Omicron mutations enhance infectivity and reduce antibody neutralization of SARS-CoV-2 virus-like particles
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant contains extensive sequence changes relative to the earlier-arising B.1, B.1.1, and Delta SARS-CoV-2 variants that have unknown effects on viral infectivity and response to existing vaccines. Using SARS-CoV-2 virus-like...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 119; no. 31; pp. 1 - 7 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
National Academy of Sciences
02.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant contains extensive sequence changes relative to the earlier-arising B.1, B.1.1, and Delta SARS-CoV-2 variants that have unknown effects on viral infectivity and response to existing vaccines. Using SARS-CoV-2 virus-like particles (VLPs), we examined mutations in all four structural proteins and found that Omicron and Delta showed 4.6-fold higher luciferase delivery overall relative to the ancestral B.1 lineage, a property conferred mostly by enhancements in the S and N proteins, while mutations in M and E were mostly detrimental to assembly. Thirty-eight antisera samples from individuals vaccinated with Pfizer/BioNTech, Moderna, or Johnson & Johnson vaccines and convalescent sera from unvaccinated COVID-19 survivors had 15-fold lower efficacy to prevent cell transduction by VLPs containing the Omicron mutations relative to the ancestral B.1 spike protein. A third dose of Pfizer vaccine elicited substantially higher neutralization titers against Omicron, resulting in detectable neutralizing antibodies in eight out of eight subjects compared to one out of eight preboosting. Furthermore, the monoclonal antibody therapeutics casirivimab and imdevimab had robust neutralization activity against B.1 and Delta VLPs but no detectable neutralization of Omicron VLPs, while newly authorized bebtelovimab maintained robust neutralization across variants. Our results suggest that Omicron has similar assembly efficiency and cell entry compared to Delta and that its rapid spread is due mostly to reduced neutralization in sera from previously vaccinated subjects. In addition, most currently available monoclonal antibodies will not be useful in treating Omicron-infected patients with the exception of bebtelovimab. |
---|---|
AbstractList | The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant contains extensive sequence changes relative to the earlier-arising B.1, B.1.1, and Delta SARS-CoV-2 variants that have unknown effects on viral infectivity and response to existing vaccines. Using SARS-CoV-2 virus-like particles (VLPs), we examined mutations in all four structural proteins and found that Omicron and Delta showed 4.6-fold higher luciferase delivery overall relative to the ancestral B.1 lineage, a property conferred mostly by enhancements in the S and N proteins, while mutations in M and E were mostly detrimental to assembly. Thirty-eight antisera samples from individuals vaccinated with Pfizer/BioNTech, Moderna, or Johnson & Johnson vaccines and convalescent sera from unvaccinated COVID-19 survivors had 15-fold lower efficacy to prevent cell transduction by VLPs containing the Omicron mutations relative to the ancestral B.1 spike protein. A third dose of Pfizer vaccine elicited substantially higher neutralization titers against Omicron, resulting in detectable neutralizing antibodies in eight out of eight subjects compared to one out of eight preboosting. Furthermore, the monoclonal antibody therapeutics casirivimab and imdevimab had robust neutralization activity against B.1 and Delta VLPs but no detectable neutralization of Omicron VLPs, while newly authorized bebtelovimab maintained robust neutralization across variants. Our results suggest that