Large-Scale Meta-Analysis of Human Medial Frontal Cortex Reveals Tripartite Functional Organization
The functional organization of human medial frontal cortex (MFC) is a subject of intense study. Using fMRI, the MFC has been associated with diverse psychological processes, including motor function, cognitive control, affect, and social cognition. However, there have been few large-scale efforts to...
Saved in:
Published in | The Journal of neuroscience Vol. 36; no. 24; pp. 6553 - 6562 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society for Neuroscience
15.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The functional organization of human medial frontal cortex (MFC) is a subject of intense study. Using fMRI, the MFC has been associated with diverse psychological processes, including motor function, cognitive control, affect, and social cognition. However, there have been few large-scale efforts to comprehensively map specific psychological functions to subregions of medial frontal anatomy. Here we applied a meta-analytic data-driven approach to nearly 10,000 fMRI studies to identify putatively separable regions of MFC and determine which psychological states preferentially recruit their activation. We identified regions at several spatial scales on the basis of meta-analytic coactivation, revealing three broad functional zones along a rostrocaudal axis composed of 2-4 smaller subregions each. Multivariate classification analyses aimed at identifying the psychological functions most strongly predictive of activity in each region revealed a tripartite division within MFC, with each zone displaying a relatively distinct functional signature. The posterior zone was associated preferentially with motor function, the middle zone with cognitive control, pain, and affect, and the anterior with reward, social processing, and episodic memory. Within each zone, the more fine-grained subregions showed distinct, but subtler, variations in psychological function. These results provide hypotheses about the functional organization of medial prefrontal cortex that can be tested explicitly in future studies.
Activation of medial frontal cortex in fMRI studies is associated with a wide range of psychological states ranging from cognitive control to pain. However, this high rate of activation makes it challenging to determine how these various processes are topologically organized across medial frontal anatomy. We conducted a meta-analysis across nearly 10,000 studies to comprehensively map psychological states to discrete subregions in medial frontal cortex using relatively unbiased data-driven methods. This approach revealed three distinct zones that differed substantially in function, each of which were further subdivided into 2-4 smaller subregions that showed additional functional variation. Each individual region was recruited by multiple psychological states, suggesting subregions of medial frontal cortex are functionally heterogeneous. |
---|---|
AbstractList | UNLABELLEDThe functional organization of human medial frontal cortex (MFC) is a subject of intense study. Using fMRI, the MFC has been associated with diverse psychological processes, including motor function, cognitive control, affect, and social cognition. However, there have been few large-scale efforts to comprehensively map specific psychological functions to subregions of medial frontal anatomy. Here we applied a meta-analytic data-driven approach to nearly 10,000 fMRI studies to identify putatively separable regions of MFC and determine which psychological states preferentially recruit their activation. We identified regions at several spatial scales on the basis of meta-analytic coactivation, revealing three broad functional zones along a rostrocaudal axis composed of 2-4 smaller subregions each. Multivariate classification analyses aimed at identifying the psychological functions most strongly predictive of activity in each region revealed a tripartite division within MFC, with each zone displaying a relatively distinct functional signature. The posterior zone was associated preferentially with motor function, the middle zone with cognitive control, pain, and affect, and the anterior with reward, social processing, and episodic memory. Within each zone, the more fine-grained subregions showed distinct, but subtler, variations in psychological function. These results provide hypotheses about the functional organization of medial prefrontal cortex that can be tested explicitly in future studies.SIGNIFICANCE STATEMENTActivation of medial frontal cortex in fMRI studies is associated with a wide range of psychological states ranging from cognitive control to pain. However, this high rate of activation makes it challenging to determine how these various processes are topologically organized across medial frontal anatomy. We conducted a meta-analysis across nearly 10,000 studies to comprehensively map psychological states to discrete subregions in medial frontal cortex using relatively unbiased data-driven methods. This approach revealed three distinct zones that differed substantially in function, each of which were further subdivided into 2-4 smaller subregions that showed additional functional variation. Each individual region was recruited by multiple psychological states, suggesting subregions of medial frontal cortex are functionally heterogeneous. The functional organization of human medial frontal cortex (MFC) is a subject of intense study. Using fMRI, the MFC has been associated with diverse psychological processes, including motor function, cognitive control, affect, and social cognition. However, there have been few large-scale efforts to comprehensively map specific psychological functions to subregions of medial frontal anatomy. Here we applied a meta-analytic data-driven approach to nearly 10,000 fMRI studies to identify putatively separable regions of MFC and determine which psychological states preferentially recruit their activation. We identified regions at several spatial scales on the basis of meta-analytic coactivation, revealing three broad functional zones along a rostrocaudal axis composed of 2-4 smaller subregions each. Multivariate classification analyses aimed at identifying the psychological functions most strongly predictive of activity in each region revealed a tripartite division within MFC, with each zone displaying a relatively distinct functional signature. The posterior zone was associated preferentially with motor function, the middle zone with cognitive control, pain, and affect, and the anterior with reward, social processing, and episodic memory. Within each zone, the more fine-grained subregions showed distinct, but subtler, variations in psychological function. These results provide hypotheses about the functional organization of medial prefrontal cortex that can be tested explicitly in future studies. Activation of medial frontal cortex in fMRI studies is associated with a wide range of psychological states ranging from cognitive control to pain. However, this high rate of activation makes it challenging to determine how these various processes are topologically organized across medial frontal anatomy. We conducted a meta-analysis across nearly 10,000 studies to comprehensively map psychological states to discrete subregions in medial frontal cortex using relatively unbiased data-driven methods. This approach revealed three distinct zones that differed substantially in function, each of which were further subdivided into 2-4 smaller subregions that showed additional functional variation. Each individual region was recruited by multiple psychological states, suggesting subregions of medial frontal cortex are functionally heterogeneous. The functional organization of human medial frontal cortex (MFC) is a subject of intense study. Using fMRI, the MFC has been associated with diverse psychological processes, including motor function, cognitive control, affect, and social cognition. However, there have been few large-scale efforts to comprehensively map specific psychological functions to subregions of medial frontal anatomy. Here we applied a meta-analytic data-driven approach to nearly 10,000 fMRI studies to identify putatively separable regions of MFC and determine which psychological states preferentially recruit their activation. We identified regions at several spatial scales on the basis of meta-analytic coactivation, revealing three broad functional zones along a rostrocaudal axis composed of 2-4 smaller subregions each. Multivariate classification analyses aimed at identifying the psychological functions most strongly predictive of activity in each region revealed a tripartite division within MFC, with each zone displaying a relatively distinct functional signature. The posterior zone was associated preferentially with motor function, the middle zone with cognitive control, pain, and affect, and the anterior with reward, social processing, and episodic memory. Within each zone, the more fine-grained subregions showed distinct, but subtler, variations in psychological function. These results provide hypotheses about the functional organization of medial prefrontal cortex that can be tested explicitly in future studies. The functional organization of human medial frontal cortex (MFC) is a subject of intense study. Using fMRI, the MFC has been associated with diverse psychological processes, including motor function, cognitive control, affect, and social cognition. However, there have been few large-scale efforts to comprehensively map specific psychological functions to subregions of medial frontal anatomy. Here we applied a meta-analytic data-driven approach to nearly 10,000 fMRI studies to identify putatively separable regions of MFC and determine which psychological states preferentially recruit their activation. We identified regions at several spatial scales on the basis of meta-analytic coactivation, revealing three broad functional zones along a rostrocaudal axis composed of 2–4 smaller subregions each. Multivariate classification analyses aimed at identifying the psychological functions most strongly predictive of activity in each region revealed a tripartite division within MFC, with each zone displaying a relatively distinct functional signature. The posterior zone was associated preferentially with motor function, the middle zone with cognitive control, pain, and affect, and the anterior with reward, social processing, and episodic memory. Within each zone, the more fine-grained subregions showed distinct, but subtler, variations in psychological function. These results provide hypotheses about the functional organization of medial prefrontal cortex that can be tested explicitly in future studies. SIGNIFICANCE STATEMENT Activation of medial frontal cortex in fMRI studies is associated with a wide range of psychological states ranging from cognitive control to pain. However, this high rate of activation makes it challenging to determine how these various processes are topologically organized across medial frontal anatomy. We conducted a meta-analysis across nearly 10,000 studies to comprehensively map psychological states to discrete subregions in medial frontal cortex using relatively unbiased data-driven methods. This approach revealed three distinct zones that differed substantially in function, each of which were further subdivided into 2–4 smaller subregions that showed additional functional variation. Each individual region was recruited by multiple psychological states, suggesting subregions of medial frontal cortex are functionally heterogeneous. |
Author | Wager, Tor D. Chang, Luke J. Yarkoni, Tal Banich, Marie T. de la Vega, Alejandro |
Author_xml | – sequence: 1 givenname: Alejandro surname: de la Vega fullname: de la Vega, Alejandro – sequence: 2 givenname: Luke J. orcidid: 0000-0002-6621-8120 surname: Chang fullname: Chang, Luke J. – sequence: 3 givenname: Marie T. surname: Banich fullname: Banich, Marie T. – sequence: 4 givenname: Tor D. orcidid: 0000-0002-1936-5574 surname: Wager fullname: Wager, Tor D. – sequence: 5 givenname: Tal orcidid: 0000-0002-6558-5113 surname: Yarkoni fullname: Yarkoni, Tal |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27307242$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUctu2zAQJIoUjeP2FwIde5GzpChRBooCgRE3KdwayONMrKSVy0ImXZIKkn596OaBtpecFtydmR3uHLED6ywxdsxhxktRnHz9fnZzub5aXMykBJHzciaAV2_YJE3nuZDAD9gEhIK8kkoesqMQfgKAAq7esUOhClBCiglrV-g3lF-1OFD2jSLmpxaH-2BC5vrsfNyiTe3O4JAtvbMx1YXzke6yS7olHEJ27c0OfTSRsuVo22hcEsjWfoPW_Mb98z172yckfXiqU3azPLtenOer9ZeLxekqb0texHxeNgKhhk6UNYoG5nXTdNT3qlWoSuplUapKdlUvSBZVJ-ayoa6mOh2g6gCxmLLPj7q7sdlS15KNHge982aL_l47NPrfiTU_9Mbd6hJ4qWqVBD4-CXj3a6QQ9daEloYBLbkxaF5DrSAdWLwOVfOkWFfpZ1N2_LetFz_PISTAp0dA610InnrdmvjncsmlGTQHvc9cv2Su95mnnt5nnujVf_TnDa8QHwBqiLK7 |
CitedBy_id | crossref_primary_10_1093_cercor_bhz079 crossref_primary_10_1002_hbm_25395 crossref_primary_10_1016_j_cortex_2018_06_015 crossref_primary_10_1016_j_neurobiolaging_2020_05_009 crossref_primary_10_1523_JNEUROSCI_3672_15_2016 crossref_primary_10_1002_hbm_24345 crossref_primary_10_1016_j_clnu_2023_05_025 crossref_primary_10_1007_s00213_023_06479_4 crossref_primary_10_1093_scan_nsac037 crossref_primary_10_1093_scan_nsaa132 crossref_primary_10_1080_00223891_2020_1842429 crossref_primary_10_1016_j_nicl_2020_102420 crossref_primary_10_1162_jocn_a_01440 crossref_primary_10_1016_j_neuroimage_2018_09_011 crossref_primary_10_1093_scan_nsab107 crossref_primary_10_1038_s41467_024_46508_0 crossref_primary_10_1038_s41583_020_0276_4 crossref_primary_10_1016_j_jpsychores_2020_110110 crossref_primary_10_1097_j_pain_0000000000001232 crossref_primary_10_1007_s11682_024_00854_1 crossref_primary_10_1016_j_neubiorev_2016_11_018 crossref_primary_10_1162_imag_a_00081 crossref_primary_10_1097_j_pain_0000000000001237 crossref_primary_10_1038_tp_2017_189 crossref_primary_10_1093_schbul_sbz046 crossref_primary_10_1162_jocn_a_01729 crossref_primary_10_1523_JNEUROSCI_0511_22_2022 crossref_primary_10_1016_j_pscychresns_2023_111615 crossref_primary_10_1038_nrn_2017_72 crossref_primary_10_1016_j_neubiorev_2020_01_023 crossref_primary_10_1073_pnas_2309232121 crossref_primary_10_1016_j_bpsc_2020_09_013 crossref_primary_10_1093_cercor_bhz225 crossref_primary_10_1073_pnas_2306295121 crossref_primary_10_1002_pchj_358 crossref_primary_10_1089_neu_2016_4692 crossref_primary_10_1093_cercor_bhx204 crossref_primary_10_1093_scan_nsae049 crossref_primary_10_1162_jocn_a_02144 crossref_primary_10_1080_23273798_2018_1525494 crossref_primary_10_1017_S0033291723003690 crossref_primary_10_1002_hbm_23917 crossref_primary_10_1016_j_neuroimage_2019_01_042 crossref_primary_10_3389_fnins_2020_00281 crossref_primary_10_1016_j_celrep_2019_08_002 crossref_primary_10_1016_j_neuropsychologia_2020_107487 crossref_primary_10_1016_j_jaac_2018_02_016 crossref_primary_10_1016_j_neubiorev_2021_03_025 crossref_primary_10_1038_s41380_024_02563_z crossref_primary_10_3389_fnins_2019_01099 crossref_primary_10_1038_s41593_017_0051_7 crossref_primary_10_1038_s41598_017_03935_y crossref_primary_10_1016_j_jad_2022_09_071 crossref_primary_10_1080_17470919_2016_1273851 crossref_primary_10_1093_scan_nsac054 crossref_primary_10_1016_j_dcn_2017_07_004 crossref_primary_10_1038_s41380_024_02751_x crossref_primary_10_1038_s41537_023_00363_y crossref_primary_10_1590_1516_4446_2019_0344 crossref_primary_10_1093_scan_nsab008 crossref_primary_10_1162_jocn_a_01261 crossref_primary_10_1126_sciadv_abf7129 crossref_primary_10_1016_j_neubiorev_2021_12_016 crossref_primary_10_1073_pnas_2308951120 crossref_primary_10_1016_j_neuroimage_2021_118258 crossref_primary_10_1038_s41467_022_29510_2 crossref_primary_10_1073_pnas_2114171118 crossref_primary_10_1126_sciadv_ado6166 crossref_primary_10_1016_j_jaac_2019_05_014 crossref_primary_10_1093_qjmed_hcad291 crossref_primary_10_1146_annurev_neuro_070918_050216 crossref_primary_10_1177_1420326X241247218 crossref_primary_10_1016_j_neuroscience_2022_09_001 crossref_primary_10_1523_JNEUROSCI_0260_20_2020 crossref_primary_10_1002_hbm_24356 crossref_primary_10_1016_j_neuroimage_2023_120025 crossref_primary_10_1016_j_envres_2019_05_009 crossref_primary_10_1016_j_neuroimage_2019_116305 crossref_primary_10_1016_j_isci_2023_106427 crossref_primary_10_1113_JP280735 crossref_primary_10_1016_j_neuroimage_2020_116858 crossref_primary_10_1016_j_nicl_2018_03_019 crossref_primary_10_1073_pnas_1714691115 crossref_primary_10_1523_JNEUROSCI_2180_16_2016 crossref_primary_10_1002_jts_22290 crossref_primary_10_1016_j_neuroimage_2020_117556 crossref_primary_10_3389_fpsyg_2023_1080376 crossref_primary_10_1016_j_neuroimage_2019_04_056 crossref_primary_10_1186_s10194_019_0958_3 crossref_primary_10_1016_j_neuroimage_2021_118269 crossref_primary_10_1016_j_neuropsychologia_2017_01_014 crossref_primary_10_1521_pedi_2020_34_5_628 crossref_primary_10_3389_fnhum_2018_00283 crossref_primary_10_3934_Neuroscience_2016_3_264 crossref_primary_10_1016_j_neubiorev_2018_12_021 crossref_primary_10_1016_j_scog_2018_12_002 crossref_primary_10_3758_s13414_021_02248_7 crossref_primary_10_1016_j_neubiorev_2022_104971 crossref_primary_10_1016_j_bjpt_2017_11_001 crossref_primary_10_1080_23273798_2022_2077396 crossref_primary_10_1371_journal_pbio_2005722 crossref_primary_10_1007_s00429_022_02571_1 crossref_primary_10_1007_s11682_019_00171_y crossref_primary_10_1038_s41583_018_0071_7 crossref_primary_10_1038_s41598_018_21449_z crossref_primary_10_3389_fnhum_2022_875201 crossref_primary_10_1016_j_neuropsychologia_2021_108000 crossref_primary_10_1038_s41398_022_01829_w crossref_primary_10_1371_journal_pone_0237829 crossref_primary_10_4236_jbbs_2017_73013 crossref_primary_10_1016_j_neuroimage_2021_118631 crossref_primary_10_1016_j_neuroimage_2020_116851 crossref_primary_10_1016_j_neubiorev_2022_104768 crossref_primary_10_1371_journal_pone_0273376 crossref_primary_10_1177_1550059419864461 crossref_primary_10_1016_j_neuroimage_2019_01_018 crossref_primary_10_1016_j_bandc_2021_105711 crossref_primary_10_1093_scan_nsw137 crossref_primary_10_1093_scan_nsz006 crossref_primary_10_1016_j_bpsgos_2022_02_004 crossref_primary_10_1017_pen_2021_1 crossref_primary_10_1002_hbm_26312 crossref_primary_10_1093_scan_nsab010 crossref_primary_10_1007_s00429_018_1781_3 crossref_primary_10_3389_fnhum_2024_1387299 crossref_primary_10_3390_jcm13061645 crossref_primary_10_3389_fnhum_2018_00466 crossref_primary_10_1016_j_plrev_2019_09_007 crossref_primary_10_1523_JNEUROSCI_2584_16_2016 crossref_primary_10_3389_fnhum_2019_00457 crossref_primary_10_1097_j_pain_0000000000001666 crossref_primary_10_1002_da_22937 crossref_primary_10_1093_sleep_zsab261 crossref_primary_10_1155_2019_9693109 crossref_primary_10_1176_appi_ajp_2020_20081187 crossref_primary_10_3758_s13415_018_0611_7 crossref_primary_10_1016_j_neuroimage_2025_121008 crossref_primary_10_1007_s12144_024_07151_6 crossref_primary_10_1080_15622975_2020_1814409 crossref_primary_10_1007_s00429_022_02467_0 crossref_primary_10_1093_cercor_bhaa373 crossref_primary_10_1002_hbm_26622 crossref_primary_10_1002_dev_21599 crossref_primary_10_1093_scan_nsx040 crossref_primary_10_1073_pnas_1600159113 crossref_primary_10_1016_j_cortex_2021_02_033 crossref_primary_10_1523_JNEUROSCI_2550_20_2021 crossref_primary_10_1038_s41467_019_09161_6 crossref_primary_10_1038_s41598_020_72317_8 crossref_primary_10_1177_17562864231202064 crossref_primary_10_1186_s12888_020_02490_7 crossref_primary_10_1016_j_ynirp_2022_100147 crossref_primary_10_3389_fnbeh_2020_548856 crossref_primary_10_1073_pnas_1800444115 crossref_primary_10_1523_ENEURO_0225_22_2022 crossref_primary_10_1016_j_jad_2023_12_001 crossref_primary_10_1016_j_jadr_2021_100155 crossref_primary_10_1002_hbm_24038 crossref_primary_10_1111_mbe_12257 crossref_primary_10_3758_s13415_018_0600_x crossref_primary_10_1038_nrn_2017_76 crossref_primary_10_1177_1094428117708857 crossref_primary_10_1073_pnas_2310433121 crossref_primary_10_1523_JNEUROSCI_1744_20_2020 crossref_primary_10_1016_j_neubiorev_2020_05_008 crossref_primary_10_1016_j_neuroimage_2019_116102 crossref_primary_10_1093_cercor_bhy236 crossref_primary_10_1371_journal_pone_0261570 crossref_primary_10_1044_2024_JSLHR_24_00333 crossref_primary_10_1016_j_biopsych_2022_08_004 crossref_primary_10_1016_j_biopsycho_2021_108186 crossref_primary_10_1016_j_neuroimage_2021_117808 crossref_primary_10_1016_j_copsyc_2019_02_010 crossref_primary_10_1016_j_bbi_2023_05_001 crossref_primary_10_1016_j_concog_2019_102777 crossref_primary_10_1016_j_nicl_2019_101834 crossref_primary_10_1192_j_eurpsy_2020_57 crossref_primary_10_1016_j_cortex_2019_12_012 crossref_primary_10_1016_j_bpsc_2020_11_003 crossref_primary_10_1093_cercor_bhad015 crossref_primary_10_1038_s41598_018_21857_1 |
ContentType | Journal Article |
Copyright | Copyright © 2016 the authors 0270-6474/16/366553-10$15.00/0. Copyright © 2016 the authors 0270-6474/16/366553-10$15.00/0 2016 |
Copyright_xml | – notice: Copyright © 2016 the authors 0270-6474/16/366553-10$15.00/0. – notice: Copyright © 2016 the authors 0270-6474/16/366553-10$15.00/0 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.1523/JNEUROSCI.4402-15.2016 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 6562 |
ExternalDocumentID | PMC5015787 27307242 10_1523_JNEUROSCI_4402_15_2016 |
Genre | Meta-Analysis Review Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH096906 |
GroupedDBID | --- -DZ -~X .55 18M 2WC 34G 39C 53G 5GY 5RE 5VS AAFWJ AAJMC AAYXX ABBAR ABIVO ACGUR ACNCT ADBBV ADCOW ADHGD AENEX AFCFT AFOSN AFSQR AHWXS ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 HYE H~9 KQ8 L7B OK1 P0W P2P QZG R.V RHI RPM TFN TR2 W8F WH7 WOQ X7M XJT YBU YHG YKV YNH YSK AFHIN AIZTS CGR CUY CVF ECM EIF NPM RHF 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c513t-95b2a080d258a2b098bbdeff7c7a75ef435764d6f2e436d294bed8e84406d0aa3 |
ISSN | 0270-6474 |
IngestDate | Thu Aug 21 18:03:40 EDT 2025 Fri Jul 11 01:37:18 EDT 2025 Fri Jul 11 12:28:44 EDT 2025 Wed Feb 19 02:43:30 EST 2025 Thu Apr 24 23:07:01 EDT 2025 Tue Jul 01 03:47:31 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | meta-analysis cognitive control pain medial frontal cortex |
Language | English |
License | Copyright © 2016 the authors 0270-6474/16/366553-10$15.00/0. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c513t-95b2a080d258a2b098bbdeff7c7a75ef435764d6f2e436d294bed8e84406d0aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-2 ObjectType-Feature-2 Author contributions: A.d.l.V., M.T.B., T.D.W., and T.Y. designed research; A.d.l.V. and T.Y. performed research; L.J.C. and T.Y. contributed unpublished reagents/analytic tools; A.d.l.V., L.J.C., and T.Y. analyzed data; A.d.l.V., L.J.C., M.T.B., T.D.W., and T.Y. wrote the paper. |
ORCID | 0000-0002-6621-8120 0000-0002-6558-5113 0000-0002-1936-5574 |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/36/24/6553.full.pdf |
PMID | 27307242 |
PQID | 1797878651 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5015787 proquest_miscellaneous_1808705292 proquest_miscellaneous_1797878651 pubmed_primary_27307242 crossref_citationtrail_10_1523_JNEUROSCI_4402_15_2016 crossref_primary_10_1523_JNEUROSCI_4402_15_2016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-06-15 20160615 |
PublicationDateYYYYMMDD | 2016-06-15 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2016 |
Publisher | Society for Neuroscience |
Publisher_xml | – name: Society for Neuroscience |
References | 24485097 - Neuron. 2014 Feb 5;81(3):700-13 7351547 - J Neurophysiol. 1980 Jan;43(1):118-36 22617651 - Behav Brain Sci. 2012 Jun;35(3):121-43 19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5 26629847 - PLoS Comput Biol. 2015 Dec 02;11(12):e1004533 23708967 - Nature. 2013 Jun 20;498(7454):363-6 21926982 - Nat Neurosci. 2011 Sep 18;14(10):1338-44 18296434 - Cereb Cortex. 2008 Nov;18(11):2553-9 19603407 - Hum Brain Mapp. 2010 Feb;31(2):173-84 28356398 - J Neurosci. 2017 Mar 29;37(13):3735 23071428 - PLoS Comput Biol. 2012;8(10):e1002707 17707349 - Biol Psychiatry. 2007 Nov 15;62(10):1191-4 25405022 - Gigascience. 2014 Nov 17;3:28 19580387 - J Cogn Neurosci. 2010 Jun;22(6):1112-23 20512372 - Brain Struct Funct. 2010 Jun;214(5-6):669-80 26687219 - Neuron. 2015 Dec 16;88(6):1086-107 15097995 - Nat Neurosci. 2004 May;7(5):497-8 16406760 - Trends Cogn Sci. 2006 Feb;10(2):59-63 9753106 - Eur J Neurosci. 1998 Jun;10(6):2199-203 18022321 - Pain. 2008 Mar;135(1-2):160-74 10647008 - Nature. 1999 Nov 11;402(6758):179-81 25071425 - Front Neurosci. 2014 Jul 01;8:167 17499520 - Neuroimage. 2007 Jul 1;36(3):511-21 22452556 - J Cogn Neurosci. 2012 Aug;24(8):1742-52 21706013 - Nat Methods. 2011 Jun 26;8(8):665-70 22310704 - Trends Cogn Sci. 2012 Mar;16(3):147-56 19837176 - Neuroimage. 2010 Feb 1;49(3):2375-86 26409749 - Hum Brain Mapp. 2015 Dec;36(12 ):4771-92 26993424 - J Chem Neuroanat. 2016 Jul;74:28-46 19407204 - Science. 2009 May 1;324(5927):646-8 25919962 - Nat Neurosci. 2015 May;18(5):620-7 25914639 - Front Neuroinform. 2015 Apr 10;9:8 14573560 - J Neurophysiol. 2004 Feb;91(2):978-93 15340158 - Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13335-40 18579414 - Neuroimage. 2008 Aug 15;42(2):998-1031 14729132 - J Chem Neuroanat. 2003 Dec;26(4):301-9 12571120 - Cereb Cortex. 2003 Mar;13(3):308-17 20188659 - Neuron. 2010 Feb 25;65(4):550-62 19176826 - J Neurosci. 2009 Jan 28;29(4):1175-90 23574118 - N Engl J Med. 2013 Apr 11;368(15):1388-97 8670651 - Cereb Cortex. 1996 Mar-Apr;6(2):207-14 15718473 - Science. 2005 Feb 18;307(5712):1118-21 16806505 - Trends Neurosci. 2006 Jul;29(7):359-66 23790322 - Trends Cogn Sci. 2013 Jul;17(7):328-36 24787485 - J Physiol Paris. 2015 Feb-Jun;109(1-3):3-15 25937490 - Neuroimage. 2015 Jul 15;115:177-90 26786470 - Behav Brain Sci. 2015;38:e86 19096371 - Nat Rev Neurosci. 2009 Jan;10(1):78; author reply 78 23787873 - J Comp Neurol. 2013 Oct 1;521(14):3272-86 8670662 - Cereb Cortex. 1996 May-Jun;6(3):342-53 12821513 - Brain. 2003 Oct;126(Pt 10):2139-52 21574212 - Hum Brain Mapp. 2012 Jun;33(6):1452-69 23396162 - Neuroimage. 2013 Jun;73:50-8 25123211 - Eur J Neurosci. 2014 Sep;40(5):2777-96 12040201 - Science. 2002 May 31;296(5573):1709-11 24379387 - Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):833-8 21331082 - Nat Rev Neurosci. 2011 Mar;12(3):154-67 21167765 - Trends Cogn Sci. 2011 Feb;15(2):85-93 26582792 - Proc Natl Acad Sci U S A. 2015 Dec 8;112(49):15250-5 23889930 - Neuron. 2013 Jul 24;79(2):217-40 19914190 - Neuron. 2009 Nov 12;64(3):431-9 21677128 - Neuroscientist. 2012 Jun;18(3):251-70 22437053 - Cereb Cortex. 2013 Mar;23(3):739-49 23884933 - J Neurosci. 2013 Jul 24;33(30):12255-74 18817740 - Neuron. 2008 Sep 25;59(6):1037-50 15995724 - Nat Rev Neurosci. 2005 Jul;6(7):533-44 24231140 - Trends Cogn Sci. 2013 Dec;17(12):683-96 11689307 - Brain Res Cogn Brain Res. 2001 Dec;12(3):467-73 26393866 - Annu Rev Psychol. 2016;67:587-612 25574450 - Int Conf Affect Comput Intell Interact Workshops. 2013;2013:245-251 21922006 - Front Neuroinform. 2011 Sep 06;5:17 27095849 - Proc Natl Acad Sci U S A. 2016 May 3;113(18):E2474-5 24991964 - Neuron. 2014 Jul 2;83(1):238-51 19166944 - Neuroimage. 2009 Apr 15;45(3):810-23 16197685 - J Cogn Neurosci. 2005 Aug;17(8):1306-15 |
References_xml | – reference: 12821513 - Brain. 2003 Oct;126(Pt 10):2139-52 – reference: 24485097 - Neuron. 2014 Feb 5;81(3):700-13 – reference: 18817740 - Neuron. 2008 Sep 25;59(6):1037-50 – reference: 15340158 - Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13335-40 – reference: 24991964 - Neuron. 2014 Jul 2;83(1):238-51 – reference: 15097995 - Nat Neurosci. 2004 May;7(5):497-8 – reference: 23884933 - J Neurosci. 2013 Jul 24;33(30):12255-74 – reference: 17707349 - Biol Psychiatry. 2007 Nov 15;62(10):1191-4 – reference: 19166944 - Neuroimage. 2009 Apr 15;45(3):810-23 – reference: 20188659 - Neuron. 2010 Feb 25;65(4):550-62 – reference: 23787873 - J Comp Neurol. 2013 Oct 1;521(14):3272-86 – reference: 14729132 - J Chem Neuroanat. 2003 Dec;26(4):301-9 – reference: 23574118 - N Engl J Med. 2013 Apr 11;368(15):1388-97 – reference: 17499520 - Neuroimage. 2007 Jul 1;36(3):511-21 – reference: 23889930 - Neuron. 2013 Jul 24;79(2):217-40 – reference: 21922006 - Front Neuroinform. 2011 Sep 06;5:17 – reference: 25071425 - Front Neurosci. 2014 Jul 01;8:167 – reference: 10647008 - Nature. 1999 Nov 11;402(6758):179-81 – reference: 21331082 - Nat Rev Neurosci. 2011 Mar;12(3):154-67 – reference: 8670662 - Cereb Cortex. 1996 May-Jun;6(3):342-53 – reference: 19580387 - J Cogn Neurosci. 2010 Jun;22(6):1112-23 – reference: 15718473 - Science. 2005 Feb 18;307(5712):1118-21 – reference: 18579414 - Neuroimage. 2008 Aug 15;42(2):998-1031 – reference: 26393866 - Annu Rev Psychol. 2016;67:587-612 – reference: 25937490 - Neuroimage. 2015 Jul 15;115:177-90 – reference: 25914639 - Front Neuroinform. 2015 Apr 10;9:8 – reference: 23396162 - Neuroimage. 2013 Jun;73:50-8 – reference: 9753106 - Eur J Neurosci. 1998 Jun;10(6):2199-203 – reference: 28356398 - J Neurosci. 2017 Mar 29;37(13):3735 – reference: 26629847 - PLoS Comput Biol. 2015 Dec 02;11(12):e1004533 – reference: 26993424 - J Chem Neuroanat. 2016 Jul;74:28-46 – reference: 18022321 - Pain. 2008 Mar;135(1-2):160-74 – reference: 19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5 – reference: 23708967 - Nature. 2013 Jun 20;498(7454):363-6 – reference: 19837176 - Neuroimage. 2010 Feb 1;49(3):2375-86 – reference: 23790322 - Trends Cogn Sci. 2013 Jul;17(7):328-36 – reference: 21706013 - Nat Methods. 2011 Jun 26;8(8):665-70 – reference: 16197685 - J Cogn Neurosci. 2005 Aug;17(8):1306-15 – reference: 23071428 - PLoS Comput Biol. 2012;8(10):e1002707 – reference: 24787485 - J Physiol Paris. 2015 Feb-Jun;109(1-3):3-15 – reference: 19407204 - Science. 2009 May 1;324(5927):646-8 – reference: 16806505 - Trends Neurosci. 2006 Jul;29(7):359-66 – reference: 25123211 - Eur J Neurosci. 2014 Sep;40(5):2777-96 – reference: 12040201 - Science. 2002 May 31;296(5573):1709-11 – reference: 16406760 - Trends Cogn Sci. 2006 Feb;10(2):59-63 – reference: 22310704 - Trends Cogn Sci. 2012 Mar;16(3):147-56 – reference: 8670651 - Cereb Cortex. 1996 Mar-Apr;6(2):207-14 – reference: 21167765 - Trends Cogn Sci. 2011 Feb;15(2):85-93 – reference: 25919962 - Nat Neurosci. 2015 May;18(5):620-7 – reference: 21677128 - Neuroscientist. 2012 Jun;18(3):251-70 – reference: 15995724 - Nat Rev Neurosci. 2005 Jul;6(7):533-44 – reference: 22452556 - J Cogn Neurosci. 2012 Aug;24(8):1742-52 – reference: 24379387 - Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):833-8 – reference: 7351547 - J Neurophysiol. 1980 Jan;43(1):118-36 – reference: 26786470 - Behav Brain Sci. 2015;38:e86 – reference: 12571120 - Cereb Cortex. 2003 Mar;13(3):308-17 – reference: 26582792 - Proc Natl Acad Sci U S A. 2015 Dec 8;112(49):15250-5 – reference: 11689307 - Brain Res Cogn Brain Res. 2001 Dec;12(3):467-73 – reference: 18296434 - Cereb Cortex. 2008 Nov;18(11):2553-9 – reference: 26409749 - Hum Brain Mapp. 2015 Dec;36(12 ):4771-92 – reference: 19914190 - Neuron. 2009 Nov 12;64(3):431-9 – reference: 24231140 - Trends Cogn Sci. 2013 Dec;17(12):683-96 – reference: 19603407 - Hum Brain Mapp. 2010 Feb;31(2):173-84 – reference: 27095849 - Proc Natl Acad Sci U S A. 2016 May 3;113(18):E2474-5 – reference: 21574212 - Hum Brain Mapp. 2012 Jun;33(6):1452-69 – reference: 22437053 - Cereb Cortex. 2013 Mar;23(3):739-49 – reference: 21926982 - Nat Neurosci. 2011 Sep 18;14(10):1338-44 – reference: 26687219 - Neuron. 2015 Dec 16;88(6):1086-107 – reference: 25405022 - Gigascience. 2014 Nov 17;3:28 – reference: 14573560 - J Neurophysiol. 2004 Feb;91(2):978-93 – reference: 19176826 - J Neurosci. 2009 Jan 28;29(4):1175-90 – reference: 25574450 - Int Conf Affect Comput Intell Interact Workshops. 2013;2013:245-251 – reference: 22617651 - Behav Brain Sci. 2012 Jun;35(3):121-43 – reference: 20512372 - Brain Struct Funct. 2010 Jun;214(5-6):669-80 – reference: 19096371 - Nat Rev Neurosci. 2009 Jan;10(1):78; author reply 78 |
SSID | ssj0007017 |
Score | 2.5934186 |
SecondaryResourceType | review_article |
Snippet | The functional organization of human medial frontal cortex (MFC) is a subject of intense study. Using fMRI, the MFC has been associated with diverse... UNLABELLEDThe functional organization of human medial frontal cortex (MFC) is a subject of intense study. Using fMRI, the MFC has been associated with diverse... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 6553 |
SubjectTerms | Brain Mapping Frontal Lobe - diagnostic imaging Frontal Lobe - physiology Humans Image Processing, Computer-Assisted Magnetic Resonance Imaging Neural Pathways - physiology Oxygen - blood |
Title | Large-Scale Meta-Analysis of Human Medial Frontal Cortex Reveals Tripartite Functional Organization |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27307242 https://www.proquest.com/docview/1797878651 https://www.proquest.com/docview/1808705292 https://pubmed.ncbi.nlm.nih.gov/PMC5015787 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFAeNSbjIS4qVKl7qxkzyiQjXKWoHWwd4iJ7G1oS6dSioBP49fxjm2l7il4rKXqEriJM335fj4-JzPhLzkOg8LUehADWIZRMCpQIpQBinPVQQ9ouAxViNPZ-LwJJqc8tNO56eXtbSu837xY2ddyXVQhX2AK1bJ_geyzUVhB_wGfGELCMP2nzA-wjTu4BheM3ycqpaBLzFiw_NTWxkyRp0CEydY1eobzggo1E2eg8nA69aqN4YOzsUF_fpM33lty8iMA-tJYTbsKFVvIXuflAvXLtQXiYoIXhKBtS1HmBQy6bdx1Orcrkk1xbF7b94c-YwaG4ZUy1XvTd8PUgwEJlPZMk0bpPQyUGfbD2eNHYthGBvZFXv6yhljZmZ_Br61tnIpjpUs8myv4FZ22PXj4KiynX0EN1oVkxmmSh6P3vWjCNd34ZjmJ_wGgPXlhWEOuHhhzKwK2JY694fpiINHBWbvBrnJYKiCq2i8_9gq1sehWfW5-X-uSh0e4mD3I6A8tbvfpq_02wBoO4_Xc4zmd8htRwj62tLzLumo6h7ZBybWy4vv9BU1OcZm8mafFB5j6QZj6VJTw1hqGUsdY6llLHWMpS1jactY6jP2PjkZv52PDgO3zEdQ8MGwRrPAJAxcSsYTyfIwTfK8VFrHRSxjrjQ49LGISqGZioaiZGmUqzJRCbw0UYZSDh-QvWpZqUeEJjKPh0WqdVnqSHImZZ5qORjGSkuR8rBL-NULzQqngY9LsSwyHAsDJlmDSYaYwL4MMemSg6bdpVWB-WuLF1d4ZWCwcRZOVmq5_ppBDwhsSQQf_OGcJIR-FOjPuuShxbi57xU5uiTeQL85AQXjN49U52dGON4x9fG1Wz4ht9qv-ynZq1dr9Qyc8jp_blj_CwjC4vY |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-Scale+Meta-Analysis+of+Human+Medial+Frontal+Cortex+Reveals+Tripartite+Functional+Organization&rft.jtitle=The+Journal+of+neuroscience&rft.au=de+la+Vega%2C+Alejandro&rft.au=Chang%2C+Luke+J.&rft.au=Banich%2C+Marie+T.&rft.au=Wager%2C+Tor+D.&rft.date=2016-06-15&rft.pub=Society+for+Neuroscience&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=36&rft.issue=24&rft.spage=6553&rft.epage=6562&rft_id=info:doi/10.1523%2FJNEUROSCI.4402-15.2016&rft_id=info%3Apmid%2F27307242&rft.externalDocID=PMC5015787 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |