Olig1 Acetylation and Nuclear Export Mediate Oligodendrocyte Development

The oligodendrocyte transcription factor Olig1 is critical for both oligodendrocyte development and remyelination in mice. Nuclear to cytoplasmic translocation of Olig1 protein occurs during brain development and in multiple sclerosis, but the detailed molecular mechanism of this translocation remai...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 35; no. 48; pp. 15875 - 15893
Main Authors Dai, Jinxiang, Bercury, Kathryn K, Jin, Weilin, Macklin, Wendy B
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 02.12.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The oligodendrocyte transcription factor Olig1 is critical for both oligodendrocyte development and remyelination in mice. Nuclear to cytoplasmic translocation of Olig1 protein occurs during brain development and in multiple sclerosis, but the detailed molecular mechanism of this translocation remains elusive. Here, we report that Olig1 acetylation and deacetylation drive its active translocation between the nucleus and the cytoplasm in both mouse and rat oligodendrocytes. We identified three functional nuclear export sequences (NES) localized in the basic helix-loop-helix domain and one specific acetylation site at Lys 150 (human Olig1) in NES1. Olig1 acetylation and deacetylation are regulated by the acetyltransferase CREB-binding protein and the histone deacetylases HDAC1, HDAC3, and HDAC10. Acetylation of Olig1 decreased its chromatin association, increased its interaction with inhibitor of DNA binding 2 and facilitated its retention in the cytoplasm of mature oligodendrocytes. These studies establish that acetylation of Olig1 regulates its chromatin dissociation and subsequent translocation to the cytoplasm and is required for its function in oligodendrocyte maturation.
AbstractList The oligodendrocyte transcription factor Oligl is critical for both oligodendrocyte development and remyelination in mice. Nuclear to cytoplasmic translocation of Oligl protein occurs during brain development and in multiple sclerosis, but the detailed molecular mechanism of this translocation remains elusive. Here, we report that Oligl acetylation and deacetylation drive its active translocation between the nucleus and the cytoplasm in both mouse and rat oligodendrocytes. We identified three functional nuclear export sequences (NES) localized in the basic helix-loop-helix domain and one specific acetylation site at Lys 150 (human Olig1) in NES1. Oligl acetylation and deacetylation are regulated by the acetyltransferase CREB-binding protein and the histone deacetylases HDAC1, HDAC3, and HDAC10. Acetylation of Oligl decreased its chromatin association, increased its interaction with inhibitor of DNA binding 2 and facilitated its retention in the cytoplasm of mature oligodendrocytes. These studies establish that acetylation of Oligl regulates its chromatin dissociation and subsequent translocation to the cytoplasm and is required for its function in oligodendrocyte maturation.
The oligodendrocyte transcription factor Olig1 is critical for both oligodendrocyte development and remyelination in mice. Nuclear to cytoplasmic translocation of Olig1 protein occurs during brain development and in multiple sclerosis, but the detailed molecular mechanism of this translocation remains elusive. Here, we report that Olig1 acetylation and deacetylation drive its active translocation between the nucleus and the cytoplasm in both mouse and rat oligodendrocytes. We identified three functional nuclear export sequences (NES) localized in the basic helix-loop-helix domain and one specific acetylation site at Lys 150 (human Olig1) in NES1. Olig1 acetylation and deacetylation are regulated by the acetyltransferase CREB-binding protein and the histone deacetylases HDAC1, HDAC3, and HDAC10. Acetylation of Olig1 decreased its chromatin association, increased its interaction with inhibitor of DNA binding 2 and facilitated its retention in the cytoplasm of mature oligodendrocytes. These studies establish that acetylation of Olig1 regulates its chromatin dissociation and subsequent translocation to the cytoplasm and is required for its function in oligodendrocyte maturation.
The oligodendrocyte transcription factor Olig1 is critical for both oligodendrocyte development and remyelination in mice. Nuclear to cytoplasmic translocation of Olig1 protein occurs during brain development and in multiple sclerosis, but the detailed molecular mechanism of this translocation remains elusive. Here, we report that Olig1 acetylation and deacetylation drive its active translocation between the nucleus and the cytoplasm in both mouse and rat oligodendrocytes. We identified three functional nuclear export sequences (NES) localized in the basic helix-loop-helix domain and one specific acetylation site at Lys 150 (human Olig1) in NES1. Olig1 acetylation and deacetylation are regulated by the acetyltransferase CREB-binding protein and the histone deacetylases HDAC1, HDAC3, and HDAC10. Acetylation of Olig1 decreased its chromatin association, increased its interaction with inhibitor of DNA binding 2 and facilitated its retention in the cytoplasm of mature oligodendrocytes. These studies establish that acetylation of Olig1 regulates its chromatin dissociation and subsequent translocation to the cytoplasm and is required for its function in oligodendrocyte maturation. SIGNIFICANCE STATEMENT The nuclear to cytoplasmic translocation of Olig1 protein has been observed during mouse and human brain development and in multiple sclerosis in several studies, but the detailed molecular mechanism of this translocation remains elusive. Here, we provide insight into the mechanism by which acetylation of Olig1 regulates its unique nuclear-cytoplasmic shuttling during oligodendrocyte development and how the acetylation status of Olig1 modulates its distinct function in the nucleus versus the cytoplasm. The current study provides a unique example of a lineage-specific transcription factor that is actively translocated from the nucleus to the cytoplasm as the cell differentiates. Importantly, we demonstrate that this process is tightly controlled by acetylation at a single lysine.