Omicron has similar assembly efficiency and cell entry compared to Delta and that its rapid spread is due mostly to reduced neutralization in sera from previously vaccinated subjects. In addition, most currently available monoclonal antibodies will not be useful in treating Omicron-infected patients with the exception of bebtelovimab.The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant contains extensive sequence changes relative to the earlier-arising B.1, B.1.1, and Delta SARS-CoV-2 variants that have unknown effects on viral infectivity and response to existing vaccines. Using SARS-CoV-2 virus-like particles (VLPs), we examined mutations in all four structural proteins and found that Omicron and Delta showed 4.6-fold higher luciferase delivery overall relative to the ancestral B.1 lineage, a property conferred mostly by enhancements in the S and N proteins, while mutations in M and E were mostly detrimental to assembly. Thirty-eight antisera samples from individuals vaccinated with Pfizer/BioNTech, Moderna, or Johnson & Johnson vaccines and convalescent sera from unvaccinated COVID-19 survivors had 15-fold lower efficacy to prevent cell transduction by VLPs containing the Omicron mutations relative to the ancestral B.1 spike protein. A third dose of Pfizer vaccine elicited substantially higher neutralization titers against Omicron, resulting in detectable neutralizing antibodies in eight out of eight subjects compared to one out of eight preboosting. Furthermore, the monoclonal antibody therapeutics casirivimab and imdevimab had robust neutralization activity against B.1 and Delta VLPs but no detectable neutralization of Omicron VLPs, while newly authorized bebtelovimab maintained robust neutralization across variants. Our results suggest that Omicron has similar assembly efficiency and cell entry compared to Delta and that its rapid spread is due mostly to reduced neutralization in sera from previously vaccinated subjects. In addition, most currently available monoclonal antibodies will not be useful in treating Omicron-infected patients with the exception of bebtelovimab. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant contains extensive sequence changes relative to the earlier-arising B.1, B.1.1, and Delta SARS-CoV-2 variants that have unknown effects on viral infectivity and response to existing vaccines. Using SARS-CoV-2 virus-like particles (VLPs), we examined mutations in all four structural proteins and found that Omicron and Delta showed 4.6-fold higher luciferase delivery overall relative to the ancestral B.1 lineage, a property conferred mostly by enhancements in the S and N proteins, while mutations in M and E were mostly detrimental to assembly. Thirty-eight antisera samples from individuals vaccinated with Pfizer/BioNTech, Moderna, or Johnson & Johnson vaccines and convalescent sera from unvaccinated COVID-19 survivors had 15-fold lower efficacy to prevent cell transduction by VLPs containing the Omicron mutations relative to the ancestral B.1 spike protein. A third dose of Pfizer vaccine elicited substantially higher neutralization titers against Omicron, resulting in detectable neutralizing antibodies in eight out of eight subjects compared to one out of eight preboosting. Furthermore, the monoclonal antibody therapeutics casirivimab and imdevimab had robust neutralization activity against B.1 and Delta VLPs but no detectable neutralization of Omicron VLPs, while newly authorized bebtelovimab maintained robust neutralization across variants. Our results suggest that Omicron has similar assembly efficiency and cell entry compared to Delta and that its rapid spread is due mostly to reduced neutralization in sera from previously vaccinated subjects. In addition, most currently available monoclonal antibodies will not be useful in treating Omicron-infected patients with the exception of bebtelovimab. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron contains extensive mutations and demonstrates enhanced transmission. We used virus-like particles to examine the assembly and neutralization of Omicron and found that Omicron and Delta showed ∼4.6-fold higher assembly and cell entry relative to the ancestral lineage. S and N protein mutations improved assembly and entry while E mutations inhibited assembly. Omicron also escapes neutralization from antisera of vaccinated or convalescent individuals by ∼15-fold. Boosting increased neutralization titers against Omicron and restored neutralization in all subjects compared to one out of eight before boosting. Our results suggest that the rapid spread of Omicron is due to more efficient assembly, cell entry, and escape from antibody neutralization from existing vaccines or previous infection The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant contains extensive sequence changes relative to the earlier-arising B.1, B.1.1, and Delta SARS-CoV-2 variants that have unknown effects on viral infectivity and response to existing vaccines. Using SARS-CoV-2 virus-like particles (VLPs), we examined mutations in all four structural proteins and found that Omicron and Delta showed 4.6-fold higher luciferase delivery overall relative to the ancestral B.1 lineage, a property conferred mostly by enhancements in the S and N proteins, while mutations in M and E were mostly detrimental to assembly. Thirty-eight antisera samples from individuals vaccinated with Pfizer/BioNTech, Moderna, or Johnson & Johnson vaccines and convalescent sera from unvaccinated COVID-19 survivors had 15-fold lower efficacy to prevent cell transduction by VLPs containing the Omicron mutations relative to the ancestral B.1 spike protein. A third dose of Pfizer vaccine elicited substantially higher neutralization titers against Omicron, resulting in detectable neutralizing antibodies in eight out of eight subjects compared to one out of eight preboosting. Furthermore, the monoclonal antibody therapeutics casirivimab and imdevimab had robust neutralization activity against B.1 and Delta VLPs but no detectable neutralization of Omicron VLPs, while newly authorized bebtelovimab maintained robust neutralization across variants. Our results suggest that Omicron has similar assembly efficiency and cell entry compared to Delta and that its rapid spread is due mostly to reduced neutralization in sera from previously vaccinated subjects. In addition, most currently available monoclonal antibodies will not be useful in treating Omicron-infected patients with the exception of bebtelovimab. |
Author | Ott, Melanie Spraggon, Lee Turner, Fred Brobeck, Matthew Ciling, Alison Chen, Irene P. Chen, Pei-Yi Silva, Ines Doudna, Jennifer A. Tabata, Takako Hess, Victoria Khalid, Mir M. Syed, Abdullah M. Suryawanshi, Rahul Kumar, G. Renuka Milbes, Bilal Kojima, Noah Shacreaw, Maria Lopez, Lauren Sreekumar, Bharath Taha, Taha Y. |
Author_xml | – sequence: 1 givenname: Abdullah M. surname: Syed fullname: Syed, Abdullah M. – sequence: 2 givenname: Alison surname: Ciling fullname: Ciling, Alison – sequence: 3 givenname: Taha Y. surname: Taha fullname: Taha, Taha Y. – sequence: 4 givenname: Irene P. surname: Chen fullname: Chen, Irene P. – sequence: 5 givenname: Mir M. surname: Khalid fullname: Khalid, Mir M. – sequence: 6 givenname: Bharath surname: Sreekumar fullname: Sreekumar, Bharath – sequence: 7 givenname: Pei-Yi surname: Chen fullname: Chen, Pei-Yi – sequence: 8 givenname: G. Renuka surname: Kumar fullname: Kumar, G. Renuka – sequence: 9 givenname: Rahul surname: Suryawanshi fullname: Suryawanshi, Rahul – sequence: 10 givenname: Ines surname: Silva fullname: Silva, Ines – sequence: 11 givenname: Bilal surname: Milbes fullname: Milbes, Bilal – sequence: 12 givenname: Noah surname: Kojima fullname: Kojima, Noah – sequence: 13 givenname: Victoria surname: Hess fullname: Hess, Victoria – sequence: 14 givenname: Maria surname: Shacreaw fullname: Shacreaw, Maria – sequence: 15 givenname: Lauren surname: Lopez fullname: Lopez, Lauren – sequence: 16 givenname: Matthew surname: Brobeck fullname: Brobeck, Matthew – sequence: 17 givenname: Fred surname: Turner fullname: Turner, Fred – sequence: 18 givenname: Lee surname: Spraggon fullname: Spraggon, Lee – sequence: 19 givenname: Takako surname: Tabata fullname: Tabata, Takako – sequence: 20 givenname: Melanie surname: Ott fullname: Ott, Melanie – sequence: 21 givenname: Jennifer A. surname: Doudna fullname: Doudna, Jennifer A. |
BackLink | https://www.osti.gov/servlets/purl/2470957$$D View this record in Osti.gov |
BookMark | eNp1kd1rFDEUxYNU7Hb12Sch2Bdfps3HZDJ5EcriFxQKVn0N2cwdN9uZZE0yC-tfb6ZbFQs-BZLfOffmnDN04oMHhF5SckGJ5Jc7b9IFY4QIxShVT9CCEkWrplbkBC0IYbJqa1aforOUtoQQJVryDJ1y0YqWt80C3d2Mzsbg8Thlk13wCYPfGG8BO9-DzW7v8gEb3-EI3VSujc9uHboD9jDlaAb3816HQ49vrz7fVqvwrWJ47-KUqsHdAd6ZmJ0dID1HT3szJHjxcC7R1_fvvqw-Vtc3Hz6trq4rKyjP1VoQVgvedW0jQDLDgRomFCVWqbaRtjPAe8ZqQnhPWyOI6WRjCXBGwPDO8iV6e_TdTesROgt-3lPvohtNPOhgnP73xbuN_h72WnFB65YXg9dHg5Cy08m6DHZjg_clD81qWWKUBXrzMCWGHxOkrEeXLAyD8RCmpFmjmBTNbLhE54_QbZiiLxnMlJSU10IVShyp0kdKEXpdBt9nW5Z0g6ZEz53ruXP9t_Oiu3yk-_3T_yteHRXblEP8gzNJJaMN5b8AdcC6HQ |
CitedBy_id | crossref_primary_10_1128_mbio_00171_23 crossref_primary_10_1016_j_jbc_2023_105362 crossref_primary_10_1016_j_isci_2024_108976 crossref_primary_10_1183_13993003_00803_2022 crossref_primary_10_3389_fviro_2024_1353661 crossref_primary_10_3390_ijms241914622 crossref_primary_10_3390_v16030337 crossref_primary_10_1080_22221751_2023_2297553 crossref_primary_10_1021_acsnano_3c08323 crossref_primary_10_1016_j_compbiolchem_2024_108139 crossref_primary_10_1128_mbio_03368_23 crossref_primary_10_3390_vaccines12070742 crossref_primary_10_1016_j_crbiot_2023_100132 crossref_primary_10_1007_s40620_023_01667_z crossref_primary_10_1016_j_resourpol_2023_103403 crossref_primary_10_1016_j_jbc_2023_104955 crossref_primary_10_1371_journal_ppat_1012757 crossref_primary_10_3389_fimmu_2024_1339660 crossref_primary_10_3390_ijms25042351 crossref_primary_10_3390_ijms252111425 crossref_primary_10_1186_s12985_024_02342_w crossref_primary_10_3390_v16030407 crossref_primary_10_3389_fimmu_2023_1100263 crossref_primary_10_36233_0507_4088_226 crossref_primary_10_1002_jmv_70242 crossref_primary_10_1002_jmv_29638 crossref_primary_10_1016_j_talanta_2023_124937 crossref_primary_10_1128_mbio_01373_23 crossref_primary_10_3390_v15061297 crossref_primary_10_1038_s41598_023_40370_8 crossref_primary_10_1017_S0950268824000761 crossref_primary_10_1021_acsmeasuresciau_3c00005 crossref_primary_10_3390_v15040844 crossref_primary_10_1007_s12015_022_10477_y crossref_primary_10_1039_D4CP01199F crossref_primary_10_1016_j_jbc_2023_104763 crossref_primary_10_1016_j_trac_2023_117000 crossref_primary_10_1021_acs_jproteome_4c00630 crossref_primary_10_1093_ndt_gfad044 crossref_primary_10_1371_journal_ppat_1012741 crossref_primary_10_1080_14760584_2022_2114900 crossref_primary_10_3390_covid5040044 crossref_primary_10_3390_v15020585 crossref_primary_10_1016_j_ijmmb_2022_10_006 crossref_primary_10_1186_s13073_023_01208_0 crossref_primary_10_1038_s41541_022_00565_y crossref_primary_10_1093_mam_ozae044_412 crossref_primary_10_1093_pnasnexus_pgad424 crossref_primary_10_3389_fmicb_2023_1169547 crossref_primary_10_1038_s41579_022_00841_7 crossref_primary_10_1007_s12626_024_00156_4 crossref_primary_10_1038_s42003_023_04923_x crossref_primary_10_3390_cimb45020112 crossref_primary_10_3390_microorganisms11102378 crossref_primary_10_1038_s41541_023_00665_3 crossref_primary_10_3389_fmed_2022_994160 crossref_primary_10_1016_j_cell_2023_08_026 crossref_primary_10_3390_v15020392 crossref_primary_10_1093_bib_bbad280 crossref_primary_10_1016_j_omtm_2023_101110 crossref_primary_10_3390_ijms252111762 crossref_primary_10_1093_cid_ciad276 crossref_primary_10_1128_mbio_03621_22 crossref_primary_10_1021_acs_jpcb_3c01467 crossref_primary_10_1136_bmjopen_2022_064953 crossref_primary_10_3389_fmicb_2022_1027271 crossref_primary_10_3390_biomedicines11071790 crossref_primary_10_1093_jb_mvac096 crossref_primary_10_3390_v15010206 crossref_primary_10_1016_j_cmi_2022_12_020 crossref_primary_10_1080_22221751_2022_2149935 crossref_primary_10_3389_fimmu_2023_1049393 crossref_primary_10_1186_s12879_022_07809_1 crossref_primary_10_1186_s12879_023_08686_y crossref_primary_10_1001_jamanetworkopen_2022_55978 crossref_primary_10_1186_s12889_024_17695_8 crossref_primary_10_1038_s41419_023_05791_3 crossref_primary_10_1016_j_virol_2024_110285 crossref_primary_10_1128_jvi_01784_23 crossref_primary_10_3390_v15091930 crossref_primary_10_1093_nar_gkaf133 crossref_primary_10_3390_antib12010005 crossref_primary_10_1016_j_celrep_2023_113444 |
Cites_doi | 10.3390/v12050513 10.1038/s41586-020-2895-3 10.1126/science.abl6184 10.1093/cid/ciab1041 10.1016/j.chom.2020.11.007 10.1101/2021.12.08.21267417 |
ContentType | Journal Article |
Copyright | Copyright © 2022 the Author(s) Copyright National Academy of Sciences Aug 2, 2022 Copyright © 2022 the Author(s). Published by PNAS. 2022 |
Copyright_xml | – notice: Copyright © 2022 the Author(s) – notice: Copyright National Academy of Sciences Aug 2, 2022 – notice: Copyright © 2022 the Author(s). Published by PNAS. 2022 |
CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
DBID | AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 OIOZB OTOTI 5PM |
DOI | 10.1073/pnas.2200592119 |
DatabaseName | CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Virology and AIDS Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 7 |
ExternalDocumentID | PMC9351483 2470957 10_1073_pnas_2200592119 27172161 |
GrantInformation_xml | – fundername: ; grantid: R21AI59666 – fundername: ; grantid: F31 AI164671-01 – fundername: ; grantid: NSERC PDF-533021-2019 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CS3 D0L DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE JENOY JLS JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION 2AX 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD ABBHK AEUPB AEXZC C1K DCCCD FR3 H94 IPSME JAAYA JBMMH JHFFW JKQEH JLXEF JPM M7N P64 RC3 SA0 7X8 OIOZB OTOTI 5PM |
ID | FETCH-LOGICAL-c513t-b502453dd865e72a3e1a25910c99867cdae3f224003f18a50ad76c0e320ea3dc3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:30:39 EDT 2025 Mon Mar 31 02:25:45 EDT 2025 Fri Jul 11 09:35:10 EDT 2025 Sat Aug 23 12:39:03 EDT 2025 Tue Jul 01 05:08:23 EDT 2025 Thu Apr 24 23:03:15 EDT 2025 Thu May 29 08:49:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Language | English |
License | This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c513t-b502453dd865e72a3e1a25910c99867cdae3f224003f18a50ad76c0e320ea3dc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE AC02-05CH11231 Author contributions: A.M.S., G.R.K., M.O., and J.A.D. designed research; A.M.S., A.C., T.Y.T., I.P.C., M.M.K., B.S., P.-Y.C., R.S., and T.T. performed research; I.S., B.M., N.K., V.H., M.S., L.L., M.B., F.T., and L.S. contributed new reagents/analytic tools; A.M.S. analyzed data; and A.M.S., L.S., M.O., and J.A.D. wrote the paper. Edited by Peter Sarnow, Stanford University School of Medicine, Stanford, CA; received January 12, 2022; accepted June 5, 2022 |
ORCID | 0000-0002-7344-7490 0000-0002-3667-9719 0000-0001-9161-999X 0000-0002-0100-6792 0000-0002-1862-6795 0000-0002-8393-6829 0000-0002-5766-9253 0000-0001-6090-3285 0000000273447490 000000019161999X 0000000218626795 0000000236679719 0000000201006792 0000000160903285 0000000283936829 0000000257669253 |
OpenAccessLink | https://www.osti.gov/servlets/purl/2470957 |
PMID | 35858386 |
PQID | 2697713459 |
PQPubID | 42026 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9351483 osti_scitechconnect_2470957 proquest_miscellaneous_2692756148 proquest_journals_2697713459 crossref_citationtrail_10_1073_pnas_2200592119 crossref_primary_10_1073_pnas_2200592119 jstor_primary_27172161 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-02 |
PublicationDateYYYYMMDD | 2022-08-02 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington – name: United States |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationYear | 2022 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_2_2 e_1_3_4_1_2 e_1_3_4_6_2 e_1_3_4_5_2 e_1_3_4_4_2 |
References_xml | – ident: e_1_3_4_1_2 doi: 10.3390/v12050513 – ident: e_1_3_4_2_2 doi: 10.1038/s41586-020-2895-3 – ident: e_1_3_4_3_2 doi: 10.1126/science.abl6184 – ident: e_1_3_4_6_2 doi: 10.1093/cid/ciab1041 – ident: e_1_3_4_4_2 doi: 10.1016/j.chom.2020.11.007 – ident: e_1_3_4_5_2 doi: 10.1101/2021.12.08.21267417 |
SSID | ssj0009580 |
Score | 2.637681 |
Snippet | The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant contains extensive sequence changes relative to the earlier-arising B.1,... Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron contains extensive mutations and demonstrates enhanced transmission. We used virus-like... |
SourceID | pubmedcentral osti proquest crossref jstor |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Antisera Assembly BASIC BIOLOGICAL SCIENCES Biological Sciences Coronaviruses COVID-19 Infectivity Monoclonal antibodies Mutation Neutralization omicron Proteins Robustness SARS-COV-2 Severe acute respiratory syndrome coronavirus 2 Spike protein Structural proteins Vaccines Viral diseases Virus-like particles Viruses |
Title | Omicron mutations enhance infectivity and reduce antibody neutralization of SARS-CoV-2 virus-like particles |
URI | https://www.jstor.org/stable/27172161 https://www.proquest.com/docview/2697713459 https://www.proquest.com/docview/2692756148 https://www.osti.gov/servlets/purl/2470957 https://pubmed.ncbi.nlm.nih.gov/PMC9351483 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWCibCAj8TAUpTS2EyeP1QQqSBsV3dB4imzHUat1ybQmSNufwF_NOXG--JiAl7RKXMvK_Xq-O__uDqHXXMpUgtngRqAfXaY5c8PIZ66mPFGSKcGrXJjjk2B-xj6e--ej0fcea6ks5ETd_jav5H-kCvdAriZL9h8k204KN-A7yBeuIGG4_pWMP10aOl3mXJaFZbTpbFXlAFiOVdUYomKQmwqt5qSgWMs8uXEyXVYhjtvWYlzOPi_do_yLS5xv6-ty627WF9q5aohzfSN20W5624ZicNLEFGddhopVG1vHdRYnXb_j5U0dX53JBNxfsXKOJ-1ByHpjW6zMNobl1IUV6mMp8-l87YbbzJIPpiyns5j0Ixjg_BrGRefv3rXCvuomsJ2yOuG6Vd1W3dYYrbeTX_YEUGKmkXEmthNiYmgRaX42LLRNGAd7k99D9wm4HBVJdN4v4BzW6Ux2GU2ZKE7f_jT1wMKpSa6w3-egsQdezJCD2zNqTh-hh9YbwbNayLtopLPHaLd5LfjQFiV_8wRdWKzhFmvYYg33sIYBa7jGGm6whodYw3mKO6zhDmu4xdpTdPb-3enR3LWNOlzle7RwpW8O8GmShIGvORFUewLcam-qwJkPuEqEpmnFVqapFwp_KhIeqKmmZKoFTRTdQztZnulnCBPCUyYpU0kkGU2DaBoJmQiSEKKVTOkYTZqXGytbxd40U9nEFZuC09hII-6kMUaH7Q-u6gIufx66V0mrHUe4CZAE3hjtG_HFYJSaysrKUNBUEVvAjNFBI9XYKgeYNQDHyqPMh1lftY9BdZvzOJHpvKzGmOYLHgvHiA_Q0K7AFH8fPsnWq6oIfGRScEL6_M6l7aMH3R_uAO0U16V-AUZ0IV9W6P4Bh5vL3A |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Omicron+mutations+enhance+infectivity+and+reduce+antibody+neutralization+of+SARS-CoV-2+virus-like+particles&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Syed%2C+Abdullah+M.&rft.au=Ciling%2C+Alison&rft.au=Taha%2C+Taha+Y.&rft.au=Chen%2C+Irene+P.&rft.date=2022-08-02&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=119&rft.issue=31&rft_id=info:doi/10.1073%2Fpnas.2200592119&rft.externalDocID=2470957 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |