Environmental and spatial factors affecting surface water quality in a Himalayan watershed, Central Nepal
Various spatial interrelationships among sampling stations are not well explored in the spatial modeling of water quality literature. This research explores the relationship between water quality and various social, demographic, and topographic factors in an urbanizing watershed of Nepal with a comp...
Saved in:
Published in | Environmental and sustainability indicators Vol. 9; p. 100096 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.02.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Various spatial interrelationships among sampling stations are not well explored in the spatial modeling of water quality literature. This research explores the relationship between water quality and various social, demographic, and topographic factors in an urbanizing watershed of Nepal with a comparison of different connectivity matrices to conceptualize spatial interrelationships. We collected electrical conductivity and dissolved oxygen data from surface water bodies using a handheld probe and used the data to establish relationships with land use, topography, and population density-based explanatory variables at both watershed and 100-m buffer scales. The linear regression model was compared with different eigenvector-based spatial filtering models. These spatial filtering models were constructed using five different spatial conceptualizations based on different graph types generated from the geographic coordinates of the sampling sites. Population density, elevation, and percentage of sand in the watershed and riparian regions are most important in explaining dissolved oxygen concentration and electric conductivity. A human signature as population density and increased sand and gravel cover can be detected in this watershed impacting water quality. Among different graph types compared, the relative graph type provided the highest model strength signifying a stronger upstream-downstream relationship of dissolved oxygen, while k-nearest graph types with four neighbors provided the strongest model performance, indicating the impact of local factors on electrical conductivity. The relationships between socio-environmental factors and water quality and their spatial interrelationships identified in this work shed light on the source, mobilization, and transport of dissolved oxygen and electrical conductivity and can assist the water quality management endeavor.
•Spatial interrelationships between socio-environmental factors and water quality are identified in a Himalayan watershed.•Population density and sand and gravel covers are associated with deteriorated water quality.•The strongest relative graph type model shows a stronger upstream-downstream relationship of Dissolved Oxygen concentration.•The strongest k-nearest graph type model shows a stronger impacts from local factors to the electrical conductivity. |
---|---|
AbstractList | Various spatial interrelationships among sampling stations are not well explored in the spatial modeling of water quality literature. This research explores the relationship between water quality and various social, demographic, and topographic factors in an urbanizing watershed of Nepal with a comparison of different connectivity matrices to conceptualize spatial interrelationships. We collected electrical conductivity and dissolved oxygen data from surface water bodies using a handheld probe and used the data to establish relationships with land use, topography, and population density-based explanatory variables at both watershed and 100-m buffer scales. The linear regression model was compared with different eigenvector-based spatial filtering models. These spatial filtering models were constructed using five different spatial conceptualizations based on different graph types generated from the geographic coordinates of the sampling sites. Population density, elevation, and percentage of sand in the watershed and riparian regions are most important in explaining dissolved oxygen concentration and electric conductivity. A human signature as population density and increased sand and gravel cover can be detected in this watershed impacting water quality. Among different graph types compared, the relative graph type provided the highest model strength signifying a stronger upstream-downstream relationship of dissolved oxygen, while k-nearest graph types with four neighbors provided the strongest model performance, indicating the impact of local factors on electrical conductivity. The relationships between socio-environmental factors and water quality and their spatial interrelationships identified in this work shed light on the source, mobilization, and transport of dissolved oxygen and electrical conductivity and can assist the water quality management endeavor.
•Spatial interrelationships between socio-environmental factors and water quality are identified in a Himalayan watershed.•Population density and sand and gravel covers are associated with deteriorated water quality.•The strongest relative graph type model shows a stronger upstream-downstream relationship of Dissolved Oxygen concentration.•The strongest k-nearest graph type model shows a stronger impacts from local factors to the electrical conductivity. Various spatial interrelationships among sampling stations are not well explored in the spatial modeling of water quality literature. This research explores the relationship between water quality and various social, demographic, and topographic factors in an urbanizing watershed of Nepal with a comparison of different connectivity matrices to conceptualize spatial interrelationships. We collected electrical conductivity and dissolved oxygen data from surface water bodies using a handheld probe and used the data to establish relationships with land use, topography, and population density-based explanatory variables at both watershed and 100-m buffer scales. The linear regression model was compared with different eigenvector-based spatial filtering models. These spatial filtering models were constructed using five different spatial