Large-Scale Meta-Analysis of Human Medial Frontal Cortex Reveals Tripartite Functional Organization

The functional organization of human medial frontal cortex (MFC) is a subject of intense study. Using fMRI, the MFC has been associated with diverse psychological processes, including motor function, cognitive control, affect, and social cognition. However, there have been few large-scale efforts to...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 36; no. 24; pp. 6553 - 6562
Main Authors de la Vega, Alejandro, Chang, Luke J., Banich, Marie T., Wager, Tor D., Yarkoni, Tal
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 15.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The functional organization of human medial frontal cortex (MFC) is a subject of intense study. Using fMRI, the MFC has been associated with diverse psychological processes, including motor function, cognitive control, affect, and social cognition. However, there have been few large-scale efforts to comprehensively map specific psychological functions to subregions of medial frontal anatomy. Here we applied a meta-analytic data-driven approach to nearly 10,000 fMRI studies to identify putatively separable regions of MFC and determine which psychological states preferentially recruit their activation. We identified regions at several spatial scales on the basis of meta-analytic coactivation, revealing three broad functional zones along a rostrocaudal axis composed of 2-4 smaller subregions each. Multivariate classification analyses aimed at identifying the psychological functions most strongly predictive of activity in each region revealed a tripartite division within MFC, with each zone displaying a relatively distinct functional signature. The posterior zone was associated preferentially with motor function, the middle zone with cognitive control, pain, and affect, and the anterior with reward, social processing, and episodic memory. Within each zone, the more fine-grained subregions showed distinct, but subtler, variations in psychological function. These results provide hypotheses about the functional organization of medial prefrontal cortex that can be tested explicitly in future studies. Activation of medial frontal cortex in fMRI studies is associated with a wide range of psychological states ranging from cognitive control to pain. However, this high rate of activation makes it challenging to determine how these various processes are topologically organized across medial frontal anatomy. We conducted a meta-analysis across nearly 10,000 studies to comprehensively map psychological states to discrete subregions in medial frontal cortex using relatively unbiased data-driven methods. This approach revealed three distinct zones that differed substantially in function, each of which were further subdivided into 2-4 smaller subregions that showed additional functional variation. Each individual region was recruited by multiple psychological states, suggesting subregions of medial frontal cortex are functionally heterogeneous.
AbstractList UNLABELLEDThe functional organization of human medial frontal cortex (MFC) is a subject of intense study. Using fMRI, the MFC has been associated with diverse psychological processes, including motor function, cognitive control, affect, and social cognition. However, there have been few large-scale efforts to comprehensively map specific psychological functions to subregions of medial frontal anatomy. Here we applied a meta-analytic data-driven approach to nearly 10,000 fMRI studies to identify putatively separable regions of MFC and determine which psychological states preferentially recruit their activation. We identified regions at several spatial scales on the basis of meta-analytic coactivation, revealing three broad functional zones along a rostrocaudal axis composed of 2-4 smaller subregions each. Multivariate classification analyses aimed at identifying the psychological functions most strongly predictive of activity in each region revealed a tripartite division within MFC, with each zone displaying a relatively distinct functional signature. The posterior zone was associated preferentially with motor function, the middle zone with cognitive control, pain, and affect, and the anterior with reward, social processing, and episodic memory. Within each zone, the more fine-grained subregions showed distinct, but subtler, variations in psychological function. These results provide hypotheses about the functional organization of medial prefrontal cortex that can be tested explicitly in future studies.SIGNIFICANCE STATEMENTActivation of medial frontal cortex in fMRI studies is associated with a wide range of psychological states ranging from cognitive control to pain. However, this high rate of activation makes it challenging to determine how these various processes are topologically organized across medial frontal anatomy. We conducted a meta-analysis across nearly 10,000 studies to comprehensively map psychological states to discrete subregions in medial frontal cortex using relatively unbiased data-driven methods. This approach revealed three distinct zones that differed substantially in function, each of which were further subdivided into 2-4 smaller subregions that showed additional functional variation. Each individual region was recruited by multiple psychological states, suggesting subregions of medial frontal cortex are functionally heterogeneous.
The functional organization of human medial frontal cortex (MFC) is a subject of intense study. Using fMRI, the MFC has been associated with diverse psychological processes, including motor function, cognitive control, affect, and social cognition. However, there have been few large-scale efforts to comprehensively map specific psychological functions to subregions of medial frontal anatomy. Here we applied a meta-analytic data-driven approach to nearly 10,000 fMRI studies to identify putatively separable regions of MFC and determine which psychological states preferentially recruit their activation. We identified regions at several spatial scales on the basis of meta-analytic coactivation, revealing three broad functional zones along a rostrocaudal axis composed of 2-4 smaller subregions each. Multivariate classification analyses aimed at identifying the psychological functions most strongly predictive of activity in each region revealed a tripartite division within MFC, with each zone displaying a relatively distinct functional signature. The posterior zone was associated preferentially with motor function, the middle zone with cognitive control, pain, and affect, and the anterior with reward, social processing, and episodic memory. Within each zone, the more fine-grained subregions showed distinct, but subtler, variations in psychological function. These results provide hypotheses about the functional organization of medial prefrontal cortex that can be tested explicitly in future studies. Activation of medial frontal cortex in fMRI studies is associated with a wide range of psychological states ranging from cognitive control to pain. However, this high rate of activation makes it challenging to determine how these various processes are topologically organized across medial frontal anatomy. We conducted a meta-analysis across nearly 10,000 studies to comprehensively map psychological states to discrete subregions in medial frontal cortex using relatively unbiased data-driven methods. This approach revealed three distinct zones that differed substantially in function, each of which were further subdivided into 2-4 smaller subregions that showed additional functional variation. Each individual region was recruited by multiple psychological states, suggesting subregions of medial frontal cortex are functionally heterogeneous.