Author Macklin, Wendy B
Dai, Jinxiang
Jin, Weilin
Bercury, Kathryn K
Author_xml – sequence: 1
  givenname: Jinxiang
  surname: Dai
  fullname: Dai, Jinxiang
  organization: Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 80045
– sequence: 2
  givenname: Kathryn K
  surname: Bercury
  fullname: Bercury, Kathryn K
  organization: Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 80045
– sequence: 3
  givenname: Weilin
  surname: Jin
  fullname: Jin, Weilin
  organization: Institute of Bio-Nano-Science and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 4
  givenname: Wendy B
  surname: Macklin
  fullname: Macklin, Wendy B
  email: Wendy.Macklin@ucdenver.edu
  organization: Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 80045, Wendy.Macklin@ucdenver.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26631469$$D View this record in MEDLINE/PubMed
BookMark eNqNkclOwzAQhi0EgrK8AsqRS8o4dpz4goRK2QStxHK2jD2BoNQuToLo2-OogODGyRrPP98s_y7ZdN4hIYcUxjTP2PGrwz741tRjKMsspfk4A5pvkFHMyjTjQDfJCLICUsELvkN22_YVAAqgxTbZyYRglAs5Ipfzpn6myanBbtXorvYu0c4ms940qEMy_Vj60CW3aGvdYTKIvUVngzerGJ_hOzZ-uUDX7ZOtSjctHny9e-ThfPowuUxv5hdXk9Ob1OSUdamsCpFDhRy5hVJWyEALlBUYI_KCWV4iCCaElkxaWdlKY1zAFqXMjckytkdO1thl_7RAa2LnoBu1DPVCh5XyulZ_M65-Uc_-XXEhhKQ8Ao6-AMG_9dh2alG3BptGO_R9q2icT5YAlP1DyiM13n2girXURFPagNXPRBTUYJi6nk0f7-b3kys1GBb_1GBYLDz8vc9P2bdD7BPZyZZe
CitedBy_id crossref_primary_10_1002_1873_3468_12999
crossref_primary_10_1186_s12906_017_1642_2
crossref_primary_10_1007_s12035_022_03149_y
crossref_primary_10_1016_j_neuint_2016_04_006
crossref_primary_10_1038_s41576_018_0072_4
crossref_primary_10_1186_s13046_019_1031_4
crossref_primary_10_3389_fncel_2022_1041853
crossref_primary_10_1016_j_expneurol_2020_113454
crossref_primary_10_1371_journal_ppat_1007574
crossref_primary_10_1002_glia_23636
crossref_primary_10_12688_f1000research_20904_1
crossref_primary_10_1016_j_gpb_2016_09_002
crossref_primary_10_3390_life11010062
crossref_primary_10_2139_ssrn_4141622
crossref_primary_10_3390_ijms19020331
crossref_primary_10_3390_v13071415
crossref_primary_10_1016_j_sbi_2023_102668
crossref_primary_10_3389_fnmol_2024_1389100
crossref_primary_10_3390_cells8101236
crossref_primary_10_1016_j_mcn_2017_11_010
crossref_primary_10_1530_JOE_17_0708
crossref_primary_10_1523_JNEUROSCI_0229_20_2021
crossref_primary_10_1002_glia_23986
crossref_primary_10_1016_j_isci_2023_106242
crossref_primary_10_1002_glia_23647
crossref_primary_10_3892_mmr_2019_10713
crossref_primary_10_1016_j_tins_2019_01_002
crossref_primary_10_3390_ijms21249514
crossref_primary_10_1007_s13402_023_00910_w
crossref_primary_10_1016_j_nbd_2020_105040
crossref_primary_10_1016_j_semcdb_2019_07_009
crossref_primary_10_1002_glia_23240
crossref_primary_10_1007_s12035_017_0647_7
crossref_primary_10_1101_gad_344218_120
crossref_primary_10_1126_sciadv_adk3931
crossref_primary_10_1042_BSR20210462
crossref_primary_10_1242_jcs_241943
crossref_primary_10_1371_journal_pone_0170477
crossref_primary_10_1111_jne_12924
crossref_primary_10_7554_eLife_35136
crossref_primary_10_1212_NXI_0000000000000704
crossref_primary_10_1038_s41467_020_17243_z
crossref_primary_10_1016_j_actbio_2017_03_032
Cites_doi 10.1016/j.expneurol.2012.03.003
10.1126/science.1175371
10.1016/j.neuron.2013.11.024
10.1242/jcs.03482
10.1038/nn1516
10.1093/brain/awn096
10.1038/nrm3118
10.1371/journal.pbio.1001625
10.1016/j.conb.2010.05.005
10.4049/jimmunol.176.9.5471
10.1523/JNEUROSCI.4456-07.2007
10.1111/j.1432-1033.2004.04423.x
10.1016/0304-3940(84)90010-7
10.1111/j.1471-4159.2005.03359.x
10.1126/science.1179689
10.1016/S0014-5793(01)02487-5
10.1056/NEJMoa010994
10.1073/pnas.0811648106
10.1146/annurev.neuro.30.051606.094313
10.1016/S0092-8674(01)00465-2
10.1523/JNEUROSCI.2453-12.2013
10.1007/PL00000759
10.1101/cshperspect.a000034
10.1086/521308
10.1523/JNEUROSCI.2324-05.2005
10.1101/gad.479209
10.1016/S0092-8674(02)00677-3
10.1038/cr.2008.325
10.1002/glia.20354
10.1016/S0896-6273(01)00237-9
10.1083/jcb.200412101
10.1016/j.neuron.2011.08.022
10.1038/cdd.2011.206
10.1042/AN20120092
10.1038/nature11093
10.1186/1471-2202-15-12
10.1126/science.1103709
10.1002/glia.22364
10.1016/j.cell.2014.10.011
10.1523/JNEUROSCI.20-17-06404.2000
10.1002/glia.20702
10.1007/PL00000703
10.1523/JNEUROSCI.4962-14.2015
10.1002/glia.22729
10.1038/sj.embor.7400700
10.1038/nn.2220
10.1523/JNEUROSCI.5582-12.2013
10.1038/nrm1331
10.1083/jcb.200309081
10.1038/nrn2480
10.1016/j.cell.2014.04.039
10.1038/nsmb.1931
10.1016/j.neuron.2006.09.037
10.1038/nn.2412
10.1126/science.1190927
10.1016/S0092-8674(02)00678-5
10.1093/brain/123.1.105
10.1016/j.bbrc.2006.08.199
10.1093/emboj/17.24.7416
10.1016/S0092-8674(02)00818-8
10.1016/j.neuron.2013.01.006
10.1016/S0079-6123(08)64019-4
10.1128/MCB.01611-06
10.1523/JNEUROSCI.4507-10.2011
10.1523/JNEUROSCI.3034-04.2005
10.1242/dev.01273
10.1083/jcb.137.2.459
10.1038/35049541
10.1074/jbc.M412614200
10.1101/cshperspect.a000950
ContentType Journal Article
Copyright Copyright © 2015 the authors 0270-6474/15/3515875-19$15.00/0.
Copyright © 2015 the authors 0270-6474/15/3515875-19$15.00/0 2015
Copyright_xml – notice: Copyright © 2015 the authors 0270-6474/15/3515875-19$15.00/0.
– notice: Copyright © 2015 the authors 0270-6474/15/3515875-19$15.00/0 2015
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7TK
5PM
DOI 10.1523/jneurosci.0882-15.2015
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList Neurosciences Abstracts
MEDLINE

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 15893
ExternalDocumentID 10_1523_JNEUROSCI_0882_15_2015
26631469
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: NS08223
– fundername: NINDS NIH HHS
  grantid: R01 NS082203
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
53G
5GY
5RE
5VS
AAFWJ
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
AENEX
AFCFT
AFHIN
AFOSN
AHWXS
AIZTS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
NPM
OK1
P0W
P2P
QZG
R.V
RHF
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
XJT
YBU
YHG
YKV
YNH
YSK
AAYXX
CITATION
7X8
AETEA
7TK
5PM
ID FETCH-LOGICAL-c513t-9f7650fe4e4d089fe30a6e9f0cc6573d48e06366a939d9fdfae647d7895cc223
IEDL.DBID RPM
ISSN 0270-6474
IngestDate Tue Sep 17 21:17:34 EDT 2024
Sun Sep 29 07:16:22 EDT 2024
Tue Aug 27 04:49:30 EDT 2024
Thu Sep 26 18:06:30 EDT 2024
Sat Sep 28 07:57:24 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 48
Keywords acetylation
nuclear export
Olig1
Language English
License Copyright © 2015 the authors 0270-6474/15/3515875-19$15.00/0.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c513t-9f7650fe4e4d089fe30a6e9f0cc6573d48e06366a939d9fdfae647d7895cc223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: J.D. designed research; J.D. performed research; W.J. contributed unpublished reagents/analytic tools; J.D. analyzed data; J.D., K.K.B., and W.B.M. wrote the paper.