conceptualizations based on different graph types generated from the geographic coordinates of the sampling sites. Population density, elevation, and percentage of sand in the watershed and riparian regions are most important in explaining dissolved oxygen concentration and electric conductivity. A human signature as population density and increased sand and gravel cover can be detected in this watershed impacting water quality. Among different graph types compared, the relative graph type provided the highest model strength signifying a stronger upstream-downstream relationship of dissolved oxygen, while k-nearest graph types with four neighbors provided the strongest model performance, indicating the impact of local factors on electrical conductivity. The relationships between socio-environmental factors and water quality and their spatial interrelationships identified in this work shed light on the source, mobilization, and transport of dissolved oxygen and electrical conductivity and can assist the water quality management endeavor. |
ArticleNumber | 100096 |
Author | Mainali, Janardan Chang, Heejun |
Author_xml | – sequence: 1 givenname: Janardan orcidid: 0000-0002-0327-2891 surname: Mainali fullname: Mainali, Janardan email: jmainali23@gmail.com organization: Department of Geography, Portland State University, 1721 SW Broadway, Portland, OR, 97201, USA – sequence: 2 givenname: Heejun orcidid: 0000-0002-5605-6500 surname: Chang fullname: Chang, Heejun email: changh@pdx.edu organization: Department of Geography, Portland State University, 1721 SW Broadway, Portland, OR, 97201, USA |
BookMark | eNqFUcFuGyEUXFWplDTNF-TCsYfaBRZ24dBDZaVJpKi9tGf0DI8Uaw0O4FT---JsVFU5NCeehpl5MPOuO4kpYtddMrpklA2fNssQXbBLTvkRoVQPb7ozPgxyoUc-nvwzn3YXpWwahUvGhKJnXbiKjyGnuMVYYSIQHSk7qKHNHmxNuRDwHm0N8Z6UfW4gkt9QMZOHPUyhHkiIBMhN2MIEB4jzZfmF7iNZNdPcnL7hDqb33VsPU8GL5_O8-_n16sfqZnH3_fp29eVuYSXr60IPCqEHqkbtRjVKBw4Z1xTkWggHijrLUFImKGo1aBy59uilF4IJa5H2593t7OsSbMwut4flg0kQzBOQ8r2BXIOd0EBP5eCp4p56QakCGJXTAnoxrtegePP6MHvtcnrYY6lmG4rFaYKIaV8Ml1xwwXgvGrWfqTanUjL6v6sZNceezMY89WSOPZm5p6bSL1Q21BZ_OgYXple0n2cttjQfA2ZTbMBo0YXcCmvfDf_V_wH_prFU |
CitedBy_id | crossref_primary_10_1007_s11756_023_01346_1 crossref_primary_10_1111_gean_12393 crossref_primary_10_1080_15715124_2023_2165089 crossref_primary_10_1007_s13201_021_01468_4 crossref_primary_10_1007_s13762_022_04406_2 crossref_primary_10_1186_s43067_024_00139_z crossref_primary_10_1007_s11356_023_25956_z crossref_primary_10_1080_24694452_2022_2107478 crossref_primary_10_2166_wp_2024_023 crossref_primary_10_1016_j_ecoser_2022_101503 crossref_primary_10_1002_nafm_10899 crossref_primary_10_1007_s10661_025_13676_5 crossref_primary_10_1002_wer_11100 |
Cites_doi | 10.1002/hyp.5140 10.1016/j.jhazmat.2011.12.068 10.1641/0006-3568(2003)053[0563:LLAWQI]2.0.CO;2 10.1016/j.ecolmodel.2014.01.015 10.1016/S0043-1354(01)00062-8 10.1068/a37378 10.1126/science.1111772 10.1007/s10109-015-0225-3 10.1016/0378-1127(83)90054-3 10.1007/s10661-018-6646-y 10.1029/2017WR022172 10.1016/j.jhydrol.2018.06.074 10.1007/s00267-010-9571-6 10.1016/S0304-3800(01)00501-4 10.1139/cjfas-2012-0431 10.1146/annurev-ecolsys-102209-144718 10.3934/environsci.2018.3.143 10.1016/j.apgeog.2011.06.005 10.1016/j.isprsjprs.2019.02.010 10.1007/s10651-006-0022-8 10.1016/j.catena.2018.04.027 10.1080/19443994.2016.1185382 10.1080/01431160152558332 10.1890/04-0481 10.1016/j.watres.2008.04.006 10.1177/0309133319852003 10.1007/s10113-012-0313-6 10.1016/j.ecolind.2012.03.013 10.1111/1467-9884.00145 10.1890/08-1668.1 10.4236/jep.2017.811079 10.1016/j.compenvurbsys.2020.101461 10.1016/0022-1694(95)03008-5 10.1016/S0048-9697(03)00062-7 10.1023/B:LAND.0000042912.87067.35 10.1146/annurev.ecolsys.35.120202.110122 10.1007/s11270-010-0695-3 10.1002/ecs2.1867 10.1002/wat2.1260 10.1111/j.1538-4632.2002.tb01080.x 10.3390/land4040957 10.1890/11-1831.1 10.1111/j.1752-1688.2007.00045.x 10.1007/s10980-011-9642-y 10.1007/s10661-019-7779-3 10.1016/j.watres.2009.01.034 10.1016/0022-1694(94)02600-G 10.1007/s10661-006-9375-6 10.1016/j.ecolmodel.2006.12.033 |
ContentType | Journal Article |
Copyright | 2020 The Authors |
Copyright_xml | – notice: 2020 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.indic.2020.100096 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 2665-9727 |
ExternalDocumentID | oai_doaj_org_article_a3056f082f0f4008aa78d94a347bba82 10_1016_j_indic_2020_100096 S2665972720300805 |
GeographicLocations | Nepal |
GeographicLocations_xml | – name: Nepal |
GroupedDBID | 0SF 6I. AAEDW AAFTH AALRI AAXUO ACHIH AEXQZ AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M41 M~E NCXOZ OK1 ROL 0R~ AAHBH AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKYEP APXCP CITATION 7S9 L.6 |
ID | FETCH-LOGICAL-c513t-968ea3a0879d7875dade1290a5b44da80dc1e50140e9869e729fef5f4414cce03 |
IEDL.DBID | DOA |
ISSN | 2665-9727 |
IngestDate | Wed Aug 27 01:18:06 EDT 2025 Fri Jul 11 00:40:31 EDT 2025 Tue Jul 01 03:34:00 EDT 2025 Thu Apr 24 23:03:41 EDT 2025 Tue Jul 25 21:03:57 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Water pollution Nepal Land use Remote sensing Spatial statistics |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c513t-968ea3a0879d7875dade1290a5b44da80dc1e50140e9869e729fef5f4414cce03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0327-2891 0000-0002-5605-6500 |
OpenAccessLink | https://doaj.org/article/a3056f082f0f4008aa78d94a347bba82 |
PQID | 2524241234 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a3056f082f0f4008aa78d94a347bba82 proquest_miscellaneous_2524241234 crossref_primary_10_1016_j_indic_2020_100096 crossref_citationtrail_10_1016_j_indic_2020_100096 elsevier_sciencedirect_doi_10_1016_j_indic_2020_100096 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2021 2021-02-00 20210201 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
PublicationDecade | 2020 |
PublicationTitle | Environmental and sustainability indicators |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Baker (bib7) 2003; 17 Su, Xiao, Xu, Zhang, Mi, Wu (bib56) 2013; 13 Fracz, Chow-Fraser (bib23) 2013; 70 Chun, Griffith, Lee, Sinha (bib16) 2016; 18 Kannel, Lee, Kanel, Khan, Lee (bib32) 2007; 129 ACAP (bib1) 2017 USGS DO (bib62) 2006 Zang, Huang, Wu, Du, Scholz, Gao, Lin, Guo, Dong (bib73) 2011; 219 Chang (bib15) 2008; 42 de Mello, Valente, Randhir, dos Santos, Vettorazzi (bib20) 2018; 167 Money, Carter, Serre (bib42) 2009; 43 Thapa, Wikramanayake, Forrest (bib57) 2015 Nielsen, Trolle, Søndergaard, Lauridsen, Bjerring, Olesen, Jeppesen (bib43) 2012; 22 Gurung, Wagle, Bista, Joshi, Batajoo, Adhikari, Rai (bib26) 2005; 3 Collins, Jenkins (bib17) 1996; 185 Allan (bib3) 2004; 35 King, Baker, Whigham, Weller, Jordan, Kazyak, Hurd (bib34) 2005; 15 Rimal, Baral, Stork, Paudyal, Rijal (bib50) 2015; 4 Pratt, Chang (bib48) 2012; 210 Jenkins, Sloan, Cosby (bib30) 1995; 166 Lintern, Webb, Ryu, Liu, Bende-Michl, Waters, Leahy, Wilson, Western (bib36) 2018; 5 Tiefelsdorf, Griffith (bib58) 2007; 39 Washington Ecology (bib65) 2002 Wenner, Ruhlman, Eggert (bib68) 2003 Sharma, Bajracharya, Sitaula, Merz (bib52) 2005; 89 Ver Hoef, Peterson, Theobald (bib64) 2006; 13 CBS (bib14) 2013 Su, Xiao, Zhang (bib55) 2012; 32 Bivand (bib11) 2019 Google Earth Engine (bib25) 2020 Mainali, Chang (bib40) 2020; 81 Post, Cope, Gerard, Masto, Vine, Stiglitz, Hallstrom, Newman, Mikhailova (bib47) 2018; 190 Zampella, Procopio, Lathrop, Dow (bib72) 2007; 43 Cox (bib18) 2003; 314–316 Foley, DeFries, Asner, Barford, Bonan, Carpenter, Chapin, Coe, Daily, Gibbs (bib22) 2005; 309 Water on the Web (bib66) 2020 Bista, Dhungel, Adhikari (bib10) 2016; 17 Yadav, Babel, Shrestha, Deb (bib70) 2019; 191 Turner, Rabalais (bib59) 2003; 53 Zhou, Wu, Peng (bib74) 2012; 23 Kafle, Cotton, Chaudhary, Pariyar, Adhikari, Bohora, Chaudhary, Ram, Regmi (bib31) 2008; 1 Vaidya, Labh (bib63) 2017 Bhandari, GC (bib9) 2008; 1 Water Quality Standard Nepal (bib67) 2005 Bailey, Ahmadi (bib6) 2014; 277 Adhikari, Shrestha, Bam, Xie, Perschbacher (bib2) 2017 DHM (bib21) 2020 WorldPop Nepal (bib69) 2015 Borcard, Legendre (bib12) 2002; 153 Lewis, Brown (bib35) 2001; 22 Mainali, Chang (bib39) 2018; 564 Husen, Sherpa (bib29) 2017 Brunsdon, Fotheringham, Charlton (bib13) 1998; 47 Getis, Griffith (bib24) 2002; 34 ArcGIS 10.5.1 (bib5) 2020 Mainali, Chang, Chun (bib41) 2019; 43 US EPA (bib61) 2013 Baral Gauli, Dhakal, Khanal (bib8) 2016 Dale, Fortin (bib19) 2010; 41 S. Hammoud, Leung, Tripathi, P. Butler, N. Sule, R. Templeton (bib27) 2018; 5 Kannel, Lee, Lee, Kanel, Pelletier (bib33) 2007; 202 Peterson, Hoef (bib45) 2010; 91 Pandey, Pathak, Singh (bib44) 1983; 7 Lintern, Webb, Ryu, Liu, Waters, Leahy, Bende-Michl, Western (bib37) 2018; 54 Sliva, Williams (bib53) 2001; 35 Uriarte, Yackulic, Lim, Arce-Nazario (bib60) 2011; 26 Pokharel, Basnet, Majupuria, Baniya (bib46) 2018; 22 Yan, Ai, Yang, Yin (bib71) 2019; 150 Low, Koki, Juahir, Azid, Behkami, Ikram, Mohammed, Zain (bib38) 2016; 57 Schindler, Jankowski, A’mar, Holtgrieve (bib51) 2017; 8 Anselin (bib4) 1988 R Core Team (bib49) 2019 Sreebha, Padmalal (bib54) 2011; 47 Houlahan, Findlay (bib28) 2004; 19 Su (10.1016/j.indic.2020.100096_bib56) 2013; 13 Sharma (10.1016/j.indic.2020.100096_bib52) 2005; 89 Pandey (10.1016/j.indic.2020.100096_bib44) 1983; 7 US EPA (10.1016/j.indic.2020.100096_bib61) 2013 Water on the Web (10.1016/j.indic.2020.100096_bib66) 2020 Post (10.1016/j.indic.2020.100096_bib47) 2018; 190 Thapa (10.1016/j.indic.2020.100096_bib57) 2015 Kannel (10.1016/j.indic.2020.100096_bib33) 2007; 202 R Core Team (10.1016/j.indic.2020.100096_bib49) 2019 Uriarte (10.1016/j.indic.2020.100096_bib60) 2011; 26 Pratt (10.1016/j.indic.2020.100096_bib48) 2012; 210 Chun (10.1016/j.indic.2020.100096_bib16) 2016; 18 Pokharel (10.1016/j.indic.2020.100096_bib46) 2018; 22 DHM (10.1016/j.indic.2020.100096_bib21) 2020 Cox (10.1016/j.indic.2020.100096_bib18) 2003; 314–316 King (10.1016/j.indic.2020.100096_bib34) 2005; 15 Su (10.1016/j.indic.2020.100096_bib55) 2012; 32 Money (10.1016/j.indic.2020.100096_bib42) 2009; 43 Turner (10.1016/j.indic.2020.100096_bib59) 2003; 53 Anselin (10.1016/j.indic.2020.100096_bib4) 1988 Tiefelsdorf (10.1016/j.indic.2020.100096_bib58) 2007; 39 Bivand (10.1016/j.indic.2020.100096_bib11) 2019 Jenkins (10.1016/j.indic.2020.100096_bib30) 1995; 166 Brunsdon (10.1016/j.indic.2020.100096_bib13) 1998; 47 Kafle (10.1016/j.indic.2020.100096_bib31) 2008; 1 Rimal (10.1016/j.indic.2020.100096_bib50) 2015; 4 Google Earth Engine (10.1016/j.indic.2020.100096_bib25) 2020 Baker (10.1016/j.indic.2020.100096_bib7) 2003; 17 ArcGIS 10.5.1 (10.1016/j.indic.2020.100096_bib5) 2020 WorldPop Nepal (10.1016/j.indic.2020.100096_bib69) 2015 CBS (10.1016/j.indic.2020.100096_bib14) 2013 Schindler (10.1016/j.indic.2020.100096_bib51) 2017; 8 Bista (10.1016/j.indic.2020.100096_bib10) 2016; 17 Yan (10.1016/j.indic.2020.100096_bib71) 2019; 150 Washington Ecology (10.1016/j.indic.2020.100096_bib65) 2002 Lintern (10.1016/j.indic.2020.100096_bib36) 2018; 5 S. Hammoud (10.1016/j.indic.2020.100096_bib27) 2018; 5 Sreebha (10.1016/j.indic.2020.100096_bib54) 2011; 47 Zang (10.1016/j.indic.2020.100096_bib73) 2011; 219 Peterson (10.1016/j.indic.2020.100096_bib45) 2010; 91 Baral Gauli (10.1016/j.indic.2020.100096_bib8) 2016 Water Quality Standard Nepal (10.1016/j.indic.2020.100096_bib67) 2005 Yadav (10.1016/j.indic.2020.100096_bib70) 2019; 191 Houlahan (10.1016/j.indic.2020.100096_bib28) 2004; 19 Bailey (10.1016/j.indic.2020.100096_bib6) 2014; 277 Nielsen (10.1016/j.indic.2020.100096_bib43) 2012; 22 Zhou (10.1016/j.indic.2020.100096_bib74) 2012; 23 Low (10.1016/j.indic.2020.100096_bib38) 2016; 57 Lintern (10.1016/j.indic.2020.100096_bib37) 2018; 54 Fracz (10.1016/j.indic.2020.100096_bib23) 2013; 70 Dale (10.1016/j.indic.2020.100096_bib19) 2010; 41 Bhandari (10.1016/j.indic.2020.100096_bib9) 2008; 1 Sliva (10.1016/j.indic.2020.100096_bib53) 2001; 35 de Mello (10.1016/j.indic.2020.100096_bib20) 2018; 167 Wenner (10.1016/j.indic.2020.100096_bib68) 2003 Zampella (10.1016/j.indic.2020.100096_bib72) 2007; 43 USGS DO (10.1016/j.indic.2020.100096_bib62) 2006 Adhikari (10.1016/j.indic.2020.100096_bib2) 2017 Mainali (10.1016/j.indic.2020.100096_bib41) 2019; 43 Chang (10.1016/j.indic.2020.100096_bib15) 2008; 42 Mainali (10.1016/j.indic.2020.100096_bib40) 2020; 81 Husen (10.1016/j.indic.2020.100096_bib29) 2017 Mainali (10.1016/j.indic.2020.100096_bib39) 2018; 564 Vaidya (10.1016/j.indic.2020.100096_bib63) 2017 Collins (10.1016/j.indic.2020.100096_bib17) 1996; 185 Gurung (10.1016/j.indic.2020.100096_bib26) 2005; 3 Getis (10.1016/j.indic.2020.100096_bib24) 2002; 34 Foley (10.1016/j.indic.2020.100096_bib22) 2005; 309 Borcard (10.1016/j.indic.2020.100096_bib12) 2002; 153 Ver Hoef (10.1016/j.indic.2020.100096_bib64) 2006; 13 ACAP (10.1016/j.indic.2020.100096_bib1) 2017 Lewis (10.1016/j.indic.2020.100096_bib35) 2001; 22 Allan (10.1016/j.indic.2020.100096_bib3) 2004; 35 Kannel (10.1016/j.indic.2020.100096_bib32) 2007; 129 |
References_xml | – volume: 7 start-page: 19 year: 1983 end-page: 29 ident: bib44 article-title: Water, sediment, and nutrient movement in forested and non-forested catchments in Kumaun Himalaya publication-title: For. Ecol. Manag. – year: 2015 ident: bib69 article-title: Worldpop - Nepal – volume: 18 start-page: 67 year: 2016 end-page: 85 ident: bib16 article-title: Eigenvector selection with stepwise regression techniques to construct eigenvector spatial filters publication-title: J. Geogr. Syst. – year: 2019 ident: bib11 article-title: Package ‘spatialreg.’ – volume: 19 start-page: 677 year: 2004 end-page: 690 ident: bib28 article-title: Estimating the ‘critical’distance at which adjacent land-use degrades wetland water and sediment quality publication-title: Landsc. Ecol. – volume: 23 start-page: 166 year: 2012 end-page: 175 ident: bib74 article-title: Assessing the effects of landscape pattern on river water quality at multiple scales: a case study of the Dongjiang River watershed, China publication-title: Ecol. Indicat. – volume: 41 start-page: 21 year: 2010 end-page: 38 ident: bib19 article-title: From graphs to spatial graphs publication-title: Annu. Rev. Ecol. Evol. Syst. – volume: 5 start-page: 143 year: 2018 end-page: 153 ident: bib27 article-title: The impact of latrine contents and emptying practices on nitrogen contamination of well water in Kathmandu Valley, Nepal publication-title: AIMS Environ. Sci. – volume: 43 start-page: 801 year: 2019 end-page: 826 ident: bib41 article-title: A review of spatial statistical approaches to modeling water quality publication-title: Prog. Phys. Geogr. Earth Environ. – volume: 166 start-page: 61 year: 1995 end-page: 79 ident: bib30 article-title: Stream chemistry in the middle hills and high mountains of the Himalayas, Nepal publication-title: J. Hydrol. – year: 2017 ident: bib29 article-title: Native Fish Species of Begnas and Rupa Lake – volume: 309 start-page: 570 year: 2005 end-page: 574 ident: bib22 article-title: Global consequences of land use publication-title: Science – volume: 564 start-page: 26 year: 2018 end-page: 40 ident: bib39 article-title: Landscape and anthropogenic factors affecting spatial patterns of water quality trends in a large river basin, South Korea publication-title: J. Hydrol. – volume: 191 year: 2019 ident: bib70 article-title: Land use impact on the water quality of large tropical river: mun River Basin, Thailand publication-title: Environ. Monit. Assess. – volume: 219 start-page: 157 year: 2011 end-page: 174 ident: bib73 article-title: Comparison of relationships between pH, dissolved oxygen and chlorophyll a for aquaculture and non-aquaculture waters publication-title: Water Air Soil Pollut. – volume: 8 year: 2017 ident: bib51 article-title: Two-stage metabolism inferred from diel oxygen dynamics in aquatic ecosystems publication-title: Ecosphere – volume: 39 start-page: 1193 year: 2007 end-page: 1221 ident: bib58 article-title: Semiparametric filtering of spatial autocorrelation: the eigenvector approach publication-title: Environ. Plann. – volume: 3 start-page: 47 year: 2005 end-page: 52 ident: bib26 article-title: Participatory fisheries management for livelihood improvement of Fishers in Phewa Lake, Pokhara, Nepal publication-title: Himal. J. Sci. – volume: 15 start-page: 137 year: 2005 end-page: 153 ident: bib34 article-title: Spatial considerations for linking watershed land cover to ecological indicators in streams publication-title: Ecol. Appl. – volume: 1 start-page: 9 year: 2008 end-page: 12 ident: bib31 article-title: Status of and threats to waterbirds of rupa lake, Pokhara, Nepal publication-title: J. Wetl. Ecol. – volume: 1 start-page: 2 year: 2008 ident: bib9 article-title: Preliminary Survey and awareness for otter conservation in rupa lake, Pokhara, Nepal publication-title: J. Wetl. Ecol. – volume: 153 start-page: 51 year: 2002 end-page: 68 ident: bib12 article-title: All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices publication-title: Ecol. Model. – volume: 13 start-page: 77 year: 2013 end-page: 89 ident: bib56 article-title: Multi-scale spatial determinants of dissolved oxygen and nutrients in Qiantang River, China publication-title: Reg. Environ. Change – year: 2020 ident: bib25 article-title: Google Earth Engine – volume: 22 start-page: 3223 year: 2001 end-page: 3235 ident: bib35 article-title: A generalized confusion matrix for assessing area estimates from remotely sensed data publication-title: Int. J. Rem. Sens. – volume: 53 start-page: 563 year: 2003 ident: bib59 article-title: Linking landscape and water quality in the Mississippi river basin for 200 years publication-title: Bioscience – volume: 43 start-page: 1948 year: 2009 end-page: 1958 ident: bib42 article-title: Using river distances in the space/time estimation of dissolved oxygen along two impaired river networks in New Jersey publication-title: Water Res. – volume: 89 start-page: 774 year: 2005 end-page: 786 ident: bib52 article-title: Water quality in the central Himalaya publication-title: Curr. Sci. – volume: 35 start-page: 257 year: 2004 end-page: 284 ident: bib3 article-title: Landscapes and riverscapes: the influence of land use on stream ecosystems publication-title: Annu. Rev. Ecol. Evol. Syst. – volume: 17 start-page: 1 year: 2016 end-page: 10 ident: bib10 article-title: Status of fertilizer and seed subsidy in Nepal: review and recommendation publication-title: J. Agric. Environ. – volume: 4 start-page: 957 year: 2015 end-page: 978 ident: bib50 article-title: Growing city and rapid land use transition: assessing multiple hazards and risks in the Pokhara valley, Nepal publication-title: Land – volume: 190 year: 2018 ident: bib47 article-title: Monitoring spatial and temporal variation of dissolved oxygen and water temperature in the Savannah River using a sensor network publication-title: Environ. Monit. Assess. – year: 2020 ident: bib21 article-title: Department of Hydrology and Meteorology – volume: 22 start-page: 129 year: 2018 end-page: 139 ident: bib46 article-title: Environmental variables of the Seti gandaki river basin Pokhara, Nepal publication-title: J. Instr. Sci. Technol. – volume: 32 start-page: 360 year: 2012 end-page: 375 ident: bib55 article-title: Multi-scale analysis of spatially varying relationships between agricultural landscape patterns and urbanization using geographically weighted regression publication-title: Appl. Geogr. – year: 2020 ident: bib66 article-title: Water on the Web | Understanding | Water Quality | Parameters | EC – volume: 277 start-page: 87 year: 2014 end-page: 96 ident: bib6 article-title: Spatial and temporal variability of in-stream water quality parameter influence on dissolved oxygen and nitrate within a regional stream network publication-title: Ecol. Model. – volume: 129 start-page: 433 year: 2007 end-page: 459 ident: bib32 article-title: Spatial–temporal variation and comparative assessment of water qualities of urban river system: a case study of the river Bagmati (Nepal) publication-title: Environ. Monit. Assess. – year: 2015 ident: bib57 article-title: Climate-change Impacts on the Biodiversity of the Terai Arc Landscape and the Chitwan-Annapurna Landscape – year: 2006 ident: bib62 article-title: Chapter A6. Section 6.2. Dissolved Oxygen – volume: 35 start-page: 3462 year: 2001 end-page: 3472 ident: bib53 article-title: Buffer zone versus whole catchment approaches to studying land use impact on river water quality publication-title: Water Res. – volume: 47 start-page: 130 year: 2011 end-page: 140 ident: bib54 article-title: Environmental impact assessment of sand mining from the small catchment rivers in the southwestern coast of India: a case study publication-title: Environ. Manag. – volume: 13 start-page: 449 year: 2006 end-page: 464 ident: bib64 article-title: Spatial statistical models that use flow and stream distance publication-title: Environ. Ecol. Stat. – volume: 91 start-page: 644 year: 2010 end-page: 651 ident: bib45 article-title: A mixed-model moving-average approach to geostatistical modeling in stream networks publication-title: Ecology – year: 2005 ident: bib67 article-title: National Drinking Water Quality Standards – volume: 150 start-page: 259 year: 2019 end-page: 273 ident: bib71 article-title: A graph convolutional neural network for classification of building patterns using spatial vector data publication-title: ISPRS J. Photogrammetry Remote Sens. – year: 2019 ident: bib49 article-title: The R Project for Statistical Computing – volume: 26 start-page: 1151 year: 2011 end-page: 1164 ident: bib60 article-title: Influence of land use on water quality in a tropical landscape: a multi-scale analysis publication-title: Landsc. Ecol. – volume: 22 start-page: 1187 year: 2012 end-page: 1200 ident: bib43 article-title: Watershed land use effects on lake water quality in Denmark publication-title: Ecol. Appl. – year: 2013 ident: bib14 article-title: Environment Statistics of Nepal 2013 – volume: 81 start-page: 101461 year: 2020 ident: bib40 article-title: Putting space into modeling landscape and water quality relationships in the Han River basin, South Korea publication-title: Comput. Environ. Urban Syst. – volume: 17 start-page: 2499 year: 2003 end-page: 2501 ident: bib7 article-title: Land use and water quality publication-title: Hydrol. Process. – volume: 47 start-page: 431 year: 1998 end-page: 443 ident: bib13 article-title: Geographically weighted regression publication-title: J. R. Stat. Soc. Ser. Stat. – volume: 5 start-page: 1 year: 2018 end-page: 31 ident: bib36 article-title: Key factors influencing differences in stream water quality across space publication-title: Wiley Interdiscip. Rev. Water – volume: 57 start-page: 28215 year: 2016 end-page: 28239 ident: bib38 article-title: Evaluation of water quality variation in lakes, rivers, and ex-mining ponds in Malaysia (review) publication-title: Desalination Water Treat – start-page: 3 year: 2003 ident: bib68 article-title: The importance OF specific conductivity for assessing environmentally impacted streams publication-title: Presented at the Proceedings of the 2003 Georgia Water Resources Conference – year: 1988 ident: bib4 article-title: Spatial Econometrics: Methods and Models – start-page: 1270 year: 2017 end-page: 1295 ident: bib2 article-title: Evaluation of spatial-temporal variations of water quality and plankton assemblages and its relationship to water use in kulekhani multipurpose reservoir, Nepal publication-title: J. Environ. Protect. – volume: 210 start-page: 48 year: 2012 end-page: 58 ident: bib48 article-title: Effects of land cover, topography, and built structure on seasonal water quality at multiple spatial scales publication-title: J. Hazard. Mater. 209– – year: 2017 ident: bib1 article-title: Annapurna Conservation Area Project – volume: 70 start-page: 834 year: 2013 end-page: 840 ident: bib23 article-title: Changes in water chemistry associated with beaver-impounded coastal marshes of eastern Georgian Bay publication-title: Can. J. Fish. Aquat. Sci. – volume: 54 start-page: 7252 year: 2018 end-page: 7272 ident: bib37 article-title: What are the key catchment characteristics affecting spatial differences in riverine water quality? publication-title: Water Resour. Res. – volume: 167 start-page: 130 year: 2018 end-page: 138 ident: bib20 article-title: Effects of land use and land cover on water quality of low-order streams in Southeastern Brazil: watershed versus riparian zone publication-title: CATENA – year: 2002 ident: bib65 article-title: Dissolved Oxygen and the Water Quality Standards – year: 2016 ident: bib8 article-title: Lake Cluster of Pokhara Valley – volume: 185 start-page: 71 year: 1996 end-page: 86 ident: bib17 article-title: The impact of agricultural land use on stream chemistry in the Middle Hills of the Himalayas, Nepal publication-title: J. Hydrol. – year: 2017 ident: bib63 article-title: Determination of Physico-Chemical Parameters and Water Quality Index (WQI) for Drinking Water Available in Kathmandu Valley – volume: 314–316 start-page: 303 year: 2003 end-page: 334 ident: bib18 article-title: A review of dissolved oxygen modelling techniques for lowland rivers publication-title: Sci. Total Environ. – volume: 43 start-page: 594 year: 2007 end-page: 604 ident: bib72 article-title: Relationship of land-use/land-cover patterns and surface-water quality in the mullica river basin publication-title: J. Am. Water Resour. Assoc. – volume: 42 start-page: 3285 year: 2008 end-page: 3304 ident: bib15 article-title: Spatial analysis of water quality trends in the Han River basin, South Korea publication-title: Water Res. – volume: 34 start-page: 130 year: 2002 end-page: 140 ident: bib24 article-title: Comparative spatial filtering in regression analysis publication-title: Geogr. Anal. – year: 2020 ident: bib5 article-title: ArcGIS Desktop 10.5.1 Quick Start Guide—ArcGIS Help | ArcGIS Desktop – volume: 202 start-page: 503 year: 2007 end-page: 517 ident: bib33 article-title: Application of automated QUAL2Kw for water quality modeling and management in the Bagmati River, Nepal publication-title: Ecol. Model. – year: 2013 ident: bib61 article-title: Indicators: Conductivity – volume: 17 start-page: 2499 year: 2003 ident: 10.1016/j.indic.2020.100096_bib7 article-title: Land use and water quality publication-title: Hydrol. Process. doi: 10.1002/hyp.5140 – year: 2017 ident: 10.1016/j.indic.2020.100096_bib1 – volume: 17 start-page: 1 year: 2016 ident: 10.1016/j.indic.2020.100096_bib10 article-title: Status of fertilizer and seed subsidy in Nepal: review and recommendation publication-title: J. Agric. Environ. – volume: 210 start-page: 48 year: 2012 ident: 10.1016/j.indic.2020.100096_bib48 article-title: Effects of land cover, topography, and built structure on seasonal water quality at multiple spatial scales publication-title: J. Hazard. Mater. 209– doi: 10.1016/j.jhazmat.2011.12.068 – volume: 53 start-page: 563 year: 2003 ident: 10.1016/j.indic.2020.100096_bib59 article-title: Linking landscape and water quality in the Mississippi river basin for 200 years publication-title: Bioscience doi: 10.1641/0006-3568(2003)053[0563:LLAWQI]2.0.CO;2 – volume: 277 start-page: 87 year: 2014 ident: 10.1016/j.indic.2020.100096_bib6 article-title: Spatial and temporal variability of in-stream water quality parameter influence on dissolved oxygen and nitrate within a regional stream network publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2014.01.015 – volume: 35 start-page: 3462 year: 2001 ident: 10.1016/j.indic.2020.100096_bib53 article-title: Buffer zone versus whole catchment approaches to studying land use impact on river water quality publication-title: Water Res. doi: 10.1016/S0043-1354(01)00062-8 – volume: 39 start-page: 1193 year: 2007 ident: 10.1016/j.indic.2020.100096_bib58 article-title: Semiparametric filtering of spatial autocorrelation: the eigenvector approach publication-title: Environ. Plann. doi: 10.1068/a37378 – year: 2019 ident: 10.1016/j.indic.2020.100096_bib11 – volume: 309 start-page: 570 year: 2005 ident: 10.1016/j.indic.2020.100096_bib22 article-title: Global consequences of land use publication-title: Science doi: 10.1126/science.1111772 – volume: 22 start-page: 129 year: 2018 ident: 10.1016/j.indic.2020.100096_bib46 article-title: Environmental variables of the Seti gandaki river basin Pokhara, Nepal publication-title: J. Instr. Sci. Technol. – volume: 18 start-page: 67 year: 2016 ident: 10.1016/j.indic.2020.100096_bib16 article-title: Eigenvector selection with stepwise regression techniques to construct eigenvector spatial filters publication-title: J. Geogr. Syst. doi: 10.1007/s10109-015-0225-3 – volume: 7 start-page: 19 year: 1983 ident: 10.1016/j.indic.2020.100096_bib44 article-title: Water, sediment, and nutrient movement in forested and non-forested catchments in Kumaun Himalaya publication-title: For. Ecol. Manag. doi: 10.1016/0378-1127(83)90054-3 – volume: 190 year: 2018 ident: 10.1016/j.indic.2020.100096_bib47 article-title: Monitoring spatial and temporal variation of dissolved oxygen and water temperature in the Savannah River using a sensor network publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-018-6646-y – volume: 54 start-page: 7252 year: 2018 ident: 10.1016/j.indic.2020.100096_bib37 article-title: What are the key catchment characteristics affecting spatial differences in riverine water quality? publication-title: Water Resour. Res. doi: 10.1029/2017WR022172 – volume: 564 start-page: 26 year: 2018 ident: 10.1016/j.indic.2020.100096_bib39 article-title: Landscape and anthropogenic factors affecting spatial patterns of water quality trends in a large river basin, South Korea publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.06.074 – volume: 47 start-page: 130 year: 2011 ident: 10.1016/j.indic.2020.100096_bib54 article-title: Environmental impact assessment of sand mining from the small catchment rivers in the southwestern coast of India: a case study publication-title: Environ. Manag. doi: 10.1007/s00267-010-9571-6 – volume: 153 start-page: 51 year: 2002 ident: 10.1016/j.indic.2020.100096_bib12 article-title: All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices publication-title: Ecol. Model. doi: 10.1016/S0304-3800(01)00501-4 – volume: 70 start-page: 834 year: 2013 ident: 10.1016/j.indic.2020.100096_bib23 article-title: Changes in water chemistry associated with beaver-impounded coastal marshes of eastern Georgian Bay publication-title: Can. J. Fish. Aquat. Sci. doi: 10.1139/cjfas-2012-0431 – volume: 41 start-page: 21 year: 2010 ident: 10.1016/j.indic.2020.100096_bib19 article-title: From graphs to spatial graphs publication-title: Annu. Rev. Ecol. Evol. Syst. doi: 10.1146/annurev-ecolsys-102209-144718 – volume: 5 start-page: 143 year: 2018 ident: 10.1016/j.indic.2020.100096_bib27 article-title: The impact of latrine contents and emptying practices on nitrogen contamination of well water in Kathmandu Valley, Nepal publication-title: AIMS Environ. Sci. doi: 10.3934/environsci.2018.3.143 – volume: 32 start-page: 360 year: 2012 ident: 10.1016/j.indic.2020.100096_bib55 article-title: Multi-scale analysis of spatially varying relationships between agricultural landscape patterns and urbanization using geographically weighted regression publication-title: Appl. Geogr. doi: 10.1016/j.apgeog.2011.06.005 – year: 1988 ident: 10.1016/j.indic.2020.100096_bib4 – volume: 150 start-page: 259 year: 2019 ident: 10.1016/j.indic.2020.100096_bib71 article-title: A graph convolutional neural network for classification of building patterns using spatial vector data publication-title: ISPRS J. Photogrammetry Remote Sens. doi: 10.1016/j.isprsjprs.2019.02.010 – volume: 13 start-page: 449 year: 2006 ident: 10.1016/j.indic.2020.100096_bib64 article-title: Spatial statistical models that use flow and stream distance publication-title: Environ. Ecol. Stat. doi: 10.1007/s10651-006-0022-8 – year: 2020 ident: 10.1016/j.indic.2020.100096_bib21 – volume: 167 start-page: 130 year: 2018 ident: 10.1016/j.indic.2020.100096_bib20 article-title: Effects of land use and land cover on water quality of low-order streams in Southeastern Brazil: watershed versus riparian zone publication-title: CATENA doi: 10.1016/j.catena.2018.04.027 – volume: 1 start-page: 2 year: 2008 ident: 10.1016/j.indic.2020.100096_bib9 article-title: Preliminary Survey and awareness for otter conservation in rupa lake, Pokhara, Nepal publication-title: J. Wetl. Ecol. – year: 2016 ident: 10.1016/j.indic.2020.100096_bib8 – year: 2020 ident: 10.1016/j.indic.2020.100096_bib66 – volume: 57 start-page: 28215 year: 2016 ident: 10.1016/j.indic.2020.100096_bib38 article-title: Evaluation of water quality variation in lakes, rivers, and ex-mining ponds in Malaysia (review) publication-title: Desalination Water Treat doi: 10.1080/19443994.2016.1185382 – volume: 22 start-page: 3223 year: 2001 ident: 10.1016/j.indic.2020.100096_bib35 article-title: A generalized confusion matrix for assessing area estimates from remotely sensed data publication-title: Int. J. Rem. Sens. doi: 10.1080/01431160152558332 – year: 2015 ident: 10.1016/j.indic.2020.100096_bib57 – volume: 1 start-page: 9 year: 2008 ident: 10.1016/j.indic.2020.100096_bib31 article-title: Status of and threats to waterbirds of rupa lake, Pokhara, Nepal publication-title: J. Wetl. Ecol. – volume: 15 start-page: 137 year: 2005 ident: 10.1016/j.indic.2020.100096_bib34 article-title: Spatial considerations for linking watershed land cover to ecological indicators in streams publication-title: Ecol. Appl. doi: 10.1890/04-0481 – volume: 42 start-page: 3285 year: 2008 ident: 10.1016/j.indic.2020.100096_bib15 article-title: Spatial analysis of water quality trends in the Han River basin, South Korea publication-title: Water Res. doi: 10.1016/j.watres.2008.04.006 – year: 2020 ident: 10.1016/j.indic.2020.100096_bib5 – year: 2006 ident: 10.1016/j.indic.2020.100096_bib62 – volume: 89 start-page: 774 year: 2005 ident: 10.1016/j.indic.2020.100096_bib52 article-title: Water quality in the central Himalaya publication-title: Curr. Sci. – volume: 43 start-page: 801 year: 2019 ident: 10.1016/j.indic.2020.100096_bib41 article-title: A review of spatial statistical approaches to modeling water quality publication-title: Prog. Phys. Geogr. Earth Environ. doi: 10.1177/0309133319852003 – volume: 13 start-page: 77 year: 2013 ident: 10.1016/j.indic.2020.100096_bib56 article-title: Multi-scale spatial determinants of dissolved oxygen and nutrients in Qiantang River, China publication-title: Reg. Environ. Change doi: 10.1007/s10113-012-0313-6 – start-page: 3 year: 2003 ident: 10.1016/j.indic.2020.100096_bib68 article-title: The importance OF specific conductivity for assessing environmentally impacted streams – volume: 23 start-page: 166 year: 2012 ident: 10.1016/j.indic.2020.100096_bib74 article-title: Assessing the effects of landscape pattern on river water quality at multiple scales: a case study of the Dongjiang River watershed, China publication-title: Ecol. Indicat. doi: 10.1016/j.ecolind.2012.03.013 – volume: 47 start-page: 431 year: 1998 ident: 10.1016/j.indic.2020.100096_bib13 article-title: Geographically weighted regression publication-title: J. R. Stat. Soc. Ser. Stat. doi: 10.1111/1467-9884.00145 – year: 2020 ident: 10.1016/j.indic.2020.100096_bib25 – volume: 91 start-page: 644 year: 2010 ident: 10.1016/j.indic.2020.100096_bib45 article-title: A mixed-model moving-average approach to geostatistical modeling in stream networks publication-title: Ecology doi: 10.1890/08-1668.1 – start-page: 1270 year: 2017 ident: 10.1016/j.indic.2020.100096_bib2 article-title: Evaluation of spatial-temporal variations of water quality and plankton assemblages and its relationship to water use in kulekhani multipurpose reservoir, Nepal publication-title: J. Environ. Protect. doi: 10.4236/jep.2017.811079 – year: 2017 ident: 10.1016/j.indic.2020.100096_bib63 – volume: 81 start-page: 101461 year: 2020 ident: 10.1016/j.indic.2020.100096_bib40 article-title: Putting space into modeling landscape and water quality relationships in the Han River basin, South Korea publication-title: Comput. Environ. Urban Syst. doi: 10.1016/j.compenvurbsys.2020.101461 – year: 2005 ident: 10.1016/j.indic.2020.100096_bib67 – volume: 185 start-page: 71 year: 1996 ident: 10.1016/j.indic.2020.100096_bib17 article-title: The impact of agricultural land use on stream chemistry in the Middle Hills of the Himalayas, Nepal publication-title: J. Hydrol. doi: 10.1016/0022-1694(95)03008-5 – volume: 314–316 start-page: 303 year: 2003 ident: 10.1016/j.indic.2020.100096_bib18 article-title: A review of dissolved oxygen modelling techniques for lowland rivers publication-title: Sci. Total Environ. doi: 10.1016/S0048-9697(03)00062-7 – volume: 19 start-page: 677 year: 2004 ident: 10.1016/j.indic.2020.100096_bib28 article-title: Estimating the ‘critical’distance at which adjacent land-use degrades wetland water and sediment quality publication-title: Landsc. Ecol. doi: 10.1023/B:LAND.0000042912.87067.35 – volume: 35 start-page: 257 year: 2004 ident: 10.1016/j.indic.2020.100096_bib3 article-title: Landscapes and riverscapes: the influence of land use on stream ecosystems publication-title: Annu. Rev. Ecol. Evol. Syst. doi: 10.1146/annurev.ecolsys.35.120202.110122 – year: 2017 ident: 10.1016/j.indic.2020.100096_bib29 – volume: 219 start-page: 157 year: 2011 ident: 10.1016/j.indic.2020.100096_bib73 article-title: Comparison of relationships between pH, dissolved oxygen and chlorophyll a for aquaculture and non-aquaculture waters publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-010-0695-3 – volume: 8 year: 2017 ident: 10.1016/j.indic.2020.100096_bib51 article-title: Two-stage metabolism inferred from diel oxygen dynamics in aquatic ecosystems publication-title: Ecosphere doi: 10.1002/ecs2.1867 – volume: 5 start-page: 1 year: 2018 ident: 10.1016/j.indic.2020.100096_bib36 article-title: Key factors influencing differences in stream water quality across space publication-title: Wiley Interdiscip. Rev. Water doi: 10.1002/wat2.1260 – volume: 34 start-page: 130 year: 2002 ident: 10.1016/j.indic.2020.100096_bib24 article-title: Comparative spatial filtering in regression analysis publication-title: Geogr. Anal. doi: 10.1111/j.1538-4632.2002.tb01080.x – volume: 3 start-page: 47 year: 2005 ident: 10.1016/j.indic.2020.100096_bib26 article-title: Participatory fisheries management for livelihood improvement of Fishers in Phewa Lake, Pokhara, Nepal publication-title: Himal. J. Sci. – volume: 4 start-page: 957 year: 2015 ident: 10.1016/j.indic.2020.100096_bib50 article-title: Growing city and rapid land use transition: assessing multiple hazards and risks in the Pokhara valley, Nepal publication-title: Land doi: 10.3390/land4040957 – volume: 22 start-page: 1187 year: 2012 ident: 10.1016/j.indic.2020.100096_bib43 article-title: Watershed land use effects on lake water quality in Denmark publication-title: Ecol. Appl. doi: 10.1890/11-1831.1 – year: 2019 ident: 10.1016/j.indic.2020.100096_bib49 – year: 2002 ident: 10.1016/j.indic.2020.100096_bib65 – volume: 43 start-page: 594 year: 2007 ident: 10.1016/j.indic.2020.100096_bib72 article-title: Relationship of land-use/land-cover patterns and surface-water quality in the mullica river basin publication-title: J. Am. Water Resour. Assoc. doi: 10.1111/j.1752-1688.2007.00045.x – volume: 26 start-page: 1151 year: 2011 ident: 10.1016/j.indic.2020.100096_bib60 article-title: Influence of land use on water quality in a tropical landscape: a multi-scale analysis publication-title: Landsc. Ecol. doi: 10.1007/s10980-011-9642-y – volume: 191 year: 2019 ident: 10.1016/j.indic.2020.100096_bib70 article-title: Land use impact on the water quality of large tropical river: mun River Basin, Thailand publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-019-7779-3 – volume: 43 start-page: 1948 year: 2009 ident: 10.1016/j.indic.2020.100096_bib42 article-title: Using river distances in the space/time estimation of dissolved oxygen along two impaired river networks in New Jersey publication-title: Water Res. doi: 10.1016/j.watres.2009.01.034 – volume: 166 start-page: 61 year: 1995 ident: 10.1016/j.indic.2020.100096_bib30 article-title: Stream chemistry in the middle hills and high mountains of the Himalayas, Nepal publication-title: J. Hydrol. doi: 10.1016/0022-1694(94)02600-G – volume: 129 start-page: 433 year: 2007 ident: 10.1016/j.indic.2020.100096_bib32 article-title: Spatial–temporal variation and comparative assessment of water qualities of urban river system: a case study of the river Bagmati (Nepal) publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-006-9375-6 – year: 2015 ident: 10.1016/j.indic.2020.100096_bib69 – year: 2013 ident: 10.1016/j.indic.2020.100096_bib61 – year: 2013 ident: 10.1016/j.indic.2020.100096_bib14 – volume: 202 start-page: 503 year: 2007 ident: 10.1016/j.indic.2020.100096_bib33 article-title: Application of automated QUAL2Kw for water quality modeling and management in the Bagmati River, Nepal publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2006.12.033 |
SSID | ssj0002511480 |
Score | 2.3074093 |
Snippet | Various spatial interrelationships among sampling stations are not well explored in the spatial modeling of water quality literature. This research explores... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 100096 |
SubjectTerms | dissolved oxygen electrical conductivity gravel humans Land use model validation Nepal population density regression analysis Remote sensing sand Spatial statistics surface water topography Water pollution water quality watersheds |
Title | Environmental and spatial factors affecting surface water quality in a Himalayan watershed, Central Nepal |
URI | https://dx.doi.org/10.1016/j.indic.2020.100096 https://www.proquest.com/docview/2524241234 https://doaj.org/article/a3056f082f0f4008aa78d94a347bba82 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA7iyYv4E-cvInhcMWuTNjmqTIbgTgrewkub4mRWWTfEi3-776WtTg968TJGk62l7yXf1-bL9xg7zYwXSUYqcSfyCJ83ROQyJyPhpMhLZVI5oM3JN-N0dCev79X9Uqkv0oQ19sDNjTsD4rglAlUpSsw3DZDpwkhIZOYc6DD7IuYtPUzRHEzEWYayaQhAKjKI0p3lUBB30XowGRjGQSYgyLJ_CZaCe_83dPoxTwfwudpg6y1r5OfN1W6yFV9tsd3h1yY1bGxHab3NJt8boCp4TcJp_N6W1-EQZBwIW7xezPCg569IOme82WP5xicVBz6aPMEU3qBqGusHX_R5-zqYjxHHpjvs7mp4ezmK2pIKUa4GyTwyqfaQgNCZKXCoqgIKT2-iQDkpC9CiyAeelhqFNzo1Hql36UtVImmSOZUW22Wr1XPl9xj3GfYWhtxcnDRgtEpzGQ_KXLssTlLTY3F3R23e-o1T2Yup7YRljzaEwVIYbBOGHut__uilsdv4vfsFheqzK3llhwOYQbbNIPtXBvVY2gXatrSjoRP4V5Pfz37SpYXFQUkrLVD550VtY0W7bpAUyP3_uMIDthaTlCaIxQ_Z6ny28EfIhebuOKQ9ft68Dz8ATp0FLg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmental+and+spatial+factors+affecting+surface+water+quality+in+a+Himalayan+watershed%2C+Central+Nepal&rft.jtitle=Environmental+and+sustainability+indicators&rft.au=Mainali%2C+Janardan&rft.au=Chang%2C+Heejun&rft.date=2021-02-01&rft.issn=2665-9727&rft.eissn=2665-9727&rft.volume=9+p.100096-&rft_id=info:doi/10.1016%2Fj.indic.2020.100096&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2665-9727&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2665-9727&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2665-9727&client=summon |