The functional organization of human medial frontal cortex (MFC) is a subject of intense study. Using fMRI, the MFC has been associated with diverse psychological processes, including motor function, cognitive control, affect, and social cognition. However, there have been few large-scale efforts to comprehensively map specific psychological functions to subregions of medial frontal anatomy. Here we applied a meta-analytic data-driven approach to nearly 10,000 fMRI studies to identify putatively separable regions of MFC and determine which psychological states preferentially recruit their activation. We identified regions at several spatial scales on the basis of meta-analytic coactivation, revealing three broad functional zones along a rostrocaudal axis composed of 2-4 smaller subregions each. Multivariate classification analyses aimed at identifying the psychological functions most strongly predictive of activity in each region revealed a tripartite division within MFC, with each zone displaying a relatively distinct functional signature. The posterior zone was associated preferentially with motor function, the middle zone with cognitive control, pain, and affect, and the anterior with reward, social processing, and episodic memory. Within each zone, the more fine-grained subregions showed distinct, but subtler, variations in psychological function. These results provide hypotheses about the functional organization of medial prefrontal cortex that can be tested explicitly in future studies.
The functional organization of human medial frontal cortex (MFC) is a subject of intense study. Using fMRI, the MFC has been associated with diverse psychological processes, including motor function, cognitive control, affect, and social cognition. However, there have been few large-scale efforts to comprehensively map specific psychological functions to subregions of medial frontal anatomy. Here we applied a meta-analytic data-driven approach to nearly 10,000 fMRI studies to identify putatively separable regions of MFC and determine which psychological states preferentially recruit their activation. We identified regions at several spatial scales on the basis of meta-analytic coactivation, revealing three broad functional zones along a rostrocaudal axis composed of 2–4 smaller subregions each. Multivariate classification analyses aimed at identifying the psychological functions most strongly predictive of activity in each region revealed a tripartite division within MFC, with each zone displaying a relatively distinct functional signature. The posterior zone was associated preferentially with motor function, the middle zone with cognitive control, pain, and affect, and the anterior with reward, social processing, and episodic memory. Within each zone, the more fine-grained subregions showed distinct, but subtler, variations in psychological function. These results provide hypotheses about the functional organization of medial prefrontal cortex that can be tested explicitly in future studies. SIGNIFICANCE STATEMENT Activation of medial frontal cortex in fMRI studies is associated with a wide range of psychological states ranging from cognitive control to pain. However, this high rate of activation makes it challenging to determine how these various processes are topologically organized across medial frontal anatomy. We conducted a meta-analysis across nearly 10,000 studies to comprehensively map psychological states to discrete subregions in medial frontal cortex using relatively unbiased data-driven methods. This approach revealed three distinct zones that differed substantially in function, each of which were further subdivided into 2–4 smaller subregions that showed additional functional variation. Each individual region was recruited by multiple psychological states, suggesting subregions of medial frontal cortex are functionally heterogeneous.
Author Wager, Tor D.
Chang, Luke J.
Yarkoni, Tal
Banich, Marie T.
de la Vega, Alejandro
Author_xml – sequence: 1
  givenname: Alejandro
  surname: de la Vega
  fullname: de la Vega, Alejandro
– sequence: 2
  givenname: Luke J.
  orcidid: 0000-0002-6621-8120
  surname: Chang
  fullname: Chang, Luke J.
– sequence: 3
  givenname: Marie T.
  surname: Banich
  fullname: Banich, Marie T.
– sequence: 4
  givenname: Tor D.
  orcidid: 0000-0002-1936-5574
  surname: Wager
  fullname: Wager, Tor D.
– sequence: 5
  givenname: Tal
  orcidid: 0000-0002-6558-5113
  surname: Yarkoni
  fullname: Yarkoni, Tal
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27307242$$D View this record in MEDLINE/PubMed
BookMark eNqFUctu2zAQJIoUjeP2FwIde5GzpChRBooCgRE3KdwayONMrKSVy0ImXZIKkn596OaBtpecFtydmR3uHLED6ywxdsxhxktRnHz9fnZzub5aXMykBJHzciaAV2_YJE3nuZDAD9gEhIK8kkoesqMQfgKAAq7esUOhClBCiglrV-g3lF-1OFD2jSLmpxaH-2BC5vrsfNyiTe3O4JAtvbMx1YXzke6yS7olHEJ27c0OfTSRsuVo22hcEsjWfoPW_Mb98z172yckfXiqU3azPLtenOer9ZeLxekqb0texHxeNgKhhk6UNYoG5nXTdNT3qlWoSuplUapKdlUvSBZVJ-ayoa6mOh2g6gCxmLLPj7q7sdlS15KNHge982aL_l47NPrfiTU_9Mbd6hJ4qWqVBD4-CXj3a6QQ9daEloYBLbkxaF5DrSAdWLwOVfOkWFfpZ1N2_LetFz_PISTAp0dA610InnrdmvjncsmlGTQHvc9cv2Su95mnnt5nnujVf_TnDa8QHwBqiLK7
CitedBy_id crossref_primary_10_1093_cercor_bhz079
crossref_primary_10_1002_hbm_25395
crossref_primary_10_1016_j_cortex_2018_06_015
crossref_primary_10_1016_j_neurobiolaging_2020_05_009
crossref_primary_10_1523_JNEUROSCI_3672_15_2016
crossref_primary_10_1002_hbm_24345
crossref_primary_10_1016_j_clnu_2023_05_025
crossref_primary_10_1007_s00213_023_06479_4
crossref_primary_10_1093_scan_nsac037
crossref_primary_10_1093_scan_nsaa132
crossref_primary_10_1080_00223891_2020_1842429
crossref_primary_10_1016_j_nicl_2020_102420
crossref_primary_10_1162_jocn_a_01440
crossref_primary_10_1016_j_neuroimage_2018_09_011
crossref_primary_10_1093_scan_nsab107
crossref_primary_10_1038_s41467_024_46508_0
crossref_primary_10_1038_s41583_020_0276_4
crossref_primary_10_1016_j_jpsychores_2020_110110
crossref_primary_10_1097_j_pain_0000000000001232
crossref_primary_10_1007_s11682_024_00854_1
crossref_primary_10_1016_j_neubiorev_2016_11_018
crossref_primary_10_1162_imag_a_00081
crossref_primary_10_1097_j_pain_0000000000001237
crossref_primary_10_1038_tp_2017_189
crossref_primary_10_1093_schbul_sbz046
crossref_primary_10_1162_jocn_a_01729
crossref_primary_10_1523_JNEUROSCI_0511_22_2022
crossref_primary_10_1016_j_pscychresns_2023_111615
crossref_primary_10_1038_nrn_2017_72
crossref_primary_10_1016_j_neubiorev_2020_01_023
crossref_primary_10_1073_pnas_2309232121
crossref_primary_10_1016_j_bpsc_2020_09_013
crossref_primary_10_1093_cercor_bhz225
crossref_primary_10_1073_pnas_2306295121
crossref_primary_10_1002_pchj_358
crossref_primary_10_1089_neu_2016_4692
crossref_primary_10_1093_cercor_bhx204
crossref_primary_10_1093_scan_nsae049
crossref_primary_10_1162_jocn_a_02144
crossref_primary_10_1080_23273798_2018_1525494
crossref_primary_10_1017_S0033291723003690
crossref_primary_10_1002_hbm_23917
crossref_primary_10_1016_j_neuroimage_2019_01_042
crossref_primary_10_3389_fnins_2020_00281
crossref_primary_10_1016_j_celrep_2019_08_002
crossref_primary_10_1016_j_neuropsychologia_2020_107487
crossref_primary_10_1016_j_jaac_2018_02_016
crossref_primary_10_1016_j_neubiorev_2021_03_025
crossref_primary_10_1038_s41380_024_02563_z
crossref_primary_10_3389_fnins_2019_01099
crossref_primary_10_1038_s41593_017_0051_7
crossref_primary_10_1038_s41598_017_03935_y
crossref_primary_10_1016_j_jad_2022_09_071
crossref_primary_10_1080_17470919_2016_1273851
crossref_primary_10_1093_scan_nsac054
crossref_primary_10_1016_j_dcn_2017_07_004
crossref_primary_10_1038_s41380_024_02751_x
crossref_primary_10_1038_s41537_023_00363_y
crossref_primary_10_1590_1516_4446_2019_0344
crossref_primary_10_1093_scan_nsab008
crossref_primary_10_1162_jocn_a_01261
crossref_primary_10_1126_sciadv_abf7129
crossref_primary_10_1016_j_neubiorev_2021_12_016
crossref_primary_10_1073_pnas_2308951120
crossref_primary_10_1016_j_neuroimage_2021_118258
crossref_primary_10_1038_s41467_022_29510_2
crossref_primary_10_1073_pnas_2114171118
crossref_primary_10_1126_sciadv_ado6166
crossref_primary_10_1016_j_jaac_2019_05_014
crossref_primary_10_1093_qjmed_hcad291
crossref_primary_10_1146_annurev_neuro_070918_050216
crossref_primary_10_1177_1420326X241247218
crossref_primary_10_1016_j_neuroscience_2022_09_001
crossref_primary_10_1523_JNEUROSCI_0260_20_2020
crossref_primary_10_1002_hbm_24356
crossref_primary_10_1016_j_neuroimage_2023_120025
crossref_primary_10_1016_j_envres_2019_05_009
crossref_primary_10_1016_j_neuroimage_2019_116305
crossref_primary_10_1016_j_isci_2023_106427
crossref_primary_10_1113_JP280735
crossref_primary_10_1016_j_neuroimage_2020_116858
crossref_primary_10_1016_j_nicl_2018_03_019
crossref_primary_10_1073_pnas_1714691115
crossref_primary_10_1523_JNEUROSCI_2180_16_2016
crossref_primary_10_1002_jts_22290
crossref_primary_10_1016_j_neuroimage_2020_117556
crossref_primary_10_3389_fpsyg_2023_1080376
crossref_primary_10_1016_j_neuroimage_2019_04_056
crossref_primary_10_1186_s10194_019_0958_3
crossref_primary_10_1016_j_neuroimage_2021_118269
crossref_primary_10_1016_j_neuropsychologia_2017_01_014
crossref_primary_10_1521_pedi_2020_34_5_628
crossref_primary_10_3389_fnhum_2018_00283
crossref_primary_10_3934_Neuroscience_2016_3_264
crossref_primary_10_1016_j_neubiorev_2018_12_021
crossref_primary_10_1016_j_scog_2018_12_002
crossref_primary_10_3758_s13414_021_02248_7
crossref_primary_10_1016_j_neubiorev_2022_104971
crossref_primary_10_1016_j_bjpt_2017_11_001
crossref_primary_10_1080_23273798_2022_2077396
crossref_primary_10_1371_journal_pbio_2005722
crossref_primary_10_1007_s00429_022_02571_1
crossref_primary_10_1007_s11682_019_00171_y
crossref_primary_10_1038_s41583_018_0071_7
crossref_primary_10_1038_s41598_018_21449_z
crossref_primary_10_3389_fnhum_2022_875201
crossref_primary_10_1016_j_neuropsychologia_2021_108000
crossref_primary_10_1038_s41398_022_01829_w
crossref_primary_10_1371_journal_pone_0237829
crossref_primary_10_4236_jbbs_2017_73013
crossref_primary_10_1016_j_neuroimage_2021_118631
crossref_primary_10_1016_j_neuroimage_2020_116851
crossref_primary_10_1016_j_neubiorev_2022_104768
crossref_primary_10_1371_journal_pone_0273376
crossref_primary_10_1177_1550059419864461
crossref_primary_10_1016_j_neuroimage_2019_01_018
crossref_primary_10_1016_j_bandc_2021_105711
crossref_primary_10_1093_scan_nsw137
crossref_primary_10_1093_scan_nsz006
crossref_primary_10_1016_j_bpsgos_2022_02_004
crossref_primary_10_1017_pen_2021_1
crossref_primary_10_1002_hbm_26312
crossref_primary_10_1093_scan_nsab010
crossref_primary_10_1007_s00429_018_1781_3
crossref_primary_10_3389_fnhum_2024_1387299
crossref_primary_10_3390_jcm13061645
crossref_primary_10_3389_fnhum_2018_00466
crossref_primary_10_1016_j_plrev_2019_09_007
crossref_primary_10_1523_JNEUROSCI_2584_16_2016
crossref_primary_10_3389_fnhum_2019_00457
crossref_primary_10_1097_j_pain_0000000000001666
crossref_primary_10_1002_da_22937
crossref_primary_10_1093_sleep_zsab261
crossref_primary_10_1155_2019_9693109
crossref_primary_10_1176_appi_ajp_2020_20081187
crossref_primary_10_3758_s13415_018_0611_7
crossref_primary_10_1016_j_neuroimage_2025_121008
crossref_primary_10_1007_s12144_024_07151_6
crossref_primary_10_1080_15622975_2020_1814409
crossref_primary_10_1007_s00429_022_02467_0
crossref_primary_10_1093_cercor_bhaa373
crossref_primary_10_1002_hbm_26622
crossref_primary_10_1002_dev_21599
crossref_primary_10_1093_scan_nsx040
crossref_primary_10_1073_pnas_1600159113
crossref_primary_10_1016_j_cortex_2021_02_033
crossref_primary_10_1523_JNEUROSCI_2550_20_2021
crossref_primary_10_1038_s41467_019_09161_6
crossref_primary_10_1038_s41598_020_72317_8
crossref_primary_10_1177_17562864231202064
crossref_primary_10_1186_s12888_020_02490_7
crossref_primary_10_1016_j_ynirp_2022_100147
crossref_primary_10_3389_fnbeh_2020_548856
crossref_primary_10_1073_pnas_1800444115
crossref_primary_10_1523_ENEURO_0225_22_2022
crossref_primary_10_1016_j_jad_2023_12_001
crossref_primary_10_1016_j_jadr_2021_100155
crossref_primary_10_1002_hbm_24038
crossref_primary_10_1111_mbe_12257
crossref_primary_10_3758_s13415_018_0600_x
crossref_primary_10_1038_nrn_2017_76
crossref_primary_10_1177_1094428117708857
crossref_primary_10_1073_pnas_2310433121
crossref_primary_10_1523_JNEUROSCI_1744_20_2020
crossref_primary_10_1016_j_neubiorev_2020_05_008
crossref_primary_10_1016_j_neuroimage_2019_116102
crossref_primary_10_1093_cercor_bhy236
crossref_primary_10_1371_journal_pone_0261570
crossref_primary_10_1044_2024_JSLHR_24_00333
crossref_primary_10_1016_j_biopsych_2022_08_004
crossref_primary_10_1016_j_biopsycho_2021_108186
crossref_primary_10_1016_j_neuroimage_2021_117808
crossref_primary_10_1016_j_copsyc_2019_02_010
crossref_primary_10_1016_j_bbi_2023_05_001
crossref_primary_10_1016_j_concog_2019_102777
crossref_primary_10_1016_j_nicl_2019_101834
crossref_primary_10_1192_j_eurpsy_2020_57
crossref_primary_10_1016_j_cortex_2019_12_012
crossref_primary_10_1016_j_bpsc_2020_11_003
crossref_primary_10_1093_cercor_bhad015
crossref_primary_10_1038_s41598_018_21857_1
ContentType Journal Article
Copyright Copyright © 2016 the authors 0270-6474/16/366553-10$15.00/0.
Copyright © 2016 the authors 0270-6474/16/366553-10$15.00/0 2016
Copyright_xml – notice: Copyright © 2016 the authors 0270-6474/16/366553-10$15.00/0.
– notice: Copyright © 2016 the authors 0270-6474/16/366553-10$15.00/0 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1523/JNEUROSCI.4402-15.2016
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList MEDLINE - Academic
MEDLINE
Neurosciences Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 6562
ExternalDocumentID PMC5015787
27307242
10_1523_JNEUROSCI_4402_15_2016
Genre Meta-Analysis
Review
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH096906
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
53G
5GY
5RE
5VS
AAFWJ
AAJMC
AAYXX
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
ADHGD
AENEX
AFCFT
AFOSN
AFSQR
AHWXS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
OK1
P0W
P2P
QZG
R.V
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
XJT
YBU
YHG
YKV
YNH
YSK
AFHIN
AIZTS
CGR
CUY
CVF
ECM
EIF
NPM
RHF
7X8
7TK
5PM
ID FETCH-LOGICAL-c513t-95b2a080d258a2b098bbdeff7c7a75ef435764d6f2e436d294bed8e84406d0aa3
ISSN 0270-6474
IngestDate Thu Aug 21 18:03:40 EDT 2025
Fri Jul 11 01:37:18 EDT 2025
Fri Jul 11 12:28:44 EDT 2025
Wed Feb 19 02:43:30 EST 2025
Thu Apr 24 23:07:01 EDT 2025
Tue Jul 01 03:47:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords meta-analysis
cognitive control
pain
medial frontal cortex
Language English
License Copyright © 2016 the authors 0270-6474/16/366553-10$15.00/0.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c513t-95b2a080d258a2b098bbdeff7c7a75ef435764d6f2e436d294bed8e84406d0aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-2
ObjectType-Feature-2
Author contributions: A.d.l.V., M.T.B., T.D.W., and T.Y. designed research; A.d.l.V. and T.Y. performed research; L.J.C. and T.Y. contributed unpublished reagents/analytic tools; A.d.l.V., L.J.C., and T.Y. analyzed data; A.d.l.V., L.J.C., M.T.B., T.D.W., and T.Y. wrote the paper.
ORCID 0000-0002-6621-8120
0000-0002-6558-5113
0000-0002-1936-5574
OpenAccessLink https://www.jneurosci.org/content/jneuro/36/24/6553.full.pdf
PMID 27307242
PQID 1797878651
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5015787
proquest_miscellaneous_1808705292
proquest_miscellaneous_1797878651
pubmed_primary_27307242
crossref_citationtrail_10_1523_JNEUROSCI_4402_15_2016
crossref_primary_10_1523_JNEUROSCI_4402_15_2016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-06-15
20160615
PublicationDateYYYYMMDD 2016-06-15
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2016
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References 24485097 - Neuron. 2014 Feb 5;81(3):700-13
7351547 - J Neurophysiol. 1980 Jan;43(1):118-36
22617651 - Behav Brain Sci. 2012 Jun;35(3):121-43
19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5
26629847 - PLoS Comput Biol. 2015 Dec 02;11(12):e1004533
23708967 - Nature. 2013 Jun 20;498(7454):363-6
21926982 - Nat Neurosci. 2011 Sep 18;14(10):1338-44
18296434 - Cereb Cortex. 2008 Nov;18(11):2553-9
19603407 - Hum Brain Mapp. 2010 Feb;31(2):173-84
28356398 - J Neurosci. 2017 Mar 29;37(13):3735
23071428 - PLoS Comput Biol. 2012;8(10):e1002707
17707349 - Biol Psychiatry. 2007 Nov 15;62(10):1191-4
25405022 - Gigascience. 2014 Nov 17;3:28
19580387 - J Cogn Neurosci. 2010 Jun;22(6):1112-23
20512372 - Brain Struct Funct. 2010 Jun;214(5-6):669-80
26687219 - Neuron. 2015 Dec 16;88(6):1086-107
15097995 - Nat Neurosci. 2004 May;7(5):497-8
16406760 - Trends Cogn Sci. 2006 Feb;10(2):59-63
9753106 - Eur J Neurosci. 1998 Jun;10(6):2199-203
18022321 - Pain. 2008 Mar;135(1-2):160-74
10647008 - Nature. 1999 Nov 11;402(6758):179-81
25071425 - Front Neurosci. 2014 Jul 01;8:167
17499520 - Neuroimage. 2007 Jul 1;36(3):511-21
22452556 - J Cogn Neurosci. 2012 Aug;24(8):1742-52
21706013 - Nat Methods. 2011 Jun 26;8(8):665-70
22310704 - Trends Cogn Sci. 2012 Mar;16(3):147-56
19837176 - Neuroimage. 2010 Feb 1;49(3):2375-86
26409749 - Hum Brain Mapp. 2015 Dec;36(12 ):4771-92
26993424 - J Chem Neuroanat. 2016 Jul;74:28-46
19407204 - Science. 2009 May 1;324(5927):646-8
25919962 - Nat Neurosci. 2015 May;18(5):620-7
25914639 - Front Neuroinform. 2015 Apr 10;9:8
14573560 - J Neurophysiol. 2004 Feb;91(2):978-93
15340158 - Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13335-40
18579414 - Neuroimage. 2008 Aug 15;42(2):998-1031
14729132 - J Chem Neuroanat. 2003 Dec;26(4):301-9
12571120 - Cereb Cortex. 2003 Mar;13(3):308-17
20188659 - Neuron. 2010 Feb 25;65(4):550-62
19176826 - J Neurosci. 2009 Jan 28;29(4):1175-90
23574118 - N Engl J Med. 2013 Apr 11;368(15):1388-97
8670651 - Cereb Cortex. 1996 Mar-Apr;6(2):207-14
15718473 - Science. 2005 Feb 18;307(5712):1118-21
16806505 - Trends Neurosci. 2006 Jul;29(7):359-66
23790322 - Trends Cogn Sci. 2013 Jul;17(7):328-36
24787485 - J Physiol Paris. 2015 Feb-Jun;109(1-3):3-15
25937490 - Neuroimage. 2015 Jul 15;115:177-90
26786470 - Behav Brain Sci. 2015;38:e86
19096371 - Nat Rev Neurosci. 2009 Jan;10(1):78; author reply 78
23787873 - J Comp Neurol. 2013 Oct 1;521(14):3272-86
8670662 - Cereb Cortex. 1996 May-Jun;6(3):342-53
12821513 - Brain. 2003 Oct;126(Pt 10):2139-52
21574212 - Hum Brain Mapp. 2012 Jun;33(6):1452-69
23396162 - Neuroimage. 2013 Jun;73:50-8
25123211 - Eur J Neurosci. 2014 Sep;40(5):2777-96
12040201 - Science. 2002 May 31;296(5573):1709-11
24379387 - Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):833-8
21331082 - Nat Rev Neurosci. 2011 Mar;12(3):154-67
21167765 - Trends Cogn Sci. 2011 Feb;15(2):85-93
26582792 - Proc Natl Acad Sci U S A. 2015 Dec 8;112(49):15250-5
23889930 - Neuron. 2013 Jul 24;79(2):217-40
19914190 - Neuron. 2009 Nov 12;64(3):431-9
21677128 - Neuroscientist. 2012 Jun;18(3):251-70
22437053 - Cereb Cortex. 2013 Mar;23(3):739-49
23884933 - J Neurosci. 2013 Jul 24;33(30):12255-74
18817740 - Neuron. 2008 Sep 25;59(6):1037-50
15995724 - Nat Rev Neurosci. 2005 Jul;6(7):533-44
24231140 - Trends Cogn Sci. 2013 Dec;17(12):683-96
11689307 - Brain Res Cogn Brain Res. 2001 Dec;12(3):467-73
26393866 - Annu Rev Psychol. 2016;67:587-612
25574450 - Int Conf Affect Comput Intell Interact Workshops. 2013;2013:245-251
21922006 - Front Neuroinform. 2011 Sep 06;5:17
27095849 - Proc Natl Acad Sci U S A. 2016 May 3;113(18):E2474-5
24991964 - Neuron. 2014 Jul 2;83(1):238-51
19166944 - Neuroimage. 2009 Apr 15;45(3):810-23
16197685 - J Cogn Neurosci. 2005 Aug;17(8):1306-15
References_xml – reference: 12821513 - Brain. 2003 Oct;126(Pt 10):2139-52
– reference: 24485097 - Neuron. 2014 Feb 5;81(3):700-13
– reference: 18817740 - Neuron. 2008 Sep 25;59(6):1037-50
– reference: 15340158 - Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13335-40
– reference: 24991964 - Neuron. 2014 Jul 2;83(1):238-51
– reference: 15097995 - Nat Neurosci. 2004 May;7(5):497-8
– reference: 23884933 - J Neurosci. 2013 Jul 24;33(30):12255-74
– reference: 17707349 - Biol Psychiatry. 2007 Nov 15;62(10):1191-4
– reference: 19166944 - Neuroimage. 2009 Apr 15;45(3):810-23
– reference: 20188659 - Neuron. 2010 Feb 25;65(4):550-62
– reference: 23787873 - J Comp Neurol. 2013 Oct 1;521(14):3272-86
– reference: 14729132 - J Chem Neuroanat. 2003 Dec;26(4):301-9
– reference: 23574118 - N Engl J Med. 2013 Apr 11;368(15):1388-97
– reference: 17499520 - Neuroimage. 2007 Jul 1;36(3):511-21
– reference: 23889930 - Neuron. 2013 Jul 24;79(2):217-40
– reference: 21922006 - Front Neuroinform. 2011 Sep 06;5:17
– reference: 25071425 - Front Neurosci. 2014 Jul 01;8:167
– reference: 10647008 - Nature. 1999 Nov 11;402(6758):179-81
– reference: 21331082 - Nat Rev Neurosci. 2011 Mar;12(3):154-67
– reference: 8670662 - Cereb Cortex. 1996 May-Jun;6(3):342-53
– reference: 19580387 - J Cogn Neurosci. 2010 Jun;22(6):1112-23
– reference: 15718473 - Science. 2005 Feb 18;307(5712):1118-21
– reference: 18579414 - Neuroimage. 2008 Aug 15;42(2):998-1031
– reference: 26393866 - Annu Rev Psychol. 2016;67:587-612
– reference: 25937490 - Neuroimage. 2015 Jul 15;115:177-90
– reference: 25914639 - Front Neuroinform. 2015 Apr 10;9:8
– reference: 23396162 - Neuroimage. 2013 Jun;73:50-8
– reference: 9753106 - Eur J Neurosci. 1998 Jun;10(6):2199-203
– reference: 28356398 - J Neurosci. 2017 Mar 29;37(13):3735
– reference: 26629847 - PLoS Comput Biol. 2015 Dec 02;11(12):e1004533
– reference: 26993424 - J Chem Neuroanat. 2016 Jul;74:28-46
– reference: 18022321 - Pain. 2008 Mar;135(1-2):160-74
– reference: 19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5
– reference: 23708967 - Nature. 2013 Jun 20;498(7454):363-6
– reference: 19837176 - Neuroimage. 2010 Feb 1;49(3):2375-86
– reference: 23790322 - Trends Cogn Sci. 2013 Jul;17(7):328-36
– reference: 21706013 - Nat Methods. 2011 Jun 26;8(8):665-70
– reference: 16197685 - J Cogn Neurosci. 2005 Aug;17(8):1306-15
– reference: 23071428 - PLoS Comput Biol. 2012;8(10):e1002707
– reference: 24787485 - J Physiol Paris. 2015 Feb-Jun;109(1-3):3-15
– reference: 19407204 - Science. 2009 May 1;324(5927):646-8
– reference: 16806505 - Trends Neurosci. 2006 Jul;29(7):359-66
– reference: 25123211 - Eur J Neurosci. 2014 Sep;40(5):2777-96
– reference: 12040201 - Science. 2002 May 31;296(5573):1709-11
– reference: 16406760 - Trends Cogn Sci. 2006 Feb;10(2):59-63
– reference: 22310704 - Trends Cogn Sci. 2012 Mar;16(3):147-56
– reference: 8670651 - Cereb Cortex. 1996 Mar-Apr;6(2):207-14
– reference: 21167765 - Trends Cogn Sci. 2011 Feb;15(2):85-93
– reference: 25919962 - Nat Neurosci. 2015 May;18(5):620-7
– reference: 21677128 - Neuroscientist. 2012 Jun;18(3):251-70
– reference: 15995724 - Nat Rev Neurosci. 2005 Jul;6(7):533-44
– reference: 22452556 - J Cogn Neurosci. 2012 Aug;24(8):1742-52
– reference: 24379387 - Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):833-8
– reference: 7351547 - J Neurophysiol. 1980 Jan;43(1):118-36
– reference: 26786470 - Behav Brain Sci. 2015;38:e86
– reference: 12571120 - Cereb Cortex. 2003 Mar;13(3):308-17
– reference: 26582792 - Proc Natl Acad Sci U S A. 2015 Dec 8;112(49):15250-5
– reference: 11689307 - Brain Res Cogn Brain Res. 2001 Dec;12(3):467-73
– reference: 18296434 - Cereb Cortex. 2008 Nov;18(11):2553-9
– reference: 26409749 - Hum Brain Mapp. 2015 Dec;36(12 ):4771-92
– reference: 19914190 - Neuron. 2009 Nov 12;64(3):431-9
– reference: 24231140 - Trends Cogn Sci. 2013 Dec;17(12):683-96
– reference: 19603407 - Hum Brain Mapp. 2010 Feb;31(2):173-84
– reference: 27095849 - Proc Natl Acad Sci U S A. 2016 May 3;113(18):E2474-5
– reference: 21574212 - Hum Brain Mapp. 2012 Jun;33(6):1452-69
– reference: 22437053 - Cereb Cortex. 2013 Mar;23(3):739-49
– reference: 21926982 - Nat Neurosci. 2011 Sep 18;14(10):1338-44
– reference: 26687219 - Neuron. 2015 Dec 16;88(6):1086-107
– reference: 25405022 - Gigascience. 2014 Nov 17;3:28
– reference: 14573560 - J Neurophysiol. 2004 Feb;91(2):978-93
– reference: 19176826 - J Neurosci. 2009 Jan 28;29(4):1175-90
– reference: 25574450 - Int Conf Affect Comput Intell Interact Workshops. 2013;2013:245-251
– reference: 22617651 - Behav Brain Sci. 2012 Jun;35(3):121-43
– reference: 20512372 - Brain Struct Funct. 2010 Jun;214(5-6):669-80
– reference: 19096371 - Nat Rev Neurosci. 2009 Jan;10(1):78; author reply 78
SSID ssj0007017
Score 2.5934186
SecondaryResourceType review_article
Snippet The functional organization of human medial frontal cortex (MFC) is a subject of intense study. Using fMRI, the MFC has been associated with diverse...
UNLABELLEDThe functional organization of human medial frontal cortex (MFC) is a subject of intense study. Using fMRI, the MFC has been associated with diverse...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6553
SubjectTerms Brain Mapping
Frontal Lobe - diagnostic imaging
Frontal Lobe - physiology
Humans
Image Processing, Computer-Assisted
Magnetic Resonance Imaging
Neural Pathways - physiology
Oxygen - blood
Title Large-Scale Meta-Analysis of Human Medial Frontal Cortex Reveals Tripartite Functional Organization
URI https://www.ncbi.nlm.nih.gov/pubmed/27307242
https://www.proquest.com/docview/1797878651
https://www.proquest.com/docview/1808705292
https://pubmed.ncbi.nlm.nih.gov/PMC5015787
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFAeNSbjIS4qVKl7qxkzyiQjXKWoHWwd4iJ7G1oS6dSioBP49fxjm2l7il4rKXqEriJM335fj4-JzPhLzkOg8LUehADWIZRMCpQIpQBinPVQQ9ouAxViNPZ-LwJJqc8tNO56eXtbSu837xY2ddyXVQhX2AK1bJ_geyzUVhB_wGfGELCMP2nzA-wjTu4BheM3ycqpaBLzFiw_NTWxkyRp0CEydY1eobzggo1E2eg8nA69aqN4YOzsUF_fpM33lty8iMA-tJYTbsKFVvIXuflAvXLtQXiYoIXhKBtS1HmBQy6bdx1Orcrkk1xbF7b94c-YwaG4ZUy1XvTd8PUgwEJlPZMk0bpPQyUGfbD2eNHYthGBvZFXv6yhljZmZ_Br61tnIpjpUs8myv4FZ22PXj4KiynX0EN1oVkxmmSh6P3vWjCNd34ZjmJ_wGgPXlhWEOuHhhzKwK2JY694fpiINHBWbvBrnJYKiCq2i8_9gq1sehWfW5-X-uSh0e4mD3I6A8tbvfpq_02wBoO4_Xc4zmd8htRwj62tLzLumo6h7ZBybWy4vv9BU1OcZm8mafFB5j6QZj6VJTw1hqGUsdY6llLHWMpS1jactY6jP2PjkZv52PDgO3zEdQ8MGwRrPAJAxcSsYTyfIwTfK8VFrHRSxjrjQ49LGISqGZioaiZGmUqzJRCbw0UYZSDh-QvWpZqUeEJjKPh0WqdVnqSHImZZ5qORjGSkuR8rBL-NULzQqngY9LsSwyHAsDJlmDSYaYwL4MMemSg6bdpVWB-WuLF1d4ZWCwcRZOVmq5_ppBDwhsSQQf_OGcJIR-FOjPuuShxbi57xU5uiTeQL85AQXjN49U52dGON4x9fG1Wz4ht9qv-ynZq1dr9Qyc8jp_blj_CwjC4vY
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-Scale+Meta-Analysis+of+Human+Medial+Frontal+Cortex+Reveals+Tripartite+Functional+Organization&rft.jtitle=The+Journal+of+neuroscience&rft.au=de+la+Vega%2C+Alejandro&rft.au=Chang%2C+Luke+J.&rft.au=Banich%2C+Marie+T.&rft.au=Wager%2C+Tor+D.&rft.date=2016-06-15&rft.pub=Society+for+Neuroscience&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=36&rft.issue=24&rft.spage=6553&rft.epage=6562&rft_id=info:doi/10.1523%2FJNEUROSCI.4402-15.2016&rft_id=info%3Apmid%2F27307242&rft.externalDocID=PMC5015787
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon