Energy dissipation in functionally two-dimensional phase transforming cellular materials

Phase Transforming Cellular Materials (PXCMs) are periodic cellular materials whose unit cells exhibit multiple stable or meta-stable configurations. Transitions between the various (meta-) stable configurations at the unit cell level enable these materials to exhibit reusable solid state energy dis...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 9; no. 1; pp. 12581 - 11
Main Authors Zhang, Yunlan, Restrepo, David, Velay-Lizancos, Mirian, Mankame, Nilesh D., Zavattieri, Pablo D.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 29.08.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Phase Transforming Cellular Materials (PXCMs) are periodic cellular materials whose unit cells exhibit multiple stable or meta-stable configurations. Transitions between the various (meta-) stable configurations at the unit cell level enable these materials to exhibit reusable solid state energy dissipation. This energy dissipation arises from the storage and non-equilibrium release of strain energy accompanying the limit point traversals underlying these transitions. The material deformation is fully recoverable, and thus the material can be reused to absorb and dissipate energy multiple times. In this work, we present two designs for functionally two-dimensional PXCMs: the S-type with four axes of reflectional symmetry based on a square motif and, the T-type with six axes of symmetry based on a triangular motif. We employ experiments and simulations to understand the various mechanisms that are triggered under multiaxial loading conditions. Our numerical and experimental results indicate that these materials exhibit similar solid state energy dissipation for loads applied along the various axes of reflectional symmetry of the material. The specific energy dissipation capacity of the T-type is slightly greater and less sensitive to the loading direction than the S-type under the most of loading directions. However, both types of material are shown to be very effective in dissipating energy.
AbstractList Phase Transforming Cellular Materials (PXCMs) are periodic cellular materials whose unit cells exhibit multiple stable or meta-stable configurations. Transitions between the various (meta-) stable configurations at the unit cell level enable these materials to exhibit reusable solid state energy dissipation. This energy dissipation arises from the storage and non-equilibrium release of strain energy accompanying the limit point traversals underlying these transitions. The material deformation is fully recoverable, and thus the material can be reused to absorb and dissipate energy multiple times. In this work, we present two designs for functionally two-dimensional PXCMs: the S-type with four axes of reflectional symmetry based on a square motif and, the T-type with six axes of symmetry based on a triangular motif. We employ experiments and simulations to understand the various mechanisms that are triggered under multiaxial loading conditions. Our numerical and experimental results indicate that these materials exhibit similar solid state energy dissipation for loads applied along the various axes of reflectional symmetry of the material. The specific energy dissipation capacity of the T-type is slightly greater and less sensitive to the loading direction than the S-type under the most of loading directions. However, both types of material are shown to be very effective in dissipating energy.
Phase Transforming Cellular Materials (PXCMs) are periodic cellular materials whose unit cells exhibit multiple stable or meta-stable configurations. Transitions between the various (meta-) stable configurations at the unit cell level enable these materials to exhibit reusable solid state energy dissipation. This energy dissipation arises from the storage and non-equilibrium release of strain energy accompanying the limit point traversals underlying these transitions. The material deformation is fully recoverable, and thus the material can be reused to absorb and dissipate energy multiple times. In this work, we present two designs for functionally two-dimensional PXCMs: the S-type with four axes of reflectional symmetry based on a square motif and, the T-type with six axes of symmetry based on a triangular motif. We employ experiments and simulations to understand the various mechanisms that are triggered under multiaxial loading conditions. Our numerical and experimental results indicate that these materials exhibit similar solid state energy dissipation for loads applied along the various axes of reflectional symmetry of the material. The specific energy dissipation capacity of the T-type is slightly greater and less sensitive to the loading direction than the S-type under the most of loading directions. However, both types of material are shown to be very effective in dissipating energy.
Phase Transforming Cellular Materials (PXCMs) are periodic cellular materials whose unit cells exhibit multiple stable or meta-stable configurations. Transitions between the various (meta-) stable configurations at the unit cell level enable these materials to exhibit reusable solid state energy dissipation. This energy dissipation arises from the storage and non-equilibrium release of strain energy accompanying the limit point traversals underlying these transitions. The material deformation is fully recoverable, and thus the material can be reused to absorb and dissipate energy multiple times. In this work, we present two designs for functionally two-dimensional PXCMs: the S-type with four axes of reflectional symmetry based on a square motif and, the T-type with six axes of symmetry based on a triangular motif. We employ experiments and simulations to understand the various mechanisms that are triggered under multiaxial loading conditions. Our numerical and experimental results indicate that these materials exhibit similar solid state energy dissipation for loads applied along the various axes of reflectional symmetry of the material. The specific energy dissipation capacity of the T-type is slightly greater and less sensitive to the loading direction than the S-type under the most of loading directions. However, both types of material are shown to be very effective in dissipating energy.Phase Transforming Cellular Materials (PXCMs) are periodic cellular materials whose unit cells exhibit multiple stable or meta-stable configurations. Transitions between the various (meta-) stable configurations at the unit cell level enable these materials to exhibit reusable solid state energy dissipation. This energy dissipation arises from the storage and non-equilibrium release of strain energy accompanying the limit point traversals underlying these transitions. The material deformation is fully recoverable, and thus the material can be reused to absorb and dissipate energy multiple times. In this work, we present two designs for functionally two-dimensional PXCMs: the S-type with four axes of reflectional symmetry based on a square motif and, the T-type with six axes of symmetry based on a triangular motif. We employ experiments and simulations to understand the various mechanisms that are triggered under multiaxial loading conditions. Our numerical and experimental results indicate that these materials exhibit similar solid state energy dissipation for loads applied along the various axes of reflectional symmetry of the material. The specific energy dissipation capacity of the T-type is slightly greater and less sensitive to the loading direction than the S-type under the most of loading directions. However, both types of material are shown to be very effective in dissipating energy.
Abstract Phase Transforming Cellular Materials (PXCMs) are periodic cellular materials whose unit cells exhibit multiple stable or meta-stable configurations. Transitions between the various (meta-) stable configurations at the unit cell level enable these materials to exhibit reusable solid state energy dissipation. This energy dissipation arises from the storage and non-equilibrium release of strain energy accompanying the limit point traversals underlying these transitions. The material deformation is fully recoverable, and thus the material can be reused to absorb and dissipate energy multiple times. In this work, we present two designs for functionally two-dimensional PXCMs: the S-type with four axes of reflectional symmetry based on a square motif and, the T-type with six axes of symmetry based on a triangular motif. We employ experiments and simulations to understand the various mechanisms that are triggered under multiaxial loading conditions. Our numerical and experimental results indicate that these materials exhibit similar solid state energy dissipation for loads applied along the various axes of reflectional symmetry of the material. The specific energy dissipation capacity of the T-type is slightly greater and less sensitive to the loading direction than the S-type under the most of loading directions. However, both types of material are shown to be very effective in dissipating energy.
ArticleNumber 12581
Author Velay-Lizancos, Mirian
Zavattieri, Pablo D.
Restrepo, David
Zhang, Yunlan
Mankame, Nilesh D.
Author_xml – sequence: 1
  givenname: Yunlan
  surname: Zhang
  fullname: Zhang, Yunlan
  organization: Lyles School of Civil Engineering, Purdue University
– sequence: 2
  givenname: David
  surname: Restrepo
  fullname: Restrepo, David
  organization: Lyles School of Civil Engineering, Purdue University, Department of Mechanical Engineering, The University of Texas at San Antonio
– sequence: 3
  givenname: Mirian
  surname: Velay-Lizancos
  fullname: Velay-Lizancos, Mirian
  organization: Lyles School of Civil Engineering, Purdue University
– sequence: 4
  givenname: Nilesh D.
  surname: Mankame
  fullname: Mankame, Nilesh D.
  organization: Vehicle Systems Research, General Motors Global Research & Development
– sequence: 5
  givenname: Pablo D.
  surname: Zavattieri
  fullname: Zavattieri, Pablo D.
  email: zavattie@purdue.edu
  organization: Lyles School of Civil Engineering, Purdue University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31467381$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1P3DAQhq2KqlDgD_RQReLSS1qPPxL7goQQ_ZCQemklbpbXmSxGib21E9D--zq7lFIO9WVGnmdez_h9Sw5CDEjIO6AfgXL1KQuQWtUUdC2UVFCrV-SIUSFrxhk7eJYfktOc72g5kmkB-g055CCalis4IjdXAdN6W3U-Z7-xk4-h8qHq5-CW3A7DtpoeYt35EUPe3VSbW5uxmpINuY9p9GFdORyGebCpGu2Eydshn5DXfQl4-hiPyc_PVz8uv9bX3798u7y4rp0EPtUrakGvOsFbJ4XtBWomtdOqRez7VddCbzsmeCOZ0KxRwFnHOwTXNLRxLRX8mJzvdTfzasTOYSiDDWaT_GjT1kTrzb-V4G_NOt6bpgXZ6kXgw6NAir9mzJMZfV72sQHjnA1jigNwSllBz16gd3FO5Ut2VBlTN2IRZHvKpZhzwv5pGKBm8c7svTPFO7PzzqjS9P75Gk8tf5wqAN8DuZTCGtPft_8j-xvIcahK
CitedBy_id crossref_primary_10_1002_adfm_202102113
crossref_primary_10_3390_ma15165644
crossref_primary_10_1016_j_matdes_2023_111810
crossref_primary_10_1016_j_compstruct_2022_115308
crossref_primary_10_1016_j_cossms_2020_100869
crossref_primary_10_1016_j_eml_2021_101580
crossref_primary_10_1016_j_tws_2023_111418
crossref_primary_10_1016_j_tws_2023_111439
crossref_primary_10_1016_j_eml_2020_100732
crossref_primary_10_1016_j_engstruct_2022_114976
crossref_primary_10_1016_j_compstruct_2022_116544
crossref_primary_10_1103_PhysRevApplied_17_024036
crossref_primary_10_1016_j_eml_2022_101941
crossref_primary_10_1016_j_eml_2023_101985
crossref_primary_10_1103_PhysRevApplied_13_054067
crossref_primary_10_1016_j_tws_2024_111761
crossref_primary_10_1016_j_ijmecsci_2022_107611
crossref_primary_10_1016_j_tws_2022_109963
crossref_primary_10_1002_adfm_202316181
crossref_primary_10_1016_j_matdes_2022_111262
crossref_primary_10_1016_j_eml_2022_101948
crossref_primary_10_1016_j_tws_2024_112111
crossref_primary_10_1016_j_ijmecsci_2023_108762
Cites_doi 10.1002/adma.201301986
10.1038/natrevmats.2017.78
10.1557/jmr.2018.7
10.1002/adem.201600053
10.1002/adma.201600610
10.1016/j.ijsolstr.2008.07.014
10.1016/j.jmps.2017.02.011
10.1108/RPJ-12-2014-0182
10.1016/j.eml.2015.08.001
10.1115/1.4034706
10.1126/science.276.5315.1109
10.1016/j.eml.2017.01.001
10.1016/0022-5096(95)00024-D
10.1115/1.2338576
10.1186/s40192-015-0038-8
10.1115/1.4024122
10.1177/1045389X12457252
10.1016/B978-075067219-1/50004-0
10.1016/j.matdes.2017.12.050
10.1109/JMEMS.2004.825308
10.1016/j.jmps.2012.08.009
10.1002/adma.201501708
10.1016/j.eml.2016.09.001
10.1126/science.1252876
10.1007/s10856-013-5067-2
10.1002/adma.201670255
10.3390/ma11071078
10.1115/1.4032809
10.1177/002199839302701203
ContentType Journal Article
Copyright The Author(s) 2019
2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
NPM
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.1038/s41598-019-48581-8
DatabaseName SpringerOpen
PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Science Journals
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

Publicly Available Content Database
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 11
ExternalDocumentID 10_1038_s41598_019_48581_8
31467381
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Science Foundation (NSF)
  grantid: CMMI-1538898
  funderid: https://doi.org/10.13039/100000001
– fundername: ;
  grantid: CMMI-1538898
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ADBBV
ADRAZ
AENEX
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
NPM
AAYXX
AFPKN
CITATION
7XB
8FK
K9.
PQEST
PQUKI
Q9U
7X8
AFGXO
5PM
ID FETCH-LOGICAL-c513t-b0a19bd437c54af4e9259c987eeffbd71fad24365249268132d3de1c6606c7043
IEDL.DBID RPM
ISSN 2045-2322
IngestDate Tue Sep 17 20:47:38 EDT 2024
Sat Aug 17 04:28:43 EDT 2024
Tue Oct 22 08:00:49 EDT 2024
Fri Aug 23 01:26:37 EDT 2024
Wed Oct 23 09:29:51 EDT 2024
Fri Oct 11 20:50:03 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c513t-b0a19bd437c54af4e9259c987eeffbd71fad24365249268132d3de1c6606c7043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6715794/
PMID 31467381
PQID 2282439644
PQPubID 2041939
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6715794
proquest_miscellaneous_2283113002
proquest_journals_2282439644
crossref_primary_10_1038_s41598_019_48581_8
pubmed_primary_31467381
springer_journals_10_1038_s41598_019_48581_8
PublicationCentury 2000
PublicationDate 2019-08-29
PublicationDateYYYYMMDD 2019-08-29
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-29
  day: 29
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References PontecorvoMEBarbarinoSMurrayGJGandhiFSBistable arches for morphing applicationsJ. Intell. Mater. Syst. Struct.20132427428610.1177/1045389X12457252
PapadopoulouALaucksJTibbitsSAuxetic materials in design and architectureNat. Rev. Mater.20172170782017NatRM...217078P1:CAS:528:DC%2BC2sXhvFWgtL7L10.1038/natrevmats.2017.78
SaxenaKKDasRCaliusEPThree Decades of Auxetics Research − Materials with Negative Poisson’s Ratio: A ReviewAdv. Eng. Mater.201618184718701:CAS:528:DC%2BC28XhvVCqu77N10.1002/adem.201600053
CorreaDMSeepersadCCHabermanMRMechanical design of negative stiffness honeycomb materialsIntegr. Mater. Manuf. Innov.20154810.1186/s40192-015-0038-8
LakesRSElmsKIndentability of Conventional and Negative Poisson’s Ratio FoamsJ. Compos. Mater.199327119312021993JCoMa..27.1193L10.1177/002199839302701203
Ashby, M. F. et al. Making metal foams. Met. Foam. 6–23, https://doi.org/10.1016/B978-075067219-1/50004-0 (2000).
Hopkins, J. B., Lange, K. J. & Spadaccini, C. M. Designing Microstructural Architectures With Thermally Actuated Properties Using Freedom, Actuation, and Constraint Topologies. J. Mech. Design135 (2013).
RestrepoDMankameNDZavattieriPDPhase transforming cellular materialsExtrem. Mech. Lett.20154526010.1016/j.eml.2015.08.001
AliMNBusfieldJJCRehmanIUAuxetic oesophageal stents: Structure and mechanical propertiesJ. Mater. Sci. Mater. Med.2014255275531:CAS:528:DC%2BC3sXhs1eqsbrF10.1007/s10856-013-5067-2
SilverbergJLUsing origami design principles to fold reprogrammable mechanical metamaterialsScience (80-.).20143456476502014Sci...345..647S1:CAS:528:DC%2BC2cXht12gtLjF10.1126/science.1252876
RenChenhuiYangDeqingQinHaoxingMechanical Performance of Multidirectional Buckling-Based Negative Stiffness Metamaterials: An Analytical and Numerical StudyMaterials201811710782018Mate...11.1078R10.3390/ma11071078
RafsanjaniAPasiniDBistable auxetic mechanical metamaterials inspired by ancient geometric motifsExtrem. Mech. Lett.2016929129610.1016/j.eml.2016.09.001
PrasadJDiazARSynthesis of Bistable Periodic Structures Using Topology Optimization and a Genetic AlgorithmJ. Mech. Des.2006128129810.1115/1.2338576
Jin, Q. An Electrothermally-Actuated Bistable MEMS Relay for Power Applications. Massachusetts Inst. Technol. 94 (2003).
Findeisen, C., Hohe, J., Kadic, M. & Gumbsch, P. Journal of the Mechanics and Physics of Solids Characteristics of mechanical metamaterials based on buckling elements. 102, 151–164 (2017).
Qiu, J., Lang, J. H. & Slocum, A. H. A Curved Beam Bistable Mechanism Bi Stable Beam Model. 13, 137–146 (2004).
FrenzelTobiasFindeisenClaudioKadicMuamerGumbschPeterWegenerMartinTailored Buckling Microlattices as Reusable Light-Weight Shock AbsorbersAdvanced Materials20162828586558701:CAS:528:DC%2BC28XnsFWlsLc%3D10.1002/adma.201600610
SanterMPellegrinoSCompliant multistable structural elementsInt. J. Solids Struct.20084561906204247770410.1016/j.ijsolstr.2008.07.014
CorreaDMNegative stiffness honeycombs for recoverable shock isolationRapid Prototyp. J.20152119320010.1108/RPJ-12-2014-0182
HaCSLakesRSPleshaMEDesign, fabrication, and analysis of lattice exhibiting energy absorption via snap-through behaviorMater. Des.201814142643710.1016/j.matdes.2017.12.050
BenichouIGivliSStructures undergoing discrete phase transformationJ. Mech. Phys. Solids201361941132013JMPSo..61...94B299043310.1016/j.jmps.2012.08.009
HaghpanahBSalari-SharifLPourrajabPHopkinsJValdevitLArchitected Materials: Multistable Shape-Reconfigurable Architected Materials (Adv. Mater. 36/2016)Adv. Mater.201628806510.1002/adma.201670255
DansoLAKarpovEGCusp singularity-based bistability criterion for geometrically nonlinear structuresExtrem. Mech. Lett.20171313514010.1016/j.eml.2017.01.001
HopkinsJonathan B.SongYuanpingLeeHowonFangNicholas X.SpadacciniChristopher M.Polytope Sector-Based Synthesis and Analysis of Microstructural Architectures With Tunable Thermal Conductivity and ExpansionJournal of Mechanical Design2016138505140110.1115/1.4032809
DebeauDASeepersadCCHabermanMRImpact behavior of negative stiffness honeycomb materialsJ. Mater. Res.2018332902992018JMatR..33..290D1:CAS:528:DC%2BC1cXjsVyqt70%3D10.1557/jmr.2018.7
Che, K. & Qi, H. J. Three-Dimensional-Printed Multistable Mechanical Metamaterials With a Deterministic Deformation Sequence. 84, 1–10 (2018).
ShanSicongKangSung H.RaneyJordan R.WangPaiFangLichenCandidoFranciscoLewisJennifer A.BertoldiKatiaMultistable Architected Materials for Trapping Elastic Strain EnergyAdvanced Materials20152729429643011:CAS:528:DC%2BC2MXhtVens7rL10.1002/adma.201501708
RiefMGautelMOesterheltFFernandezJMGaubHEReversible Unfolding of Individual Titin Immunoglobulin {Domains} by AFMScience (80-.).1997276110911121:CAS:528:DyaK2sXjt12qtLc%3D10.1126/science.276.5315.1109
BabaeeS3D soft metamaterials with negative poisson’s ratioAdv. Mater.201325504450491:CAS:528:DC%2BC3sXhtFCksLfP10.1002/adma.201301986
ShawJAKyriakidesSThermomechanical aspects of NiTiJ. Mech. Phys. Solids199543124312811995JMPSo..43.1243S1:CAS:528:DyaK2MXosVCntLw%3D10.1016/0022-5096(95)00024-D
Tobias Frenzel (48581_CR8) 2016; 28
Sicong Shan (48581_CR15) 2015; 27
CS Ha (48581_CR11) 2018; 141
A Rafsanjani (48581_CR19) 2016; 9
JA Shaw (48581_CR5) 1995; 43
DA Debeau (48581_CR10) 2018; 33
48581_CR1
48581_CR14
J Prasad (48581_CR17) 2006; 128
48581_CR9
DM Correa (48581_CR3) 2015; 21
MN Ali (48581_CR29) 2014; 25
RS Lakes (48581_CR27) 1993; 27
D Restrepo (48581_CR2) 2015; 4
B Haghpanah (48581_CR13) 2016; 28
KK Saxena (48581_CR28) 2016; 18
S Babaee (48581_CR21) 2013; 25
M Rief (48581_CR6) 1997; 276
M Santer (48581_CR22) 2008; 45
DM Correa (48581_CR4) 2015; 4
LA Danso (48581_CR18) 2017; 13
I Benichou (48581_CR7) 2013; 61
JL Silverberg (48581_CR20) 2014; 345
48581_CR24
48581_CR25
48581_CR23
A Papadopoulou (48581_CR30) 2017; 2
ME Pontecorvo (48581_CR12) 2013; 24
Chenhui Ren (48581_CR16) 2018; 11
Jonathan B. Hopkins (48581_CR26) 2016; 138
References_xml – volume: 25
  start-page: 5044
  year: 2013
  ident: 48581_CR21
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301986
  contributor:
    fullname: S Babaee
– volume: 2
  start-page: 17078
  year: 2017
  ident: 48581_CR30
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.78
  contributor:
    fullname: A Papadopoulou
– volume: 33
  start-page: 290
  year: 2018
  ident: 48581_CR10
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2018.7
  contributor:
    fullname: DA Debeau
– volume: 18
  start-page: 1847
  year: 2016
  ident: 48581_CR28
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201600053
  contributor:
    fullname: KK Saxena
– volume: 28
  start-page: 5865
  issue: 28
  year: 2016
  ident: 48581_CR8
  publication-title: Advanced Materials
  doi: 10.1002/adma.201600610
  contributor:
    fullname: Tobias Frenzel
– volume: 45
  start-page: 6190
  year: 2008
  ident: 48581_CR22
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2008.07.014
  contributor:
    fullname: M Santer
– ident: 48581_CR9
  doi: 10.1016/j.jmps.2017.02.011
– volume: 21
  start-page: 193
  year: 2015
  ident: 48581_CR3
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/RPJ-12-2014-0182
  contributor:
    fullname: DM Correa
– volume: 4
  start-page: 52
  year: 2015
  ident: 48581_CR2
  publication-title: Extrem. Mech. Lett.
  doi: 10.1016/j.eml.2015.08.001
  contributor:
    fullname: D Restrepo
– ident: 48581_CR14
  doi: 10.1115/1.4034706
– volume: 276
  start-page: 1109
  year: 1997
  ident: 48581_CR6
  publication-title: Science (80-.).
  doi: 10.1126/science.276.5315.1109
  contributor:
    fullname: M Rief
– volume: 13
  start-page: 135
  year: 2017
  ident: 48581_CR18
  publication-title: Extrem. Mech. Lett.
  doi: 10.1016/j.eml.2017.01.001
  contributor:
    fullname: LA Danso
– volume: 43
  start-page: 1243
  year: 1995
  ident: 48581_CR5
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(95)00024-D
  contributor:
    fullname: JA Shaw
– volume: 128
  start-page: 1298
  year: 2006
  ident: 48581_CR17
  publication-title: J. Mech. Des.
  doi: 10.1115/1.2338576
  contributor:
    fullname: J Prasad
– volume: 4
  start-page: 8
  year: 2015
  ident: 48581_CR4
  publication-title: Integr. Mater. Manuf. Innov.
  doi: 10.1186/s40192-015-0038-8
  contributor:
    fullname: DM Correa
– ident: 48581_CR25
  doi: 10.1115/1.4024122
– volume: 24
  start-page: 274
  year: 2013
  ident: 48581_CR12
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X12457252
  contributor:
    fullname: ME Pontecorvo
– ident: 48581_CR1
  doi: 10.1016/B978-075067219-1/50004-0
– volume: 141
  start-page: 426
  year: 2018
  ident: 48581_CR11
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.12.050
  contributor:
    fullname: CS Ha
– ident: 48581_CR23
  doi: 10.1109/JMEMS.2004.825308
– volume: 61
  start-page: 94
  year: 2013
  ident: 48581_CR7
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2012.08.009
  contributor:
    fullname: I Benichou
– volume: 27
  start-page: 4296
  issue: 29
  year: 2015
  ident: 48581_CR15
  publication-title: Advanced Materials
  doi: 10.1002/adma.201501708
  contributor:
    fullname: Sicong Shan
– volume: 9
  start-page: 291
  year: 2016
  ident: 48581_CR19
  publication-title: Extrem. Mech. Lett.
  doi: 10.1016/j.eml.2016.09.001
  contributor:
    fullname: A Rafsanjani
– volume: 345
  start-page: 647
  year: 2014
  ident: 48581_CR20
  publication-title: Science (80-.).
  doi: 10.1126/science.1252876
  contributor:
    fullname: JL Silverberg
– ident: 48581_CR24
– volume: 25
  start-page: 527
  year: 2014
  ident: 48581_CR29
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-013-5067-2
  contributor:
    fullname: MN Ali
– volume: 28
  start-page: 8065
  year: 2016
  ident: 48581_CR13
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201670255
  contributor:
    fullname: B Haghpanah
– volume: 11
  start-page: 1078
  issue: 7
  year: 2018
  ident: 48581_CR16
  publication-title: Materials
  doi: 10.3390/ma11071078
  contributor:
    fullname: Chenhui Ren
– volume: 138
  start-page: 051401
  issue: 5
  year: 2016
  ident: 48581_CR26
  publication-title: Journal of Mechanical Design
  doi: 10.1115/1.4032809
  contributor:
    fullname: Jonathan B. Hopkins
– volume: 27
  start-page: 1193
  year: 1993
  ident: 48581_CR27
  publication-title: J. Compos. Mater.
  doi: 10.1177/002199839302701203
  contributor:
    fullname: RS Lakes
SSID ssj0000529419
Score 2.537766
Snippet Phase Transforming Cellular Materials (PXCMs) are periodic cellular materials whose unit cells exhibit multiple stable or meta-stable configurations....
Abstract Phase Transforming Cellular Materials (PXCMs) are periodic cellular materials whose unit cells exhibit multiple stable or meta-stable configurations....
SourceID pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 12581
SubjectTerms 639/166/988
639/301/1023/303
Deformation
Energy dissipation
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
Symmetry
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1dS8Mw8PADwRfx2_pFBN80rGnSNn0SlY0hKCIO9lb6kbKBdNNVxH_vXZtOpih9TEiau8vd5T4BzoXM8fMKTsKJqyDHO6eDhKeiKNJIZIkbUDby_UPQH6i7oT-0BreZDatseWLNqPNJRjbyjodvAxSeKL6vpq-cukaRd9W20FiGVU8octOu3nQfHp_mVhbyYykR2WwZV-rODCUWZZWJiCvta8H1okT6pWb-jpb84TKtJVFvEzasCsmuG5xvwZIpt2GtaSr5uQPDbp3Ox8jTbuOl2bhkJMAau9_LJ6s-Jjynuv5NTQ42HaEwY1WrxOK2jCz6FKLKUKVtqHQXBr3u822f2_4JPPOFrHjqJiJKcyXDzFdJoUyEb50s0qExiIg8FEWSI0wDv64aqPFdingzIgvwUZOFrpJ7sFJOSnMATBdh6uWRxBU1rpMmiSkUKg9GogaUFpkDFy0M42lTJiOu3dtSxw3EY4R4XEM81g4ct2CO7ZWZxd8IduBsPozETudNSjN5r-dIQQ44z4H9Bivz7STxfNQ_HAgX8DWfQIW0F0fK8aguqB2Ewke-5MBli9nv3_r7FIf_n-II1j2iMpeyXI5hpXp7NyeowFTpqaXSL2Ed8TQ
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_mRNmL-G39IoJvGl2atE0fREQ2hqBPDvZW-pGywejm1qH777007WRuvkgf0ybN3SX3u1zuDuCa8QQfO6VaOVHhJrjmpBvSiKVp5LM4bLo6Gvn1ze10xUvP6dWgKndUEnC61rTT9aS6k-Hd18f8ERf8gwkZl_dTVEI6UIz5VEhHMio3YNMWXGiJfy3hvsn1bfuC-WXszPpPG7DN9e7BJVtWVSv4c_Ua5S9faqGi2ruwU2JL8mSEYQ9qKtuHLVNtcn4AvVYR50e0C768SE0GGdGazRwIDuck_xzRRCf8N8k6yLiPWo7kFbrFYYk-6td3VwliXSO-h9Btt96fO7QsrEBjh_GcRs2Q-VEiuBc7IkyF8tEIin3pKYUcSjyWhgnSz3WKdIISDVZkqGKxi9ZO7DUFP4J6NsrUCRCZepGd-Bx7lNhPFIYqFYgqFEdoFKWxBTcVDYOxyZ8RFH5vLgND_ACJHxTED6QF5xWZg0oUAhutQoRNCNwsuFo04yrQ8w0zNZoV73CmPXO2BceGK4vhKnZa4C3xa_GCzrC93JIN-kWmbddjDm5YFtxWnP35rb9ncfrvgc6gYWtZbOrImHOo55OZukDQk0eXhSR_A5reAH4
  priority: 102
  providerName: Scholars Portal
– databaseName: SpringerOpen
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90IvgifludEsE3DTZNmqaPMhxD0CcHeyv9SNlAuuE6ZP-9d21XmdMH6WO-mrtL7ne53AXgVsgMPy_npJy40hmuOaNjnog8T0KRxq6maOSXVz0YqueRP2rS5FAszJr_XpqHOSoYCgITIVfGN4KbbdjxhXZJgnu6156nkMdKibCJi_m96bru2QCUm_cifzhHK53TP4D9Biyyx5q7h7BliyPYrZ-PXB7D6KkK3GPkU29uRrNJwUhV1Sd870tWfk55Rhn86-wbbDZGtcXKFVzFYRmd3dNlVIbgtZbHExj2n956A968lMBTX8iSJ24swiRTMkh9FefKhmjVpKEJrEWSZ4HI48xTUvtVfkCDFihyyIpUo_mSBq6Sp9AppoU9B2byIPGyUGKPBvtJ4tjmCmGClYh1kjx14G5Fw2hWJ8SIKke2NFFN8QgpHlUUj4wD3RWZo2ZxzCMPzTzEQYjEHLhpi1Gsab5xYaeLqo4U5GrzHDirudIOJ2l3R6ThQLDGr7YCpcxeLykm4yp1tg6EjzuQA_crzn7_1t-zuPhf9UvY80jqXIpv6UKn_FjYK4QuZXJdyewXAvfo2Q
  priority: 102
  providerName: Springer Nature
Title Energy dissipation in functionally two-dimensional phase transforming cellular materials
URI https://link.springer.com/article/10.1038/s41598-019-48581-8
https://www.ncbi.nlm.nih.gov/pubmed/31467381
https://www.proquest.com/docview/2282439644
https://www.proquest.com/docview/2283113002/abstract/
https://pubmed.ncbi.nlm.nih.gov/PMC6715794
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEB_84OBexLvz7qreEuHezrhNkzbpo7esyMGKyAn7Vpo0xYW1u5wV8b93krSre-KLFAolIR8zk85vkpkJwE_GK3ySmjrlREVW4ZpTWUk1q2udM1PGmYtGnlxk59fizzSdbkDax8J4p32jZyfN_Pakmd1438rlrRn2fmLDy8kokyxFORpuwqbk_IWJHhJ6J7lgeRcgE3M1vEMl5QLJWE6FShWj7pI-7n4RXLF1ffQKZL72lfzvwNTrobNd2OkAJDkNA_0EG7b5DB_ClZKPX2A69sF8xJ2zd97SZNYQp77Crt_8kbQPC1q5rP4hIwdZ3qAqI20PYbFb4vbznYMqQUAbZHQPrs_Gf0fntLs9gZqU8ZbquGS5rgSXJhVlLWyOlo7JlbQW2VBJVpdVIniW-pyBCq1S5JplJkOTxshY8K-w1Swa-x2IqqVOqpxjiwrb0WVpa4HQwXLEP7o2EfzqaVgsQ5KMwh9uc1UE4hdI_MITv1ARHPZkLroFc1ckaPohNkJ0FsHRqhhF3c23bOzi3tfhzB2_JRF8C1xZddezMwK5xq9VBZdGe70Epcun0-6kKYLjnrPPw3p7Fvvv7ugAPiZOFmMX_nIIW-2_e_sDkU2rByjPUzmA7d_ji8sr_Bplo4HfJcD3RKiBl_Qn5nz-AQ
link.rule.ids 230,315,733,786,790,870,891,2236,12083,21416,24346,27955,27956,31752,31753,33777,33778,41153,42222,43343,43838,51609,53825,53827,74100,74657
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1dT9sw8DSYELwgtvERBsOT9gZW49iJnadpQqBuFJ5A6puVD0cgobRbgxD_njsnadVVoDzasuO78935PgF-CFniF1WchBNXSYl3ziQZz0VV5akosjChbOTrm2R4p_6M43FncJt1YZU9T_SMupwUZCMfRPg2QOGJ4vvn9C-nrlHkXe1aaKzBRyWlIjrXYz23sZAXS4m0y5UJpRnMUF5RTplIuTKxEdwsy6MVJXM1VvI_h6mXQ5c7sN0pkOxXi_FP8MHVn2GjbSn58gXGFz6Zj5GfvYuWZg81I_HVWv0eX1jzPOElVfVvK3Kw6T2KMtb0Kixuy8ieTwGqDBXalkZ34e7y4vZ8yLvuCbyIhWx4HmYizUsldRGrrFIuxZdOkRrtHKKh1KLKSoRoEvuagQZfpYg1J4oEnzSFDpXcg_V6UrsDYKbSeVSmElc0uE6eZa5SqDo4ifpPXhUBnPYwtNO2SIb1zm1pbAtxixC3HuLWBHDUg9l2F2ZmF-gN4Pt8GEmdzpvVbvLk50hB7rcogP0WK_PtJHF81D4C0Ev4mk-gMtrLI_XDvS-nnWgRI1cK4KzH7OK33j7F4funOIHN4e31yI5-31x9ha2IKC6kfJcjWG_-PbljVGWa_Jun11fDEPK7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BEYgLKlDaQAtG4katjWMndk5V1XZVXhUHKu3NysPWVqqyC5sK9d8z4zhbLRUoR1t2PDP2N_a8AD4I2eKXeU7gxFXR4p4zRcVr4X1diqZKC4pG_nZRnF-qz7N8Fv2fVtGtcjwTw0HdLhp6I59keDdA8ET4nvjoFvH9dHq0_MmpghRZWmM5jYfwCFEypTIOeqbX7y1k0VKijHEzqTSTFWIXxZeJkiuTG8HNJjbdUzjv-03-ZTwNmDTdhmdRmWTHA_efwwPXvYDHQ3nJ25cwOwuBfYxs7tFzml11jKBseAG8vmX97wVvKcP_kJ2DLecIa6wf1VmcltHbPjmrMlRuB3ndgcvp2Y-Tcx4rKfAmF7LndVqJsm6V1E2uKq9cibeepjTaOWRJq4WvWqRukYf8gQZvqMhBJ5oCrzeNTpV8BVvdonN7wIzXddaWEkc0OE5dVc4rVCOcRF2o9k0CH0ca2uWQMMMGQ7c0dqC4RYrbQHFrEtgfyWzj5lnZO1Yn8H7djGJP6606t7gJfaQgU1yWwO7AlfV0kk5_1EQS0Bv8WneglNqbLd3VPKTWLrTI8YRK4HDk7N1v_XsVr_-_infwBEXVfv108eUNPM1I4FIKfdmHrf7XjTtAraav3wZx_QPy__bn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+dissipation+in+functionally+two-dimensional+phase+transforming+cellular+materials&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+Yunlan&rft.au=Restrepo%2C+David&rft.au=Velay-Lizancos%2C+Mirian&rft.au=Mankame%2C+Nilesh+D.&rft.date=2019-08-29&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=9&rft_id=info:doi/10.1038%2Fs41598-019-48581-8&rft_id=info%3Apmid%2F31467381&rft.externalDBID=PMC6715794
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon