sites in Cyprus
  publication-title: Remote Sensing
– volume: 61
  start-page: 131
  year: 2005
  end-page: 154
  ident: bib26
  article-title: Modeling response of soil erosion and runoff to changes in precipitation and cover
  publication-title: Catena
– volume: 67
  start-page: 558
  year: 2017
  end-page: 572
  ident: bib56
  article-title: Land Use Policy Simulating the impacts of future land use change on soil erosion in the Kasilian watershed, Iran
  publication-title: Land Use Policy
– volume: 47
  start-page: 97
  year: 1992
  end-page: 99
  ident: bib44
  article-title: Soil erosion rates in India
  publication-title: Journal of Soil & Water Conservation
– volume: 68
  start-page: 143
  year: 2002
  end-page: 152
  ident: bib19
  article-title: Soil erosion prediction and sediment yield estimation: The Taiwan experience
  publication-title: Soil and Tillage Research
– volume: 11
  start-page: 28
  year: 2017
  end-page: 36
  ident: bib33
  article-title: Soil loss estimation using RUSLE model, GIS and remote sensing techniques: A case study from the Dembecha watershed, Northwestern Ethiopia
  publication-title: Geoderma Reg
– volume: 528
  start-page: 584
  year: 2015
  end-page: 598
  ident: bib48
  article-title: A new approach to estimate cover-management factor of RUSLE and validation of RUSLE model in the watershed of Kartalkaya Dam
  publication-title: Journal of Hydrology
– volume: 235
  year: 1990
  ident: bib43
  article-title: EPIC: The erosion-productivity impact calculator
  publication-title: U S Department of Agriculture Technical Bulletin
– volume: 655
  start-page: 1197
  year: 2019
  end-page: 1206
  ident: bib45
  article-title: Water provisioning improvement through payment for ecosystem services
  publication-title: The Science of the Total Environment
– volume: 6
  start-page: 11127
  year: 2014
  end-page: 11152
  ident: bib47
  article-title: Landsat 8 operational land imager on-orbit geometric calibration and performance
  publication-title: Remote Sensing
– volume: 122
  start-page: 11
  year: 2012
  end-page: 21
  ident: bib13
  article-title: The next Landsat satellite : The Landsat data Continuity Mission
  publication-title: Remote Sensing of Environment
– volume: 11
  start-page: 1633
  year: 2007
  end-page: 1644
  ident: bib38
  article-title: Updated world map of the Köppen-Geiger climate classification
  publication-title: Hydrology and Earth System Sciences
– year: 2000
  ident: bib17
  article-title: Soil erosion risk assessment in europe
– year: 2018
  ident: bib5
  article-title: Impacts of climate and land use changes on soil erosion in the Upper Paraguay Basin
– volume: 23
  start-page: 167
  year: 2008
  end-page: 173
  ident: bib59
  article-title: Assessment of soil erosion and sediment delivery ratio using remote sensing and GIS: A case study of upstream Chaobaihe River catchment, north China
  publication-title: International Journal of Sediment Research
– volume: 25
  start-page: 1021
  year: 2011
  end-page: 1036
  ident: bib28
  article-title: Erosion risk mapping applied to environmental zoning
  publication-title: Water Resources Management
– volume: 5
  start-page: 150
  year: 2011
  end-page: 161
  ident: bib57
  article-title: Assessment of soil erosion under woodlands using USLE in China
  publication-title: Frontiers of Earth Science
– volume: 23
  start-page: 167
  year: 2008
  ident: 10.1016/j.iswcr.2019.08.005_bib59
  article-title: Assessment of soil erosion and sediment delivery ratio using remote sensing and GIS: A case study of upstream Chaobaihe River catchment, north China
  publication-title: International Journal of Sediment Research
  doi: 10.1016/S1001-6279(08)60016-5
– volume: 35
  start-page: 441
  year: 2014
  ident: 10.1016/j.iswcr.2019.08.005_bib10
  article-title: NDVI time series for monitoring RUSLE cover management factor in a tropical watershed
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431161.2013.871081
– volume: 11
  start-page: 28
  year: 2017
  ident: 10.1016/j.iswcr.2019.08.005_bib33
  article-title: Soil loss estimation using RUSLE model, GIS and remote sensing techniques: A case study from the Dembecha watershed, Northwestern Ethiopia
  publication-title: Geoderma Reg
  doi: 10.1016/j.geodrs.2017.06.003
– volume: 235
  year: 1990
  ident: 10.1016/j.iswcr.2019.08.005_bib43
  article-title: EPIC: The erosion-productivity impact calculator
  publication-title: U S Department of Agriculture Technical Bulletin
– volume: 528
  start-page: 584
  year: 2015
  ident: 10.1016/j.iswcr.2019.08.005_bib48
  article-title: A new approach to estimate cover-management factor of RUSLE and validation of RUSLE model in the watershed of Kartalkaya Dam
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2015.06.048
– volume: 11
  start-page: 1549
  year: 2014
  ident: 10.1016/j.iswcr.2019.08.005_bib20
  article-title: Effects of land use changes on soil erosion in a fast developing area
  publication-title: International journal of Environmental Science and Technology
  doi: 10.1007/s13762-013-0341-x
– volume: 30
  start-page: 1387
  year: 1987
  ident: 10.1016/j.iswcr.2019.08.005_bib22
  article-title: Revised slope steepness factor for the universal soil loss equation
  publication-title: Transactions of the American Society of Agricultural Engineers
  doi: 10.13031/2013.30576
– volume: 100
  start-page: 139
  year: 2013
  ident: 10.1016/j.iswcr.2019.08.005_bib32
  article-title: Rainfall erosivity in Brazil: A review
  publication-title: Catena
  doi: 10.1016/j.catena.2012.08.006
– year: 2018
  ident: 10.1016/j.iswcr.2019.08.005_bib5
– volume: 24
  start-page: 2091
  year: 2010
  ident: 10.1016/j.iswcr.2019.08.005_bib14
  article-title: Estimation of sediment yield and areas of soil erosion and Deposition for watershed Prioritization using GIS and remote sensing
  publication-title: Water Resources Management
  doi: 10.1007/s11269-009-9540-0
– volume: 76
  year: 2017
  ident: 10.1016/j.iswcr.2019.08.005_bib51
  article-title: Modeling cover management factor of RUSLE using very high-resolution satellite imagery in a semiarid watershed
  publication-title: Environmental Earth Sciences
  doi: 10.1007/s12665-017-6388-0
– volume: 31
  start-page: 907
  year: 2015
  ident: 10.1016/j.iswcr.2019.08.005_bib29
  article-title: A GIS-based procedure for automatically calculating soil loss from the universal soil loss equation: GISus-m
  publication-title: Applied Engineering in Agriculture
  doi: 10.13031/aea.31.11093
– volume: 34
  start-page: 32
  year: 2015
  ident: 10.1016/j.iswcr.2019.08.005_bib3
  article-title: Assessment of methods for predicting soil erodibility in soil loss modeling
  publication-title: Geosciências
– volume: 36
  start-page: 235
  year: 1981
  ident: 10.1016/j.iswcr.2019.08.005_bib9
  article-title: Estimating the cover-management factor (C) in the universal soil loss equation for forest conditions
  publication-title: Journal of Soil & Water Conservation
– volume: 32
  start-page: 1571
  year: 1989
  ident: 10.1016/j.iswcr.2019.08.005_bib23
  article-title: Revised slope length factor for the universal soil loss equation
  publication-title: Transactions of the American Society of Agricultural Engineers
  doi: 10.13031/2013.31192
– volume: 145
  start-page: 154
  year: 2014
  ident: 10.1016/j.iswcr.2019.08.005_bib40
  article-title: Landsat-8: Science and product vision for terrestrial global change research
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2014.02.001
– volume: 29
  start-page: 1270
  year: 2018
  ident: 10.1016/j.iswcr.2019.08.005_bib4
  article-title: Object-oriented soil erosion modelling: A possible paradigm shift from potential to actual risk assessments in agricultural environments
  publication-title: Land Degradation & Development
  doi: 10.1002/ldr.2898
– volume: 11
  start-page: 1633
  year: 2007
  ident: 10.1016/j.iswcr.2019.08.005_bib38
  article-title: Updated world map of the Köppen-Geiger climate classification
  publication-title: Hydrology and Earth System Sciences
  doi: 10.5194/hess-11-1633-2007
– volume: 15
  start-page: 2334
  year: 2015
  ident: 10.1016/j.iswcr.2019.08.005_bib8
  article-title: Quantifying soil erosion and sediment yield in a catchment in southern Brazil and implications for land conservation
  publication-title: Journal of Soils and Sediments
  doi: 10.1007/s11368-015-1160-0
– volume: 122
  start-page: 11
  year: 2012
  ident: 10.1016/j.iswcr.2019.08.005_bib13
  article-title: The next Landsat satellite : The Landsat data Continuity Mission
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2011.08.026
– volume: 385
  start-page: 384
  year: 2010
  ident: 10.1016/j.iswcr.2019.08.005_bib15
  article-title: Event soil loss, runoff and the universal soil loss equation family of models: A review
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2010.01.024
– year: 1999
  ident: 10.1016/j.iswcr.2019.08.005_bib16
– volume: 75
  start-page: 230
  year: 2001
  ident: 10.1016/j.iswcr.2019.08.005_bib46
  article-title: Classification and change detection using Landsat TM Data : When and how to Correct atmospheric Effects ?
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(00)00169-3
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.iswcr.2019.08.005_bib2
  article-title: Projected climate change impacts in rainfall erosivity over Brazil
  publication-title: Scientific Reports
  doi: 10.1038/s41598-017-08298-y
– volume: 51
  start-page: 427
  year: 1996
  ident: 10.1016/j.iswcr.2019.08.005_bib7
  article-title: A GIs procedure for automatically calculating the USLE LS factor on topographically complex landscape units
  publication-title: Journal of Soil & Water Conservation
– volume: 23
  start-page: 2018
  year: 2018
  ident: 10.1016/j.iswcr.2019.08.005_bib6
  article-title: Different approaches to estimate the sediment yield in a tropical watershed
  publication-title: Rev. Bras. Recur. Hídricos
– volume: 105
  start-page: 142
  year: 2006
  ident: 10.1016/j.iswcr.2019.08.005_bib21
  article-title: Land-cover change detection using multi-temporal MODIS NDVI data
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2006.06.018
– volume: 290
  start-page: 1300
  year: 2000
  ident: 10.1016/j.iswcr.2019.08.005_bib27
  article-title: Measurements and models of soil loss rates
  publication-title: Science (80-. )
  doi: 10.1126/science.290.5495.1300b
– volume: 51
  start-page: 1918
  year: 2016
  ident: 10.1016/j.iswcr.2019.08.005_bib49
  article-title: Variabilidade espacial da erosividade das chuvas no Brasil
  publication-title: Pesquisa Agropecuaria Brasileira
  doi: 10.1590/s0100-204x2016001200002
– volume: 67
  start-page: 558
  year: 2017
  ident: 10.1016/j.iswcr.2019.08.005_bib56
  article-title: Land Use Policy Simulating the impacts of future land use change on soil erosion in the Kasilian watershed, Iran
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2017.06.028
– volume: 32
  start-page: 69
  year: 2012
  ident: 10.1016/j.iswcr.2019.08.005_bib31
  article-title: Spatial variability of the rainfall erosive potential in the state of Mato Grosso do Sul, Brazil
  publication-title: Eng. Agríc. Jaboticabal
  doi: 10.1590/S0100-69162012000100008
– volume: 3
  start-page: 2605
  year: 2011
  ident: 10.1016/j.iswcr.2019.08.005_bib1
  article-title: The importance of Accounting for atmospheric effects in the application of NDVI and Interpretation of satellite imagery supporting Archaeological research: The case studies of Palaepaphos and Nea Paphos Sites in Cyprus
  publication-title: Remote Sensing
  doi: 10.3390/rs3122605
– volume: 40
  start-page: 1524
  year: 2015
  ident: 10.1016/j.iswcr.2019.08.005_bib30
  article-title: Orders of magnitude increase in soil erosion associated with land use change from native to cultivated vegetation in a Brazilian savannah environment
  publication-title: Earth Surface Processes and Landforms
  doi: 10.1002/esp.3738
– volume: 65
  start-page: 2
  year: 2006
  ident: 10.1016/j.iswcr.2019.08.005_bib52
  article-title: Satellite remote sensing for water erosion assessment: A review
  publication-title: Catena
  doi: 10.1016/j.catena.2005.10.005
– volume: 580
  start-page: 582
  year: 2017
  ident: 10.1016/j.iswcr.2019.08.005_bib18
  article-title: Suspended sediment in a high-Arctic river: An appraisal of flux estimation methods
  publication-title: The Science of the Total Environment
  doi: 10.1016/j.scitotenv.2016.12.006
– volume: 25
  start-page: 1021
  year: 2011
  ident: 10.1016/j.iswcr.2019.08.005_bib28
  article-title: Erosion risk mapping applied to environmental zoning
  publication-title: Water Resources Management
  doi: 10.1007/s11269-010-9739-0
– volume: 211
  start-page: 89
  year: 2018
  ident: 10.1016/j.iswcr.2019.08.005_bib41
  article-title: Mapping spatio-temporal dynamics of the cover and management factor (C- factor) for grasslands in Switzerland
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2018.04.008
– volume: 98
  start-page: 2087
  year: 1972
  ident: 10.1016/j.iswcr.2019.08.005_bib53
  article-title: Sediment yield computed with universal equation
  publication-title: Journal of the Hydraulics Division
  doi: 10.1061/JYCEAJ.0003498
– volume: 7
  start-page: 953
  year: 2016
  ident: 10.1016/j.iswcr.2019.08.005_bib11
  article-title: Assessment of soil erosion by RUSLE model using remote sensing and GIS - a case study of Nethravathi Basin
  publication-title: Geoscience Frontiers
  doi: 10.1016/j.gsf.2015.10.007
– year: 2000
  ident: 10.1016/j.iswcr.2019.08.005_bib17
– volume: 52
  start-page: 177
  year: 2013
  ident: 10.1016/j.iswcr.2019.08.005_bib58
  article-title: Extension of a GIS procedure for calculating the RUSLE equation LS factor
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2012.09.027
– volume: 47
  start-page: 97
  year: 1992
  ident: 10.1016/j.iswcr.2019.08.005_bib44
  article-title: Soil erosion rates in India
  publication-title: Journal of Soil & Water Conservation
– volume: 5
  start-page: 150
  year: 2011
  ident: 10.1016/j.iswcr.2019.08.005_bib57
  article-title: Assessment of soil erosion under woodlands using USLE in China
  publication-title: Frontiers of Earth Science
  doi: 10.1007/s11707-011-0158-1
– start-page: 1
  year: 2017
  ident: 10.1016/j.iswcr.2019.08.005_bib35
  article-title: Global rainfall erosivity assessment based on high-temporal resolution rainfall records
  publication-title: Scientific Report
– volume: 6
  start-page: 11127
  year: 2014
  ident: 10.1016/j.iswcr.2019.08.005_bib47
  article-title: Landsat 8 operational land imager on-orbit geometric calibration and performance
  publication-title: Remote Sensing
  doi: 10.3390/rs61111127
– volume: 21
  start-page: 729
  year: 2007
  ident: 10.1016/j.iswcr.2019.08.005_bib36
  article-title: Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing
  publication-title: Water Resources Management
  doi: 10.1007/s11269-006-9061-z
– volume: 12
  start-page: 201
  year: 2010
  ident: 10.1016/j.iswcr.2019.08.005_bib24
  article-title: Estimating vegetation parameter for soil erosion assessment in an alpine catchment by means of QuickBird imagery
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2010.02.009
– volume: 61
  start-page: 131
  year: 2005
  ident: 10.1016/j.iswcr.2019.08.005_bib26
  article-title: Modeling response of soil erosion and runoff to changes in precipitation and cover
  publication-title: Catena
  doi: 10.1016/j.catena.2005.03.007
– volume: 21
  start-page: 835
  year: 2010
  ident: 10.1016/j.iswcr.2019.08.005_bib42
  article-title: Assessing the USLE crop and management factor C for soil erosion modeling in a large mountainous watershed in Central China
  publication-title: Journal of Earth Sciences
– year: 2005
  ident: 10.1016/j.iswcr.2019.08.005_bib25
– volume: 8
  start-page: 127
  year: 1979
  ident: 10.1016/j.iswcr.2019.08.005_bib50
  article-title: Red and Photographic infrared l , lnear combinations for monitoring vegetation
  publication-title: Remote Sensing of Environment
  doi: 10.1016/0034-4257(79)90013-0
– volume: 48
  start-page: 38
  year: 2015
  ident: 10.1016/j.iswcr.2019.08.005_bib34
  article-title: Estimating the soil erosion cover-management factor at the European scale
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2015.05.021
– volume: 404
  year: 1997
  ident: 10.1016/j.iswcr.2019.08.005_bib39
  article-title: Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE)
  publication-title: U S Department of Agriculture Agriculture Handbook
– volume: 537
  start-page: 67
  year: 1978
  ident: 10.1016/j.iswcr.2019.08.005_bib54
  article-title: Predicting rainfall erosion losses - a guide to conservation planning
  publication-title: U S Department of Agriculture Agriculture Handbook
– volume: 68
  start-page: 143
  year: 2002
  ident: 10.1016/j.iswcr.2019.08.005_bib19
  article-title: Soil erosion prediction and sediment yield estimation: The Taiwan experience
  publication-title: Soil and Tillage Research
  doi: 10.1016/S0167-1987(02)00114-9
– volume: 655
  start-page: 1197
  year: 2019
  ident: 10.1016/j.iswcr.2019.08.005_bib45
  article-title: Water provisioning improvement through payment for ecosystem services
  publication-title: The Science of the Total Environment
  doi: 10.1016/j.scitotenv.2018.11.319
– volume: 24
  start-page: 3595
  year: 2010
  ident: 10.1016/j.iswcr.2019.08.005_bib12
  article-title: Annual and interannual variability of NDVI in Brazil and its connections with climate
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/0143116021000053788
SSID ssib044741867
ssib039590029
Score 2.4508247
Snippet The Revised Universal Soil Loss Equation (RUSLE)'s cover and management factor (C-factor) is one of the most difficult factors to obtain, mainly because...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 325
SubjectTerms basins
Brazil
Land use/land cover
Landsat 8
monitoring
NDVI
normalized difference vegetation index
prediction
rain
remote sensing
Revised Universal Soil Loss Equation
RUSLE
sediment yield
soil
Soil erosion
tropics
water conservation
Title Improving cover and management factor (C-factor) estimation using remote sensing approaches for tropical regions
URI https://dx.doi.org/10.1016/j.iswcr.2019.08.005
https://www.proquest.com/docview/2315262570
https://doaj.org/article/98e5914f983349aa88a3d25928478301
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsoKq4vInhQsLhtHk2Ouigi6GkFbyFtpqJod9ld8eZvd6Zp19WDXryEPtImzEwyk3byfYwdSZsVOIQgsVaJRPoiTbzPaZUSdBXyAFbR3uHbO319L28e1MMC1RflhEV44Ci4M2tA2VRW1gghrffGeBEwZqdp1Yi4cwt93sJiCi1JWCLD_HL8UhJIS0Mni5VVooWwHQRRk-z1NH0vCR00tQ2gJ5HZLbipBs3_m7f6MW83zuhqja22USQ_j71fZ0tQb7Dx_AMBLykxk_s68Nd5eguP1Dr8eJDEoxNOCBtx6yKn_PdHPgHUHPApZbXjaQc4DlOOsS2fTUZj0iknNge01k02vLocDq6TllAhKVUqZklR-kpkwXupREVsQZBCDkZbHIceJVT2BdHcyoDiywpcbAiBZci0txoDQbHFlutRDduMlyH3le4DFHkh8bavcPCXECoDRpl-1mNZJz5XtmDjxHnx4rqssmfXyNyRzB0xYfZVj53OHxpHrI3fq1-QXuZVCSi7uYDm41rzcX-ZT4_pTquujTliLIGvevq99cPOBhyOSPrN4msYvU0dRswq08QOuPMfPdxlK9RsTKHZY8uzyRvsYyA0Kw4am8fy9uPyEwVPAoY
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+cover+and+management+factor+%28C-factor%29+estimation+using+remote+sensing+approaches+for+tropical+regions&rft.jtitle=International+Soil+and+Water+Conservation+Research&rft.au=Almagro%2C+Andr%C3%A9&rft.au=Thom%C3%A9%2C+Thais+Caregnatto&rft.au=Colman%2C+Carina+Barbosa&rft.au=Pereira%2C+Rodrigo+Bahia&rft.date=2019-12-01&rft.issn=2095-6339&rft.volume=7&rft.issue=4&rft.spage=325&rft.epage=334&rft_id=info:doi/10.1016%2Fj.iswcr.2019.08.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_iswcr_2019_08_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-6339&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-6339&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-6339&client=summon