OpenAccessLink https://www.jneurosci.org/content/jneuro/35/48/15875.full.pdf
PMID 26631469
PQID 1744662014
PQPubID 23479
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4666914
proquest_miscellaneous_1765980013
proquest_miscellaneous_1744662014
crossref_primary_10_1523_JNEUROSCI_0882_15_2015
pubmed_primary_26631469
PublicationCentury 2000
PublicationDate 2015-Dec-02
2015-12-02
20151202
PublicationDateYYYYMMDD 2015-12-02
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-Dec-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2015
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References 16267213 - J Neurosci. 2005 Nov 2;25(44):10064-73
17045240 - Biochem Biophys Res Commun. 2006 Dec 1;350(4):818-24
22722204 - Nature. 2012 Jun 21;486(7403):415-9
11301021 - Neuron. 2001 Mar;29(3):603-14
16648821 - EMBO Rep. 2006 Jul;7(7):727-33
22261619 - Cell Death Differ. 2012 Jul;19(7):1175-86
25060812 - Glia. 2014 Dec;62(12):2096-109
11525736 - Cell. 2001 Aug 24;106(4):511-21
24949979 - Cell. 2014 Jun 19;157(7):1724-34
18931697 - Nat Rev Neurosci. 2008 Nov;9(11):839-55
20066092 - Cold Spring Harb Perspect Biol. 2009 Oct;1(4):a000034
22639060 - Glia. 2012 Sep;60(9):1427-36
23473318 - Neuron. 2013 Mar 6;77(5):873-85
21982370 - Neuron. 2011 Oct 6;72(1):72-85
14991001 - Nat Rev Mol Cell Biol. 2004 Mar;5(3):209-19
11274346 - Physiol Rev. 2001 Apr;81(2):871-927
18160645 - J Neurosci. 2007 Dec 26;27(52):14375-82
9932412 - Prog Brain Res. 1998;117:233-47
12150992 - Cell. 2002 Jul 12;110(1):9-12
11955448 - Cell. 2002 Apr 5;109(1):75-86
15703389 - J Neurosci. 2005 Feb 9;25(6):1354-65
19820707 - Nat Neurosci. 2009 Nov;12(11):1370-1
25417154 - Cell. 2014 Nov 6;159(4):766-74
17242188 - Mol Cell Biol. 2007 Apr;27(7):2572-81
15280210 - Development. 2004 Sep;131(17):4131-42
11262869 - Nat Rev Genet. 2000 Oct;1(1):20-9
17046689 - Neuron. 2006 Oct 19;52(2):255-69
15024033 - J Cell Biol. 2004 Mar 15;164(6):851-62
21602905 - Nat Rev Mol Cell Biol. 2011 Jun;12(6):349-61
24507192 - Neuron. 2014 Feb 5;81(3):574-87
10964946 - J Neurosci. 2000 Sep 1;20(17):6404-12
11028912 - Cell Mol Life Sci. 2000 Aug;57(8-9):1193-206
18515322 - Brain. 2008 Jul;131(Pt 7):1749-58
15897262 - J Cell Biol. 2005 May 23;169(4):577-89
20167786 - Science. 2010 Feb 19;327(5968):1000-4
6483278 - Neurosci Lett. 1984 Jul 27;48(2):145-8
18558855 - Annu Rev Neurosci. 2008;31:247-69
15604411 - Science. 2004 Dec 17;306(5704):2111-5
9128255 - J Cell Biol. 1997 Apr 21;137(2):459-68
11955447 - Cell. 2002 Apr 5;109(1):61-73
20972448 - Nat Struct Mol Biol. 2010 Nov;17(11):1367-76
22449475 - Exp Neurol. 2012 May;235(1):380-7
21051629 - Science. 2010 Nov 5;330(6005):779-82
24423059 - BMC Neurosci. 2014;15:12
11412848 - FEBS Lett. 2001 Jun 8;498(2-3):157-63
18849983 - Nat Neurosci. 2008 Dec;11(12):1392-401
10823242 - Cell Mol Life Sci. 2000 Mar;57(3):411-20
19225110 - Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4882-7
15563451 - J Biol Chem. 2005 Feb 11;280(6):4313-20
20558055 - Curr Opin Neurobiol. 2010 Oct;20(5):601-7
23658182 - J Neurosci. 2013 May 8;33(19):8454-62
18512250 - Glia. 2008 Sep;56(12):1339-52
20457558 - Cold Spring Harb Perspect Biol. 2009 Dec;1(6):a000950
21368055 - J Neurosci. 2011 Mar 2;31(9):3435-45
9857197 - EMBO J. 1998 Dec 15;17(24):7416-29
15606747 - Eur J Biochem. 2004 Dec;271(23-24):4606-12
16673374 - Glia. 2006 Jul;54(1):35-46
16181427 - J Neurochem. 2005 Oct;95(1):230-43
11796850 - N Engl J Med. 2002 Jan 17;346(3):165-73
23739974 - J Neurosci. 2013 Jun 5;33(23):9781-93
19171783 - Genes Dev. 2009 Jan 15;23(2):223-35
19114992 - Cell Res. 2009 Jan;19(1):36-46
16116456 - Nat Neurosci. 2005 Sep;8(9):1148-50
19608861 - Science. 2009 Aug 14;325(5942):834-40
16622015 - J Immunol. 2006 May 1;176(9):5471-7
23421405 - ASN Neuro. 2013;5(1):e00108
10611125 - Brain. 2000 Jan;123 ( Pt 1):105-15
25762682 - J Neurosci. 2015 Mar 11;35(10):4386-402
17726064 - J Cell Sci. 2007 Sep 15;120(Pt 18):3249-61
23966833 - PLoS Biol. 2013;11(8):e1001625
2023041304202330000_35.48.15875.50
2023041304202330000_35.48.15875.52
2023041304202330000_35.48.15875.51
2023041304202330000_35.48.15875.10
2023041304202330000_35.48.15875.54
2023041304202330000_35.48.15875.53
2023041304202330000_35.48.15875.12
2023041304202330000_35.48.15875.56
2023041304202330000_35.48.15875.11
2023041304202330000_35.48.15875.55
2023041304202330000_35.48.15875.14
2023041304202330000_35.48.15875.58
2023041304202330000_35.48.15875.13
2023041304202330000_35.48.15875.57
2023041304202330000_35.48.15875.16
2023041304202330000_35.48.15875.15
2023041304202330000_35.48.15875.59
2023041304202330000_35.48.15875.18
2023041304202330000_35.48.15875.17
2023041304202330000_35.48.15875.19
2023041304202330000_35.48.15875.41
2023041304202330000_35.48.15875.40
2023041304202330000_35.48.15875.43
2023041304202330000_35.48.15875.42
2023041304202330000_35.48.15875.45
2023041304202330000_35.48.15875.44
2023041304202330000_35.48.15875.47
2023041304202330000_35.48.15875.46
2023041304202330000_35.48.15875.49
2023041304202330000_35.48.15875.48
2023041304202330000_35.48.15875.70
2023041304202330000_35.48.15875.30
Chang (2023041304202330000_35.48.15875.8) 2000; 20
2023041304202330000_35.48.15875.32
2023041304202330000_35.48.15875.31
2023041304202330000_35.48.15875.34
2023041304202330000_35.48.15875.33
2023041304202330000_35.48.15875.36
2023041304202330000_35.48.15875.35
2023041304202330000_35.48.15875.38
2023041304202330000_35.48.15875.37
2023041304202330000_35.48.15875.39
2023041304202330000_35.48.15875.1
2023041304202330000_35.48.15875.3
2023041304202330000_35.48.15875.2
2023041304202330000_35.48.15875.5
2023041304202330000_35.48.15875.4
2023041304202330000_35.48.15875.7
2023041304202330000_35.48.15875.61
2023041304202330000_35.48.15875.6
2023041304202330000_35.48.15875.60
2023041304202330000_35.48.15875.9
2023041304202330000_35.48.15875.63
2023041304202330000_35.48.15875.62
2023041304202330000_35.48.15875.21
2023041304202330000_35.48.15875.65
2023041304202330000_35.48.15875.20
2023041304202330000_35.48.15875.64
2023041304202330000_35.48.15875.23
2023041304202330000_35.48.15875.67
2023041304202330000_35.48.15875.22
2023041304202330000_35.48.15875.66
2023041304202330000_35.48.15875.25
2023041304202330000_35.48.15875.69
2023041304202330000_35.48.15875.24
2023041304202330000_35.48.15875.68
2023041304202330000_35.48.15875.27
2023041304202330000_35.48.15875.26
2023041304202330000_35.48.15875.29
2023041304202330000_35.48.15875.28
References_xml – ident: 2023041304202330000_35.48.15875.58
  doi: 10.1016/j.expneurol.2012.03.003
– ident: 2023041304202330000_35.48.15875.10
  doi: 10.1126/science.1175371
– ident: 2023041304202330000_35.48.15875.52
  doi: 10.1016/j.neuron.2013.11.024
– ident: 2023041304202330000_35.48.15875.20
  doi: 10.1242/jcs.03482
– ident: 2023041304202330000_35.48.15875.3
  doi: 10.1038/nn1516
– ident: 2023041304202330000_35.48.15875.28
  doi: 10.1093/brain/awn096
– ident: 2023041304202330000_35.48.15875.4
  doi: 10.1038/nrm3118
– ident: 2023041304202330000_35.48.15875.5
  doi: 10.1371/journal.pbio.1001625
– ident: 2023041304202330000_35.48.15875.15
  doi: 10.1016/j.conb.2010.05.005
– ident: 2023041304202330000_35.48.15875.22
  doi: 10.4049/jimmunol.176.9.5471
– ident: 2023041304202330000_35.48.15875.31
  doi: 10.1523/JNEUROSCI.4456-07.2007
– ident: 2023041304202330000_35.48.15875.36
  doi: 10.1111/j.1432-1033.2004.04423.x
– ident: 2023041304202330000_35.48.15875.6
  doi: 10.1016/0304-3940(84)90010-7
– ident: 2023041304202330000_35.48.15875.53
  doi: 10.1111/j.1471-4159.2005.03359.x
– ident: 2023041304202330000_35.48.15875.67
  doi: 10.1126/science.1179689
– ident: 2023041304202330000_35.48.15875.18
  doi: 10.1016/S0014-5793(01)02487-5
– ident: 2023041304202330000_35.48.15875.9
  doi: 10.1056/NEJMoa010994
– ident: 2023041304202330000_35.48.15875.54
  doi: 10.1073/pnas.0811648106
– ident: 2023041304202330000_35.48.15875.55
  doi: 10.1146/annurev.neuro.30.051606.094313
– ident: 2023041304202330000_35.48.15875.23
  doi: 10.1016/S0092-8674(01)00465-2
– ident: 2023041304202330000_35.48.15875.35
  doi: 10.1523/JNEUROSCI.2453-12.2013
– ident: 2023041304202330000_35.48.15875.7
  doi: 10.1007/PL00000759
– ident: 2023041304202330000_35.48.15875.41
  doi: 10.1101/cshperspect.a000034
– ident: 2023041304202330000_35.48.15875.2
  doi: 10.1086/521308
– ident: 2023041304202330000_35.48.15875.24
  doi: 10.1523/JNEUROSCI.2324-05.2005
– ident: 2023041304202330000_35.48.15875.27
  doi: 10.1101/gad.479209
– ident: 2023041304202330000_35.48.15875.68
  doi: 10.1016/S0092-8674(02)00677-3
– ident: 2023041304202330000_35.48.15875.21
  doi: 10.1038/cr.2008.325
– ident: 2023041304202330000_35.48.15875.26
  doi: 10.1002/glia.20354
– ident: 2023041304202330000_35.48.15875.57
  doi: 10.1016/S0896-6273(01)00237-9
– ident: 2023041304202330000_35.48.15875.51
  doi: 10.1083/jcb.200412101
– ident: 2023041304202330000_35.48.15875.11
  doi: 10.1016/j.neuron.2011.08.022
– ident: 2023041304202330000_35.48.15875.37
  doi: 10.1038/cdd.2011.206
– ident: 2023041304202330000_35.48.15875.61
  doi: 10.1042/AN20120092
– ident: 2023041304202330000_35.48.15875.38
  doi: 10.1038/nature11093
– ident: 2023041304202330000_35.48.15875.43
  doi: 10.1186/1471-2202-15-12
– ident: 2023041304202330000_35.48.15875.1
  doi: 10.1126/science.1103709
– ident: 2023041304202330000_35.48.15875.40
  doi: 10.1002/glia.22364
– ident: 2023041304202330000_35.48.15875.65
  doi: 10.1016/j.cell.2014.10.011
– volume: 20
  start-page: 6404
  year: 2000
  ident: 2023041304202330000_35.48.15875.8
  article-title: NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.20-17-06404.2000
  contributor:
    fullname: Chang
– ident: 2023041304202330000_35.48.15875.44
  doi: 10.1002/glia.20702
– ident: 2023041304202330000_35.48.15875.70
  doi: 10.1007/PL00000703
– ident: 2023041304202330000_35.48.15875.13
  doi: 10.1523/JNEUROSCI.4962-14.2015
– ident: 2023041304202330000_35.48.15875.12
  doi: 10.1002/glia.22729
– ident: 2023041304202330000_35.48.15875.14
  doi: 10.1038/sj.embor.7400700
– ident: 2023041304202330000_35.48.15875.47
  doi: 10.1038/nn.2220
– ident: 2023041304202330000_35.48.15875.42
  doi: 10.1523/JNEUROSCI.5582-12.2013
– ident: 2023041304202330000_35.48.15875.63
  doi: 10.1038/nrm1331
– ident: 2023041304202330000_35.48.15875.33
  doi: 10.1083/jcb.200309081
– ident: 2023041304202330000_35.48.15875.17
  doi: 10.1038/nrn2480
– ident: 2023041304202330000_35.48.15875.46
  doi: 10.1016/j.cell.2014.04.039
– ident: 2023041304202330000_35.48.15875.19
  doi: 10.1038/nsmb.1931
– ident: 2023041304202330000_35.48.15875.69
  doi: 10.1016/j.neuron.2006.09.037
– ident: 2023041304202330000_35.48.15875.49
  doi: 10.1038/nn.2412
– ident: 2023041304202330000_35.48.15875.16
  doi: 10.1126/science.1190927
– ident: 2023041304202330000_35.48.15875.32
  doi: 10.1016/S0092-8674(02)00678-5
– ident: 2023041304202330000_35.48.15875.60
  doi: 10.1093/brain/123.1.105
– ident: 2023041304202330000_35.48.15875.30
  doi: 10.1016/j.bbrc.2006.08.199
– ident: 2023041304202330000_35.48.15875.64
  doi: 10.1093/emboj/17.24.7416
– ident: 2023041304202330000_35.48.15875.50
  doi: 10.1016/S0092-8674(02)00818-8
– ident: 2023041304202330000_35.48.15875.66
  doi: 10.1016/j.neuron.2013.01.006
– ident: 2023041304202330000_35.48.15875.59
  doi: 10.1016/S0079-6123(08)64019-4
– ident: 2023041304202330000_35.48.15875.39
  doi: 10.1128/MCB.01611-06
– ident: 2023041304202330000_35.48.15875.45
  doi: 10.1523/JNEUROSCI.4507-10.2011
– ident: 2023041304202330000_35.48.15875.62
  doi: 10.1523/JNEUROSCI.3034-04.2005
– ident: 2023041304202330000_35.48.15875.48
  doi: 10.1242/dev.01273
– ident: 2023041304202330000_35.48.15875.56
  doi: 10.1083/jcb.137.2.459
– ident: 2023041304202330000_35.48.15875.25
  doi: 10.1038/35049541
– ident: 2023041304202330000_35.48.15875.29
  doi: 10.1074/jbc.M412614200
– ident: 2023041304202330000_35.48.15875.34
  doi: 10.1101/cshperspect.a000950
SSID ssj0007017
Score 2.437732
Snippet The oligodendrocyte transcription factor Olig1 is critical for both oligodendrocyte development and remyelination in mice. Nuclear to cytoplasmic translocation...
The oligodendrocyte transcription factor Oligl is critical for both oligodendrocyte development and remyelination in mice. Nuclear to cytoplasmic translocation...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 15875
SubjectTerms Active Transport, Cell Nucleus - drug effects
Active Transport, Cell Nucleus - genetics
Age Factors
Animals
Animals, Newborn
Basic Helix-Loop-Helix Transcription Factors - genetics
Basic Helix-Loop-Helix Transcription Factors - metabolism
Cells, Cultured
CREB-Binding Protein - genetics
CREB-Binding Protein - metabolism
Embryo, Mammalian
Female
Gene Expression Regulation, Developmental - genetics
Histone Acetyltransferases - metabolism
Histone Deacetylases - genetics
Histone Deacetylases - metabolism
Humans
Male
Mice
Mice, Inbred C57BL
Mice, Transgenic
Mutation - genetics
Nestin - genetics
Nestin - metabolism
Oligodendroglia - physiology
p300-CBP Transcription Factors - genetics
p300-CBP Transcription Factors - metabolism
Rats
SOXE Transcription Factors - genetics
SOXE Transcription Factors - metabolism
Stem Cells - physiology
Title Olig1 Acetylation and Nuclear Export Mediate Oligodendrocyte Development
URI https://www.ncbi.nlm.nih.gov/pubmed/26631469
https://search.proquest.com/docview/1744662014
https://search.proquest.com/docview/1765980013
https://pubmed.ncbi.nlm.nih.gov/PMC4666914
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED6aPvVlrD_WZd2KBmNvju1IsqzHEFqyjmQba6FvRpZOW6BxSpfC8t_vpNih6WAPe5R9xvZ3h_Sd_ekO4EOdczS-dMnQCkkJisBEu7xOvM-M85lSKMNG4emsmNyIq1t5uwey2wsTRfu2ng-au8Wgmf-M2sr7hU07nVj6dToWxLl1LtIe9BTnXYreTr8qi212Kd2ivEgo0W4LpoQrvZoFedz38adBJJa5DNKu0LuGVilOU4beXZz-YpzPhZNPVqLLl_CipZBstHnUQ9jD5giORw2lz4s1-8iiqDN-LT-GyZe7-Y-cjSyu1hvVGzONY7NQxdg8sIvfgX6zaezXgSwYL2kicrSqrWn8RFF0AteXF9fjSdI2T0iszPkq0V4R-fIoULis1B55ZgrUPrO2kIo7USKxk6IwmmunvfMGCS2nSi2tJc7wCvabZYOvgemirLlRmY212mlAACNyq4QpSjUUfUg70Kr7TYmMKqQWhHi1RbwKiNOxKiDeh_cdthVFc_hFYRpcPv6qKD8i55KN-JdNIXUZuGsfTjf-2N63c2Qf1I6ntgahmvbuGQqyWFW7Dao3_33lGRyEl4tal-Fb2F89POI7Yiyr-hx6n7-V5zFO_wAcgOsf
link.rule.ids 230,315,733,786,790,891,27955,27956,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6N7QFegDEYZTCMhHjLr8aO48eq2tSNtSBR0N4ixz-2ijWdRipR_vqdnaRahzQJHh1fFDmf7fsu-XwH8LFMUiNtroO-ogwDFGoCoZMysDaW2sacG-YOCo8n2eg7PT1n51vAurMwXrSvyllYXc3DanbptZXXcxV1OrHo63hIkXOLhEaPYAfXa591QXq7AfPYF9rFgAsjI8ppezAYQ67odOIEct-GJ6Gnlglz4i5XvQb9VIqbhth0T39xzvvSyTu-6PgZ_OhG0UhQfobLugzVn3sJHv95mM_hactOyaDp3oUtU72AvUGFkfl8RT4Rrxf1H-L3YPTlanaRkIEy9aoR1BFZaTJxCZLlDTn67Zg9GftSIIY44wXucRod5grbd8RKL2F6fDQdjoK2LkOgWJLWgbAceZ011FAd58KaNJaZETZWKmM81TQ3SHyyTIpUaGG1lQZh0DwXTCmkI69gu1pU5jUQkeVlKnmsfBp4bCByxqSKU5nlvE97EHVoFNdN9o3CRS0IZbGGsnBQ4rXCQdmDDx1oBS4U9_dDVmax_FVg6IUvFG3oQzYZE7mjxT3Yb4BeP7ebIT3gG1NgbeASdW_2ILA-YXcL5Jv_vvM9PB5Nx2fF2cnk8wE8cQP1kpr-W9iub5bmHRKjujz0y-AWMaQMMw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEB1BKyEu0FIogbZsJcTNX_Ha6z1GaaO0kLQSRaq4WOv9aCMaJyqORPj1zK7tKGklDj3aHstav_14z347A_C5iGItTKa8rqQJChSqPa6iwjMmFMqEjOnEbhQejdPhD3p-nVyvlfpypn1ZTPzybuqXk1vnrZxPZdD6xILLUZ8i5-YRDebKBM9hG8dsl7VCvZmEWeiK7aLoQnVEGW02B6PsCs7H1iT3vX_mO3oZJdbgZSvY4FoV48TBN5eoR7zzoX1ybT0avIafbUtqG8ovf1EVvvz7IMnjk5q6A68alkp6dcguPNPlG9jrlajQp0vyhTjfqPsgvwfDi7vJTUR6UlfL2lhHRKnI2CZKFvfk9I9l-GTkSoJoYoNnONcpXDiXeLxmWnoLV4PTq_7Qa-ozeDKJ4srjhiG_M5pqqsKMGx2HItXchFKmCYsVzTQSoDQVPOaKG2WERigUy3giJdKSd7BVzkr9HghPsyIWLJQuHTweIHpax5JRkWasSzsQtIjk8zoLR27VC8KZr-DMLZx4LrdwduC4BS7HAWP_gohSzxa_c5Rg-FIxhv4vJk14ZulxB_ZrsFfPbXtJB9hGN1gF2ITdm1cQXJe4uwHzw5Pv_AQvLk8G-bez8deP8NK20zlrugewVd0v9CHyo6o4ciPhH6amDrM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Olig1+Acetylation+and+Nuclear+Export+Mediate+Oligodendrocyte+Development&rft.jtitle=The+Journal+of+neuroscience&rft.au=Dai%2C+Jinxiang&rft.au=Bercury%2C+Kathryn+K&rft.au=Jin%2C+Weilin&rft.au=Macklin%2C+Wendy+B&rft.date=2015-12-02&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=35&rft.issue=48&rft.spage=15875&rft.epage=15893&rft_id=info:doi/10.1523%2FJNEUROSCI.0882-15.2015&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon