Neural Measures Reveal a Fixed Item Limit in Subitizing
For centuries, it has been known that humans can rapidly and accurately enumerate small sets of items, a process referred to as subitizing. However, there is still active debate regarding the mechanisms that mediate this ability. For example, some have argued that subitizing reflects the operation o...
Saved in:
Published in | The Journal of neuroscience Vol. 32; no. 21; pp. 7169 - 7177 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society for Neuroscience
23.05.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For centuries, it has been known that humans can rapidly and accurately enumerate small sets of items, a process referred to as subitizing. However, there is still active debate regarding the mechanisms that mediate this ability. For example, some have argued that subitizing reflects the operation of a fixed-capacity individuation mechanism that enables concurrent access to a small number of items. However, others have argued that subitizing reflects the operation of a continuous numerical estimation mechanism whose precision varies with numerosity in a manner consistent with Weber's law. Critically, quantitative models based on either of these predictions can provide a reasonable description of subitizing performance, making it difficult to discriminate between these alternatives solely on the basis of subjects' behavioral performance. Here, we attempted to discriminate between fixed-capacity and continuous estimation models of subitizing using neural measures. In two experiments, we recorded EEGs while subjects performed a demanding subitizing task and examined set-size-dependent changes in a neurophysiological marker of visual selection (the N2pc event-related potential component) evoked by an array of to-be-enumerated items. In both experiments, N2pc amplitudes increased monotonically within the subitizing range before reaching an asymptotic limit at approximately three items. Moreover, inter-participant differences in the location of this asymptote were strongly predictive of behavioral estimates of subitizing span derived from a fixed-capacity model. Thus, neural activity linked with subitizing ability shows evidence of an early and discrete limit in the number of items that can be concurrently apprehended, supporting a fixed-capacity model of this process. |
---|---|
AbstractList | For centuries, it has been known that humans can rapidly and accurately enumerate small sets of items, a process referred to as subitizing. However, there is still active debate regarding the mechanisms that mediate this ability. For example, some have argued that subitizing reflects the operation of a fixed-capacity individuation mechanism that enables concurrent access to a small number of items. However, others have argued that subitizing reflects the operation of a continuous numerical estimation mechanism whose precision varies with numerosity in a manner consistent with Weber's law. Critically, quantitative models based on either of these predictions can provide a reasonable description of subitizing performance, making it difficult to discriminate between these alternatives solely on the basis of subjects' behavioral performance. Here, we attempted to discriminate between fixed-capacity and continuous estimation models of subitizing using neural measures. In two experiments, we recorded EEGs while subjects performed a demanding subitizing task and examined set-size-dependent changes in a neurophysiological marker of visual selection (the N2pc event-related potential component) evoked by an array of to-be-enumerated items. In both experiments, N2pc amplitudes increased monotonically within the subitizing range before reaching an asymptotic limit at approximately three items. Moreover, inter-participant differences in the location of this asymptote were strongly predictive of behavioral estimates of subitizing span derived from a fixed-capacity model. Thus, neural activity linked with subitizing ability shows evidence of an early and discrete limit in the number of items that can be concurrently apprehended, supporting a fixed-capacity model of this process. For centuries, it has been known that humans can rapidly and accurately enumerate small sets of items, a process referred to as subitizing. However, there is still active debate regarding the mechanisms that mediate this ability. For example, some have argued that subitizing reflects the operation of a fixed-capacity individuation mechanism that enables concurrent access to a small number of items. However, others have argued that subitizing reflects the operation of a continuous numerical estimation mechanism whose precision varies with numerosity in a manner consistent with Weber's law. Critically, quantitative models based on either of these predictions can provide a reasonable description of subitizing performance, making it difficult to discriminate between these alternatives solely on the basis of subjects' behavioral performance. Here, we attempted to discriminate between fixed-capacity and continuous estimation models of subitizing using neural measures. In two experiments, we recorded EEGs while subjects performed a demanding subitizing task and examined set-size-dependent changes in a neurophysiological marker of visual selection (the N2pc event-related potential component) evoked by an array of to-be-enumerated items. In both experiments, N2pc amplitudes increased monotonically within the subitizing range before reaching an asymptotic limit at approximately three items. Moreover, inter-participant differences in the location of this asymptote were strongly predictive of behavioral estimates of subitizing span derived from a fixed-capacity model. Thus, neural activity linked with subitizing ability shows evidence of an early and discrete limit in the number of items that can be concurrently apprehended, supporting a fixed-capacity model of this process.For centuries, it has been known that humans can rapidly and accurately enumerate small sets of items, a process referred to as subitizing. However, there is still active debate regarding the mechanisms that mediate this ability. For example, some have argued that subitizing reflects the operation of a fixed-capacity individuation mechanism that enables concurrent access to a small number of items. However, others have argued that subitizing reflects the operation of a continuous numerical estimation mechanism whose precision varies with numerosity in a manner consistent with Weber's law. Critically, quantitative models based on either of these predictions can provide a reasonable description of subitizing performance, making it difficult to discriminate between these alternatives solely on the basis of subjects' behavioral performance. Here, we attempted to discriminate between fixed-capacity and continuous estimation models of subitizing using neural measures. In two experiments, we recorded EEGs while subjects performed a demanding subitizing task and examined set-size-dependent changes in a neurophysiological marker of visual selection (the N2pc event-related potential component) evoked by an array of to-be-enumerated items. In both experiments, N2pc amplitudes increased monotonically within the subitizing range before reaching an asymptotic limit at approximately three items. Moreover, inter-participant differences in the location of this asymptote were strongly predictive of behavioral estimates of subitizing span derived from a fixed-capacity model. Thus, neural activity linked with subitizing ability shows evidence of an early and discrete limit in the number of items that can be concurrently apprehended, supporting a fixed-capacity model of this process. |
Author | Vogel, Edward K. Klee, Daniel Ester, Edward F. Awh, Edward Drew, Trafton |
Author_xml | – sequence: 1 givenname: Edward F. surname: Ester fullname: Ester, Edward F. – sequence: 2 givenname: Trafton surname: Drew fullname: Drew, Trafton – sequence: 3 givenname: Daniel surname: Klee fullname: Klee, Daniel – sequence: 4 givenname: Edward K. surname: Vogel fullname: Vogel, Edward K. – sequence: 5 givenname: Edward surname: Awh fullname: Awh, Edward |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22623661$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkVtLxDAQhYMoul7-gvTRl66ZaZu0IIIsq66sCl6eQ9JONNKLNq2ov94WL6gvviSEOeebQ84mW62bmhjbBT6FBKP9s4v57dXl9WwxBYQ0BJwiB1xhk2GahRhzWGUTjpKHIpbxBtv0_oFzLjnIdbaBKDASAiZMXlDf6jI4J-37lnxwRc80vHVw7F6oCBYdVcHSVa4LXB1c98Z17s3Vd9tszerS087nvcVujuc3s9NweXmymB0twzyBqAu1zbUodIwmLYTFrEAuwWCcFdYSCWPQ8pxQREBJTDYtCpNJbaRFwS2YaIsdfmAfe1NRkVPdDWnVY-sq3b6qRjv1e1K7e3XXPKsokjxNswGw9wlom6eefKcq53MqS11T03sFSQIC4yiJ_5dyEEKChJG6-zPWd56vfx0EBx-CvG28b8mq3HW6c82Y0pUDS401qu8a1VjjcKixxsEu_ti_NvxjfAeXsqKU |
CitedBy_id | crossref_primary_10_1016_j_biopsycho_2021_108091 crossref_primary_10_1111_nyas_12703 crossref_primary_10_3389_fnagi_2016_00046 crossref_primary_10_3389_fpsyg_2017_02371 crossref_primary_10_3389_fnins_2023_1190317 crossref_primary_10_1016_j_neurobiolaging_2016_01_013 crossref_primary_10_1152_jn_00082_2016 crossref_primary_10_1177_0301006615594263 crossref_primary_10_1111_ejn_15352 crossref_primary_10_1038_srep38434 crossref_primary_10_1016_j_neuroimage_2017_02_012 crossref_primary_10_1523_JNEUROSCI_2860_17_2017 crossref_primary_10_3758_s13414_019_01890_6 crossref_primary_10_3758_s13414_022_02585_1 crossref_primary_10_1016_j_cortex_2018_03_008 crossref_primary_10_3389_fpsyg_2024_1335857 crossref_primary_10_3758_s13415_013_0203_5 crossref_primary_10_1007_s00221_024_06796_w crossref_primary_10_1080_02643294_2017_1331212 crossref_primary_10_1016_j_cogpsych_2014_01_003 crossref_primary_10_1016_j_jecp_2021_105118 crossref_primary_10_3758_s13415_013_0222_2 crossref_primary_10_6115_fer_2017_036 crossref_primary_10_1371_journal_pone_0050862 crossref_primary_10_1016_j_neuroimage_2013_02_004 crossref_primary_10_1080_00220671_2018_1486281 crossref_primary_10_1111_psyp_13485 crossref_primary_10_1038_s41598_020_75297_x crossref_primary_10_1016_j_clinph_2022_02_026 crossref_primary_10_1016_j_jecp_2014_03_006 crossref_primary_10_1016_j_actpsy_2019_102870 crossref_primary_10_3389_fnhum_2018_00460 crossref_primary_10_1016_j_neubiorev_2022_104753 crossref_primary_10_1007_s13394_020_00349_4 crossref_primary_10_1162_jocn_a_00649 crossref_primary_10_3389_fnhum_2021_750582 crossref_primary_10_3758_s13414_016_1064_0 crossref_primary_10_1111_ejn_12948 crossref_primary_10_1371_journal_pone_0131063 crossref_primary_10_1016_j_brainres_2013_11_025 crossref_primary_10_1111_psyp_13219 crossref_primary_10_1111_tops_12248 crossref_primary_10_1038_s41467_020_20567_5 crossref_primary_10_3389_fpsyg_2020_00522 crossref_primary_10_1111_ejn_12589 crossref_primary_10_3389_fpsyt_2020_544540 crossref_primary_10_1016_j_neuropsychologia_2017_03_023 crossref_primary_10_1111_psyp_13375 crossref_primary_10_3758_s13414_016_1152_1 crossref_primary_10_5964_jnc_v4i2_161 crossref_primary_10_1016_j_cognition_2018_12_008 crossref_primary_10_1016_j_neuropsychologia_2018_01_022 crossref_primary_10_3758_s13414_022_02580_6 crossref_primary_10_1016_j_cortex_2017_10_013 crossref_primary_10_1523_JNEUROSCI_2962_19_2020 crossref_primary_10_3233_JAD_161274 crossref_primary_10_1016_j_pediatrneurol_2016_02_007 crossref_primary_10_1016_j_brainres_2015_12_047 crossref_primary_10_1162_jocn_a_00349 crossref_primary_10_1038_s41598_020_68788_4 crossref_primary_10_3389_fnhum_2015_00162 crossref_primary_10_1016_j_cortex_2019_08_012 crossref_primary_10_1002_aur_1498 |
Cites_doi | 10.1037/h0093759 10.1016/0010-0277(92)90050-R 10.1371/journal.pone.0020779 10.1038/23698 10.1111/j.1467-9280.2008.02130.x 10.1111/j.1467-9280.2006.01746.x 10.1037/0096-1523.29.1.121 10.1162/jocn.1993.5.4.390 10.1016/j.visres.2010.07.011 10.1016/j.cognition.2005.10.004 10.1016/j.cognition.2011.05.007 10.3758/PP.70.5.743 10.1163/156856897X00357 10.1016/S0010-9452(08)70447-7 10.1038/nature02447 10.1080/13506285.2011.603709 10.1016/0010-0285(80)90005-5 10.1037/0033-295X.101.1.80 10.1162/jocn.2009.21194 10.1038/003281a0 10.1162/jocn.2011.21602 10.1016/j.tics.2009.01.008 10.1093/cercor/bhm205 10.1007/BF00937136 10.1162/jocn.2009.21039 10.1523/JNEUROSCI.4125-10.2011 10.1523/JNEUROSCI.0556-08.2008 10.1037/0096-1523.20.5.1000 10.1111/j.1467-9280.2007.01949.x 10.3758/BF03207540 10.1016/j.conb.2010.03.005 10.1016/S0166-2236(98)01263-6 10.1016/0013-4694(96)95711-9 10.1371/journal.pone.0017453 10.1163/156856897X00366 10.2307/1418556 10.1037/0096-3445.111.1.1 10.1038/nature06860 10.1037/0096-1523.19.2.331 |
ContentType | Journal Article |
Copyright | Copyright © 2012 the authors 0270-6474/12/327169-09$15.00/0 2012 |
Copyright_xml | – notice: Copyright © 2012 the authors 0270-6474/12/327169-09$15.00/0 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.1523/JNEUROSCI.1218-12.2012 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | CrossRef Neurosciences Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 7177 |
ExternalDocumentID | PMC3370889 22623661 10_1523_JNEUROSCI_1218_12_2012 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01-MH087214 – fundername: NIMH NIH HHS grantid: R01 MH087214 |
GroupedDBID | --- -DZ -~X .55 18M 2WC 34G 39C 3O- 53G 5GY 5RE 5VS AAFWJ AAJMC AAYXX ABBAR ABIVO ACGUR ACNCT ADBBV ADCOW ADHGD AENEX AETEA AFCFT AFOSN AFSQR AHWXS ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 HYE H~9 KQ8 L7B MVM OK1 P0W P2P QZG R.V RHI RPM TFN TR2 W8F WH7 WOQ X7M XJT YBU YHG YKV YNH YSK CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c513t-afca6da42b8d6f29d2071b249dffee6bb2f0ce2631e54ef8ddb97ab7f260f1b3 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 18:09:18 EDT 2025 Fri Jul 11 10:35:48 EDT 2025 Thu Jul 10 22:18:31 EDT 2025 Thu Apr 03 07:01:41 EDT 2025 Tue Jul 01 03:46:49 EDT 2025 Thu Apr 24 23:06:19 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c513t-afca6da42b8d6f29d2071b249dffee6bb2f0ce2631e54ef8ddb97ab7f260f1b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: E.F.E., T.D., E.K.V., and E.A. designed research; E.F.E. and D.K. performed research; E.F.E. and D.K. analyzed data; E.F.E., T.D., E.K.V., and E.A. wrote the paper. |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/32/21/7169.full.pdf |
PMID | 22623661 |
PQID | 1016671719 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3370889 proquest_miscellaneous_1551624354 proquest_miscellaneous_1016671719 pubmed_primary_22623661 crossref_citationtrail_10_1523_JNEUROSCI_1218_12_2012 crossref_primary_10_1523_JNEUROSCI_1218_12_2012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-05-23 2012-May-23 20120523 |
PublicationDateYYYYMMDD | 2012-05-23 |
PublicationDate_xml | – month: 05 year: 2012 text: 2012-05-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2012 |
Publisher | Society for Neuroscience |
Publisher_xml | – name: Society for Neuroscience |
References | 2023041303563277000_32.21.7169.17 2023041303563277000_32.21.7169.39 2023041303563277000_32.21.7169.18 2023041303563277000_32.21.7169.19 Sperling (2023041303563277000_32.21.7169.30) 1960; 74 2023041303563277000_32.21.7169.1 2023041303563277000_32.21.7169.4 2023041303563277000_32.21.7169.24 2023041303563277000_32.21.7169.5 2023041303563277000_32.21.7169.25 2023041303563277000_32.21.7169.2 2023041303563277000_32.21.7169.26 2023041303563277000_32.21.7169.27 2023041303563277000_32.21.7169.8 2023041303563277000_32.21.7169.20 2023041303563277000_32.21.7169.9 2023041303563277000_32.21.7169.21 2023041303563277000_32.21.7169.6 2023041303563277000_32.21.7169.22 2023041303563277000_32.21.7169.7 2023041303563277000_32.21.7169.23 2023041303563277000_32.21.7169.28 2023041303563277000_32.21.7169.29 Trick (2023041303563277000_32.21.7169.32) 2008; 70 Balakrishnan (2023041303563277000_32.21.7169.3) 1991; 50 2023041303563277000_32.21.7169.13 2023041303563277000_32.21.7169.35 2023041303563277000_32.21.7169.14 2023041303563277000_32.21.7169.36 2023041303563277000_32.21.7169.15 2023041303563277000_32.21.7169.37 2023041303563277000_32.21.7169.16 2023041303563277000_32.21.7169.38 2023041303563277000_32.21.7169.31 2023041303563277000_32.21.7169.10 2023041303563277000_32.21.7169.11 2023041303563277000_32.21.7169.33 2023041303563277000_32.21.7169.12 2023041303563277000_32.21.7169.34 7351125 - Cogn Psychol. 1980 Jan;12(1):97-136 17334209 - Cortex. 2007 Jan;43(1):77-94 15392567 - Am J Psychol. 1949 Oct;62(4):498-525 18042643 - Cereb Cortex. 2008 Aug;18(8):1788-98 8862112 - Electroencephalogr Clin Neurophysiol. 1996 Sep;99(3):225-34 6460833 - J Exp Psychol Gen. 1982 Mar;111(1):1-22 22053147 - Vis cogn. 2011 Aug;19(7):956-972 18385672 - Nature. 2008 May 8;453(7192):233-5 21387002 - PLoS One. 2011;6(2):e17453 1780203 - Percept Psychophys. 1991 Dec;50(6):555-64 18578852 - Psychol Sci. 2008 Jun;19(6):607-14 1620801 - Psychol Res. 1992;54(2):80-90 21679934 - Cognition. 2011 Oct;121(1):147-53 15085132 - Nature. 2004 Apr 15;428(6984):748-51 1511586 - Cognition. 1992 Aug;44(1-2):43-74 7964526 - J Exp Psychol Hum Percept Perform. 1994 Oct;20(5):1000-14 19269882 - Trends Cogn Sci. 2009 Apr;13(4):167-74 18417697 - J Neurosci. 2008 Apr 16;28(16):4183-91 8121961 - Psychol Rev. 1994 Jan;101(1):80-102 20362427 - Curr Opin Neurobiol. 2010 Apr;20(2):177-82 12669752 - J Exp Psychol Hum Percept Perform. 2003 Feb;29(1):121-38 21695212 - PLoS One. 2011;6(6):e20779 21248137 - J Neurosci. 2011 Jan 19;31(3):1128-38 18613623 - Percept Psychophys. 2008 Jul;70(5):743-60 17614871 - Psychol Sci. 2007 Jul;18(7):622-8 9176953 - Spat Vis. 1997;10(4):437-42 9176952 - Spat Vis. 1997;10(4):433-6 23964915 - J Cogn Neurosci. 1993 Fall;5(4):390-407 19199425 - J Cogn Neurosci. 2010 Jan;22(1):32-47 16359652 - Cognition. 2006 Aug;101(1):217-45 18564048 - J Cogn Neurosci. 2009 Apr;21(4):760-75 9720604 - Trends Neurosci. 1998 Aug;21(8):355-61 21254796 - J Cogn Neurosci. 2011 Oct;23(10):2650-64 8473843 - J Exp Psychol Hum Percept Perform. 1993 Apr;19(2):331-51 16866741 - Psychol Sci. 2006 Jul;17(7):572-6 20647016 - Vision Res. 2010 Sep 15;50(19):2000-7 10476964 - Nature. 1999 Aug 26;400(6747):867-9 |
References_xml | – volume: 74 start-page: 1 year: 1960 ident: 2023041303563277000_32.21.7169.30 article-title: The information available in brief visual presentations publication-title: Psychol Monogr doi: 10.1037/h0093759 – ident: 2023041303563277000_32.21.7169.13 doi: 10.1016/0010-0277(92)90050-R – ident: 2023041303563277000_32.21.7169.25 doi: 10.1371/journal.pone.0020779 – ident: 2023041303563277000_32.21.7169.36 doi: 10.1038/23698 – ident: 2023041303563277000_32.21.7169.28 doi: 10.1111/j.1467-9280.2008.02130.x – ident: 2023041303563277000_32.21.7169.15 doi: 10.1111/j.1467-9280.2006.01746.x – ident: 2023041303563277000_32.21.7169.37 doi: 10.1037/0096-1523.29.1.121 – ident: 2023041303563277000_32.21.7169.8 doi: 10.1162/jocn.1993.5.4.390 – ident: 2023041303563277000_32.21.7169.24 doi: 10.1016/j.visres.2010.07.011 – ident: 2023041303563277000_32.21.7169.14 doi: 10.1016/j.cognition.2005.10.004 – ident: 2023041303563277000_32.21.7169.27 doi: 10.1016/j.cognition.2011.05.007 – volume: 70 start-page: 743 year: 2008 ident: 2023041303563277000_32.21.7169.32 article-title: More than superstition: differential effects of featural heterogeneity and change on subitizing and counting publication-title: Percept Psychophys doi: 10.3758/PP.70.5.743 – ident: 2023041303563277000_32.21.7169.5 doi: 10.1163/156856897X00357 – ident: 2023041303563277000_32.21.7169.22 doi: 10.1016/S0010-9452(08)70447-7 – ident: 2023041303563277000_32.21.7169.35 doi: 10.1038/nature02447 – ident: 2023041303563277000_32.21.7169.29 doi: 10.1080/13506285.2011.603709 – ident: 2023041303563277000_32.21.7169.31 doi: 10.1016/0010-0285(80)90005-5 – ident: 2023041303563277000_32.21.7169.34 doi: 10.1037/0033-295X.101.1.80 – ident: 2023041303563277000_32.21.7169.7 doi: 10.1162/jocn.2009.21194 – ident: 2023041303563277000_32.21.7169.17 doi: 10.1038/003281a0 – ident: 2023041303563277000_32.21.7169.6 doi: 10.1162/jocn.2011.21602 – ident: 2023041303563277000_32.21.7169.38 doi: 10.1016/j.tics.2009.01.008 – ident: 2023041303563277000_32.21.7169.23 doi: 10.1093/cercor/bhm205 – ident: 2023041303563277000_32.21.7169.4 doi: 10.1007/BF00937136 – ident: 2023041303563277000_32.21.7169.16 doi: 10.1162/jocn.2009.21039 – ident: 2023041303563277000_32.21.7169.1 doi: 10.1523/JNEUROSCI.4125-10.2011 – ident: 2023041303563277000_32.21.7169.10 doi: 10.1523/JNEUROSCI.0556-08.2008 – ident: 2023041303563277000_32.21.7169.19 doi: 10.1037/0096-1523.20.5.1000 – ident: 2023041303563277000_32.21.7169.2 doi: 10.1111/j.1467-9280.2007.01949.x – volume: 50 start-page: 555 year: 1991 ident: 2023041303563277000_32.21.7169.3 article-title: Is subitizing a unique numerical ability? publication-title: Percept Psychophys doi: 10.3758/BF03207540 – ident: 2023041303563277000_32.21.7169.12 doi: 10.1016/j.conb.2010.03.005 – ident: 2023041303563277000_32.21.7169.9 doi: 10.1016/S0166-2236(98)01263-6 – ident: 2023041303563277000_32.21.7169.11 doi: 10.1016/0013-4694(96)95711-9 – ident: 2023041303563277000_32.21.7169.21 doi: 10.1371/journal.pone.0017453 – ident: 2023041303563277000_32.21.7169.26 doi: 10.1163/156856897X00366 – ident: 2023041303563277000_32.21.7169.18 doi: 10.2307/1418556 – ident: 2023041303563277000_32.21.7169.20 doi: 10.1037/0096-3445.111.1.1 – ident: 2023041303563277000_32.21.7169.39 doi: 10.1038/nature06860 – ident: 2023041303563277000_32.21.7169.33 doi: 10.1037/0096-1523.19.2.331 – reference: 15085132 - Nature. 2004 Apr 15;428(6984):748-51 – reference: 17614871 - Psychol Sci. 2007 Jul;18(7):622-8 – reference: 21695212 - PLoS One. 2011;6(6):e20779 – reference: 16866741 - Psychol Sci. 2006 Jul;17(7):572-6 – reference: 9176953 - Spat Vis. 1997;10(4):437-42 – reference: 10476964 - Nature. 1999 Aug 26;400(6747):867-9 – reference: 18417697 - J Neurosci. 2008 Apr 16;28(16):4183-91 – reference: 18578852 - Psychol Sci. 2008 Jun;19(6):607-14 – reference: 1620801 - Psychol Res. 1992;54(2):80-90 – reference: 21254796 - J Cogn Neurosci. 2011 Oct;23(10):2650-64 – reference: 20362427 - Curr Opin Neurobiol. 2010 Apr;20(2):177-82 – reference: 8121961 - Psychol Rev. 1994 Jan;101(1):80-102 – reference: 23964915 - J Cogn Neurosci. 1993 Fall;5(4):390-407 – reference: 1780203 - Percept Psychophys. 1991 Dec;50(6):555-64 – reference: 20647016 - Vision Res. 2010 Sep 15;50(19):2000-7 – reference: 9720604 - Trends Neurosci. 1998 Aug;21(8):355-61 – reference: 18042643 - Cereb Cortex. 2008 Aug;18(8):1788-98 – reference: 21679934 - Cognition. 2011 Oct;121(1):147-53 – reference: 12669752 - J Exp Psychol Hum Percept Perform. 2003 Feb;29(1):121-38 – reference: 21248137 - J Neurosci. 2011 Jan 19;31(3):1128-38 – reference: 19199425 - J Cogn Neurosci. 2010 Jan;22(1):32-47 – reference: 9176952 - Spat Vis. 1997;10(4):433-6 – reference: 7351125 - Cogn Psychol. 1980 Jan;12(1):97-136 – reference: 21387002 - PLoS One. 2011;6(2):e17453 – reference: 22053147 - Vis cogn. 2011 Aug;19(7):956-972 – reference: 8473843 - J Exp Psychol Hum Percept Perform. 1993 Apr;19(2):331-51 – reference: 17334209 - Cortex. 2007 Jan;43(1):77-94 – reference: 18385672 - Nature. 2008 May 8;453(7192):233-5 – reference: 6460833 - J Exp Psychol Gen. 1982 Mar;111(1):1-22 – reference: 8862112 - Electroencephalogr Clin Neurophysiol. 1996 Sep;99(3):225-34 – reference: 15392567 - Am J Psychol. 1949 Oct;62(4):498-525 – reference: 19269882 - Trends Cogn Sci. 2009 Apr;13(4):167-74 – reference: 16359652 - Cognition. 2006 Aug;101(1):217-45 – reference: 7964526 - J Exp Psychol Hum Percept Perform. 1994 Oct;20(5):1000-14 – reference: 1511586 - Cognition. 1992 Aug;44(1-2):43-74 – reference: 18564048 - J Cogn Neurosci. 2009 Apr;21(4):760-75 – reference: 18613623 - Percept Psychophys. 2008 Jul;70(5):743-60 |
SSID | ssj0007017 |
Score | 2.3520908 |
Snippet | For centuries, it has been known that humans can rapidly and accurately enumerate small sets of items, a process referred to as subitizing. However, there is... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 7169 |
SubjectTerms | Adult Evoked Potentials, Visual - physiology Female Humans Male Photic Stimulation - methods Psychomotor Performance - physiology Reaction Time Visual Perception - physiology |
Title | Neural Measures Reveal a Fixed Item Limit in Subitizing |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22623661 https://www.proquest.com/docview/1016671719 https://www.proquest.com/docview/1551624354 https://pubmed.ncbi.nlm.nih.gov/PMC3370889 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgvPCCgPFRvmQkxAsKS5zYbh6n0WpsowiRob5FdmJDEKRopAj213Nn56tQweAlqtwkrnzX8_18d78j5IkKDZg8boN4qmWQpFoEKS8xp0EB3lCp4AaB4quFODxNjpZ8ObS5c9UljX5enG-tK_kfqcIYyBWrZP9Bsv1LYQA-g3zhChKG64VkjMwarrbWnfNhxcc35AlWz-bVd3Ak8RjeVzDhqQaYiKqpzrut6uOgJiOndERv2Ut81jXv8A2eh1zgF2fGBYZgv7PNKJzfku_76vVu9N3qvU8IaN9yPD5vwMQNHviS4M5EMheTicY2dDijXHclz61FRDae0e4K6FFutdzcMUgcLTCB8e3BS2S9AHiLpXJtmvUGVfbidT4_PTnJs9kyu0yuMMAI2L7i-M1AFS9D1265_7lteTjMs7d9lk3P5De48WvW7MgNya6Ta62o6L5Xhhvkkqlvkt39WjWrzz_oU-oyel2oZJdIrx-00w_q9YMq6vSDon5Qpx-0qumgH7dINp9lB4dB2ygjKHgUN4GyhRKlSpielsKytGTgOGoA1qW1xgitmQ0Lw0QcGZ4YOy1LnUqlpQUwayMd3yY79ao2dwlVsP9pwNhlFGKJsdRCmUJHhZ3GSWiknRDerVFetCTy2MvkU45gEtY279c2x7WFS45rOyF7_XNfPI3KX5943IkgB4uHYSxVm9X6q0tKFKBHUfqHezD-ywAKJBNyx4utnxcAB4vBLZ0QuSHQ_gZkXN_8pq4-OOb1OJaYFnjvAvPeJ1eHf88DstOcrc1D8F8b_cjp6U-zW5iG |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Measures+Reveal+a+Fixed+Item+Limit+in+Subitizing&rft.jtitle=The+Journal+of+neuroscience&rft.au=Ester%2C+Edward+F&rft.au=Drew%2C+Trafton&rft.au=Klee%2C+Daniel&rft.au=Vogel%2C+Edward+K&rft.date=2012-05-23&rft.issn=1529-2401&rft.volume=32&rft.issue=21&rft.spage=7169&rft.epage=7177&rft_id=info:doi/10.1523%2FJNEUROSCI.1218-12.2012&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |