An Analysis of Soil Coring Strategies to Estimate Root Depth in Maize (Zea mays) and Common Bean (Phaseolus vulgaris)

A soil coring protocol was developed to cooptimize the estimation of root length distribution (RLD) by depth and detection of functionally important variation in root system architecture (RSA) of maize and bean. The functional-structural model was used to perform soil coring at six locations on thre...

Full description

Saved in:
Bibliographic Details
Published inPlant phenomics Vol. 2020; p. 3252703
Main Authors Burridge, James D., Black, Christopher K., Nord, Eric A., Postma, Johannes A., Sidhu, Jagdeep S., York, Larry M., Lynch, Jonathan P.
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science (AAAS) 01.01.2020
AAAS
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A soil coring protocol was developed to cooptimize the estimation of root length distribution (RLD) by depth and detection of functionally important variation in root system architecture (RSA) of maize and bean. The functional-structural model was used to perform soil coring at six locations on three different maize and bean RSA phenotypes. Results were compared to two seasons of field soil coring and one trench. Two one-sided -test (TOST) analysis of data suggests a between-row location 5 cm from plant base (location 3), best estimates whole-plot RLD/D of deep, intermediate, and shallow RSA phenotypes, for both maize and bean. Quadratic discriminant analysis indicates location 3 has ~70% categorization accuracy for bean, while an in-row location next to the plant base (location 6) has ~85% categorization accuracy in maize. Analysis of field data suggests the more representative sampling locations vary by year and species. and field studies suggest location 3 is most robust, although variation is significant among seasons, among replications within a field season, and among field soil coring, trench, and simulations. We propose that the characterization of the RLD profile as a dynamic rhizo canopy effectively describes how the RLD profile arises from interactions among an individual plant, its neighbors, and the pedosphere.
AbstractList A soil coring protocol was developed to cooptimize the estimation of root length distribution (RLD) by depth and detection of functionally important variation in root system architecture (RSA) of maize and bean. The functional-structural model OpenSimRoot was used to perform in silico soil coring at six locations on three different maize and bean RSA phenotypes. Results were compared to two seasons of field soil coring and one trench. Two one-sided T -test (TOST) analysis of in silico data suggests a between-row location 5 cm from plant base (location 3), best estimates whole-plot RLD/D of deep, intermediate, and shallow RSA phenotypes, for both maize and bean. Quadratic discriminant analysis indicates location 3 has ~70% categorization accuracy for bean, while an in-row location next to the plant base (location 6) has ~85% categorization accuracy in maize. Analysis of field data suggests the more representative sampling locations vary by year and species. In silico and field studies suggest location 3 is most robust, although variation is significant among seasons, among replications within a field season, and among field soil coring, trench, and simulations. We propose that the characterization of the RLD profile as a dynamic rhizo canopy effectively describes how the RLD profile arises from interactions among an individual plant, its neighbors, and the pedosphere.
A soil coring protocol was developed to cooptimize the estimation of root length distribution (RLD) by depth and detection of functionally important variation in root system architecture (RSA) of maize and bean. The functional-structural model OpenSimRoot was used to perform in silico soil coring at six locations on three different maize and bean RSA phenotypes. Results were compared to two seasons of field soil coring and one trench. Two one-sided T-test (TOST) analysis of in silico data suggests a between-row location 5 cm from plant base (location 3), best estimates whole-plot RLD/D of deep, intermediate, and shallow RSA phenotypes, for both maize and bean. Quadratic discriminant analysis indicates location 3 has ~70% categorization accuracy for bean, while an in-row location next to the plant base (location 6) has ~85% categorization accuracy in maize. Analysis of field data suggests the more representative sampling locations vary by year and species. In silico and field studies suggest location 3 is most robust, although variation is significant among seasons, among replications within a field season, and among field soil coring, trench, and simulations. We propose that the characterization of the RLD profile as a dynamic rhizo canopy effectively describes how the RLD profile arises from interactions among an individual plant, its neighbors, and the pedosphere.
A soil coring protocol was developed to cooptimize the estimation of root length distribution (RLD) by depth and detection of functionally important variation in root system architecture (RSA) of maize and bean. The functional-structural model was used to perform soil coring at six locations on three different maize and bean RSA phenotypes. Results were compared to two seasons of field soil coring and one trench. Two one-sided -test (TOST) analysis of data suggests a between-row location 5 cm from plant base (location 3), best estimates whole-plot RLD/D of deep, intermediate, and shallow RSA phenotypes, for both maize and bean. Quadratic discriminant analysis indicates location 3 has ~70% categorization accuracy for bean, while an in-row location next to the plant base (location 6) has ~85% categorization accuracy in maize. Analysis of field data suggests the more representative sampling locations vary by year and species. and field studies suggest location 3 is most robust, although variation is significant among seasons, among replications within a field season, and among field soil coring, trench, and simulations. We propose that the characterization of the RLD profile as a dynamic rhizo canopy effectively describes how the RLD profile arises from interactions among an individual plant, its neighbors, and the pedosphere.
A soil coring protocol was developed to cooptimize the estimation of root length distribution (RLD) by depth and detection of functionally important variation in root system architecture (RSA) of maize and bean. The functional-structural model OpenSimRoot was used to perform in silico soil coring at six locations on three different maize and bean RSA phenotypes. Results were compared to two seasons of field soil coring and one trench. Two one-sided T-test (TOST) analysis of in silico data suggests a between-row location 5 cm from plant base (location 3), best estimates whole-plot RLD/D of deep, intermediate, and shallow RSA phenotypes, for both maize and bean. Quadratic discriminant analysis indicates location 3 has ~70% categorization accuracy for bean, while an in-row location next to the plant base (location 6) has ~85% categorization accuracy in maize. Analysis of field data suggests the more representative sampling locations vary by year and species. In silico and field studies suggest location 3 is most robust, although variation is significant among seasons, among replications within a field season, and among field soil coring, trench, and simulations. We propose that the characterization of the RLD profile as a dynamic rhizo canopy effectively describes how the RLD profile arises from interactions among an individual plant, its neighbors, and the pedosphere.A soil coring protocol was developed to cooptimize the estimation of root length distribution (RLD) by depth and detection of functionally important variation in root system architecture (RSA) of maize and bean. The functional-structural model OpenSimRoot was used to perform in silico soil coring at six locations on three different maize and bean RSA phenotypes. Results were compared to two seasons of field soil coring and one trench. Two one-sided T-test (TOST) analysis of in silico data suggests a between-row location 5 cm from plant base (location 3), best estimates whole-plot RLD/D of deep, intermediate, and shallow RSA phenotypes, for both maize and bean. Quadratic discriminant analysis indicates location 3 has ~70% categorization accuracy for bean, while an in-row location next to the plant base (location 6) has ~85% categorization accuracy in maize. Analysis of field data suggests the more representative sampling locations vary by year and species. In silico and field studies suggest location 3 is most robust, although variation is significant among seasons, among replications within a field season, and among field soil coring, trench, and simulations. We propose that the characterization of the RLD profile as a dynamic rhizo canopy effectively describes how the RLD profile arises from interactions among an individual plant, its neighbors, and the pedosphere.
ArticleNumber 3252703
Author Nord, Eric A.
Postma, Johannes A.
York, Larry M.
Black, Christopher K.
Sidhu, Jagdeep S.
Burridge, James D.
Lynch, Jonathan P.
AuthorAffiliation 2 Department of Biology, Greenville University, 315 E. College Ave, Greenville, IL 62246, USA
1 The Pennsylvania State University, Department of Plant Science, Tyson Building, University Park, PA 16802, USA
3 Forschungszentrum Jülich GmbH, Institute of Bio-and Geosciences-Plant Sciences (IBG-2), 52425 Jülich, Germany
4 Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
AuthorAffiliation_xml – name: 2 Department of Biology, Greenville University, 315 E. College Ave, Greenville, IL 62246, USA
– name: 4 Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
– name: 1 The Pennsylvania State University, Department of Plant Science, Tyson Building, University Park, PA 16802, USA
– name: 3 Forschungszentrum Jülich GmbH, Institute of Bio-and Geosciences-Plant Sciences (IBG-2), 52425 Jülich, Germany
Author_xml – sequence: 1
  givenname: James D.
  surname: Burridge
  fullname: Burridge, James D.
– sequence: 2
  givenname: Christopher K.
  orcidid: 0000-0001-8382-298X
  surname: Black
  fullname: Black, Christopher K.
– sequence: 3
  givenname: Eric A.
  surname: Nord
  fullname: Nord, Eric A.
– sequence: 4
  givenname: Johannes A.
  orcidid: 0000-0002-5222-6648
  surname: Postma
  fullname: Postma, Johannes A.
– sequence: 5
  givenname: Jagdeep S.
  orcidid: 0000-0002-4672-3701
  surname: Sidhu
  fullname: Sidhu, Jagdeep S.
– sequence: 6
  givenname: Larry M.
  orcidid: 0000-0002-1995-9479
  surname: York
  fullname: York, Larry M.
– sequence: 7
  givenname: Jonathan P.
  orcidid: 0000-0002-7265-9790
  surname: Lynch
  fullname: Lynch, Jonathan P.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33313549$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1708913$$D View this record in Osti.gov
BookMark eNqFkktv1DAUhSNURMvQJVtksZouQq997Tw2SMNQoFIRiMKGjeU4zoyrxJ7GTqXh1-N2pqhFSKz8OvfzuY_n2YHzzmTZSwpvkFPEUwYMTpEJVgI-yY5YwTEvBBUHD_aH2XEIVwDABJS8qp5lh4hIUfD6KJsWjiyc6rfBBuI7cultT5Z-tG5FLuOoollZE0j05CxEO6Qz-eZ9JO_NJq6JdeSzsr8Mmf80igxqG06Icm0CDIN35J1Rjsy_rlUwvp8CuZn6lRptOHmRPe1UH8zxfp1lPz6cfV9-yi--fDxfLi5yLSjGvGo5Fx3wDnnR6LorBKiyBM271iBrOTYFa2qhNWe1Qt420JWlThGm1KAN4Cw733Fbr67kZkwJjFvplZV3F35cSTVGq3sjO2wUBSoY0oJXQBsAbJu261RDy0aYxHq7Y22mZjCtNi6Vp38Effzi7Fqu_I1MjgtkZQK83gF8qqQM2kaj19o7Z3SUtISqTh2dZfP9L6O_nkyIcrBBm75XzvgpSFZgwaEGCv-X8jL1HKmokvTVQ-9_TN_PQRLgTqBHH8JoOpnsqWj9bSq2lxTk3cDJ24GT-4FLUflfUffgf-t_A9zl058
CitedBy_id crossref_primary_10_1007_s11104_024_07075_x
crossref_primary_10_1002_ppj2_20028
crossref_primary_10_3389_fpls_2022_1041404
crossref_primary_10_1016_j_scitotenv_2022_154125
crossref_primary_10_3389_fpls_2022_1047563
crossref_primary_10_1002_csc2_21149
crossref_primary_10_1007_s12665_024_12004_3
crossref_primary_10_1016_j_micres_2024_127826
crossref_primary_10_1007_s11104_023_06301_2
Cites_doi 10.3117/plantroot.2.67
10.1104/pp.17.01583
10.1080/1343943X.2019.1702468
10.1016/j.tplants.2019.12.007
10.1016/j.fcr.2005.10.005
10.1007/s11104-008-9683-4
10.1007/BF00007976
10.1016/j.fcr.2012.09.010
10.5194/bg-14-2199-2017
10.1016/j.fcr.2012.08.004
10.1007/s11104-012-1455-5
10.1111/nph.14641
10.1093/jxb/eru508
10.1016/j.fcr.2014.03.017
10.1016/j.still.2016.09.002
10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
10.1146/annurev-ecolsys-102710-145006
10.1023/A:1004405422847
10.1371/journal.pone.0191619
10.1007/s00442-005-0256-4
10.1016/j.rse.2018.02.002
10.1016/j.biotechadv.2013.08.019
10.2134/agronj2001.9351097x
10.1002/jpln.19941570506
10.1104/pp.15.00145
10.3390/rs9020182
10.1017/S0014479700016756
10.1016/j.tplants.2019.10.015
10.1111/j.1365-3040.2009.02059.x
10.1371/journal.pone.0197284
10.1146/annurev-arplant-042817-040218
10.2134/agronj1984.00021962007600040011x
10.1007/BF02374349
10.1111/nph.14243
10.1093/jxb/ery082
10.1093/jxb/erz279
10.1111/pce.12684
10.1093/aob/mcu009
10.1007/s11104-019-04269-6
10.1016/j.eja.2018.04.002
10.1016/j.fcr.2017.09.003
10.1371/journal.pone.0121892
10.1038/hdy.2014.92
10.1109/JSTARS.2011.2178399
10.1016/j.scitotenv.2016.07.194
10.1007/s11104-008-9752-8
10.1007/s11104-018-3764-9
10.1071/FP15194
10.1071/FP12049
10.1186/1746-4811-9-8
10.1016/j.rse.2017.12.023
10.1007/s11104-011-1039-9
10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2
10.1007/s11104-019-03993-3
10.1093/aob/mcx117
10.1071/SR9910717
10.1007/s00425-014-2150-y
10.1016/j.fcr.2017.11.023
10.1023/A:1004658918388
10.1016/j.tplants.2019.10.011
10.1016/j.apsoil.2004.03.001
10.1016/S0378-4290(98)00169-5
10.1007/BF02257571
10.1007/BF00016615
10.2134/agronj2004.0292
10.1111/j.1365-2389.2006.00849.x
10.1007/BF00150344
10.1111/nph.15738
10.1111/ele.12119
10.1093/biosci/bix010
10.1093/aob/mcw122
10.1016/0378-4290(89)90004-X
10.1007/BF00336446
10.1071/BT06118
10.2136/sssaj2004.1403
10.3389/fpls.2018.00220
10.1016/j.still.2004.12.003
10.2134/agronj1977.00021962006900030021x
10.1186/s13007-017-0216-0
10.1007/s11104-008-9771-5
10.3390/su7055875
10.1007/s11104-006-9163-7
10.1016/j.fcr.2018.10.014
10.1093/aob/mcs118
10.2307/1311138
10.1186/s13007-015-0084-4
10.1098/rstb.1997.0076
10.1093/jxb/erv121
10.1002/ecs2.1738
10.1111/j.1365-2494.2007.00583.x
10.1016/j.tplants.2019.05.011
10.1111/j.1469-8137.2008.02516.x
10.1104/pp.114.250449
10.1111/j.1469-8137.2004.01015.x
ContentType Journal Article
Copyright Copyright © 2020 James D. Burridge et al.
Copyright © 2020 James D. Burridge et al. 2020
Copyright_xml – notice: Copyright © 2020 James D. Burridge et al.
– notice: Copyright © 2020 James D. Burridge et al. 2020
CorporateAuthor Pennsylvania State Univ., University Park, PA (United States)
CorporateAuthor_xml – name: Pennsylvania State Univ., University Park, PA (United States)
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
OTOTI
5PM
DOA
DOI 10.34133/2020/3252703
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList


PubMed
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 2643-6515
ExternalDocumentID oai_doaj_org_article_f3ba101523164801b003dbdffab17b5e
PMC7706327
1708913
33313549
10_34133_2020_3252703
Genre Journal Article
GrantInformation_xml – fundername: Howard G Buffet Foundation
– fundername: U.S. Department of Energy
  grantid: DE-AR0000821
GroupedDBID AAHBH
AALRI
AAXUO
AAYWO
AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
FDB
GROUPED_DOAJ
OK1
PGMZT
RPM
TCJ
TGP
NPM
7X8
7S9
L.6
OTOTI
5PM
ID FETCH-LOGICAL-c513t-8d445f04f346bc9f650a770c4fde32d43b62b95cc429a34db0f77c5f0e7c0ce03
IEDL.DBID DOA
ISSN 2643-6515
IngestDate Wed Aug 27 01:28:59 EDT 2025
Thu Aug 21 14:32:08 EDT 2025
Mon Jan 15 05:22:47 EST 2024
Thu Jul 10 18:39:30 EDT 2025
Fri Jul 11 07:06:12 EDT 2025
Thu Apr 03 06:58:57 EDT 2025
Sun Aug 03 02:37:30 EDT 2025
Thu Apr 24 23:13:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License Copyright © 2020 James D. Burridge et al.
Exclusive Licensee Nanjing Agricultural University. Distributed under a Creative Commons Attribution License (CC BY 4.0).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c513t-8d445f04f346bc9f650a770c4fde32d43b62b95cc429a34db0f77c5f0e7c0ce03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Howard G. Buffet Foundation
AR0000821
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
ORCID 0000-0002-7265-9790
0000-0002-5222-6648
0000-0002-1995-9479
0000-0001-8382-298X
0000-0002-4672-3701
0000000252226648
0000000246723701
000000018382298X
0000000272659790
0000000219959479
OpenAccessLink https://doaj.org/article/f3ba101523164801b003dbdffab17b5e
PMID 33313549
PQID 2470023158
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_f3ba101523164801b003dbdffab17b5e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7706327
osti_scitechconnect_1708913
proquest_miscellaneous_2636409010
proquest_miscellaneous_2470023158
pubmed_primary_33313549
crossref_citationtrail_10_34133_2020_3252703
crossref_primary_10_34133_2020_3252703
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Plant phenomics
PublicationTitleAlternate Plant Phenomics
PublicationYear 2020
Publisher American Association for the Advancement of Science (AAAS)
AAAS
Publisher_xml – name: American Association for the Advancement of Science (AAAS)
– name: AAAS
References Guo (10.34133/2020/3252703_bib53) 2013; 362
Kulmatiski (10.34133/2020/3252703_bib55) 2017; 8
Schlichting (10.34133/2020/3252703_bib99) 1989; 39
Bengough (10.34133/2020/3252703_bib17) 2000
Smit (10.34133/2020/3252703_bib16) 2000
Mooney (10.34133/2020/3252703_bib47) 2012; 352
Mairhofer (10.34133/2020/3252703_bib46) 2013; 9
Andrade (10.34133/2020/3252703_bib64) 2019; 230
Lefsky (10.34133/2020/3252703_bib71) 2002; 52
Schulz (10.34133/2020/3252703_bib49) 2013
Sharratt (10.34133/2020/3252703_bib33) 2005; 97
Stirzaker (10.34133/2020/3252703_bib84) 1996; 185
Ning (10.34133/2020/3252703_bib19) 2015; 10
Chen (10.34133/2020/3252703_bib28) 2018; 13
Ordóñez (10.34133/2020/3252703_bib57) 2018; 96
Crush (10.34133/2020/3252703_bib95) 2007; 62
Morandage (10.34133/2020/3252703_bib41) 2019; 438
Rubio (10.34133/2020/3252703_bib79) 2007; 290
Ordóñez (10.34133/2020/3252703_bib58) 2018; 215
Jassogne (10.34133/2020/3252703_bib94) 2007; 58
Hunter (10.34133/2020/3252703_bib10) 2017; 67
Delgado (10.34133/2020/3252703_bib52) 2017; 13
Böhm (10.34133/2020/3252703_bib18) 1977; 69
Stewart (10.34133/2020/3252703_bib83) 1999; 211
Li (10.34133/2020/3252703_bib38) 2017; 165
Postma (10.34133/2020/3252703_bib74) 2014; 32
van Noordwijk (10.34133/2020/3252703_bib24) 1987
Strock (10.34133/2020/3252703_bib80) 2018; 176
Poorter (10.34133/2020/3252703_bib50) 2012; 39
Schneider (10.34133/2020/3252703_bib76) 2020; 11
Taylor (10.34133/2020/3252703_bib9) 2013; 16
Tracy (10.34133/2020/3252703_bib13) 2020; 25
Cahill (10.34133/2020/3252703_bib93) 2011; 42
Chimungu (10.34133/2020/3252703_bib82) 2015; 66
Böhm (10.34133/2020/3252703_bib15) 1979
Kumar (10.34133/2020/3252703_bib35) 1993; 149
Chimungu (10.34133/2020/3252703_bib54) 2014; 166
Thorup-kristensen (10.34133/2020/3252703_bib4) 2016; 118
Forsman (10.34133/2020/3252703_bib77) 2015; 115
Benjamin (10.34133/2020/3252703_bib100) 2006; 97
Pfeifer (10.34133/2020/3252703_bib48) 2015; 11
Nelson (10.34133/2020/3252703_bib78) 2019; 70
Trachsel (10.34133/2020/3252703_bib104) 2013; 140
Miguel (10.34133/2020/3252703_bib30) 2015; 167
Yu (10.34133/2020/3252703_bib75) 2014; 240
White (10.34133/2020/3252703_bib68) 2018; 208
Inomata (10.34133/2020/3252703_bib70) 2018; 13
Lynch (10.34133/2020/3252703_bib88) 2015; 66
Valentine (10.34133/2020/3252703_bib90) 2012; 110
Poorter (10.34133/2020/3252703_bib14) 2016; 212
Qin (10.34133/2020/3252703_bib39) 2006; 85
Passioura (10.34133/2020/3252703_bib89) 1991; 29
Lal (10.34133/2020/3252703_bib11) 2015; 7
Muller (10.34133/2020/3252703_bib72) 2019; 24
Williams (10.34133/2020/3252703_bib85) 2004; 68
Bremer (10.34133/2020/3252703_bib67) 2018; 206
Kuchenbuch (10.34133/2020/3252703_bib98) 2009; 315
Wasson (10.34133/2020/3252703_bib45) 2020; 25
Li (10.34133/2020/3252703_bib92) 2006; 147
Lynch (10.34133/2020/3252703_bib1) 2007; 55
Iversen (10.34133/2020/3252703_bib8) 2008; 179
Thorup-Kristensen (10.34133/2020/3252703_bib12) 2020; 25
Botwright Acuña (10.34133/2020/3252703_bib31) 2012; 137
Ye (10.34133/2020/3252703_bib7) 2018; 69
Wu (10.34133/2020/3252703_bib44) 2018; 121
Gajri (10.34133/2020/3252703_bib42) 1994; 160
Oikeh (10.34133/2020/3252703_bib36) 1999; 62
Lin (10.34133/2020/3252703_bib66) 2018; 9
Postma (10.34133/2020/3252703_bib61) 2017; 215
van Noordwijk (10.34133/2020/3252703_bib22) 1985; 33
Chopart (10.34133/2020/3252703_bib23) 1999; 214
Buczko (10.34133/2020/3252703_bib43) 2009; 316
Lynch (10.34133/2020/3252703_bib2) 2019; 223
Liedgens (10.34133/2020/3252703_bib96) 2001; 93
Nichols (10.34133/2020/3252703_bib103) 2019; 444
Wiesler (10.34133/2020/3252703_bib34) 1994; 163
Rothfuss (10.34133/2020/3252703_bib56) 2017; 14
Nakano (10.34133/2020/3252703_bib65) 2020; 23
Chopart (10.34133/2020/3252703_bib26) 2008; 2
Devries (10.34133/2020/3252703_bib32) 1989; 21
White (10.34133/2020/3252703_bib91) 2010; 33
Pandey (10.34133/2020/3252703_bib101) 1984; 76
Vadez (10.34133/2020/3252703_bib5) 2014; 165
Rossi (10.34133/2020/3252703_bib60) 2004; 27
Vlek (10.34133/2020/3252703_bib6) 1997; 352
van Noordwijk (10.34133/2020/3252703_bib21) 2001
Aina (10.34133/2020/3252703_bib37) 1986; 94
Schenk (10.34133/2020/3252703_bib63) 2002; 72
Sirmacek (10.34133/2020/3252703_bib69) 2012; 5
Hirte (10.34133/2020/3252703_bib97) 2018; 216
Chopart (10.34133/2020/3252703_bib25) 2008; 313
Schuurman (10.34133/2020/3252703_bib59) 1971
Wu (10.34133/2020/3252703_bib20) 2014; 114
Gao (10.34133/2020/3252703_bib87) 2016; 39
Schroth (10.34133/2020/3252703_bib40) 1994; 18
Tardieu (10.34133/2020/3252703_bib3) 2018; 69
Sponchiado (10.34133/2020/3252703_bib102) 1989; 25
Hodge (10.34133/2020/3252703_bib73) 2004; 162
Wiesler (10.34133/2020/3252703_bib27) 1994; 157
Hardiman (10.34133/2020/3252703_bib51) 2017; 9
Hecht (10.34133/2020/3252703_bib29) 2019; 439
Long (10.34133/2020/3252703_bib62) 1966
Colombi (10.34133/2020/3252703_bib86) 2017; 574
Colombi (10.34133/2020/3252703_bib81) 2016; 43
References_xml – volume: 2
  start-page: 67
  year: 2008
  ident: 10.34133/2020/3252703_bib26
  article-title: “Root orientation of four sorghum cultivars: application to estimate root length density from root counts in soil profiles,”
  publication-title: Plant Root
  doi: 10.3117/plantroot.2.67
– volume: 176
  start-page: 691
  issue: 1
  year: 2018
  ident: 10.34133/2020/3252703_bib80
  article-title: “Reduction in root secondary growth as a strategy for phosphorus acquisition,”
  publication-title: Plant Physiology
  doi: 10.1104/pp.17.01583
– volume: 23
  start-page: 247
  issue: 3
  year: 2020
  ident: 10.34133/2020/3252703_bib65
  article-title: “Modeling leaf area development in soybean (Glycine max L.) based on the branch growth and leaf elongation,”
  publication-title: Plant Production Science
  doi: 10.1080/1343943X.2019.1702468
– volume: 25
  start-page: 406
  issue: 4
  year: 2020
  ident: 10.34133/2020/3252703_bib12
  article-title: “Digging deeper for agricultural resources, the value of deep rooting,”
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2019.12.007
– start-page: 211
  year: 2001
  ident: 10.34133/2020/3252703_bib21
  article-title: “Trench profile techniques and core break methods,”
– volume: 97
  start-page: 248
  issue: 2-3
  year: 2006
  ident: 10.34133/2020/3252703_bib100
  article-title: “Water deficit effects on root distribution of soybean, field pea and chickpea,”
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2005.10.005
– volume: 313
  start-page: 101
  issue: 1-2
  year: 2008
  ident: 10.34133/2020/3252703_bib25
  article-title: “Estimating sugarcane root length density through root mapping and orientation modelling,”
  publication-title: Plant and Soil
  doi: 10.1007/s11104-008-9683-4
– year: 2000
  ident: 10.34133/2020/3252703_bib16
– volume: 163
  start-page: 267
  issue: 2
  year: 1994
  ident: 10.34133/2020/3252703_bib34
  article-title: “Root growth and nitrate utilization of maize cultivars under field conditions,”
  publication-title: Plant and Soil
  doi: 10.1007/BF00007976
– volume: 140
  start-page: 18
  year: 2013
  ident: 10.34133/2020/3252703_bib104
  article-title: “Maize root growth angles become steeper under low N conditions,”
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2012.09.010
– volume: 14
  start-page: 2199
  issue: 8
  year: 2017
  ident: 10.34133/2020/3252703_bib56
  article-title: “Reviews and syntheses: isotopic approaches to quantify root water uptake: a review and comparison of methods,”
  publication-title: Biogeosciences
  doi: 10.5194/bg-14-2199-2017
– volume: 137
  start-page: 117
  year: 2012
  ident: 10.34133/2020/3252703_bib31
  article-title: “Genotype×environment interactions for root depth of wheat,”
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2012.08.004
– volume: 11
  issue: 546
  year: 2020
  ident: 10.34133/2020/3252703_bib76
  article-title: “Should root plasticity be a crop breeding target?,”
  publication-title: Frontiers in Plant Science
– volume: 362
  start-page: 1
  issue: 1-2
  year: 2013
  ident: 10.34133/2020/3252703_bib53
  article-title: “Application of ground penetrating radar for coarse root detection and quantification: a review,”
  publication-title: Plant and Soil
  doi: 10.1007/s11104-012-1455-5
– volume: 215
  start-page: 1274
  issue: 3
  year: 2017
  ident: 10.34133/2020/3252703_bib61
  article-title: “OpenSimRoot: widening the scope and application of root architectural models,”
  publication-title: The New Phytologist
  doi: 10.1111/nph.14641
– volume: 66
  start-page: 2199
  issue: 8
  year: 2015
  ident: 10.34133/2020/3252703_bib88
  article-title: “Opportunities and challenges in the subsoil: pathways to deeper rooted crops,”
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/eru508
– volume: 165
  start-page: 15
  year: 2014
  ident: 10.34133/2020/3252703_bib5
  article-title: “Root hydraulics: the forgotten side of roots in drought adaptation,”
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2014.03.017
– volume: 165
  start-page: 258
  year: 2017
  ident: 10.34133/2020/3252703_bib38
  article-title: “Soybean root traits after 24 years of different soil tillage and mineral phosphorus fertilization management,”
  publication-title: Soil and Tillage Research
  doi: 10.1016/j.still.2016.09.002
– volume: 52
  start-page: 19
  issue: 1
  year: 2002
  ident: 10.34133/2020/3252703_bib71
  article-title: “Lidar remote sensing for ecosystem studies,”
  publication-title: BioScience
  doi: 10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
– volume: 42
  start-page: 289
  issue: 1
  year: 2011
  ident: 10.34133/2020/3252703_bib93
  article-title: “The behavioral ecology of nutrient foraging by plants,”
  publication-title: Annual Review of Ecology, Evolution, and Systematics
  doi: 10.1146/annurev-ecolsys-102710-145006
– start-page: 411
  year: 2013
  ident: 10.34133/2020/3252703_bib49
  article-title: “Plant root system analysis from MRI images,”
– start-page: 147
  year: 2000
  ident: 10.34133/2020/3252703_bib17
  article-title: “Sampling strategies, scaling and statistics,”
– volume: 211
  start-page: 59
  issue: 1
  year: 1999
  ident: 10.34133/2020/3252703_bib83
  article-title: “Macropore sheath: quantification of plant root and soil macropore association,”
  publication-title: Plant and Soil
  doi: 10.1023/A:1004405422847
– volume: 33
  start-page: 241
  year: 1985
  ident: 10.34133/2020/3252703_bib22
  article-title: “Sampling schemes for estimating root density distribution in cropped fields,”
  publication-title: NJAS wageningen journal of life sciences
– volume: 13
  issue: 2
  year: 2018
  ident: 10.34133/2020/3252703_bib70
  article-title: “Archaeological application of airborne LiDAR to examine social changes in the Ceibal region of the Maya lowlands,”
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0191619
– volume: 147
  start-page: 280
  issue: 2
  year: 2006
  ident: 10.34133/2020/3252703_bib92
  article-title: “Root distribution and interactions between intercropped species,”
  publication-title: Oecologia
  doi: 10.1007/s00442-005-0256-4
– volume: 208
  start-page: 1
  year: 2018
  ident: 10.34133/2020/3252703_bib68
  article-title: “Comparison of airborne laser scanning and digital stereo imagery for characterizing forest canopy gaps in coastal temperate rainforests,”
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2018.02.002
– volume: 32
  start-page: 53
  issue: 1
  year: 2014
  ident: 10.34133/2020/3252703_bib74
  article-title: “Dynamic root growth and architecture responses to limiting nutrient availability: linking physiological models and experimentation,”
  publication-title: Biotechnology Advances
  doi: 10.1016/j.biotechadv.2013.08.019
– volume: 93
  start-page: 1097
  issue: 5
  year: 2001
  ident: 10.34133/2020/3252703_bib96
  article-title: “Minirhizotron observations of the spatial distribution of the maize root system,”
  publication-title: Agronomy Journal
  doi: 10.2134/agronj2001.9351097x
– volume: 157
  start-page: 351
  issue: 5
  year: 1994
  ident: 10.34133/2020/3252703_bib27
  article-title: “Root growth of maize cultivars under field conditions as studied by the core and minirhizotron method and relationships to shoot growth,”
  publication-title: Journal of Plant Nutrition and Soil Science
  doi: 10.1002/jpln.19941570506
– volume: 167
  start-page: 1430
  issue: 4
  year: 2015
  ident: 10.34133/2020/3252703_bib30
  article-title: “Phene synergism between root hair length and basal root growth angle for phosphorus acquisition,”
  publication-title: Plant Physiology
  doi: 10.1104/pp.15.00145
– volume: 9
  start-page: 182
  issue: 2
  year: 2017
  ident: 10.34133/2020/3252703_bib51
  article-title: “Coupling fine-scale root and canopy structure using ground-based remote sensing,”
  publication-title: Remote Sensing
  doi: 10.3390/rs9020182
– volume: 25
  start-page: 249
  issue: 2
  year: 1989
  ident: 10.34133/2020/3252703_bib102
  article-title: “Root growth of four common bean cultivars in relation to drought tolerance in environments with contrasting soil types,”
  publication-title: Experimental Agriculture
  doi: 10.1017/S0014479700016756
– volume: 25
  start-page: 105
  issue: 1
  year: 2020
  ident: 10.34133/2020/3252703_bib13
  article-title: “Crop improvement from phenotyping roots: highlights reveal expanding opportunities,”
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2019.10.015
– volume: 33
  start-page: 133
  issue: 2
  year: 2010
  ident: 10.34133/2020/3252703_bib91
  article-title: “The distribution and abundance of wheat roots in a dense, structured subsoil - implications for water uptake,”
  publication-title: Plant, Cell & Environment
  doi: 10.1111/j.1365-3040.2009.02059.x
– volume: 13
  issue: 5
  year: 2018
  ident: 10.34133/2020/3252703_bib28
  article-title: “Determining the effects of nitrogen rate on cotton root growth and distribution with soil cores and minirhizotrons,”
  publication-title: PloS one
  doi: 10.1371/journal.pone.0197284
– volume: 69
  start-page: 733
  issue: 1
  year: 2018
  ident: 10.34133/2020/3252703_bib3
  article-title: “The physiological basis of drought tolerance in crop plants: a scenario-dependent probabilistic approach,”
  publication-title: Annual Review of Plant Biology
  doi: 10.1146/annurev-arplant-042817-040218
– volume: 76
  start-page: 557
  issue: 4
  year: 1984
  ident: 10.34133/2020/3252703_bib101
  article-title: “Drought response of grain legumes under irrigation gradient: III. Plant growth1,”
  publication-title: Agronomy Journal
  doi: 10.2134/agronj1984.00021962007600040011x
– volume: 94
  start-page: 257
  issue: 2
  year: 1986
  ident: 10.34133/2020/3252703_bib37
  article-title: “Root distribution and water uptake patterns of maize cultivars field-grown under differential irrigation,”
  publication-title: Plant and Soil
  doi: 10.1007/BF02374349
– volume: 212
  start-page: 838
  issue: 4
  year: 2016
  ident: 10.34133/2020/3252703_bib14
  article-title: “Pampered inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the field,”
  publication-title: New Phytologist
  doi: 10.1111/nph.14243
– volume: 69
  start-page: 3267
  issue: 13
  year: 2018
  ident: 10.34133/2020/3252703_bib7
  article-title: “Genetic diversity of root system architecture in response to drought stress in grain legumes,”
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/ery082
– volume: 70
  start-page: 3649
  issue: 14
  year: 2019
  ident: 10.34133/2020/3252703_bib78
  article-title: “Measurement accuracy and uncertainty in plant biomechanics,”
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erz279
– volume: 39
  start-page: 1662
  issue: 8
  year: 2016
  ident: 10.34133/2020/3252703_bib87
  article-title: “Deep roots and soil structure,”
  publication-title: Plant, Cell & Environment
  doi: 10.1111/pce.12684
– volume: 114
  start-page: 841
  issue: 4
  year: 2014
  ident: 10.34133/2020/3252703_bib20
  article-title: “An integrated method for quantifying root architecture of field-grown maize,”
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcu009
– volume: 444
  start-page: 225
  issue: 1-2
  year: 2019
  ident: 10.34133/2020/3252703_bib103
  article-title: “Maize root distributions strongly associated with water tables in Iowa, USA,”
  publication-title: Plant and Soil
  doi: 10.1007/s11104-019-04269-6
– volume: 96
  start-page: 156
  year: 2018
  ident: 10.34133/2020/3252703_bib57
  article-title: “A solution for sampling position errors in maize and soybean root mass and length estimates,”
  publication-title: European Journal of Agronomy
  doi: 10.1016/j.eja.2018.04.002
– volume: 215
  start-page: 122
  year: 2018
  ident: 10.34133/2020/3252703_bib58
  article-title: “Maize and soybean root front velocity and maximum depth in Iowa, USA,”
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2017.09.003
– volume: 10
  issue: 3
  year: 2015
  ident: 10.34133/2020/3252703_bib19
  article-title: “Maize varieties released in different eras have similar root length density distributions in the soil, which are negatively correlated with local concentrations of soil mineral nitrogen,”
  publication-title: PloS One
  doi: 10.1371/journal.pone.0121892
– volume: 115
  start-page: 276
  issue: 4
  year: 2015
  ident: 10.34133/2020/3252703_bib77
  article-title: “Rethinking phenotypic plasticity and its consequences for individuals, populations and species,”
  publication-title: Heredity
  doi: 10.1038/hdy.2014.92
– volume: 5
  start-page: 59
  issue: 1
  year: 2012
  ident: 10.34133/2020/3252703_bib69
  article-title: “Performance evaluation for 3-D city model generation of six different DSMs from air- and spaceborne sensors,”
  publication-title: Journal of Selected Topics in Applied Earth Observation and Remote Sensing
  doi: 10.1109/JSTARS.2011.2178399
– volume: 574
  start-page: 1283
  year: 2017
  ident: 10.34133/2020/3252703_bib86
  article-title: “Artificial macropores attract crop roots and enhance plant productivity on compacted soils,”
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2016.07.194
– volume: 315
  start-page: 297
  issue: 1-2
  year: 2009
  ident: 10.34133/2020/3252703_bib98
  article-title: “Spatial distribution of maize roots by complete 3D soil monolith sampling,”
  publication-title: Plant and Soil
  doi: 10.1007/s11104-008-9752-8
– volume: 439
  start-page: 179
  issue: 1-2
  year: 2019
  ident: 10.34133/2020/3252703_bib29
  article-title: “Plant density modifies root system architecture in spring barley (Hordeum vulgare L.) through a change in nodal root number,”
  publication-title: Plant and Soil
  doi: 10.1007/s11104-018-3764-9
– volume: 43
  start-page: 114
  issue: 2
  year: 2016
  ident: 10.34133/2020/3252703_bib81
  article-title: “Root responses of triticale and soybean to soil compaction in the field are reproducible under controlled conditions,”
  publication-title: Functional Plant Biology
  doi: 10.1071/FP15194
– volume: 39
  start-page: 839
  issue: 11
  year: 2012
  ident: 10.34133/2020/3252703_bib50
  article-title: “Pot size matters: a meta-analysis of the effects of rooting volume on plant growth,”
  publication-title: Functional Plant Biology
  doi: 10.1071/FP12049
– volume: 9
  start-page: 8
  issue: 1
  year: 2013
  ident: 10.34133/2020/3252703_bib46
  article-title: “Recovering complete plant root system architectures from soil via X-ray μ-computed tomography,”
  publication-title: Plant Methods
  doi: 10.1186/1746-4811-9-8
– volume: 206
  start-page: 189
  year: 2018
  ident: 10.34133/2020/3252703_bib67
  article-title: “Multi-temporal fine-scale modelling of Larix decidua forest plots using terrestrial LiDAR and hemispherical photographs,”
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2017.12.023
– volume: 352
  start-page: 1
  issue: 1-2
  year: 2012
  ident: 10.34133/2020/3252703_bib47
  article-title: “Developing X-ray computed tomography to non-invasively image 3-D root systems architecture in soil,”
  publication-title: Plant and Soil
  doi: 10.1007/s11104-011-1039-9
– volume: 72
  start-page: 311
  issue: 3
  year: 2002
  ident: 10.34133/2020/3252703_bib63
  article-title: “The global biogeography of roots,”
  publication-title: Ecological Monographs
  doi: 10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2
– volume: 438
  start-page: 101
  issue: 1-2
  year: 2019
  ident: 10.34133/2020/3252703_bib41
  article-title: “Parameter sensitivity analysis of a root system architecture model based on virtual field sampling,”
  publication-title: Plant and Soil
  doi: 10.1007/s11104-019-03993-3
– volume: 121
  start-page: 809
  issue: 5
  year: 2018
  ident: 10.34133/2020/3252703_bib44
  article-title: “Optimizing soil-coring strategies to quantify root-length-density distribution in field-grown maize: virtual coring trials using 3-D root architecture models,”
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcx117
– volume: 29
  start-page: 717
  issue: 6
  year: 1991
  ident: 10.34133/2020/3252703_bib89
  article-title: “Soil structure and plant growth,”
  publication-title: Australian Journal of Soil Research
  doi: 10.1071/SR9910717
– volume: 240
  start-page: 667
  issue: 4
  year: 2014
  ident: 10.34133/2020/3252703_bib75
  article-title: “Phenotypic plasticity of the maize root system in response to heterogeneous nitrogen availability,”
  publication-title: Planta
  doi: 10.1007/s00425-014-2150-y
– volume: 216
  start-page: 197
  year: 2018
  ident: 10.34133/2020/3252703_bib97
  article-title: “Maize and wheat root biomass, vertical distribution, and size class as affected by fertilization intensity in two long-term field trials,”
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2017.11.023
– volume: 214
  start-page: 61
  issue: 1/2
  year: 1999
  ident: 10.34133/2020/3252703_bib23
  article-title: “Development and validation of a model to describe root length density of maize from root counts on soil profiles,”
  publication-title: Plant and Soil
  doi: 10.1023/A:1004658918388
– volume: 25
  start-page: 119
  issue: 1
  year: 2020
  ident: 10.34133/2020/3252703_bib45
  article-title: “Beyond digging: noninvasive root and rhizosphere phenotyping,”
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2019.10.011
– volume: 27
  start-page: 189
  issue: 2
  year: 2004
  ident: 10.34133/2020/3252703_bib60
  article-title: “The effect of sampling unit size on the perception of the spatial pattern of earthworm (Lumbricus terrestris L.) middens,”
  publication-title: Applied Soil Ecology
  doi: 10.1016/j.apsoil.2004.03.001
– volume: 62
  start-page: 1
  issue: 1
  year: 1999
  ident: 10.34133/2020/3252703_bib36
  article-title: “Growth and distribution of maize roots under nitrogen fertilization in plinthite soil,”
  publication-title: Field Crops Research
  doi: 10.1016/S0378-4290(98)00169-5
– volume: 185
  start-page: 151
  issue: 1
  year: 1996
  ident: 10.34133/2020/3252703_bib84
  article-title: “Soil structure and plant growth: impact of bulk density and biopores,”
  publication-title: Plant and Soil
  doi: 10.1007/BF02257571
– volume: 149
  start-page: 245
  issue: 2
  year: 1993
  ident: 10.34133/2020/3252703_bib35
  article-title: “Determination of root distribution of wheat by auger sampling,”
  publication-title: Plant and Soil
  doi: 10.1007/BF00016615
– year: 1979
  ident: 10.34133/2020/3252703_bib15
– volume: 97
  start-page: 1129
  issue: 4
  year: 2005
  ident: 10.34133/2020/3252703_bib33
  article-title: “Microclimatic and rooting characteristics of narrow-row versus conventional-row corn,”
  publication-title: Agronomy Journal
  doi: 10.2134/agronj2004.0292
– volume: 58
  start-page: 589
  issue: 3
  year: 2007
  ident: 10.34133/2020/3252703_bib94
  article-title: “3D-visualization and analysis of macro- and meso-porosity of the upper horizons of a sodic, texture-contrast soil,”
  publication-title: European Journal of Soil Science
  doi: 10.1111/j.1365-2389.2006.00849.x
– volume: 160
  start-page: 41
  issue: 1
  year: 1994
  ident: 10.34133/2020/3252703_bib42
  article-title: “A procedure for determining average root length density in row crops by single-site augering,”
  publication-title: Plant and Soil
  doi: 10.1007/BF00150344
– volume: 223
  start-page: 548
  issue: 2
  year: 2019
  ident: 10.34133/2020/3252703_bib2
  article-title: “Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture,”
  publication-title: The New Phytologist
  doi: 10.1111/nph.15738
– volume: 16
  start-page: 862
  issue: 7
  year: 2013
  ident: 10.34133/2020/3252703_bib9
  article-title: “Sampling volume in root studies: the pitfalls of under-sampling exposed using accumulation curves,”
  publication-title: Ecology Letters
  doi: 10.1111/ele.12119
– volume: 67
  start-page: 386
  issue: 4
  year: 2017
  ident: 10.34133/2020/3252703_bib10
  article-title: “Agriculture in 2050: recalibrating targets for sustainable intensification,”
  publication-title: Bioscience
  doi: 10.1093/biosci/bix010
– volume: 118
  start-page: 573
  issue: 4
  year: 2016
  ident: 10.34133/2020/3252703_bib4
  article-title: “Root system-based limits to agricultural productivity and efficiency: the farming systems context,”
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcw122
– volume: 21
  start-page: 215
  issue: 3-4
  year: 1989
  ident: 10.34133/2020/3252703_bib32
  article-title: “Water relations, nitrogenase activity and root development of three grain legumes in response to soil water deficits,”
  publication-title: Field Crops Research
  doi: 10.1016/0378-4290(89)90004-X
– volume: 18
  start-page: 60
  issue: 1
  year: 1994
  ident: 10.34133/2020/3252703_bib40
  article-title: “A method of processing soil core samples for root studies by subsampling,”
  publication-title: Biology and Fertility of Soils
  doi: 10.1007/BF00336446
– volume: 55
  start-page: 493
  issue: 5
  year: 2007
  ident: 10.34133/2020/3252703_bib1
  article-title: “Roots of the second green revolution,”
  publication-title: Australian Journal of Botany
  doi: 10.1071/BT06118
– start-page: 263
  year: 1987
  ident: 10.34133/2020/3252703_bib24
  article-title: “Methods for quantification of root distribution pattern and root dynamics in the field,”
– start-page: 43
  year: 1971
  ident: 10.34133/2020/3252703_bib59
  article-title: “Methods for the examination of root systems and roots,”
– volume: 68
  start-page: 1403
  issue: 4
  year: 2004
  ident: 10.34133/2020/3252703_bib85
  article-title: “Crop cover root channels may alleviate soil compaction effects on soybean crop,”
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj2004.1403
– volume: 9
  year: 2018
  ident: 10.34133/2020/3252703_bib66
  article-title: “Recruiting conventional tree architecture models into state-of-the-art LiDAR mapping for investigating tree growth habits in structure,”
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2018.00220
– volume: 85
  start-page: 50
  issue: 1-2
  year: 2006
  ident: 10.34133/2020/3252703_bib39
  article-title: “Impact of tillage on maize rooting in a Cambisol and Luvisol in Switzerland,”
  publication-title: Soil and Tillage Research
  doi: 10.1016/j.still.2004.12.003
– volume: 69
  start-page: 415
  issue: 3
  year: 1977
  ident: 10.34133/2020/3252703_bib18
  article-title: “Comparison of five methods for characterizing soybean rooting density and development1,”
  publication-title: Agronomy Journal
  doi: 10.2134/agronj1977.00021962006900030021x
– volume: 13
  issue: 1
  year: 2017
  ident: 10.34133/2020/3252703_bib52
  article-title: “Ground penetrating radar: a case study for estimating root bulking rate in cassava (Manihot esculenta Crantz),”
  publication-title: Plant Methods
  doi: 10.1186/s13007-017-0216-0
– volume: 316
  start-page: 205
  issue: 1-2
  year: 2009
  ident: 10.34133/2020/3252703_bib43
  article-title: “Evaluation of a core sampling scheme to characterize root length density of maize,”
  publication-title: Plant and Soil
  doi: 10.1007/s11104-008-9771-5
– volume: 7
  start-page: 5875
  issue: 5
  year: 2015
  ident: 10.34133/2020/3252703_bib11
  article-title: “Restoring soil quality to mitigate soil degradation,”
  publication-title: Sustainability
  doi: 10.3390/su7055875
– volume: 290
  start-page: 307
  issue: 1-2
  year: 2007
  ident: 10.34133/2020/3252703_bib79
  article-title: “Compensation among root classes in Phaseolus vulgaris L,”
  publication-title: Plant and Soil
  doi: 10.1007/s11104-006-9163-7
– volume: 230
  start-page: 98
  year: 2019
  ident: 10.34133/2020/3252703_bib64
  article-title: “Assessing the influence of row spacing on soybean yield using experimental and producer survey data,”
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2018.10.014
– year: 1966
  ident: 10.34133/2020/3252703_bib62
– volume: 110
  start-page: 259
  issue: 2
  year: 2012
  ident: 10.34133/2020/3252703_bib90
  article-title: “Soil strength and macropore volume limit root elongation rates in many UK agricultural soils,”
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcs118
– volume: 39
  start-page: 460
  year: 1989
  ident: 10.34133/2020/3252703_bib99
  article-title: “Phenotypic integration and environmental change: What are the consequences of differential phenotypic plasticity of traits,”
  publication-title: Bioscience
  doi: 10.2307/1311138
– volume: 11
  issue: 1
  year: 2015
  ident: 10.34133/2020/3252703_bib48
  article-title: “Rapid phenotyping of crop root systems in undisturbed field soils using X-ray computed tomography,”
  publication-title: Plant Methods
  doi: 10.1186/s13007-015-0084-4
– volume: 352
  start-page: 975
  issue: 1356
  year: 1997
  ident: 10.34133/2020/3252703_bib6
  article-title: “Nutrient resources for crop production in the tropics,”
  publication-title: Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences
  doi: 10.1098/rstb.1997.0076
– volume: 66
  start-page: 3151
  issue: 11
  year: 2015
  ident: 10.34133/2020/3252703_bib82
  article-title: “Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea Mays),”
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erv121
– volume: 8
  issue: 3
  year: 2017
  ident: 10.34133/2020/3252703_bib55
  article-title: “Water and nitrogen uptake are better associated with resource availability than root biomass,”
  publication-title: Ecosphere
  doi: 10.1002/ecs2.1738
– volume: 62
  start-page: 265
  issue: 3
  year: 2007
  ident: 10.34133/2020/3252703_bib95
  article-title: “Genotypic variation in patterns of root distribution, nitrate interception and response to moisture stress of a perennial ryegrass (Lolium perenne L.) mapping population,”
  publication-title: Grass and Forage Science
  doi: 10.1111/j.1365-2494.2007.00583.x
– volume: 24
  start-page: 810
  issue: 9
  year: 2019
  ident: 10.34133/2020/3252703_bib72
  article-title: “Lateral roots: random diversity in adversity,”
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2019.05.011
– volume: 179
  start-page: 837
  issue: 3
  year: 2008
  ident: 10.34133/2020/3252703_bib8
  article-title: “CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest,”
  publication-title: The New Phytologist
  doi: 10.1111/j.1469-8137.2008.02516.x
– volume: 166
  start-page: 2166
  issue: 4
  year: 2014
  ident: 10.34133/2020/3252703_bib54
  article-title: “Large root cortical cell size improves drought tolerance in maize,”
  publication-title: Plant Physiology
  doi: 10.1104/pp.114.250449
– volume: 162
  start-page: 9
  issue: 1
  year: 2004
  ident: 10.34133/2020/3252703_bib73
  article-title: “The plastic plant: root responses to heterogeneous supplies of nutrients,”
  publication-title: The New Phytologist
  doi: 10.1111/j.1469-8137.2004.01015.x
SSID ssj0002507488
Score 2.1802523
Snippet A soil coring protocol was developed to cooptimize the estimation of root length distribution (RLD) by depth and detection of functionally important variation...
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3252703
SubjectTerms BASIC BIOLOGICAL SCIENCES
beans
canopy
computer simulation
corn
discriminant analysis
Phaseolus vulgaris
phenomics
root systems
soil
t-test
Zea mays
Title An Analysis of Soil Coring Strategies to Estimate Root Depth in Maize (Zea mays) and Common Bean (Phaseolus vulgaris)
URI https://www.ncbi.nlm.nih.gov/pubmed/33313549
https://www.proquest.com/docview/2470023158
https://www.proquest.com/docview/2636409010
https://www.osti.gov/biblio/1708913
https://pubmed.ncbi.nlm.nih.gov/PMC7706327
https://doaj.org/article/f3ba101523164801b003dbdffab17b5e
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFB6k-OCLeDdWywgiLRiaZGYym8dubSlCRdRC8WWYK7tQZ4rJCvXXe04uy654efEpkExIMuebOd-XTL5DyCvH9UzDkZy7pgaBIkMOMsjkuhahaHTpWF8b8Px9fXbB312Ky41SX7gmbLAHHjruMDCjATagl4DYw3SKMHTGhaBNKY3wOPtCztsQUzgHQ2KXAM3BVBMnaoYqvzhklajkVCBrTEK9Vz9sEoyp3_HMX5dLbuSf03vk7kgc6dFww_fJLR8fkNvzBOTu5iFZHUU6-YvQFOintLyix_3iOjoZ0PqWdomewPWBpXr6MaWOvvXX3YIuIz3Xyx-e7n_xmn7VN-0B1dFR_HskRTr3OtL9DwtIeADUln5f4f8fy_bgEbk4Pfl8fJaPFRVyK0rW5TPHOcSAB8ZrY5sA9ExLWVgenGeV48zUlWmEtZClNOPOFEFKC2d4aQusLPaY7MQU_VNCSxuqILStLW84sL7GzoLgVkjdOA-cIyNvpi5WdrQbx6oXVwpkRx8RhRFRY0Qy8nrd_Hrw2fhTwznGa90I7bH7HQAaNYJG_Qs0GdnFaCtgGWiVa3FNke1UKQv8apuRlxMIFAw2_IKio0-rVlVcIskpxewvbWpWg2gGnZuRJwNw1jfLGEAfFHlG5Baktp5m-0hcLnrTbwhTzSr57H88_i65g106vEl6Tna6byv_ArhVZ_b6YbTXv_T6CU1JILI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Analysis+of+Soil+Coring+Strategies+to+Estimate+Root+Depth+in+Maize+%28+Zea+mays+%29+and+Common+Bean+%28+Phaseolus+vulgaris+%29&rft.jtitle=Plant+phenomics&rft.au=Burridge%2C+James+D.&rft.au=Black%2C+Christopher+K.&rft.au=Nord%2C+Eric+A.&rft.au=Postma%2C+Johannes+A.&rft.date=2020-01-01&rft.pub=American+Association+for+the+Advancement+of+Science+%28AAAS%29&rft.issn=2643-6515&rft.eissn=2643-6515&rft.volume=2020&rft_id=info:doi/10.34133%2F2020%2F3252703&rft.externalDocID=1708913
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2643-6515&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2643-6515&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2643-6515&client=summon