Electrochemical Sensing Strategies for Synthetic Orange Dyes
This review explores electrochemical sensing strategies for synthetic orange dyes, addressing the growing need for sensitive and selective detection methods in various industries. We examine the fundamental principles underlying the electrochemical detection of these compounds, focusing on their red...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 29; no. 21; p. 5026 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.11.2024
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This review explores electrochemical sensing strategies for synthetic orange dyes, addressing the growing need for sensitive and selective detection methods in various industries. We examine the fundamental principles underlying the electrochemical detection of these compounds, focusing on their redox behavior and interaction with electrode surfaces. The review covers a range of sensor designs, from unmodified electrodes to advanced nanomaterial-based platforms. Chemically modified electrodes incorporating polymers and molecularly imprinted polymers are discussed for their enhanced selectivity. Particular attention is given to nanomaterial-based sensors, including those utilizing carbon nanotubes, graphene derivatives, and metal nanoparticles, which have demonstrated exceptional sensitivity and wide linear ranges. The potential of biological-based approaches, such as DNA interaction sensors and immunosensors, is also evaluated. Current challenges in the field are addressed, including matrix effects in complex samples and long-term stability issues. Emerging trends are highlighted, including the development of multi-modal sensing platforms and the integration of artificial intelligence for data analysis. The review concludes by discussing the commercial potential of these sensors in food safety, environmental monitoring, and smart packaging applications, emphasizing their importance in ensuring the safe use of synthetic orange dyes across industries. |
---|---|
AbstractList | This review explores electrochemical sensing strategies for synthetic orange dyes, addressing the growing need for sensitive and selective detection methods in various industries. We examine the fundamental principles underlying the electrochemical detection of these compounds, focusing on their redox behavior and interaction with electrode surfaces. The review covers a range of sensor designs, from unmodified electrodes to advanced nanomaterial-based platforms. Chemically modified electrodes incorporating polymers and molecularly imprinted polymers are discussed for their enhanced selectivity. Particular attention is given to nanomaterial-based sensors, including those utilizing carbon nanotubes, graphene derivatives, and metal nanoparticles, which have demonstrated exceptional sensitivity and wide linear ranges. The potential of biological-based approaches, such as DNA interaction sensors and immunosensors, is also evaluated. Current challenges in the field are addressed, including matrix effects in complex samples and long-term stability issues. Emerging trends are highlighted, including the development of multi-modal sensing platforms and the integration of artificial intelligence for data analysis. The review concludes by discussing the commercial potential of these sensors in food safety, environmental monitoring, and smart packaging applications, emphasizing their importance in ensuring the safe use of synthetic orange dyes across industries. This review explores electrochemical sensing strategies for synthetic orange dyes, addressing the growing need for sensitive and selective detection methods in various industries. We examine the fundamental principles underlying the electrochemical detection of these compounds, focusing on their redox behavior and interaction with electrode surfaces. The review covers a range of sensor designs, from unmodified electrodes to advanced nanomaterial-based platforms. Chemically modified electrodes incorporating polymers and molecularly imprinted polymers are discussed for their enhanced selectivity. Particular attention is given to nanomaterial-based sensors, including those utilizing carbon nanotubes, graphene derivatives, and metal nanoparticles, which have demonstrated exceptional sensitivity and wide linear ranges. The potential of biological-based approaches, such as DNA interaction sensors and immunosensors, is also evaluated. Current challenges in the field are addressed, including matrix effects in complex samples and long-term stability issues. Emerging trends are highlighted, including the development of multi-modal sensing platforms and the integration of artificial intelligence for data analysis. The review concludes by discussing the commercial potential of these sensors in food safety, environmental monitoring, and smart packaging applications, emphasizing their importance in ensuring the safe use of synthetic orange dyes across industries.This review explores electrochemical sensing strategies for synthetic orange dyes, addressing the growing need for sensitive and selective detection methods in various industries. We examine the fundamental principles underlying the electrochemical detection of these compounds, focusing on their redox behavior and interaction with electrode surfaces. The review covers a range of sensor designs, from unmodified electrodes to advanced nanomaterial-based platforms. Chemically modified electrodes incorporating polymers and molecularly imprinted polymers are discussed for their enhanced selectivity. Particular attention is given to nanomaterial-based sensors, including those utilizing carbon nanotubes, graphene derivatives, and metal nanoparticles, which have demonstrated exceptional sensitivity and wide linear ranges. The potential of biological-based approaches, such as DNA interaction sensors and immunosensors, is also evaluated. Current challenges in the field are addressed, including matrix effects in complex samples and long-term stability issues. Emerging trends are highlighted, including the development of multi-modal sensing platforms and the integration of artificial intelligence for data analysis. The review concludes by discussing the commercial potential of these sensors in food safety, environmental monitoring, and smart packaging applications, emphasizing their importance in ensuring the safe use of synthetic orange dyes across industries. |
Audience | Academic |
Author | Fu, Li Zheng, Yuhong Zhu, Jiangwei Wu, Dihua |
AuthorAffiliation | 3 Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China; zhengyuhong@cnbg.net 4 Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China 1 College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; wudihual@hdu.edu.cn 2 Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; jwzhu@njfu.edu.cn |
AuthorAffiliation_xml | – name: 1 College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; wudihual@hdu.edu.cn – name: 4 Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China – name: 2 Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; jwzhu@njfu.edu.cn – name: 3 Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China; zhengyuhong@cnbg.net |
Author_xml | – sequence: 1 givenname: Dihua surname: Wu fullname: Wu, Dihua – sequence: 2 givenname: Jiangwei surname: Zhu fullname: Zhu, Jiangwei – sequence: 3 givenname: Yuhong orcidid: 0000-0002-1968-7434 surname: Zheng fullname: Zheng, Yuhong – sequence: 4 givenname: Li orcidid: 0000-0002-5957-7790 surname: Fu fullname: Fu, Li |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39519667$$D View this record in MEDLINE/PubMed |
BookMark | eNptkltrFDEUgINU7EV_gC8y4IsvW3OdbECQUqsWCn1YfQ6ZzJnZLLNJTWYK--8949baVQkhIfnynZzknJKjmCIQ8prRcyEMfb9NA_hpgMINZ4ry-hk5YZLThaDSHD2ZH5PTUjaUciaZekGOhVHM1LU-IR-uUDHm5NewDd4N1QpiCbGvVmN2I_QBStWlXK12cVzDGHx1m13sofq0g_KSPO_cUODVw3hGvn---nb5dXFz--X68uJm4RUT48IZBTUw7Zc1B9866RonDRNGcFor5WlXL7vWNbVjbW2Ep1p0CHoDQnOciDNyvfe2yW3sXQ5bl3c2uWB_LaTcW5fxbgNYxrRuPPfQepBKclT6zlHdUilZ0wp0fdy77qZmO1MREx0OpIc7Maxtn-7RrKTGV0PDuwdDTj8mKKPdhuJhGFyENBUrGF9qqZieg739C92kKUd8q5mqKXZl_lC9wwxC7BIG9rPUXiwxKqeScaTO_0Nha-efw8LoAq4fHHjzNNPHFH9_PgJsD_icSsnQPSKM2rnA7D8FJn4ClXTDrw |
Cites_doi | 10.1016/j.snb.2015.09.017 10.1021/acsomega.1c03172 10.1016/j.microc.2021.106322 10.1016/j.seppur.2010.03.005 10.1016/j.snb.2012.07.069 10.1111/cote.12334 10.1002/admt.201800658 10.1016/j.jscs.2016.06.002 10.1002/elan.200904593 10.1016/j.matpr.2021.01.258 10.1016/j.talanta.2011.10.038 10.1016/B978-0-12-816809-7.00006-3 10.1007/s12649-021-01443-9 10.1016/j.inoche.2023.111010 10.1016/j.chroma.2017.10.063 10.1016/j.foodchem.2020.126249 10.1016/j.chemosphere.2022.136416 10.1016/S1452-3981(23)07761-1 10.1016/j.ijbiomac.2020.12.054 10.1016/j.foodchem.2020.127841 10.1016/j.foodchem.2019.125745 10.1134/S1023193513110086 10.1016/j.sintl.2020.100076 10.1016/j.dyepig.2024.111976 10.3389/fbioe.2024.1361469 10.1038/srep41963 10.1016/j.chemosphere.2019.125010 10.3390/electrochem2020020 10.1016/j.coelec.2019.11.003 10.1021/acs.biomac.8b01378 10.3390/polym12030532 10.1016/j.foodchem.2020.126848 10.1063/1.4973411 10.1016/j.aca.2019.07.009 10.1039/D2AN01432G 10.3390/gels8020083 10.2174/1573411014666180510152154 10.1007/s13197-023-05694-3 10.1016/j.dyepig.2019.03.027 10.1016/j.molliq.2020.114201 10.1016/S0039-9140(03)00238-8 10.1007/s11664-023-10645-x 10.1016/j.foodchem.2015.06.045 10.1186/s40824-019-0181-y 10.1016/j.electacta.2017.09.010 10.1016/j.dyepig.2018.08.052 10.1039/D1CP05798G 10.1039/D1MA00354B 10.1021/acs.analchem.1c01116 10.1016/j.dyepig.2016.12.021 10.1016/j.measurement.2019.04.058 10.1016/j.fct.2022.113391 10.1016/j.chemosphere.2019.124479 10.1016/j.fct.2022.112961 10.1002/chem.202400573 10.1016/j.snb.2014.05.001 10.1016/j.electacta.2014.05.090 10.1016/j.heliyon.2020.e03271 10.1080/03067319.2017.1399205 10.1002/celc.202300490 10.1002/9781119905332.ch5 10.1039/c3ay40250a 10.1021/acsomega.2c03641 10.3389/fonc.2024.1373263 10.5772/intechopen.90970 10.1016/j.fochx.2020.100085 10.1201/9781315120157-9 10.1016/j.bios.2017.01.011 10.1039/D3TC02271D 10.1007/s11064-019-02901-6 10.1016/j.foodcont.2022.109491 10.3390/s20164600 10.1016/j.electacta.2018.09.090 10.3390/chemosensors11020113 10.1016/j.microc.2023.108540 10.3390/antiox11102059 10.1021/acsomega.1c03666 10.3390/s20113211 10.1007/978-3-319-33892-7 10.1201/9781003057505-6 10.1081/AL-200065796 10.1002/elan.201900059 10.1016/j.foodchem.2023.135600 10.3390/molecules27165221 10.1016/j.foodchem.2022.134501 10.1007/s00216-019-02155-9 10.1016/j.foodchem.2018.12.132 10.1016/j.snb.2013.01.029 10.3390/bios13121002 10.1016/j.scitotenv.2020.137222 10.1016/j.electacta.2014.03.039 10.3390/bios12110959 10.1007/s00706-023-03137-5 10.1016/j.jes.2020.05.022 10.1016/j.foodchem.2020.127105 10.1016/j.molstruc.2018.12.102 10.3389/fmicb.2018.01746 10.1016/S0039-9140(96)02105-4 10.1016/j.fuel.2008.07.022 10.1016/j.diamond.2020.107698 10.1016/j.snb.2016.12.077 10.1016/j.bios.2017.10.010 10.1002/admt.202100569 10.3390/s23042160 10.3390/cosmetics5030047 10.3390/polym14245429 10.1016/j.foodchem.2017.01.071 10.1007/s42823-024-00726-0 10.1016/j.aca.2015.08.042 10.3390/molecules27196655 10.1016/j.envint.2018.11.038 10.1016/j.chemosphere.2020.125938 10.1016/j.talanta.2015.04.042 10.1016/j.bios.2020.112836 10.1016/j.dyepig.2020.108385 10.3390/toxics11040366 10.1016/j.foodchem.2016.10.010 10.3390/molecules27010098 10.1016/j.tifs.2016.03.009 10.3390/molecules26175419 10.1016/j.foodchem.2014.07.143 10.1134/S1061934814090044 10.1039/D0MA00291G 10.3390/su151410891 10.1016/j.jelechem.2019.01.060 10.3390/cosmetics7040075 10.1016/j.cis.2022.102832 10.1093/fqsafe/fyaa039 10.1016/j.fluid.2018.01.009 10.1007/s11356-020-12208-7 10.1016/j.heliyon.2023.e19943 10.1021/acsami.1c11593 10.3390/foods11152380 10.1080/03067319.2020.1711892 10.1021/acsami.1c00215 10.1016/j.microc.2020.105133 10.3390/bios11120525 10.1080/19440049.2017.1308018 10.1111/cote.12059 10.17344/acsi.2020.6617 10.1016/j.fct.2022.113398 10.1108/RJTA-04-2022-0035 10.1016/j.electacta.2018.04.096 10.1016/j.envres.2021.112128 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/molecules29215026 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1420-3049 |
ExternalDocumentID | oai_doaj_org_article_1177bc2cedce4542a1dcfa07d0441bd3 PMC11547196 A815420412 39519667 10_3390_molecules29215026 |
Genre | Journal Article Review |
GeographicLocations | Sudan Israel |
GeographicLocations_xml | – name: Israel – name: Sudan |
GroupedDBID | --- 0R~ 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIWK ACPRK ACUHS AEGXH AENEX AFKRA AFPKN AFRAH AFZYC AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EMOBN ESX FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE HZ~ I09 IAO IHR ITC KQ8 LK8 M1P MODMG O-U O9- OK1 P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM SV3 TR2 TUS UKHRP ~8M 3V. ABJCF BBNVY BHPHI CGR CUY CVF ECM EIF HCIFZ KB. M7P M~E NPM PDBOC PMFND 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c513t-a95e6e17c862ecda4aba49139320655c0f68fdab6a1d693c073f2ecc9e3722ec3 |
IEDL.DBID | DOA |
ISSN | 1420-3049 |
IngestDate | Wed Aug 27 01:31:20 EDT 2025 Thu Aug 21 18:30:34 EDT 2025 Tue Aug 05 09:58:32 EDT 2025 Sat Jul 26 00:15:00 EDT 2025 Tue Jun 17 22:00:54 EDT 2025 Tue Jun 10 21:03:08 EDT 2025 Wed Feb 19 02:03:16 EST 2025 Tue Jul 01 04:00:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | food safety voltammetry azo compounds nanomaterial composites molecularly imprinted polymers |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c513t-a95e6e17c862ecda4aba49139320655c0f68fdab6a1d693c073f2ecc9e3722ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1968-7434 0000-0002-5957-7790 |
OpenAccessLink | https://doaj.org/article/1177bc2cedce4542a1dcfa07d0441bd3 |
PMID | 39519667 |
PQID | 3126012659 |
PQPubID | 2032355 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1177bc2cedce4542a1dcfa07d0441bd3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11547196 proquest_miscellaneous_3128745173 proquest_journals_3126012659 gale_infotracmisc_A815420412 gale_infotracacademiconefile_A815420412 pubmed_primary_39519667 crossref_primary_10_3390_molecules29215026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Molecules (Basel, Switzerland) |
PublicationTitleAlternate | Molecules |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Farias (ref_96) 2005; 38 Sharma (ref_55) 2021; 45 ref_93 Chethana (ref_148) 2014; 69 Yang (ref_139) 2015; 142 ref_12 ref_11 Dulo (ref_47) 2021; 12 ref_99 ref_10 ref_98 Xia (ref_91) 2020; 241 Ganjoo (ref_48) 2023; 311 Kang (ref_126) 2020; 323 Yang (ref_14) 2021; 13 ref_19 ref_18 ref_17 Shahid (ref_44) 2019; 1083 Liu (ref_119) 2014; 136 Vatandost (ref_127) 2020; 6 Alaguprathana (ref_5) 2021; 28 Wu (ref_106) 2023; 413 (ref_149) 2021; 68 Ramya (ref_115) 2022; 308 Kumar (ref_140) 2021; 2 Gan (ref_120) 2013; 5 ref_25 Mohamed (ref_83) 2018; 22 ref_23 Dutta (ref_4) 2021; 2 ref_22 Laghrib (ref_82) 2021; 101 Khan (ref_88) 2020; 1 Heydari (ref_147) 2019; 283 Wu (ref_9) 2020; 328 Nikhil (ref_133) 2023; 52 ref_29 Yang (ref_60) 2024; 223 Soni (ref_92) 2021; 2 Asha (ref_105) 2024; 155 ref_72 ref_70 Xu (ref_73) 2019; 4 Zahran (ref_16) 2023; 9 Bansal (ref_43) 2010; 72 Kousar (ref_89) 2021; 6 Richard (ref_15) 2021; 13 Arvand (ref_107) 2017; 243 Yin (ref_124) 2018; 100 ref_74 Anupurath (ref_86) 2021; 6 Benvidi (ref_156) 2017; 220 Rasheed (ref_8) 2019; 122 Martins (ref_57) 2016; 52 Qiu (ref_28) 2019; 160 Lu (ref_137) 2012; 173 Li (ref_153) 2021; 6 Cai (ref_64) 2020; 179 (ref_87) 2020; 98 Santos (ref_78) 2020; 19 Squella (ref_97) 2018; 290 Bastaki (ref_59) 2017; 34 Ma (ref_104) 2013; 49 Cho (ref_39) 2022; 24 Smith (ref_84) 2024; 30 Wu (ref_101) 2022; 169 Zougar (ref_102) 2014; 27 Sun (ref_121) 2023; 145 Rathschlag (ref_69) 2022; 7 Ahmadi (ref_116) 2023; 402 Sapawe (ref_2) 2020; 31 Tran (ref_38) 2019; 411 Mais (ref_13) 2020; 248 Yamanaka (ref_138) 2020; 32 Santos (ref_141) 2014; 130 Wang (ref_128) 2015; 893 Hu (ref_7) 2020; 309 ref_58 (ref_85) 2019; 1181 ref_56 Wu (ref_130) 2020; 158 Irshad (ref_33) 2021; 321 ref_53 Ding (ref_26) 2017; 139 ref_52 ref_51 Lissaneddine (ref_90) 2022; 204 Srivastava (ref_81) 2019; 15 Rajendrachari (ref_134) 2023; 155 Darabi (ref_131) 2021; 339 Penthala (ref_45) 2019; 166 Zeng (ref_123) 2024; 34 Heydari (ref_132) 2022; 33 Shah (ref_117) 2018; 274 Rezaei (ref_146) 2016; 222 Adeel (ref_49) 2016; 39 Guerra (ref_6) 2017; 1529 Romanini (ref_100) 2009; 88 Qiu (ref_114) 2016; 190 Shi (ref_34) 2018; 463 (ref_37) 2024; 11 Keskin (ref_20) 2019; 20 Affat (ref_54) 2021; 8 ref_68 ref_67 Gherghi (ref_151) 2004; 49 ref_66 Mei (ref_122) 2022; 147 ref_65 ref_63 Gherghi (ref_95) 2003; 61 Ensafi (ref_136) 2014; 202 ref_62 Benkhaya (ref_41) 2020; 6 Tkaczyk (ref_35) 2020; 717 Coultate (ref_61) 2018; 134 Bonyadi (ref_125) 2021; 167 Wang (ref_108) 2014; 130 Yang (ref_75) 2019; 836 Amsaraj (ref_155) 2023; 60 Dorraji (ref_129) 2017; 227 Heydari (ref_142) 2019; 142 Ensafi (ref_143) 2012; 88 Ferreyra (ref_150) 2009; 21 Chen (ref_144) 2014; 9 Hussain (ref_79) 2021; 168 ref_32 ref_110 ref_112 Beitollahi (ref_80) 2022; 164 Irfan (ref_111) 2022; 7 Karaboduk (ref_145) 2021; 5 Govindan (ref_30) 2019; 237 Ali (ref_50) 2024; 28 Labiadh (ref_27) 2020; 103 ref_103 Li (ref_135) 2022; 39 Nevado (ref_94) 1997; 44 Askar (ref_109) 2023; 189 Moradi (ref_24) 2022; 168 Boyles (ref_36) 2020; 315 ref_46 Jin (ref_71) 2017; 91 Uliana (ref_152) 2013; 178 ref_42 Qi (ref_21) 2021; 93 Hoshyargar (ref_76) 2017; 29 Ahmad (ref_77) 2017; 252 ref_40 ref_1 Nehser (ref_31) 2020; 45 Zhao (ref_154) 2023; 11 ref_3 Tcheumi (ref_118) 2017; 97 Yun (ref_113) 2015; 169 |
References_xml | – volume: 222 start-page: 849 year: 2016 ident: ref_146 article-title: Development of Sudan II Sensor Based on Modified Treated Pencil Graphite Electrode with DNA, o-Phenylenediamine, and Gold Nanoparticle Bioimprinted Polymer publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2015.09.017 – volume: 6 start-page: 30932 year: 2021 ident: ref_86 article-title: Electrochemical Investigation and Molecular Docking Techniques on the Interaction of Acridinedione Dyes with Water-Soluble Nonfluorophoric Simple Amino Acids publication-title: ACS Omega doi: 10.1021/acsomega.1c03172 – volume: 167 start-page: 106322 year: 2021 ident: ref_125 article-title: Development of Highly Sensitive and Selective Sensor Based on Molecular Imprinted Polydopamine-Coated Silica Nanoparticles for Electrochemical Determination of Sunset Yellow publication-title: Microchem. J. doi: 10.1016/j.microc.2021.106322 – volume: 72 start-page: 357 year: 2010 ident: ref_43 article-title: Photocatalytic Degradation of Azo Dye in Aqueous TiO2 Suspension: Reaction Pathway and Identification of Intermediates Products by LC/MS publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2010.03.005 – volume: 8 start-page: 130 year: 2021 ident: ref_54 article-title: Classifications, Advantages, Disadvantages, Toxicity Effects of Natural and Synthetic Dyes: A Review publication-title: Univ. Thi-Qar. J. Sci. – volume: 173 start-page: 591 year: 2012 ident: ref_137 article-title: Flow Injection Chemiluminescence Sensor Based on Core–Shell Magnetic Molecularly Imprinted Nanoparticles for Determination of Chrysoidine in Food Samples publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2012.07.069 – volume: 134 start-page: 165 year: 2018 ident: ref_61 article-title: Food Colorants: Their Past, Present and Future publication-title: Color. Technol. doi: 10.1111/cote.12334 – volume: 4 start-page: 1800658 year: 2019 ident: ref_73 article-title: Battery-Free and Wireless Epidermal Electrochemical System with All-Printed Stretchable Electrode Array for Multiplexed In Situ Sweat Analysis publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201800658 – volume: 22 start-page: 322 year: 2018 ident: ref_83 article-title: Exploiting Stored TiO2 Electrons for Multi-Electron Reduction of an Azo Dye Methyl Orange in Aqueous Suspension publication-title: J. Saudi Chem. Soc. doi: 10.1016/j.jscs.2016.06.002 – volume: 21 start-page: 1665 year: 2009 ident: ref_150 article-title: Self-Assembled Multilayers of Polyethylenimine and DNA: Spectrophotometric and Electrochemical Characterization and Application for the Determination of Acridine Orange Interaction publication-title: Electroanalysis doi: 10.1002/elan.200904593 – volume: 31 start-page: A141 year: 2020 ident: ref_2 article-title: A Review on the Water Problem Associate with Organic Pollutants Derived from Phenol, Methyl Orange, and Remazol Brilliant Blue Dyes publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2021.01.258 – volume: 88 start-page: 244 year: 2012 ident: ref_143 article-title: A Novel Sensitive DNA–Biosensor for Detection of a Carcinogen, Sudan II, Using Electrochemically Treated Pencil Graphite Electrode by Voltammetric Methods publication-title: Talanta doi: 10.1016/j.talanta.2011.10.038 – ident: ref_3 doi: 10.1016/B978-0-12-816809-7.00006-3 – volume: 12 start-page: 6339 year: 2021 ident: ref_47 article-title: Natural Quinone Dyes: A Review on Structure, Extraction Techniques, Analysis and Application Potential publication-title: Waste Biomass Valorization doi: 10.1007/s12649-021-01443-9 – volume: 155 start-page: 111010 year: 2023 ident: ref_134 article-title: Electrocatalytic Determination of Methyl Orange Dye Using Mechanically Alloyed Novel Metallic Glass Modified Carbon Paste Electrode by Cyclic Voltammetry publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2023.111010 – volume: 1529 start-page: 29 year: 2017 ident: ref_6 article-title: Miniaturized Matrix Solid-Phase Dispersion Followed by Liquid Chromatography-Tandem Mass Spectrometry for the Quantification of Synthetic Dyes in Cosmetics and Foodstuffs Used or Consumed by Children publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2017.10.063 – volume: 315 start-page: 126249 year: 2020 ident: ref_36 article-title: Photostability of Organic Red Food Dyes publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.126249 – volume: 308 start-page: 136416 year: 2022 ident: ref_115 article-title: A Recent Advancement on the Applications of Nanomaterials in Electrochemical Sensors and Biosensors publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.136416 – volume: 9 start-page: 847 year: 2014 ident: ref_144 article-title: Electrochemical Behavior of Sudan II and Its Determination in Food Using Activated Glassy Carbon Electrode publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)07761-1 – volume: 168 start-page: 383 year: 2021 ident: ref_79 article-title: Adsorption, Kinetics and Thermodynamics Studies of Methyl Orange Dye Sequestration through Chitosan Composites Films publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.12.054 – volume: 339 start-page: 127841 year: 2021 ident: ref_131 article-title: NiFe2O4-rGO/Ionic Liquid Modified Carbon Paste Electrode: An Amplified Electrochemical Sensitive Sensor for Determination of Sunset Yellow in the Presence of Tartrazine and Allura Red publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.127841 – volume: 309 start-page: 125745 year: 2020 ident: ref_7 article-title: Simultaneous Determination of Multiclass Illegal Dyes with Different Acidic–Basic Properties in Foodstuffs by LC-MS/MS via Polarity Switching Mode publication-title: Food Chem. doi: 10.1016/j.foodchem.2019.125745 – volume: 49 start-page: 1057 year: 2013 ident: ref_104 article-title: Sensitive Electrochemical Determination of Sudan II in Food Samples Using a Poly(Aminosulfonic Acid) Modified Glassy Carbon Electrode publication-title: Russ. J. Electrochem. doi: 10.1134/S1023193513110086 – volume: 2 start-page: 100076 year: 2021 ident: ref_140 article-title: La10Si6O27:Tb3+ Nanomaterial; Its Photocatalytic and Electrochemical Sensor Activities on Disperse Orange and Fast Blue Dyes publication-title: Sens. Int. doi: 10.1016/j.sintl.2020.100076 – volume: 223 start-page: 111976 year: 2024 ident: ref_60 article-title: Exploring the Requirements of Reactive Dyes in Eco-Friendly Dyeing Process: The Relationship between Dye Structure, Dyeing Properties, and Eco-Friendly Dyeing Techniques publication-title: Dye. Pigment. doi: 10.1016/j.dyepig.2024.111976 – ident: ref_18 doi: 10.3389/fbioe.2024.1361469 – ident: ref_98 doi: 10.1038/srep41963 – volume: 241 start-page: 125010 year: 2020 ident: ref_91 article-title: Electrochemical Oxidation of Acid Orange 7 Azo Dye Using a PbO2 Electrode: Parameter Optimization, Reaction Mechanism and Toxicity Evaluation publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125010 – volume: 2 start-page: 274 year: 2021 ident: ref_92 article-title: A Short Review on Electrochemical Sensing of Commercial Dyes in Real Samples Using Carbon Paste Electrodes publication-title: Electrochem doi: 10.3390/electrochem2020020 – volume: 19 start-page: 106 year: 2020 ident: ref_78 article-title: Electron Transfer at Different Electrode Materials: Metals, Semiconductors, and Graphene publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2019.11.003 – volume: 20 start-page: 243 year: 2019 ident: ref_20 article-title: Inhibiting Bacterial Adhesion by Mechanically Modulated Microgel Coatings publication-title: Biomacromolecules doi: 10.1021/acs.biomac.8b01378 – volume: 39 start-page: 1052 year: 2022 ident: ref_135 article-title: Preparation and Application of Basic Orange II Imprinted Sensor publication-title: Chin. J. Appl. Chem. – ident: ref_67 doi: 10.3390/polym12030532 – volume: 323 start-page: 126848 year: 2020 ident: ref_126 article-title: A Simple Strategy for the Synthesis of Flower-like Textures of Au-ZnO Anchored Carbon Nanocomposite towards the High-performance Electrochemical Sensing of Sunset Yellow publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.126848 – volume: 29 start-page: 012001 year: 2017 ident: ref_76 article-title: Mass Transport Characteristics of Diffusioosmosis: Potential Applications for Liquid Phase Transportation and Separation publication-title: Phys. Fluids doi: 10.1063/1.4973411 – volume: 1083 start-page: 58 year: 2019 ident: ref_44 article-title: Analytical Methods for Determination of Anthraquinone Dyes in Historical Textiles: A Review publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2019.07.009 – volume: 147 start-page: 5557 year: 2022 ident: ref_122 article-title: Multivalent SnO2 Quantum Dot-Decorated Ti3C2 MXene for Highly Sensitive Electrochemical Detection of Sudan I in Food publication-title: Analyst doi: 10.1039/D2AN01432G – ident: ref_12 doi: 10.3390/gels8020083 – ident: ref_62 – ident: ref_103 – volume: 15 start-page: 249 year: 2019 ident: ref_81 article-title: Voltammetric Techniques for the Analysis of Drugs Using Nanomaterials Based Chemically Modified Electrodes publication-title: Curr. Anal. Chem. doi: 10.2174/1573411014666180510152154 – volume: 60 start-page: 1530 year: 2023 ident: ref_155 article-title: Rapid Detection of Sunset Yellow Adulteration in Tea Powder with Variable Selection Coupled to Machine Learning Tools Using Spectral Data publication-title: J. Food Sci. Technol. doi: 10.1007/s13197-023-05694-3 – volume: 166 start-page: 330 year: 2019 ident: ref_45 article-title: Synthesis and Efficient Dyeing of Anthraquinone Derivatives on Polyester Fabric with Supercritical Carbon Dioxide publication-title: Dye. Pigment. doi: 10.1016/j.dyepig.2019.03.027 – volume: 27 start-page: 385 year: 2014 ident: ref_102 article-title: Gold Electrode Functionalized with Tridodecylamine for Impedimetric Detection of Acid Orange 10 publication-title: Sens. Transducers – volume: 321 start-page: 114201 year: 2021 ident: ref_33 article-title: Solubilization of Direct Dyes in Single and Mixed Surfactant System: A Comparative Study publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.114201 – volume: 61 start-page: 103 year: 2003 ident: ref_95 article-title: Study of Interactions between DNA-Ethidium Bromide (EB) and DNA-Acridine Orange (AO), in Solution, Using Hanging Mercury Drop Electrode (HMDE) publication-title: Talanta doi: 10.1016/S0039-9140(03)00238-8 – volume: 52 start-page: 7021 year: 2023 ident: ref_133 article-title: Electrochemical Determination of Methyl Orange Using Poly(L-Serine)-Modified Carbon Paste Electrode publication-title: J. Electron. Mater. doi: 10.1007/s11664-023-10645-x – volume: 190 start-page: 889 year: 2016 ident: ref_114 article-title: An Enhanced Electrochemical Platform Based on Graphene Oxide and Multi-Walled Carbon Nanotubes Nanocomposite for Sensitive Determination of Sunset Yellow and Tartrazine publication-title: Food Chem. doi: 10.1016/j.foodchem.2015.06.045 – ident: ref_25 doi: 10.1186/s40824-019-0181-y – volume: 252 start-page: 549 year: 2017 ident: ref_77 article-title: Hydrothermally Grown α-MnO2 Nanorods as Highly Efficient Low Cost Counter-Electrode Material for Dye-Sensitized Solar Cells and Electrochemical Sensing Applications publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.09.010 – volume: 160 start-page: 524 year: 2019 ident: ref_28 article-title: Facile Synthesis of Novel Disperse Azo Dyes with Aromatic Hydroxyl Group publication-title: Dye. Pigment. doi: 10.1016/j.dyepig.2018.08.052 – volume: 24 start-page: 11183 year: 2022 ident: ref_39 article-title: Enhanced Interfacial Electron Transfer Kinetics between Co2+/3+ Complexes and Organic Dyes with Free Space near Their Backbone publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D1CP05798G – volume: 2 start-page: 4497 year: 2021 ident: ref_4 article-title: Recent Advances on the Removal of Dyes from Wastewater Using Various Adsorbents: A Critical Review publication-title: Mater. Adv. doi: 10.1039/D1MA00354B – volume: 93 start-page: 6932 year: 2021 ident: ref_21 article-title: Enhancing the Oil-Fouling Resistance of Polymeric Membrane Ion-Selective Electrodes by Surface Modification of a Zwitterionic Polymer-Based Oleophobic Self-Cleaning Coating publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c01116 – volume: 139 start-page: 19 year: 2017 ident: ref_26 article-title: New Organic Conjugated Dye Nano-Aggregates Exhibiting Naked-Eye Fluorescence Color Switching publication-title: Dye. Pigment. doi: 10.1016/j.dyepig.2016.12.021 – volume: 142 start-page: 105 year: 2019 ident: ref_142 article-title: Novel Electrochemical Procedure for Sensitive Determination of Sudan II Based on Nanostructured Modified Electrode and Multivariate Optimization publication-title: Measurement doi: 10.1016/j.measurement.2019.04.058 – volume: 168 start-page: 113391 year: 2022 ident: ref_24 article-title: A Review on Nanomaterial-Based Electrochemical Sensors for Determination of Vanillin in Food Samples publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2022.113391 – volume: 237 start-page: 124479 year: 2019 ident: ref_30 article-title: Effect of Peroxomonosulfate, Peroxodisulfate and Hydrogen Peroxide on Graphene Oxide Photocatalytic Performances in Methyl Orange Dye Degradation publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.124479 – volume: 164 start-page: 112961 year: 2022 ident: ref_80 article-title: Recent Advances in Carbon Nanomaterials-Based Electrochemical Sensors for Food Azo Dyes Detection publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2022.112961 – volume: 30 start-page: e202400573 year: 2024 ident: ref_84 article-title: Redox Behaviour and Redox Potentials of Dyes in Aqueous Buffers and Protic Ionic Liquids publication-title: Chem. Eur. J. doi: 10.1002/chem.202400573 – volume: 202 start-page: 224 year: 2014 ident: ref_136 article-title: Development of a Voltammetric Procedure Based on DNA Interaction for Sensitive Monitoring of Chrysoidine, a Banned Dye, in Foods and Textile Effluents publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2014.05.001 – volume: 136 start-page: 370 year: 2014 ident: ref_119 article-title: Simultaneous Determination of Orange G and Orange II in Industrial Wastewater by a Novel Fe2O3/MWCNTs-COOH/OP Modified Carbon Paste Electrode publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.05.090 – volume: 6 start-page: e03271 year: 2020 ident: ref_41 article-title: Classifications, Properties, Recent Synthesis and Applications of Azo Dyes publication-title: Heliyon doi: 10.1016/j.heliyon.2020.e03271 – volume: 97 start-page: 1207 year: 2017 ident: ref_118 article-title: Surfactant-Intercalated Smectite Modified Electrode: Sensitive Electrochemical Detection of Methyl Orange Dye publication-title: Int. J. Environ. Anal. Chem. doi: 10.1080/03067319.2017.1399205 – volume: 11 start-page: e202300490 year: 2024 ident: ref_37 article-title: Modified Electrochemical Sensors for the Detection of Selected Food Azo Dyes: A Review publication-title: ChemElectroChem doi: 10.1002/celc.202300490 – ident: ref_51 doi: 10.1002/9781119905332.ch5 – volume: 5 start-page: 2964 year: 2013 ident: ref_120 article-title: Highly Sensitive Determination of Orange II Based on the Dual Amplified Electrochemical Signal of Graphene and Mesoporous TiO2 publication-title: Anal. Methods doi: 10.1039/c3ay40250a – volume: 7 start-page: 32302 year: 2022 ident: ref_111 article-title: Electrochemical Sensing Platform Based on Functionalized Multi-Walled Carbon Nanotubes and Metal Oxide for the Detection and Degradation Studies of Orange II Dye publication-title: ACS Omega doi: 10.1021/acsomega.2c03641 – ident: ref_22 doi: 10.3389/fonc.2024.1373263 – ident: ref_53 doi: 10.5772/intechopen.90970 – volume: 6 start-page: 100085 year: 2020 ident: ref_127 article-title: Green Tea Extract Assisted Green Synthesis of Reduced Graphene Oxide: Application for Highly Sensitive Electrochemical Detection of Sunset Yellow in Food Products publication-title: Food Chem. X doi: 10.1016/j.fochx.2020.100085 – ident: ref_46 doi: 10.1201/9781315120157-9 – volume: 91 start-page: 523 year: 2017 ident: ref_71 article-title: Fabrication Strategies, Sensing Modes and Analytical Applications of Ratiometric Electrochemical Biosensors publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.01.011 – volume: 11 start-page: 14237 year: 2023 ident: ref_154 article-title: A SERS Sensor Based on 3D Nanocone Forests Capable of Intelligent Classification of Aquatic Product Dyes publication-title: J. Mater. Chem. C doi: 10.1039/D3TC02271D – volume: 45 start-page: 1375 year: 2020 ident: ref_31 article-title: System Xc− Antiporter Inhibitors: Azo-Linked Amino-Naphthyl-Sulfonate Analogues of Sulfasalazine publication-title: Neurochem. Res. doi: 10.1007/s11064-019-02901-6 – volume: 145 start-page: 109491 year: 2023 ident: ref_121 article-title: Simple and Sensitive Electrochemical Detection of Sunset Yellow and Sudan I in Food Based on AuNPs/Zr-MOF-Graphene publication-title: Food Control doi: 10.1016/j.foodcont.2022.109491 – ident: ref_17 doi: 10.3390/s20164600 – volume: 290 start-page: 556 year: 2018 ident: ref_97 article-title: Experimental and Theoretical Insights into the Electrooxidation Pathway of Azo-Colorants on Glassy Carbon Electrode publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.09.090 – ident: ref_93 doi: 10.3390/chemosensors11020113 – volume: 189 start-page: 108540 year: 2023 ident: ref_109 article-title: Recent Advances in Nanomaterials-Based Electrochemical and Optical Sensing Approaches for Detection of Food Dyes in Food Samples: A Comprehensive Overview publication-title: Microchem. J. doi: 10.1016/j.microc.2023.108540 – ident: ref_63 doi: 10.3390/antiox11102059 – volume: 6 start-page: 26391 year: 2021 ident: ref_89 article-title: Nanostructured Geometries Strongly Affect Fouling of Carbon Electrodes publication-title: ACS Omega doi: 10.1021/acsomega.1c03666 – ident: ref_74 doi: 10.3390/s20113211 – ident: ref_40 doi: 10.1007/978-3-319-33892-7 – volume: 49 start-page: 467 year: 2004 ident: ref_151 article-title: DNA Modified Carbon Paste Electrode Applied to the Voltammetric Study of the Interaction between DNA and Acridine Orange publication-title: Chem. Anal. – ident: ref_70 doi: 10.1201/9781003057505-6 – volume: 38 start-page: 1601 year: 2005 ident: ref_96 article-title: Adsorptive Stripping Voltammetric Behavior of Acridine Orange at the Static Mercury Drop Electrode publication-title: Anal. Lett. doi: 10.1081/AL-200065796 – volume: 32 start-page: 70 year: 2020 ident: ref_138 article-title: Immunosensor for Detection of the Textile Dye Disperse Orange 1 Based on Non-Conventional Competitive Assay publication-title: Electroanalysis doi: 10.1002/elan.201900059 – volume: 413 start-page: 135600 year: 2023 ident: ref_106 article-title: A New Ratiometric Molecularly Imprinted Electrochemical Sensor for the Detection of Sunset Yellow Based on Gold Nanoparticles publication-title: Food Chem. doi: 10.1016/j.foodchem.2023.135600 – volume: 33 start-page: 1 year: 2022 ident: ref_132 article-title: Modification of Functionalized Polyethylene Terephthalates by Ultrasonic Synthesis of Silver Nanoparticles and Removal and Electrochemical Measurement of Methyl Orange Dye publication-title: J. Water Wastewater Ab Va Fazilab Persian – ident: ref_99 doi: 10.3390/molecules27165221 – volume: 402 start-page: 134501 year: 2023 ident: ref_116 article-title: Sub-Micro Electrochemical Recognition of Carmoisine, Sunset Yellow, and Tartrazine in Fruit Juices Using P(β-CD/Arg)/CysA-AuNPs/AuE publication-title: Food Chem. doi: 10.1016/j.foodchem.2022.134501 – volume: 45 start-page: 101802 year: 2021 ident: ref_55 article-title: Classification and Impact of Synthetic Textile Dyes on Aquatic Flora: A Review publication-title: Reg. Stud. Mar. Sci. – volume: 411 start-page: 7539 year: 2019 ident: ref_38 article-title: Highly Sensitive and Rapid Determination of Sunset Yellow in Drinks Using a Low-Cost Carbon Material-Based Electrochemical Sensor publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-019-02155-9 – volume: 283 start-page: 68 year: 2019 ident: ref_147 article-title: Chemometrics-Assisted Determination of Sudan Dyes Using Zinc Oxide Nanoparticle-Based Electrochemical Sensor publication-title: Food Chem. doi: 10.1016/j.foodchem.2018.12.132 – volume: 178 start-page: 627 year: 2013 ident: ref_152 article-title: Evaluation of the Interactions of DNA with the Textile Dyes Disperse Orange 1 and Disperse Red 1 and Their Electrolysis Products Using an Electrochemical Biosensor publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2013.01.029 – ident: ref_10 doi: 10.3390/bios13121002 – volume: 717 start-page: 137222 year: 2020 ident: ref_35 article-title: Synthetic Organic Dyes as Contaminants of the Aquatic Environment and Their Implications for Ecosystems: A Review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137222 – volume: 130 start-page: 519 year: 2014 ident: ref_108 article-title: Ultrasensitive Molecularly Imprinted Electrochemical Sensor Based on Magnetism Graphene Oxide/β-Cyclodextrin/Au Nanoparticles Composites for Chrysoidine Analysis publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.03.039 – ident: ref_11 doi: 10.3390/bios12110959 – volume: 155 start-page: 37 year: 2024 ident: ref_105 article-title: Electrochemical Analysis of Methyl Orange and Simultaneous Analysis with Tartrazine Using the Poly(Riboflavin)-Modified Carbon Paste Electrode publication-title: Monatshefte Chem. Chem. Mon. doi: 10.1007/s00706-023-03137-5 – ident: ref_52 – volume: 98 start-page: 14 year: 2020 ident: ref_87 article-title: Effect of Substituents in Hydroxyl Radical-Mediated Degradation of Azo Pyridone Dyes: Theoretical Approaches on the Reaction Mechanism publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2020.05.022 – volume: 328 start-page: 127105 year: 2020 ident: ref_9 article-title: Plasmonic Nanoparticles on Metal-Organic Framework: A Versatile SERS Platform for Adsorptive Detection of New Coccine and Orange II Dyes in Food publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.127105 – volume: 1181 start-page: 493 year: 2019 ident: ref_85 article-title: Synthesis, Characterisation, Solvatochromic Behaviour and Thermal Decomposition Kinetics of Novel Polyazo Dyes Containing Amide Group and Their Transition Metal Complexes publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2018.12.102 – ident: ref_58 doi: 10.3389/fmicb.2018.01746 – volume: 44 start-page: 467 year: 1997 ident: ref_94 article-title: Square Wave Adsorptive Voltammetric Determination of Sunset Yellow publication-title: Talanta doi: 10.1016/S0039-9140(96)02105-4 – volume: 88 start-page: 105 year: 2009 ident: ref_100 article-title: A Simple Electroanalytical Method for the Analysis of the Dye Solvent Orange 7 in Fuel Ethanol publication-title: Fuel doi: 10.1016/j.fuel.2008.07.022 – volume: 103 start-page: 107698 year: 2020 ident: ref_27 article-title: Textural, Structural and Morphological Evolution of Mesoporous 3D Graphene Saturated with Methyl Orange Dye during Thermal Regeneration publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2020.107698 – volume: 243 start-page: 927 year: 2017 ident: ref_107 article-title: Rapid Electrochemical Synthesis of Molecularly Imprinted Polymers on Functionalized Multi-Walled Carbon Nanotubes for Selective Recognition of Sunset Yellow in Food Samples publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2016.12.077 – volume: 100 start-page: 565 year: 2018 ident: ref_124 article-title: Highly Sensitive and Selective Sensor for Sunset Yellow Based on Molecularly Imprinted Polydopamine-Coated Multi-Walled Carbon Nanotubes publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.10.010 – volume: 6 start-page: 2100569 year: 2021 ident: ref_153 article-title: Design of Electrochemical Microfluidic Detectors: A Review publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202100569 – ident: ref_112 doi: 10.3390/s23042160 – ident: ref_65 doi: 10.3390/cosmetics5030047 – ident: ref_1 doi: 10.3390/polym14245429 – volume: 227 start-page: 73 year: 2017 ident: ref_129 article-title: Electrochemical Fabrication of a Novel ZnO/Cysteic Acid Nanocomposite Modified Electrode and Its Application to Simultaneous Determination of Sunset Yellow and Tartrazine publication-title: Food Chem. doi: 10.1016/j.foodchem.2017.01.071 – volume: 34 start-page: 1887 year: 2024 ident: ref_123 article-title: Two-Dimensional MXene@ZIF-8 Hybrid-Derived TiO2/TiN@N-C Heterostructure as an Emerging Material for Electrochemical Sensing publication-title: Carbon Lett. doi: 10.1007/s42823-024-00726-0 – ident: ref_72 – volume: 893 start-page: 41 year: 2015 ident: ref_128 article-title: Highly Sensitive Electrochemical Determination of Sunset Yellow Based on Gold Nanoparticles/Graphene Electrode publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2015.08.042 – ident: ref_42 doi: 10.3390/molecules27196655 – volume: 122 start-page: 52 year: 2019 ident: ref_8 article-title: Environmentally-Related Contaminants of High Concern: Potential Sources and Analytical Modalities for Detection, Quantification, and Treatment publication-title: Environ. Int. doi: 10.1016/j.envint.2018.11.038 – volume: 248 start-page: 125938 year: 2020 ident: ref_13 article-title: Experimental Study on the Optimisation of Azo-Dyes Removal by Photo-Electrochemical Oxidation with TiO2 Nanotubes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.125938 – volume: 142 start-page: 183 year: 2015 ident: ref_139 article-title: A Label-Free Impedimetric Immunosensor for Direct Determination of the Textile Dye Disperse Orange 1 publication-title: Talanta doi: 10.1016/j.talanta.2015.04.042 – volume: 39 start-page: 1430 year: 2016 ident: ref_49 article-title: Dyeing Behaviour of Microwave Assisted Surface Modified Polyester Fabric Using Disperse Orange 25: Improvement in Colour Strength and Fastness Properties publication-title: Oxid. Commun. – ident: ref_23 doi: 10.1016/j.bios.2020.112836 – volume: 179 start-page: 108385 year: 2020 ident: ref_64 article-title: Design, Synthesis, Characterization of Water-Soluble Indophenine Dyes and Their Application for Dyeing of Wool, Silk and Nylon Fabrics publication-title: Dye. Pigment. doi: 10.1016/j.dyepig.2020.108385 – ident: ref_32 doi: 10.3390/toxics11040366 – volume: 220 start-page: 377 year: 2017 ident: ref_156 article-title: Spectrophotometric Determination of Synthetic Colorants Using PSO–GA-ANN publication-title: Food Chem. doi: 10.1016/j.foodchem.2016.10.010 – ident: ref_68 doi: 10.3390/molecules27010098 – volume: 52 start-page: 1 year: 2016 ident: ref_57 article-title: Food Colorants: Challenges, Opportunities and Current Desires of Agro-Industries to Ensure Consumer Expectations and Regulatory Practices publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2016.03.009 – ident: ref_56 doi: 10.3390/molecules26175419 – volume: 169 start-page: 114 year: 2015 ident: ref_113 article-title: High Catalytic Activity of Electrochemically Reduced Graphene Composite toward Electrochemical Sensing of Orange II publication-title: Food Chem. doi: 10.1016/j.foodchem.2014.07.143 – volume: 69 start-page: 887 year: 2014 ident: ref_148 article-title: Electrochemical Studies on Lawsone and Its Determination in Henna (Lawsonia Inermis) Extract Using Glassy Carbon Electrode publication-title: J. Anal. Chem. doi: 10.1134/S1061934814090044 – volume: 1 start-page: 1575 year: 2020 ident: ref_88 article-title: What Triggers Dye Adsorption by Metal Organic Frameworks? The Current Perspectives publication-title: Mater. Adv. doi: 10.1039/D0MA00291G – ident: ref_110 doi: 10.3390/su151410891 – volume: 836 start-page: 68 year: 2019 ident: ref_75 article-title: Adsorption Processes Coupled with Mass Transport at Macro-Electrodes: New Insights from Simulation publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2019.01.060 – ident: ref_66 doi: 10.3390/cosmetics7040075 – volume: 311 start-page: 102832 year: 2023 ident: ref_48 article-title: Colloidal and Interface Aqueous Chemistry of Dyes: Past, Present and Future Scenarios in Corrosion Mitigation publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2022.102832 – volume: 5 start-page: fyaa039 year: 2021 ident: ref_145 article-title: Modification of Screen-Printed Gold Electrode with 1,4-Dithiothreitol: Application to Sensitive Voltammetric Determination of Sudan II publication-title: Food Qual. Saf. doi: 10.1093/fqsafe/fyaa039 – volume: 463 start-page: 1 year: 2018 ident: ref_34 article-title: Experimental Determination and Correlation of the Solubility of a New Reactive Disperse Orange SCF-AOL2 Dye in Pure Supercritical Carbon Dioxide Fluid publication-title: Fluid Phase Equilibria doi: 10.1016/j.fluid.2018.01.009 – volume: 28 start-page: 17602 year: 2021 ident: ref_5 article-title: Haematological, Biochemical, Enzymological and Histological Responses of Labeo Rohita Exposed to Methyl Orange Dye Solution Treated with Oedogonium Subplagiostomum AP1 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-12208-7 – volume: 9 start-page: e19943 year: 2023 ident: ref_16 article-title: Conducting Dyes as Electro-Active Monomers and Polymers for Detecting Analytes in Biological and Environmental Samples publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e19943 – volume: 13 start-page: 43356 year: 2021 ident: ref_15 article-title: All-in-Fiber Electrochemical Sensing publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c11593 – ident: ref_29 doi: 10.3390/foods11152380 – volume: 101 start-page: 2947 year: 2021 ident: ref_82 article-title: Advanced Oxidation Processes: Photo-Electro-Fenton Remediation Process for Wastewater Contaminated by Organic Azo Dyes publication-title: Int. J. Environ. Anal. Chem. doi: 10.1080/03067319.2020.1711892 – volume: 13 start-page: 16828 year: 2021 ident: ref_14 article-title: Sodium Alginate Micelle-Encapsulating Zinc Phthalocyanine Dye-Sensitized Photoelectrochemical Biosensor with CdS as the Photoelectric Material for Hg2+ Detection publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c00215 – volume: 158 start-page: 105133 year: 2020 ident: ref_130 article-title: Determination of Sunset Yellow and Tartrazine in Drinks Using Screen-Printed Carbon Electrodes Modified with Reduced Graphene Oxide and NiBTC Frameworks publication-title: Microchem. J. doi: 10.1016/j.microc.2020.105133 – ident: ref_19 doi: 10.3390/bios11120525 – volume: 34 start-page: 891 year: 2017 ident: ref_59 article-title: Estimated Daily Intake and Safety of FD&C Food-Colour Additives in the US Population publication-title: Food Addit. Contam. Part A doi: 10.1080/19440049.2017.1308018 – volume: 7 start-page: 163 year: 2022 ident: ref_69 article-title: Colorants in Printing Applications publication-title: Phys. Sci. Rev. – volume: 130 start-page: 43 year: 2014 ident: ref_141 article-title: Electrochemical Method for Quantitative Determination of Trace Amounts of Disperse Dye in Wastewater publication-title: Color. Technol. doi: 10.1111/cote.12059 – volume: 68 start-page: 1027 year: 2021 ident: ref_149 article-title: Square-Wave Voltammetric Sensing of Lawsone (2-Hydroxy-1, 4-Naphthoquinone) Based on the Enhancement Effect of Cationic Surfactant on Anodically Pretreated Boron-Doped Diamond Electrode publication-title: Acta Chim. Slov. doi: 10.17344/acsi.2020.6617 – volume: 169 start-page: 113398 year: 2022 ident: ref_101 article-title: Enhanced Artificial Intelligence for Electrochemical Sensors in Monitoring and Removing of Azo Dyes and Food Colorant Substances publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2022.113398 – volume: 28 start-page: 478 year: 2024 ident: ref_50 article-title: Dyeing of Polyester Fabrics Using Novel Diazo Disperse Dyes Derived from 1, 4-Bis (2-Amino-1, 3, 4-Thiadiazolyl) Benzene publication-title: Res. J. Text. Appar. doi: 10.1108/RJTA-04-2022-0035 – volume: 274 start-page: 131 year: 2018 ident: ref_117 article-title: Carbamazepine Coated Silver Nanoparticles for the Simultaneous Electrochemical Sensing of Specific Food Toxins publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.04.096 – volume: 204 start-page: 112128 year: 2022 ident: ref_90 article-title: A Critical Review on the Electrosorption of Organic Compounds in Aqueous Effluent—Influencing Factors and Engineering Considerations publication-title: Environ. Res. doi: 10.1016/j.envres.2021.112128 |
SSID | ssj0021415 |
Score | 2.4311905 |
SecondaryResourceType | review_article |
Snippet | This review explores electrochemical sensing strategies for synthetic orange dyes, addressing the growing need for sensitive and selective detection methods in... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 5026 |
SubjectTerms | Analysis azo compounds Azo Compounds - chemistry Biosensing Techniques - methods Coloring Agents - analysis Coloring Agents - chemistry Commercial printing industry Dyes Electric properties Electrochemical Techniques - methods Electrodes Electrons Environmental monitoring Food food safety Graphite - chemistry Hydrocarbons Metal Nanoparticles - chemistry molecularly imprinted polymers nanomaterial composites Nanomaterials Nanotubes Nanotubes, Carbon - chemistry Oxidation-Reduction Polymers - chemistry Printing industry Review Safety and security measures Sensors Voltammetry |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB3R5UAvqB-0BGiVSpUqIUUkthPHUqWKUhCq1PYASHuLnIkDHMjCZjnsv2cmcZaNkHqLYieyx2PPG3v8BuAr50AScYmR0tJGpCEushLTKK5jqzJUUlm-nPznb3Z-pX5P06nfcGt9WOWwJnYLdTVD3iM_kgmTX4ksNT_uHyLOGsWnqz6FxivYZOoyDunS02eHKyHr1J9kSnLtj-76hLOuFYYMXcensGaLOsr-lwvzmmUaR02umaGzN7Dt8WN43A_4W9hwzTvYOhnStr2H76d9Yhv0TADhBYeoN9fhwEPr2pCAanixbAj70V_Cf3O-YBD-Wrp2B67OTi9PziOfIiHCNJGLyJrUZS7RSI6Jw8oqW1rFTJ9SELZIMa6zvK5smdmkyoxEmtA1VUTjpBb0ID_ApJk1bhdCg3leZbo2VvJprMxVnpraaEergBbSBXA4CKu475kwCvIgWLLFC8kG8JPFuarIJNbdi9n8uvBzouMZL1Egi1SRzlAbsbaxrmLCaGUlA_jGg1HwVCMRofU3Bqi9TFpVHOeE_wQThgVwMKpJIsdx8TCchZ-ibfGsUAF8WRXzlxx21rjZY1eH0wEkmtrysR_9VZckYVPyFXUA-UgvRn0elzS3Nx2BN1Mgafp47__t2ofXgiBUf_PxACaL-aP7RBBoUX7u9PwJl6EG5w priority: 102 providerName: ProQuest |
Title | Electrochemical Sensing Strategies for Synthetic Orange Dyes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39519667 https://www.proquest.com/docview/3126012659 https://www.proquest.com/docview/3128745173 https://pubmed.ncbi.nlm.nih.gov/PMC11547196 https://doaj.org/article/1177bc2cedce4542a1dcfa07d0441bd3 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwEB3BcigXVEoLobAKUiWkShGJ7cSx1AvQ3SKkAipF2pvlOA5wIIvY3QN_35k4WW3EgUsvURQ7kf3Gk5mRx28AvlENJBYXNhKSmwhXiIsMt2kUV7ERmRVcGDqc_Psqu7gTl5N0slLqi3LCPD2wB-6ENhULyyxlKwr8sElKW5lYljEa8qJseD7R5nXBVBtqJWiX_B4mx6D-5MmXmnUzptDENUwKK1aoIet_-0tesUn9fMkVAzT-CFut5xie-hFvw5qrP8GH865g2w78GPmSNrblAAhvKTm9vg87Blo3C9FFDW9fa_T68Cvh9QsdLQh_vrrZZ7gbj_6eX0RtcYTIpgmfR0alLnOJtBiSOFsaYQojiOOTM_QqUhtXWV6VpsgQsExxi6pcYUerHJcMb_gXGNTT2u1BqGyel5mslOG0D8tzkaeqUtKh_kvGXQDfO7D0s-fA0Bg7ELL6DbIBnBGcy45EX908QKHqVqj6PaEGcEzC0KRkCJE17VkBHC_RVenTHD0_RlRhARz0eiLktt_ciVO3yjnTPCEeNZalKoCjZTO9SQlntZsumj5UCCCROJZdL_3llDh6pRglygDy3rrozbnfUj8-NNTdRH4k8eX9_4HSV9hk6GL5k5EHMJi_LNwhukjzYgjrciLxmo9_DWHjbHR182fYaMg_jsET2w |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXxJuUAkYCISFFTWwnjiUQKm2XLX1waCv15jqOUzg0WzZbof1T_EZm8lg2qsSttyi2I3s84_kce74BeEs5kHiUu1AqYUPUEB9a4ZIwKiMrUyeFtBScfHiUjk_lt7PkbAX-9LEwdK2yXxObhbqYOPpHviliIr_iaaI_X_0KKWsUna72KTRatdj389-4Zas_7e3g_L7jfLR7sj0Ou6wCoUtiMQutTnzqY-UQy3tXWGlzK4kcU3B0x4mLyjQrC5unNi5SLRzaQIkVnfZCcXwQ-N07cFcKocmistHXxQYvRm_YnpxiYbR52Sa49TXX6Fgb_oYl39ekCLjpCJY84fCW5pLbGz2A-x1eZVutgj2EFV89grXtPk3cY_i42ybScR3zADumK_HVBet5b33NEBiz43mFWBO_wr5PKaCB7cx9_QROb0V4T2G1mlT-OTDtsqxIVamtoNNfkcks0aVWHlcdxYUP4EMvLHPVMm8Y3LGQZM0NyQbwhcS5qEik2c2LyfTCdDbY8JrnjjsSqUQdxT660kaqiBAT5oUI4D1NhiHTRhE520UoYH-JJMtsZYg3ORGUBbAxqIkid8PifjpNtyTU5p8CB_BmUUwt6Zpb5SfXTR1KPxAr7MuzdvYXQxKIhXFvqgLIBnoxGPOwpPr5oyEMJ8olhY3X_9-v17A2Pjk8MAd7R_sv4B5H-NZGXW7A6mx67V8i_JrlrxqdZ3B-20b2F_nVRKc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQEviG8CA4wEQkKKmthOHEsgNNZVG4OBNCb1zXMcZ_BAOppOqP8afx13-egaTeJtb1XtWM75zvdzfPc7gFdUA4lHuQulEjZEDfGhFS4JozKyMnVSSEvJyV8O071j-WmaTDfgb58LQ2GV_Z7YbNTFzNE38pGIifyKp4kelV1YxLfx5MPZ75AqSNFNa19Oo1WRA7_8g8e3-v3-GNf6NeeT3e87e2FXYSB0SSwWodWJT32sHOJ67worbW4lEWUKjq45cVGZZmVh89TGRaqFQ3sosaPTXiiOPwSOew2uK4GjoS2p6cVhL0bP2N6iCqGj0a-22K2vuUYn23A5rPnBplzAZaew5hWHEZtrLnByB2532JVtt8p2FzZ8dQ9u7vQl4-7Du922qI7rWAjYEYXHV6es58D1NUOQzI6WFeJOHIV9nVNyAxsvff0Ajq9EeA9hs5pV_jEw7bKsSFWpraCbYJHJLNGlVh53IMWFD-BtLyxz1rJwGDy9kGTNJckG8JHEuepIBNrNH7P5qensseE4zx13JFKJ-opzdKWNVBEhPswLEcAbWgxDZo4icrbLVsD5EmGW2c4Qe3IiKwtga9ATRe6Gzf1ymm57qM2FMgfwctVMT1LIW-Vn500fKkUQK5zLo3b1V68kEBfjOVUFkA30YvDOw5bq54-GPJzolxQ-_OT_83oBN9C8zOf9w4OncIsjkmsTMLdgczE_988QiS3y543KMzi5ahv7B8P_SNQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+Sensing+Strategies+for+Synthetic+Orange+Dyes&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Dihua+Wu&rft.au=Jiangwei+Zhu&rft.au=Yuhong+Zheng&rft.au=Li+Fu&rft.date=2024-11-01&rft.pub=MDPI+AG&rft.eissn=1420-3049&rft.volume=29&rft.issue=21&rft.spage=5026&rft_id=info:doi/10.3390%2Fmolecules29215026&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1177bc2cedce4542a1dcfa07d0441bd3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon |