Flavin Oxidase-Induced ROS Generation Modulates PKC Biphasic Effect of Resveratrol on Endothelial Cell Survival
Dietary intake of natural antioxidants is thought to impart protection against oxidative-associated cardiovascular diseases. Despite many in vivo studies and clinical trials, this issue has not been conclusively resolved. Resveratrol (RES) is one of the most extensively studied dietary polyphenolic...
Saved in:
Published in | Biomolecules (Basel, Switzerland) Vol. 9; no. 6; p. 209 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
30.05.2019
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dietary intake of natural antioxidants is thought to impart protection against oxidative-associated cardiovascular diseases. Despite many in vivo studies and clinical trials, this issue has not been conclusively resolved. Resveratrol (RES) is one of the most extensively studied dietary polyphenolic antioxidants. Paradoxically, we have previously demonstrated that high RES concentrations exert a pro-oxidant effect eventually elevating ROS levels leading to cell death. Here, we further elucidate the molecular determinants underpinning RES-induced oxidative cell death.
Using human umbilical vein endothelial cells (HUVECs), the effect of increasing concentrations of RES on DNA synthesis and apoptosis was studied. In addition, mRNA and protein levels of cell survival or apoptosis genes, as well as protein kinase C (PKC) activity were determined.
While high concentrations of RES reduce PKC activity, inhibit DNA synthesis and induce apoptosis, low RES concentrations elicit an opposite effect. This biphasic concentration-dependent effect (BCDE) of RES on PKC activity is mirrored at the molecular level. Indeed, high RES concentrations upregulate the proapoptotic
, while downregulating the antiapoptotic
, at both mRNA and protein levels. Similarly, high RES concentrations downregulate the cell cycle progression genes,
, ornithine decarboxylase
and cyclin D1 protein levels, while low RES concentrations display an increasing trend. The BCDE of RES on PKC activity is abrogated by the ROS scavenger Tempol, indicating that this enzyme acts downstream of the RES-elicited ROS signaling. The RES-induced BCDE on HUVEC cell cycle machinery was also blunted by the flavin inhibitor diphenyleneiodonium (DPI), implicating flavin oxidase-generated ROS as the mechanistic link in the cellular response to different RES concentrations. Finally, PKC inhibition abrogates the BCDE elicited by RES on both cell cycle progression and pro-apoptotic gene expression in HUVECs, mechanistically implicating PKC in the cellular response to different RES concentrations.
Our results provide new molecular insight into the impact of RES on endothelial function/dysfunction, further confirming that obtaining an optimal benefit of RES is concentration-dependent. Importantly, the BCDE of RES could explain why other studies failed to establish the cardio-protective effects mediated by natural antioxidants, thus providing a guide for future investigation looking at cardio-protection by natural antioxidants. |
---|---|
AbstractList | Dietary intake of natural antioxidants is thought to impart protection against oxidative-associated cardiovascular diseases. Despite many in vivo studies and clinical trials, this issue has not been conclusively resolved. Resveratrol (RES) is one of the most extensively studied dietary polyphenolic antioxidants. Paradoxically, we have previously demonstrated that high RES concentrations exert a pro-oxidant effect eventually elevating ROS levels leading to cell death. Here, we further elucidate the molecular determinants underpinning RES-induced oxidative cell death.
Using human umbilical vein endothelial cells (HUVECs), the effect of increasing concentrations of RES on DNA synthesis and apoptosis was studied. In addition, mRNA and protein levels of cell survival or apoptosis genes, as well as protein kinase C (PKC) activity were determined.
While high concentrations of RES reduce PKC activity, inhibit DNA synthesis and induce apoptosis, low RES concentrations elicit an opposite effect. This biphasic concentration-dependent effect (BCDE) of RES on PKC activity is mirrored at the molecular level. Indeed, high RES concentrations upregulate the proapoptotic
, while downregulating the antiapoptotic
, at both mRNA and protein levels. Similarly, high RES concentrations downregulate the cell cycle progression genes,
, ornithine decarboxylase
and cyclin D1 protein levels, while low RES concentrations display an increasing trend. The BCDE of RES on PKC activity is abrogated by the ROS scavenger Tempol, indicating that this enzyme acts downstream of the RES-elicited ROS signaling. The RES-induced BCDE on HUVEC cell cycle machinery was also blunted by the flavin inhibitor diphenyleneiodonium (DPI), implicating flavin oxidase-generated ROS as the mechanistic link in the cellular response to different RES concentrations. Finally, PKC inhibition abrogates the BCDE elicited by RES on both cell cycle progression and pro-apoptotic gene expression in HUVECs, mechanistically implicating PKC in the cellular response to different RES concentrations.
Our results provide new molecular insight into the impact of RES on endothelial function/dysfunction, further confirming that obtaining an optimal benefit of RES is concentration-dependent. Importantly, the BCDE of RES could explain why other studies failed to establish the cardio-protective effects mediated by natural antioxidants, thus providing a guide for future investigation looking at cardio-protection by natural antioxidants. Background: Dietary intake of natural antioxidants is thought to impart protection against oxidative-associated cardiovascular diseases. Despite many in vivo studies and clinical trials, this issue has not been conclusively resolved. Resveratrol (RES) is one of the most extensively studied dietary polyphenolic antioxidants. Paradoxically, we have previously demonstrated that high RES concentrations exert a pro-oxidant effect eventually elevating ROS levels leading to cell death. Here, we further elucidate the molecular determinants underpinning RES-induced oxidative cell death. Methods: Using human umbilical vein endothelial cells (HUVECs), the effect of increasing concentrations of RES on DNA synthesis and apoptosis was studied. In addition, mRNA and protein levels of cell survival or apoptosis genes, as well as protein kinase C (PKC) activity were determined. Results: While high concentrations of RES reduce PKC activity, inhibit DNA synthesis and induce apoptosis, low RES concentrations elicit an opposite effect. This biphasic concentration-dependent effect (BCDE) of RES on PKC activity is mirrored at the molecular level. Indeed, high RES concentrations upregulate the proapoptotic Bax, while downregulating the antiapoptotic Bcl-2, at both mRNA and protein levels. Similarly, high RES concentrations downregulate the cell cycle progression genes, c-myc, ornithine decarboxylase (ODC) and cyclin D1 protein levels, while low RES concentrations display an increasing trend. The BCDE of RES on PKC activity is abrogated by the ROS scavenger Tempol, indicating that this enzyme acts downstream of the RES-elicited ROS signaling. The RES-induced BCDE on HUVEC cell cycle machinery was also blunted by the flavin inhibitor diphenyleneiodonium (DPI), implicating flavin oxidase-generated ROS as the mechanistic link in the cellular response to different RES concentrations. Finally, PKC inhibition abrogates the BCDE elicited by RES on both cell cycle progression and pro-apoptotic gene expression in HUVECs, mechanistically implicating PKC in the cellular response to different RES concentrations. Conclusions: Our results provide new molecular insight into the impact of RES on endothelial function/dysfunction, further confirming that obtaining an optimal benefit of RES is concentration-dependent. Importantly, the BCDE of RES could explain why other studies failed to establish the cardio-protective effects mediated by natural antioxidants, thus providing a guide for future investigation looking at cardio-protection by natural antioxidants. Background: Dietary intake of natural antioxidants is thought to impart protection against oxidative-associated cardiovascular diseases. Despite many in vivo studies and clinical trials, this issue has not been conclusively resolved. Resveratrol (RES) is one of the most extensively studied dietary polyphenolic antioxidants. Paradoxically, we have previously demonstrated that high RES concentrations exert a pro-oxidant effect eventually elevating ROS levels leading to cell death. Here, we further elucidate the molecular determinants underpinning RES-induced oxidative cell death. Methods: Using human umbilical vein endothelial cells (HUVECs), the effect of increasing concentrations of RES on DNA synthesis and apoptosis was studied. In addition, mRNA and protein levels of cell survival or apoptosis genes, as well as protein kinase C (PKC) activity were determined. Results: While high concentrations of RES reduce PKC activity, inhibit DNA synthesis and induce apoptosis, low RES concentrations elicit an opposite effect. This biphasic concentration-dependent effect (BCDE) of RES on PKC activity is mirrored at the molecular level. Indeed, high RES concentrations upregulate the proapoptotic Bax , while downregulating the antiapoptotic Bcl-2 , at both mRNA and protein levels. Similarly, high RES concentrations downregulate the cell cycle progression genes, c-myc , ornithine decarboxylase (ODC) and cyclin D1 protein levels, while low RES concentrations display an increasing trend. The BCDE of RES on PKC activity is abrogated by the ROS scavenger Tempol, indicating that this enzyme acts downstream of the RES-elicited ROS signaling. The RES-induced BCDE on HUVEC cell cycle machinery was also blunted by the flavin inhibitor diphenyleneiodonium (DPI), implicating flavin oxidase-generated ROS as the mechanistic link in the cellular response to different RES concentrations. Finally, PKC inhibition abrogates the BCDE elicited by RES on both cell cycle progression and pro-apoptotic gene expression in HUVECs, mechanistically implicating PKC in the cellular response to different RES concentrations. Conclusions: Our results provide new molecular insight into the impact of RES on endothelial function/dysfunction, further confirming that obtaining an optimal benefit of RES is concentration-dependent. Importantly, the BCDE of RES could explain why other studies failed to establish the cardio-protective effects mediated by natural antioxidants, thus providing a guide for future investigation looking at cardio-protection by natural antioxidants. BACKGROUNDDietary intake of natural antioxidants is thought to impart protection against oxidative-associated cardiovascular diseases. Despite many in vivo studies and clinical trials, this issue has not been conclusively resolved. Resveratrol (RES) is one of the most extensively studied dietary polyphenolic antioxidants. Paradoxically, we have previously demonstrated that high RES concentrations exert a pro-oxidant effect eventually elevating ROS levels leading to cell death. Here, we further elucidate the molecular determinants underpinning RES-induced oxidative cell death. METHODSUsing human umbilical vein endothelial cells (HUVECs), the effect of increasing concentrations of RES on DNA synthesis and apoptosis was studied. In addition, mRNA and protein levels of cell survival or apoptosis genes, as well as protein kinase C (PKC) activity were determined. RESULTSWhile high concentrations of RES reduce PKC activity, inhibit DNA synthesis and induce apoptosis, low RES concentrations elicit an opposite effect. This biphasic concentration-dependent effect (BCDE) of RES on PKC activity is mirrored at the molecular level. Indeed, high RES concentrations upregulate the proapoptotic Bax, while downregulating the antiapoptotic Bcl-2, at both mRNA and protein levels. Similarly, high RES concentrations downregulate the cell cycle progression genes, c-myc, ornithine decarboxylase (ODC) and cyclin D1 protein levels, while low RES concentrations display an increasing trend. The BCDE of RES on PKC activity is abrogated by the ROS scavenger Tempol, indicating that this enzyme acts downstream of the RES-elicited ROS signaling. The RES-induced BCDE on HUVEC cell cycle machinery was also blunted by the flavin inhibitor diphenyleneiodonium (DPI), implicating flavin oxidase-generated ROS as the mechanistic link in the cellular response to different RES concentrations. Finally, PKC inhibition abrogates the BCDE elicited by RES on both cell cycle progression and pro-apoptotic gene expression in HUVECs, mechanistically implicating PKC in the cellular response to different RES concentrations. CONCLUSIONSOur results provide new molecular insight into the impact of RES on endothelial function/dysfunction, further confirming that obtaining an optimal benefit of RES is concentration-dependent. Importantly, the BCDE of RES could explain why other studies failed to establish the cardio-protective effects mediated by natural antioxidants, thus providing a guide for future investigation looking at cardio-protection by natural antioxidants. |
Author | Pintus, Gianfranco Posadino, Anna Maria Cossu, Annalisa Nasrallah, Gheyath K Eid, Ali H Abou-Saleh, Haissam Shaito, Abdullah Giordo, Roberta |
AuthorAffiliation | 2 Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; roberta.giordo@qu.edu.qa (R.G.); gheyath.nasrallah@qu.edu.qa (G.K.N.) 1 Department of Biomedical Sciences, School of Medicine, University of Sassari, CAP 07100 Sassari, Italy; posadino@uniss.it (A.M.P.); cossuannalisa@libero.it (A.C.) 3 Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar 4 Department of Biological and Chemical Sciences, Faculty of Arts and Sciences, Lebanese International University, 1105 Beirut, Lebanon; Abdallah.shaito@liu.edu.lb 5 Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; hasaleh@qu.edu.qa 6 Department of Pharmacology and Toxicology, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon |
AuthorAffiliation_xml | – name: 4 Department of Biological and Chemical Sciences, Faculty of Arts and Sciences, Lebanese International University, 1105 Beirut, Lebanon; Abdallah.shaito@liu.edu.lb – name: 2 Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; roberta.giordo@qu.edu.qa (R.G.); gheyath.nasrallah@qu.edu.qa (G.K.N.) – name: 1 Department of Biomedical Sciences, School of Medicine, University of Sassari, CAP 07100 Sassari, Italy; posadino@uniss.it (A.M.P.); cossuannalisa@libero.it (A.C.) – name: 6 Department of Pharmacology and Toxicology, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon – name: 3 Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar – name: 5 Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; hasaleh@qu.edu.qa |
Author_xml | – sequence: 1 givenname: Anna Maria surname: Posadino fullname: Posadino, Anna Maria email: posadino@uniss.it organization: Department of Biomedical Sciences, School of Medicine, University of Sassari, CAP 07100 Sassari, Italy. posadino@uniss.it – sequence: 2 givenname: Roberta surname: Giordo fullname: Giordo, Roberta email: roberta.giordo@qu.edu.qa organization: Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar. roberta.giordo@qu.edu.qa – sequence: 3 givenname: Annalisa surname: Cossu fullname: Cossu, Annalisa email: cossuannalisa@libero.it organization: Department of Biomedical Sciences, School of Medicine, University of Sassari, CAP 07100 Sassari, Italy. cossuannalisa@libero.it – sequence: 4 givenname: Gheyath K orcidid: 0000-0001-9252-1038 surname: Nasrallah fullname: Nasrallah, Gheyath K email: gheyath.nasrallah@qu.edu.qa, gheyath.nasrallah@qu.edu.qa organization: Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar. gheyath.nasrallah@qu.edu.qa – sequence: 5 givenname: Abdullah orcidid: 0000-0003-3524-7962 surname: Shaito fullname: Shaito, Abdullah email: Abdallah.shaito@liu.edu.lb organization: Department of Biological and Chemical Sciences, Faculty of Arts and Sciences, Lebanese International University, 1105 Beirut, Lebanon. Abdallah.shaito@liu.edu.lb – sequence: 6 givenname: Haissam orcidid: 0000-0003-3460-1413 surname: Abou-Saleh fullname: Abou-Saleh, Haissam email: hasaleh@qu.edu.qa organization: Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar. hasaleh@qu.edu.qa – sequence: 7 givenname: Ali H surname: Eid fullname: Eid, Ali H email: ae81@aub.edu.lb, ae81@aub.edu.lb organization: Department of Pharmacology and Toxicology, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon. ae81@aub.edu.lb – sequence: 8 givenname: Gianfranco orcidid: 0000-0002-3031-7733 surname: Pintus fullname: Pintus, Gianfranco email: gpintus@qu.edu.qa, gpintus@qu.edu.qa organization: Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar. gpintus@qu.edu.qa |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31151226$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkV1rFDEUhoNUbF175b3kUpDVfMxkZm4EXbZ1sbLSKngXziQn3ZTsZJvMDPbfd-rWsg2BhOQ5Tw55X5OjLnZIyFvOPkrZsE-tj9uGKSZY84KcCMHruajkn6OD_TE5zfmGTaOeppCvyLHkvORCqBMSzwKMvqPrv95Cxvmqs4NBSy_XV_QcO0zQ-9jRH9EOAXrM9Of3Bf3qdxvI3tClc2h6Gh29xDw-wCkGOvHLzsZ-g8FDoAsMgV4NafQjhDfkpYOQ8fRxnZHfZ8tfi2_zi_X5avHlYm5KLvt5XUgrK1MWjWC1kYVyjgM613JmueNSQYltwVxTcgbSsNYIqOoKBTeVaAHljKz2XhvhRu-S30K60xG8_ncQ07WG1HsTUEMzlVdFCUpWRcuxLa1qVWl5KZVVUx8z8nnv2g3tFq3Brk8Qnkmf33R-o6_jqJUS9WSZBO8fBSneDph7vfXZTN8CHcYhayGkrMuKVWxCP-xRk2LOCd3TM5zph8T1QeIT_e6wsyf2f77yHkMIqb8 |
CitedBy_id | crossref_primary_10_3390_foods10040800 crossref_primary_10_3390_nu16050708 crossref_primary_10_1016_j_biopha_2023_114783 crossref_primary_10_3389_fimmu_2024_1390907 crossref_primary_10_1002_ptr_8021 crossref_primary_10_3390_ijms21113838 crossref_primary_10_1016_j_freeradbiomed_2021_05_036 crossref_primary_10_3390_antiox10020224 crossref_primary_10_1016_j_freeradbiomed_2020_11_021 crossref_primary_10_1016_j_biopha_2021_112442 crossref_primary_10_3390_molecules26164729 crossref_primary_10_1155_2021_3149223 crossref_primary_10_3390_ijms22041642 crossref_primary_10_1155_2020_6381380 crossref_primary_10_3390_ijms21103446 crossref_primary_10_1002_biof_1958 crossref_primary_10_1515_bmc_2021_0023 crossref_primary_10_3390_nu15204486 crossref_primary_10_3390_molecules26020453 crossref_primary_10_3389_fphar_2022_924473 crossref_primary_10_1042_CS20200356 crossref_primary_10_1155_2020_2604967 crossref_primary_10_1002_jcp_31071 crossref_primary_10_1080_09513590_2023_2181652 crossref_primary_10_3390_antiox12010080 crossref_primary_10_1186_s13018_020_01684_9 crossref_primary_10_1080_14786419_2022_2130304 crossref_primary_10_1155_2019_4598167 crossref_primary_10_2174_1570159X20666221012122855 crossref_primary_10_3390_ijms21144962 crossref_primary_10_3390_pharmaceutics16040569 crossref_primary_10_3390_molecules25225343 crossref_primary_10_2174_0929867329666220729153654 crossref_primary_10_1038_s41598_020_72497_3 crossref_primary_10_1016_j_jep_2022_115722 crossref_primary_10_1540_jsmr_58_89 crossref_primary_10_3390_biomedicines9080918 crossref_primary_10_3389_fphar_2022_994025 crossref_primary_10_3390_app14041422 crossref_primary_10_3390_jcm9030718 crossref_primary_10_1186_s13287_020_02069_9 crossref_primary_10_3390_antiox12020341 crossref_primary_10_3390_molecules26102834 crossref_primary_10_1007_s10495_022_01745_w crossref_primary_10_3390_molecules27134240 crossref_primary_10_2174_1568026623666221014152759 crossref_primary_10_3389_fcell_2022_894305 crossref_primary_10_3390_ijms231911165 crossref_primary_10_1016_j_ymthe_2024_01_037 crossref_primary_10_1007_s12013_024_01233_9 crossref_primary_10_3390_ijms21062084 crossref_primary_10_3390_molecules27020424 crossref_primary_10_1021_acs_jafc_1c03699 |
Cites_doi | 10.2203/dose-response.09-015.Mukherjee 10.1016/j.bbrc.2014.12.012 10.1093/toxsci/kfp301 10.1016/S0022-2275(20)39128-8 10.1111/j.1365-313X.2007.03280.x 10.1251/bpo20 10.2174/1573403X14666180702152436 10.1074/jbc.M116.727008 10.1089/ars.2009.2876 10.1074/jbc.273.8.4516 10.1093/cvr/cvp031 10.1016/j.cub.2014.03.034 10.1101/cshperspect.a014217 10.1124/mol.60.1.174 10.1089/ars.2010.3614 10.1021/tx300069r 10.3390/nu10091160 10.1097/01.ASN.0000077407.90309.65 10.1038/sj.onc.1208853 10.1016/j.ejphar.2018.11.016 10.1161/HYPERTENSIONAHA.107.107672 10.1111/jcmm.13088 10.2337/db16-1585 10.3389/fphar.2015.00128 10.2741/309 10.1038/s41419-018-0498-9 10.1038/s41698-017-0014-1 10.3390/molecules23092105 10.1186/s13023-014-0123-7 10.1016/j.niox.2011.12.006 10.1016/j.phymed.2018.12.024 10.1101/gad.1024602 10.1038/nrc2231 10.1016/S1065-6995(02)90926-1 10.1016/j.jnutbio.2011.06.003 10.3390/molecules191016724 10.1016/j.foodres.2011.12.019 10.1111/j.1523-1755.2004.00491.x 10.1016/j.numecd.2016.03.003 10.3390/nu10111813 10.1016/j.tiv.2017.05.005 10.1101/pdb.prot4429 10.1016/S0014-5793(98)00073-8 10.1007/s12012-013-9205-3 10.1158/1535-7163.MCT-07-0302 10.1126/science.296.5573.1655 10.1016/j.freeradbiomed.2009.03.013 10.1016/S0014-5793(99)00438-X 10.1016/S0006-2952(01)00788-2 10.18632/oncotarget.17128 10.1016/j.amjcard.2008.02.012 10.1016/S0898-6568(98)00037-0 10.1097/00000542-200403000-00008 10.1093/jn/138.9.1602 10.1002/jnr.23453 10.1016/j.yexcr.2018.06.031 10.1155/2018/2639081 10.3390/ijms130910697 10.14814/phy2.12192 10.1016/S0008-6363(03)00526-1 10.3892/etm.2017.5038 10.1158/1541-7786.MCR-06-0096 10.3892/ijo.23.2.477 10.1111/j.1399-3054.2009.01334.x 10.1016/S1097-2765(02)00520-8 10.1179/135100009X466131 10.1038/nrd2060 10.3390/biomedicines6030091 10.1371/journal.ppat.1004506 10.1111/dom.12120 10.1016/j.cellsig.2012.01.008 10.1007/PL00000852 10.1105/tpc.105.033589 10.1097/01.hjh.0000198029.22472.d9 10.1038/sj.cdd.4400770 10.1101/gad.13.15.1899 10.1016/j.fct.2013.07.021 10.1186/1476-9255-10-12 10.1016/j.jnutbio.2015.06.006 10.1007/s10495-005-2947-z 10.1155/2017/4157213 10.1016/j.bbrc.2015.01.034 10.1155/2017/9584819 10.1096/fj.06-7491com 10.1007/s00204-013-1034-4 10.1016/S0003-9861(02)00218-7 10.1371/journal.pone.0048817 10.15171/bi.2015.01 10.1016/j.fct.2015.01.017 10.3390/md13106226 10.1161/01.RES.87.10.840 10.1089/ars.2008.2412 10.1074/jbc.M007154200 10.1016/j.jnutbio.2018.02.007 10.1074/jbc.M312847200 10.1523/JNEUROSCI.22-03-00674.2002 10.1155/2016/4139851 10.1007/BF01952111 10.4196/kjpp.2017.21.4.377 10.1016/j.jnutbio.2015.05.009 10.1089/ars.2009.2825 10.1111/j.1365-4632.2004.02222.x 10.1016/j.bcp.2010.07.034 10.2174/1874091X01307010044 10.1124/pr.110.002980 10.1016/j.canlet.2018.06.012 10.1186/s12935-016-0288-3 10.1016/j.metabol.2013.04.010 |
ContentType | Journal Article |
Copyright | 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019 by the authors. 2019 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3390/biom9060209 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2218-273X |
ExternalDocumentID | oai_doaj_org_article_a90bc745a6374b1eb5d6b65d1536d63d 10_3390_biom9060209 31151226 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 3V. 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AADQD AAFWJ ABDBF ABUWG ADBBV AFKRA AFPKN AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CGR CUY CVF EBD ECM EIF ESX FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE IAO KQ8 LK8 M1P M48 M7P MODMG M~E NPM OK1 PGMZT PIMPY PQQKQ PROAC PSQYO RIG RPM UKHRP AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c513t-843d37c549208c346ff1aeffb10d1f136a5eb40f9510a3c0bc2a787e21c72bae3 |
IEDL.DBID | RPM |
ISSN | 2218-273X |
IngestDate | Tue Oct 22 15:13:42 EDT 2024 Tue Sep 17 20:58:42 EDT 2024 Fri Aug 16 01:30:54 EDT 2024 Fri Aug 23 00:36:32 EDT 2024 Sat Sep 28 08:32:16 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | endothelial cells cell damage dose-dependence flavin oxidase ROS PKC anti- and pro-oxidant effect resveratrol |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c513t-843d37c549208c346ff1aeffb10d1f136a5eb40f9510a3c0bc2a787e21c72bae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0001-9252-1038 0000-0003-3524-7962 0000-0003-3460-1413 0000-0002-3031-7733 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628153/ |
PMID | 31151226 |
PQID | 2233857070 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a90bc745a6374b1eb5d6b65d1536d63d pubmedcentral_primary_oai_pubmedcentral_nih_gov_6628153 proquest_miscellaneous_2233857070 crossref_primary_10_3390_biom9060209 pubmed_primary_31151226 |
PublicationCentury | 2000 |
PublicationDate | 20190530 |
PublicationDateYYYYMMDD | 2019-05-30 |
PublicationDate_xml | – month: 5 year: 2019 text: 20190530 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Biomolecules (Basel, Switzerland) |
PublicationTitleAlternate | Biomolecules |
PublicationYear | 2019 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Chen (ref109) 2011; 89 ref100 ref101 ref40 ref35 ref34 Moshier (ref18) 1995; 55 ref36 Pozarowski (ref69) 2004 ref31 ref30 ref33 ref32 ref39 ref38 Hibshoosh (ref26) 1991; 6 ref24 ref23 ref25 ref20 ref22 ref21 Turrens (ref2) 2013 ref28 ref27 ref13 ref12 ref15 ref14 ref97 Sisein (ref37) 2014; 2 ref96 ref11 ref99 ref10 ref98 Kontush (ref88) 1996; 37 ref17 ref16 ref19 Daksis (ref78) 1994; 9 ref93 ref92 ref95 ref94 ref91 ref90 ref89 ref86 ref85 Gao (ref29) 2017; 8 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref1 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref67 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref114 Heo (ref47) 2018; 42 ref60 ref62 ref61 |
References_xml | – ident: ref89 doi: 10.2203/dose-response.09-015.Mukherjee – ident: ref30 doi: 10.1016/j.bbrc.2014.12.012 – ident: ref43 doi: 10.1093/toxsci/kfp301 – volume: 37 start-page: 1436 year: 1996 ident: ref88 article-title: Antioxidant and prooxidant activity of alpha-tocopherol in human plasma and low density lipoprotein publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)39128-8 contributor: fullname: Kontush – ident: ref57 doi: 10.1111/j.1365-313X.2007.03280.x – ident: ref71 doi: 10.1251/bpo20 – ident: ref9 doi: 10.2174/1573403X14666180702152436 – ident: ref73 doi: 10.1074/jbc.M116.727008 – ident: ref83 doi: 10.1089/ars.2009.2876 – ident: ref15 doi: 10.1074/jbc.273.8.4516 – ident: ref36 doi: 10.1093/cvr/cvp031 – volume: 55 start-page: 5358 year: 1995 ident: ref18 article-title: Ornithine decarboxylase transformation of nih/3t3 cells is mediated by altered epidermal growth factor receptor activity publication-title: Cancer Res. contributor: fullname: Moshier – ident: ref3 doi: 10.1016/j.cub.2014.03.034 – ident: ref21 doi: 10.1101/cshperspect.a014217 – ident: ref92 doi: 10.1124/mol.60.1.174 – volume: 6 start-page: 739 year: 1991 ident: ref26 article-title: Effects of overexpression of ornithine decarboxylase (odc) on growth control and oncogene-induced cell transformation publication-title: Oncogene contributor: fullname: Hibshoosh – ident: ref34 doi: 10.1089/ars.2010.3614 – ident: ref8 doi: 10.1021/tx300069r – ident: ref112 doi: 10.3390/nu10091160 – ident: ref97 doi: 10.1097/01.ASN.0000077407.90309.65 – ident: ref77 doi: 10.1038/sj.onc.1208853 – ident: ref85 doi: 10.1016/j.ejphar.2018.11.016 – volume: 89 start-page: 793 year: 2011 ident: ref109 article-title: Resveratrol inhibits cell differentiation in 3t3-l1 adipocytes via activation of ampk publication-title: Can. J. Physiol. Pharmacol. contributor: fullname: Chen – ident: ref105 doi: 10.1161/HYPERTENSIONAHA.107.107672 – ident: ref50 doi: 10.1111/jcmm.13088 – ident: ref31 doi: 10.2337/db16-1585 – ident: ref27 doi: 10.3389/fphar.2015.00128 – ident: ref60 doi: 10.2741/309 – ident: ref12 doi: 10.1038/s41419-018-0498-9 – ident: ref24 doi: 10.1038/s41698-017-0014-1 – ident: ref62 doi: 10.3390/molecules23092105 – ident: ref55 doi: 10.1186/s13023-014-0123-7 – volume: 42 start-page: 1427 year: 2018 ident: ref47 article-title: Resveratrol induced reactive oxygen species and endoplasmic reticulum stressmediated apoptosis, and cell cycle arrest in the a375sm malignant melanoma cell line publication-title: Int. J. Mol. Med. contributor: fullname: Heo – ident: ref39 doi: 10.1016/j.niox.2011.12.006 – ident: ref111 doi: 10.1016/j.phymed.2018.12.024 – ident: ref25 doi: 10.1101/gad.1024602 – ident: ref22 doi: 10.1038/nrc2231 – ident: ref79 doi: 10.1016/S1065-6995(02)90926-1 – ident: ref108 doi: 10.1016/j.jnutbio.2011.06.003 – ident: ref41 doi: 10.3390/molecules191016724 – ident: ref56 doi: 10.1016/j.foodres.2011.12.019 – ident: ref102 doi: 10.1111/j.1523-1755.2004.00491.x – ident: ref44 doi: 10.1016/j.numecd.2016.03.003 – ident: ref113 doi: 10.3390/nu10111813 – ident: ref51 doi: 10.1016/j.tiv.2017.05.005 – start-page: 2198 year: 2013 ident: ref2 article-title: Reactive oxygen species contributor: fullname: Turrens – ident: ref67 doi: 10.1101/pdb.prot4429 – ident: ref54 doi: 10.1016/S0014-5793(98)00073-8 – ident: ref63 doi: 10.1007/s12012-013-9205-3 – ident: ref76 doi: 10.1158/1535-7163.MCT-07-0302 – ident: ref7 doi: 10.1126/science.296.5573.1655 – ident: ref90 doi: 10.1016/j.freeradbiomed.2009.03.013 – ident: ref53 doi: 10.1016/S0014-5793(99)00438-X – ident: ref93 doi: 10.1016/S0006-2952(01)00788-2 – volume: 8 start-page: 51888 year: 2017 ident: ref29 article-title: Reduction-oxidation pathways involved in cancer development: A systematic review of literature reviews publication-title: Oncotarget doi: 10.18632/oncotarget.17128 contributor: fullname: Gao – ident: ref42 doi: 10.1016/j.amjcard.2008.02.012 – ident: ref5 doi: 10.1016/S0898-6568(98)00037-0 – start-page: 301 year: 2004 ident: ref69 article-title: Analysis of cell cycle by flow cytometry contributor: fullname: Pozarowski – ident: ref96 doi: 10.1097/00000542-200403000-00008 – ident: ref103 doi: 10.1093/jn/138.9.1602 – ident: ref116 doi: 10.1002/jnr.23453 – ident: ref48 doi: 10.1016/j.yexcr.2018.06.031 – ident: ref52 doi: 10.1155/2018/2639081 – ident: ref17 doi: 10.3390/ijms130910697 – ident: ref28 doi: 10.14814/phy2.12192 – ident: ref65 doi: 10.1016/S0008-6363(03)00526-1 – ident: ref72 doi: 10.3892/etm.2017.5038 – volume: 9 start-page: 3635 year: 1994 ident: ref78 article-title: Myc induces cyclin d1 expression in the absence of de novo protein synthesis and links mitogen-stimulated signal transduction to the cell cycle publication-title: Oncogene contributor: fullname: Daksis – ident: ref101 doi: 10.1158/1541-7786.MCR-06-0096 – ident: ref64 doi: 10.3892/ijo.23.2.477 – ident: ref61 doi: 10.1111/j.1399-3054.2009.01334.x – ident: ref23 doi: 10.1016/S1097-2765(02)00520-8 – ident: ref87 doi: 10.1179/135100009X466131 – ident: ref38 doi: 10.1038/nrd2060 – ident: ref106 doi: 10.3390/biomedicines6030091 – ident: ref4 doi: 10.1371/journal.ppat.1004506 – ident: ref74 doi: 10.1111/dom.12120 – ident: ref6 doi: 10.1016/j.cellsig.2012.01.008 – ident: ref19 doi: 10.1007/PL00000852 – ident: ref1 doi: 10.1105/tpc.105.033589 – ident: ref104 doi: 10.1097/01.hjh.0000198029.22472.d9 – ident: ref75 doi: 10.1038/sj.cdd.4400770 – ident: ref91 doi: 10.1101/gad.13.15.1899 – ident: ref84 doi: 10.1016/j.fct.2013.07.021 – ident: ref99 doi: 10.1186/1476-9255-10-12 – ident: ref114 doi: 10.1016/j.jnutbio.2015.06.006 – ident: ref14 doi: 10.1007/s10495-005-2947-z – ident: ref98 doi: 10.1155/2017/4157213 – ident: ref107 doi: 10.1016/j.bbrc.2015.01.034 – ident: ref82 doi: 10.1155/2017/9584819 – ident: ref86 doi: 10.1096/fj.06-7491com – ident: ref10 doi: 10.1007/s00204-013-1034-4 – ident: ref66 doi: 10.1016/S0003-9861(02)00218-7 – ident: ref59 doi: 10.1371/journal.pone.0048817 – ident: ref68 doi: 10.15171/bi.2015.01 – ident: ref46 doi: 10.1016/j.fct.2015.01.017 – ident: ref32 doi: 10.3390/md13106226 – ident: ref33 doi: 10.1161/01.RES.87.10.840 – ident: ref40 doi: 10.1089/ars.2008.2412 – ident: ref100 doi: 10.1074/jbc.M007154200 – ident: ref110 doi: 10.1016/j.jnutbio.2018.02.007 – ident: ref58 doi: 10.1074/jbc.M312847200 – ident: ref16 doi: 10.1523/JNEUROSCI.22-03-00674.2002 – ident: ref81 doi: 10.1155/2016/4139851 – ident: ref20 doi: 10.1007/BF01952111 – ident: ref35 doi: 10.4196/kjpp.2017.21.4.377 – ident: ref115 doi: 10.1016/j.jnutbio.2015.05.009 – ident: ref95 doi: 10.1089/ars.2009.2825 – ident: ref13 doi: 10.1111/j.1365-4632.2004.02222.x – ident: ref45 doi: 10.1016/j.bcp.2010.07.034 – ident: ref49 doi: 10.2174/1874091X01307010044 – ident: ref94 doi: 10.1124/pr.110.002980 – ident: ref11 doi: 10.1016/j.canlet.2018.06.012 – volume: 2 start-page: 110 year: 2014 ident: ref37 article-title: Biochemistry of free radicals and antioxidants publication-title: Sch. Acad. J. Biosci. contributor: fullname: Sisein – ident: ref70 doi: 10.1186/s12935-016-0288-3 – ident: ref80 doi: 10.1016/j.metabol.2013.04.010 |
SSID | ssj0000800823 |
Score | 2.4197543 |
Snippet | Dietary intake of natural antioxidants is thought to impart protection against oxidative-associated cardiovascular diseases. Despite many in vivo studies and... Background: Dietary intake of natural antioxidants is thought to impart protection against oxidative-associated cardiovascular diseases. Despite many in vivo... BACKGROUNDDietary intake of natural antioxidants is thought to impart protection against oxidative-associated cardiovascular diseases. Despite many in vivo... |
SourceID | doaj pubmedcentral proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 209 |
SubjectTerms | anti- and pro-oxidant effect Cell Cycle - drug effects cell damage Cell Survival - drug effects Dinitrocresols - metabolism dose-dependence endothelial cells flavin oxidase Human Umbilical Vein Endothelial Cells - cytology Human Umbilical Vein Endothelial Cells - drug effects Human Umbilical Vein Endothelial Cells - metabolism Humans Intracellular Space - drug effects Intracellular Space - metabolism Oxidation-Reduction - drug effects Oxidoreductases - metabolism PKC Protein Kinase C - metabolism Reactive Oxygen Species - metabolism resveratrol Resveratrol - pharmacology ROS |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYv4tr6IIN6KSZOm7dFddhHFBz7AW8kTV2q7uLui_95JusquCF68tqEJ802Sb5rJNwgdJU4SVaQ8Jjo1MXcJjZXUeewYF0K6nBsVEmSvxNkDP39MH2dKffmcsFYeuDXciSyI0hlPpWAZV9Sq1AglUgMzVRjBTFh9STETTD1PeVCesPZCHoO4_sTfZi-IAHZUzG1BQan_N3r5M0tyZtvpr6DlKV_Ep-04V9GCrdfQ-mkNsfLLBz7GIYMz_BpfR02_km-DGl-_DwxsTrEvy6GtwbfXd7iVl_Yo4MvG-JpddoRvLrq4Mxg-SYAKtzrGuHH41o7efOPXpsLQvlcbf02rAk_FXVtV-G4C6wt46AZ66Pfuu2fxtKBCrFPKxnHOmWGZ9qJsJNeAhnNUWucUJYY6yoRMreLEedYlmQbDJxImtE2ozhIlLdtEi3VT222EGTeZEprnXnxHKFkk1Cijw9elyUWEjr5sXA5b3YwS4g0PRTkDRYQ63v7fTbzYdXgALlBOXaD8ywUidPiFXgmTw594yNo2k1EJ3Id5Bf-MRGirRfO7Ky8zRIF8Riibw3luLPNv6sFTEOAWIsmh853_GPwuWgIOVoSEBLKHFsevE7sPPGesDoJLfwLkEf4h priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKuXBBlPJIKchIFbeAHTtOckCoXXVVgaCoZaXeIj_pojQp-6jaf8-Mk626VY9cEye25vPY3yTjbwjZy4JmpsplymzuUhkynhptyzQIqZQOpXQmJsj-UEcT-fUsP9sgq2KcgwHnD4Z2WE9qMms-Xv-9-QIO_xkjTgjZP-FB9YopID7VI_I4kxCiYw7fwPP_DLSozER_Pu_-M2s7UhTuf4ht3k-avLMLjZ-RpwN9pPs93ltkw7fPyfZ-C6HzxQ39QGNCZ_xSvk26caOvpi09vp462KtSrNJhvaMnx6e0V5tGUOj3zmEJLz-nP7-N6MH08lwDcrSXNaZdoCd-foWNZ11Dof1h6_DUVgMTl45809DTJSw3MGFfkMn48NfoKB3qK6Q252KRllI4UVjUaGOlBXBC4NqHYDhzPHChdO6NZAFJmBaWGZtp8G-fcVtkRnvxkmy2XetfEyqkK4yyskQtHmV0lXFnnI1v165UCdlb2bi-7GU0agg_EIr6DhQJOUD73zZB7et4oZv9rgdXqnUFIylkrpUopOHe5E4ZlTtYu5VTwiXk_Qq9GnwFf4Do1nfLeQ1USKCgf8ES8qpH87YrVB3iwEUTUqzhvDaW9Tvt9DzqcSuVldD5zv8Y_BvyBChZFfMT2C7ZXMyW_i3QnoV5F6f0P3VwBRM priority: 102 providerName: Scholars Portal |
Title | Flavin Oxidase-Induced ROS Generation Modulates PKC Biphasic Effect of Resveratrol on Endothelial Cell Survival |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31151226 https://search.proquest.com/docview/2233857070 https://pubmed.ncbi.nlm.nih.gov/PMC6628153 https://doaj.org/article/a90bc745a6374b1eb5d6b65d1536d63d |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb5swGLba7rLLtK37YN0iT6p2o8HYGHJsokTVprRRukq5IX-uVASifFTdv99rA1Uy7bQLBzBg-XmMH5v3fYzQeWxFJAcJCyOV6JDZmIRSqCy0lHEubMa09AGy1_zqjn1fJIsjlHS5MD5oX8nioiqXF1Vx72MrV0vV7-LE-rPpiPM4g57aP0bHQNC9KfpDK4GymDa5eBSm9H2XyD6IOAgj5xHq7GVI7MwU9gYi79f_L5H5d6zk3uAzeY1etaoRXza1e4OOTPUWnV5WMGNe_sbfsI_j9Avkp6ielOKxqPDNU6FhiArd5hzKaDy_ucWNybTDAk9r7XbuMhs8-zHCw2J1LwAw3LgZ49riudk8usLrusRQflxpl6xVAl_xyJQlvt3BVwZ4-g7dTcY_R1dhu61CqBJCt2HGqKapctZsUaYAE2uJMNZKEmliCeUiMZJF1mkvQVUkVSygW5uYqDSWwtD36KSqK_MRYcp0KrlimbPg4VIMYqKlVv7pQmc8QOddG-erxj0jh1mHQyXfQyVAQ9f-z0Wc5bU_Ua9_5S3wuRhATVKWCE5TJomRieaSJxqIwDWnOkBfO_Ry6CLuv4eoTL3b5KCAqPPxT6MAfWjQfH5Vx4YApQc4H9Tl8Aqw0ttwtyz89N93nqGXIL8GPhYh-oxOtuud-QISZyt7QOxF2kMvhuPr2bznFwrgOGVZz5P9D-pxAtQ |
link.rule.ids | 230,315,730,783,787,867,888,2109,2228,24330,27936,27937,31732,33757,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb5wwFLbS9NBeuqULXV0p6o0Zg41hjskoo2mTSaIsVW7Ia0PLwGiWqO2v77OBaCbqpb1iA4b3nv09-N5nhHZjK4gcJCwkKtEhs3EUSqGy0FLGubAZ09ITZI_5-JJ9uUqutlDS1cJ40r6SRa8qp72quPbcytlU9TueWP90MuQ8ziBS-_fQfYhXwtaS9O8tCMpi2lTjUUjq-66UfUA4QCOnEuoEZqLYySmsLUVesf9vMPMuW3Jt-Rk9Rl-7gTeskx-91VL21O87mo7__GRP0KMWkOK9pvkp2jLVM7SzV0EyPv2FP2FPEfXf3ndQPSrFTVHhk5-FhtUvdPt-KKPx2ck5bvSrnZnxpNZuUzCzwKeHQ7xfzK4F-AJuhJJxbfGZWdy4zvO6xND_oNKuDqyEUMBDU5b4fAUTGITAc3Q5OrgYjsN2x4ZQJRFdhhmjmqbKqb6RTIG5rY2EsVZGREc2olwkRjJiHawTVBGpYgEzhokjlcZSGPoCbVd1ZV4hTJlOJVcsc-o-XIpBHGmplb-60BkP0G5nvHzWCHPkkNA4c-dr5g7QvjPsbRenpu0P1PNvefvmczGAkaQsEZymTEZGJppLnmiwBNec6gB97Nwih-hzv1REZerVIgdwRd0WASkJ0MvGTW5v1blZgNINB9oYy2YLuIVX-G7d4PV_n_kBPRhfTI7yo8_Hh2_QQ0B5A095IG_R9nK-Mu8ASS3lex83fwAQZSB5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb5wwELbaVKr60is96OlKUd9YDhsDj8k2q7RpklXSSFFfkM-GloXVHlHbX9-xgYiN-pRXGMAwM_gb-PwNQjux4aHIE-qHMlE-NXHkCy4z3xDKGDcZVcIRZI_ZwTn9cpFcDFp9OdK-FOWormajurx03Mr5TAY9TyyYHo0ZizPI1GCuTHAX3YOcDdmgUP_ZAaEsJu2KPAKFfWCXs-chA3hklUKtyEwUW0mFwXTkVPv_BzVvMiYHU9DkEfreD75lnvwarVdiJP_e0HW81d09Rg87YIp3W5Mn6I6un6Lt3RqK8tkf_BE7qqj7Br-NmknFr8oan_wuFcyCvu3_IbXCpydnuNWxtu7GR42yzcH0Ek8Px3ivnF9yiAncCibjxuBTvbyyxoumwmC_Xyu7HqyClMBjXVX4bA0vMkiFZ-h8sv9tfOB3nRt8mURk5WeUKJJKq_4WZhLcbkzEtTEiClVkIsJ4ogUNjYV3nMhQyJjDm0PHkUxjwTV5jrbqptYvESZUpYJJmlmVHyZ4HkdKKOnOzlXGPLTTO7CYtwIdBRQ21uXFwOUe2rPOvTaxqtpuQ7P4UXRPv-A5jCSlCWckpSLSIlFMsESBN5hiRHnoQx8aBWSh_bXCa92slwWALGJbBaShh160oXJ9qT7UPJRuBNHGWDb3QGg4pe8uFF7d-sj36P7006T4-vn48DV6AGAvd8yH8A3aWi3W-i0AqpV451LnHwVQIvk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flavin+Oxidase-Induced+ROS+Generation+Modulates+PKC+Biphasic+Effect+of+Resveratrol+on+Endothelial+Cell+Survival&rft.jtitle=Biomolecules+%28Basel%2C+Switzerland%29&rft.au=Anna+Maria+Posadino&rft.au=Roberta+Giordo&rft.au=Annalisa+Cossu&rft.au=Gheyath+K.+Nasrallah&rft.date=2019-05-30&rft.pub=MDPI+AG&rft.eissn=2218-273X&rft.volume=9&rft.issue=6&rft.spage=209&rft_id=info:doi/10.3390%2Fbiom9060209&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a90bc745a6374b1eb5d6b65d1536d63d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2218-273X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2218-273X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2218-273X&client=summon |