Mechanical demand and multijoint control during landing depend on orientation of the body segments relative to the reaction force
The purpose of this study was to determine how diverse momentum conditions and anatomical orientation at contact influences mechanical loading and multijoint control of the reaction force during landings. Male collegiate gymnasts ( n=6) performed competition style landings ( n=3) of drop jumps, fron...
Saved in:
Published in | Journal of biomechanics Vol. 34; no. 11; pp. 1471 - 1482 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.11.2001
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The purpose of this study was to determine how diverse momentum conditions and anatomical orientation at contact influences mechanical loading and multijoint control of the reaction force during landings. Male collegiate gymnasts (
n=6) performed competition style landings (
n=3) of drop jumps, front saltos, and back saltos from a platform (0.72
m) onto landing mats (0.12
m). Kinematics (200
fps), reaction forces (800
Hz) and muscle activation patterns (surface EMG, 1600
Hz) of seven lower extremity muscles were collected simultaneously. Between-task differences in segment orientation relative to the reaction force contributed to significant between-task differences in knee and hip net joint moments (NJM) during the impact phase. During the stabilization phase, ankle, knee, and hip NJMs acted to control joint flexion. Between-task differences in muscle activation patterns indicated that gymnasts scaled biarticular muscle activation to accommodate for between-task differences in NJM after contact. Activation of muscles on both sides of the joint suggests that impedance like control was used to stabilize the joints and satisfy the mechanical demand imposed on the lower extremity. Between-subject differences in the set of muscles used to control total body center of mass (TBCM) trajectory and achieve lower extremity NJMs suggests that control of multijoint movements involving impact needs to incorporate mechanical objectives at both the total body and local level. The functional consequences of such a control structure may prove to be an asset to gymnasts, particularly when required to perform a variety of landing tasks under a variety of environmental constraints. |
---|---|
AbstractList | The purpose of this study was to determine how diverse momentum conditions and anatomical orientation at contact influences mechanical loading and multijoint control of the reaction force during landings. Male collegiate gymnasts (n=6) performed competition style landings (n=3) of drop jumps, front saltos, and back saltos from a platform (0.72 m) onto landing mats (0.12 m). Kinematics (200 fps), reaction forces (800 Hz) and muscle activation patterns (surface EMG, 1600 Hz) of seven lower extremity muscles were collected simultaneously. Between-task differences in segment orientation relative to the reaction force contributed to significant between-task differences in knee and hip net joint moments (NJM) during the impact phase. During the stabilization phase, ankle, knee, and hip NJMs acted to control joint flexion. Between-task differences in muscle activation patterns indicated that gymnasts scaled biarticular muscle activation to accommodate for between-task differences in NJM after contact. Activation of muscles on both sides of the joint suggests that impedance like control was used to stabilize the joints and satisfy the mechanical demand imposed on the lower extremity. Between-subject differences in the set of muscles used to control total body center of mass (TBCM) trajectory and achieve lower extremity NJMs suggests that control of multijoint movements involving impact needs to incorporate mechanical objectives at both the total body and local level. The functional consequences of such a control structure may prove to be an asset to gymnasts, particularly when required to perform a variety of landing tasks under a variety of environmental constraints.The purpose of this study was to determine how diverse momentum conditions and anatomical orientation at contact influences mechanical loading and multijoint control of the reaction force during landings. Male collegiate gymnasts (n=6) performed competition style landings (n=3) of drop jumps, front saltos, and back saltos from a platform (0.72 m) onto landing mats (0.12 m). Kinematics (200 fps), reaction forces (800 Hz) and muscle activation patterns (surface EMG, 1600 Hz) of seven lower extremity muscles were collected simultaneously. Between-task differences in segment orientation relative to the reaction force contributed to significant between-task differences in knee and hip net joint moments (NJM) during the impact phase. During the stabilization phase, ankle, knee, and hip NJMs acted to control joint flexion. Between-task differences in muscle activation patterns indicated that gymnasts scaled biarticular muscle activation to accommodate for between-task differences in NJM after contact. Activation of muscles on both sides of the joint suggests that impedance like control was used to stabilize the joints and satisfy the mechanical demand imposed on the lower extremity. Between-subject differences in the set of muscles used to control total body center of mass (TBCM) trajectory and achieve lower extremity NJMs suggests that control of multijoint movements involving impact needs to incorporate mechanical objectives at both the total body and local level. The functional consequences of such a control structure may prove to be an asset to gymnasts, particularly when required to perform a variety of landing tasks under a variety of environmental constraints. The purpose of this study was to determine how diverse momentum conditions and anatomical orientation at contact influences mechanical loading and multijoint control of the reaction force during landings. Male collegiate gymnasts ( n=6) performed competition style landings ( n=3) of drop jumps, front saltos, and back saltos from a platform (0.72 m) onto landing mats (0.12 m). Kinematics (200 fps), reaction forces (800 Hz) and muscle activation patterns (surface EMG, 1600 Hz) of seven lower extremity muscles were collected simultaneously. Between-task differences in segment orientation relative to the reaction force contributed to significant between-task differences in knee and hip net joint moments (NJM) during the impact phase. During the stabilization phase, ankle, knee, and hip NJMs acted to control joint flexion. Between-task differences in muscle activation patterns indicated that gymnasts scaled biarticular muscle activation to accommodate for between-task differences in NJM after contact. Activation of muscles on both sides of the joint suggests that impedance like control was used to stabilize the joints and satisfy the mechanical demand imposed on the lower extremity. Between-subject differences in the set of muscles used to control total body center of mass (TBCM) trajectory and achieve lower extremity NJMs suggests that control of multijoint movements involving impact needs to incorporate mechanical objectives at both the total body and local level. The functional consequences of such a control structure may prove to be an asset to gymnasts, particularly when required to perform a variety of landing tasks under a variety of environmental constraints. The purpose of this study was to determine how diverse momentum conditions and anatomical orientation at contact influences mechanical loading and multijoint control of the reaction force during landings. Male collegiate gymnasts (n=6) performed competition style landings (n=3) of drop jumps, front saltos, and back saltos from a platform (0.72 m) onto landing mats (0.12 m). Kinematics (200 fps), reaction forces (800 Hz) and muscle activation patterns (surface EMG, 1600 Hz) of seven lower extremity muscles were collected simultaneously. Between-task differences in segment orientation relative to the reaction force contributed to significant between-task differences in knee and hip net joint moments (NJM) during the impact phase. During the stabilization phase, ankle, knee, and hip NJMs acted to control joint flexion. Between-task differences in muscle activation patterns indicated that gymnasts scaled biarticular muscle activation to accommodate for between-task differences in NJM after contact. Activation of muscles on both sides of the joint suggests that impedance like control was used to stabilize the joints and satisfy the mechanical demand imposed on the lower extremity. Between-subject differences in the set of muscles used to control total body center of mass (TBCM) trajectory and achieve lower extremity NJMs suggests that control of multijoint movements involving impact needs to incorporate mechanical objectives at both the total body and local level. The functional consequences of such a control structure may prove to be an asset to gymnasts, particularly when required to perform a variety of landing tasks under a variety of environmental constraints. The purpose of this study was to determine how diverse momentum conditions and anatomical orientation at contact influences mechanical loading and multijoint control of the reaction force during landings. Male collegiate gymnasts (n = 6) performed competition style landings (n = 3) of drop jumps, front saltos, and back saltos from a platform (0.72m) onto landing mats (0.12 m). Kinematics (200 fps), reaction forces (800 Hz) and muscle activation patterns (surface EMG, 1600 Hz) of seven lower extremity muscles were collected simultaneously. Between-task differences in segment orientation relative to the reaction force contributed to significant between-task differences in knee and hip net joint moments (NJM) during the impact phase. During the stabilization phase, ankle, knee, and hip NJMs acted to control joint flexion. Between-task differences in muscle activation patterns indicated that gymnasts scaled biarticular muscle activation to accommodate for between-task differences in NJM after contact. Activation of muscles on both sides of the joint suggests that impedance like control was used to stabilize the joints and satisfy the mechanical demand imposed on the lower extremity. Between-subject differences in the set of muscles used to control total body center of mass (TBCM) trajectory and achieve lower extremity NJMs suggests that control of multijoint movements involving impact needs to incorporate mechanical objectives at both the total body and local level. The functional consequences of such a control structure may prove to be an asset to gymnasts, particularly when required to perform a variety of landing tasks under a variety of environmental constraints. |
Author | Munkasy, B.A. McNitt-Gray, J.L. Mathiyakom, W. Hester, D.M.E. |
Author_xml | – sequence: 1 givenname: J.L. surname: McNitt-Gray fullname: McNitt-Gray, J.L. email: mcnitt@usc.edu organization: Biomechanics Research Laboratory, Department of Kinesiology, University of Southern California, 3560 Watt Way, PED 107, Los Angeles, CA 90089-0652, USA – sequence: 2 givenname: D.M.E. surname: Hester fullname: Hester, D.M.E. organization: Biomechanics Research Laboratory, Department of Kinesiology, University of Southern California, 3560 Watt Way, PED 107, Los Angeles, CA 90089-0652, USA – sequence: 3 givenname: W. surname: Mathiyakom fullname: Mathiyakom, W. organization: Biomechanics Research Laboratory, Department of Kinesiology, University of Southern California, 3560 Watt Way, PED 107, Los Angeles, CA 90089-0652, USA – sequence: 4 givenname: B.A. surname: Munkasy fullname: Munkasy, B.A. organization: Georgia Southern University, Statesboro, GA 30458-8076, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11672722$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhS1URKeFnwDyisci4Mc4ToQQQlV5SEUsgLXlub5pXZJ4sJ1Ks-Sf18mULrqgLCxbOt-5ls_xETkYw4iEPOXsNWe8fvOdMcGrVrTsJeOvGOOcVeoBWfFGy0rIhh2Q1S1ySI5SumSM6bVuH5FDzmsttBAr8ucrwoUdPdieOhzs6Oi8hqnP_jL4MVMIY46hqFP04zntizzvDrdYwDDSED2O2WY_nzuaL5BugtvRhOdDERKN2Bf1CmkOixrRwkJ3IQI-Jg872yd8crMfk58fT3-cfK7Ovn36cvLhrALFZa4aBqha1ayFBSfBgpLN2rZr6yR3bc03SjSs3khla-a0aDSXdWc70BsHDbMgj8mL_dxtDL8nTNkMPgH25UEYpmS05oq1XMhCPv83KUQJWM3gsxtw2gzozDb6wcad-RtvAd7uAYghpYidAb9PKkfre8OZmcs0S5lmbsowbpYyjSpudcd9e8E9vvd7H5Y4rzxGk6BUBOh8RMjGBX_vhHd3JkDvl0_yC3f_4b8G-ibKxA |
CitedBy_id | crossref_primary_10_1177_1754337114565381 crossref_primary_10_1123_jab_23_2_149 crossref_primary_10_1519_JSC_0b013e31820f50b6 crossref_primary_10_1097_BPO_0000000000000096 crossref_primary_10_3390_app13179934 crossref_primary_10_1016_j_clinbiomech_2004_08_005 crossref_primary_10_1016_j_ptsp_2017_03_002 crossref_primary_10_1080_02640414_2020_1757374 crossref_primary_10_1136_bjsports_2013_092952 crossref_primary_10_1249_JSR_0b013e31821b1442 crossref_primary_10_1007_s00422_006_0063_y crossref_primary_10_5812_asjsm_34258 crossref_primary_10_1590_S1517_86922006000400004 crossref_primary_10_3390_biomechanics3010005 crossref_primary_10_1016_j_jbiomech_2016_12_017 crossref_primary_10_1080_17461391_2021_1976842 crossref_primary_10_1177_0363546511432544 crossref_primary_10_1016_j_gaitpost_2004_01_005 crossref_primary_10_1016_j_clinbiomech_2011_10_001 crossref_primary_10_1123_mc_2018_0050 crossref_primary_10_1016_j_jbiomech_2009_06_058 crossref_primary_10_1007_s00221_005_0150_7 crossref_primary_10_1519_SSC_0b013e31825ab4bb crossref_primary_10_1519_SSC_0000000000000619 crossref_primary_10_1590_1807_55092016000100079 crossref_primary_10_1007_s00422_004_0473_7 crossref_primary_10_1177_0363546506294077 crossref_primary_10_3389_fbioe_2015_00171 crossref_primary_10_1249_MSS_0b013e318240d564 crossref_primary_10_4085_1062_6050_44_4_350 crossref_primary_10_1115_1_2947275 crossref_primary_10_1177_0363546519850165 crossref_primary_10_1177_19386400231208522 crossref_primary_10_1007_BF03262292 crossref_primary_10_3390_healthcare8040480 crossref_primary_10_1123_jab_28_6_677 crossref_primary_10_1519_JSC_0000000000004700 crossref_primary_10_1109_TRO_2024_3408005 crossref_primary_10_1016_j_ptsp_2019_07_004 crossref_primary_10_1080_14763140608522878 crossref_primary_10_1016_j_humov_2020_102634 crossref_primary_10_1016_j_jbiomech_2018_06_004 crossref_primary_10_1016_j_scispo_2019_03_011 crossref_primary_10_1016_j_jbiomech_2007_10_001 crossref_primary_10_1111_j_1439_0310_2007_01395_x crossref_primary_10_1249_01_mss_0000175053_81453_aa crossref_primary_10_1016_j_gaitpost_2006_07_001 crossref_primary_10_61186_JSportBiomech_8_3_266 crossref_primary_10_1016_j_knee_2017_12_005 crossref_primary_10_1007_s11332_021_00797_w crossref_primary_10_7717_peerj_7914 crossref_primary_10_1123_jab_2017_0270 crossref_primary_10_1016_j_pmrj_2009_01_013 crossref_primary_10_1177_1747954120970310 crossref_primary_10_2519_jospt_2006_2013 crossref_primary_10_1123_jab_22_3_177 crossref_primary_10_1016_j_jelekin_2007_08_002 crossref_primary_10_1249_01_MSS_0000145467_79916_46 crossref_primary_10_1177_0363546516629419 crossref_primary_10_1016_j_jbiomech_2023_111666 crossref_primary_10_1016_j_magis_2016_10_001 crossref_primary_10_1080_14763141_2012_738699 crossref_primary_10_1088_1748_3190_aa806e crossref_primary_10_1093_ptj_85_8_750 crossref_primary_10_1519_JSC_0b013e31828ddf19 crossref_primary_10_1123_jab_29_3_253 crossref_primary_10_1080_02640410601129615 crossref_primary_10_5103_KJSB_2011_21_4_437 crossref_primary_10_1098_rspb_2011_0382 crossref_primary_10_1136_bjsm_2009_068098 crossref_primary_10_3390_app11010130 crossref_primary_10_1249_mss_0b013e3181343629 crossref_primary_10_2519_jospt_2003_33_8_A_1 crossref_primary_10_2519_jospt_2019_8248 crossref_primary_10_4085_1062_6050_48_4_09 crossref_primary_10_3390_jfmk8010010 crossref_primary_10_1123_jsr_14_1_58 crossref_primary_10_1080_14763141_2011_650186 crossref_primary_10_1152_japplphysiol_01316_2007 crossref_primary_10_1016_j_jbmt_2006_03_003 crossref_primary_10_1038_s41598_023_38435_9 crossref_primary_10_5103_KJSB_2012_22_3_325 crossref_primary_10_1007_s00167_018_4893_7 crossref_primary_10_1016_j_scispo_2020_05_006 crossref_primary_10_3390_ijerph21070947 crossref_primary_10_1016_j_clinbiomech_2006_05_001 crossref_primary_10_4085_1062_6050_45_5_445 crossref_primary_10_3951_sobim_38_269 crossref_primary_10_3390_app14093661 crossref_primary_10_1080_14763141_2015_1029514 crossref_primary_10_1186_1758_2555_4_4 crossref_primary_10_1007_BF02933569 crossref_primary_10_1123_jab_26_2_159 crossref_primary_10_1080_02640414_2018_1523034 crossref_primary_10_3390_biomechanics4040050 crossref_primary_10_4085_1062_6050_43_2_164 crossref_primary_10_1177_0031512517717853 crossref_primary_10_1016_j_humov_2022_103035 crossref_primary_10_1080_00222895_2019_1664976 crossref_primary_10_1016_j_jelekin_2013_04_012 crossref_primary_10_1016_j_ptsp_2014_06_003 crossref_primary_10_1152_japplphysiol_90776_2008 crossref_primary_10_1016_j_jbiomech_2005_02_022 crossref_primary_10_1016_j_jelekin_2011_11_001 crossref_primary_10_1519_SSC_0b013e31822236ad crossref_primary_10_1080_14763141_2024_2369206 crossref_primary_10_1016_j_clinbiomech_2025_106463 |
Cites_doi | 10.1016/0021-9290(95)00178-6 10.1080/02701367.1983.10605315 10.1109/TAC.1984.1103644 10.1016/0306-4522(92)90019-X 10.1242/jeb.202.23.3387 10.1152/ajplegacy.1939.125.2.357 10.1123/jab.9.3.173 10.1097/00005768-199908000-00018 10.1016/0021-9290(94)90029-9 10.1007/BF00227257 10.1016/0021-9290(92)90022-S 10.1123/mcj.4.1.84 10.1249/00005768-199201000-00018 10.1113/jphysiol.1992.sp019397 10.1207/s15326969eco0103_2 10.1123/mcj.4.1.1 10.1615/CritRevBiomedEng.v25.i4-5.20 10.1109/TBME.1979.326551 10.1016/S0021-9290(05)80003-X 10.1007/BF00318203 10.1249/00005768-197901140-00002 |
ContentType | Journal Article |
Copyright | 2001 Elsevier Science Ltd |
Copyright_xml | – notice: 2001 Elsevier Science Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/S0021-9290(01)00110-5 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
EndPage | 1482 |
ExternalDocumentID | 11672722 10_1016_S0021_9290_01_00110_5 S0021929001001105 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHMBA AI. AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBD EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GUQSH HCIFZ HEE HMCUK HMK HMO HVGLF HZ~ H~9 I-F IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P ML~ MO0 MVM N9A O-L O9- OAUVE OH. OHT OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT VH1 WUQ X7M XOL XPP YQT Z5R ZGI ZMT ~G- 3V. AACTN AAIAV ABLVK ABYKQ AFCTW AFFDN AFKWA AHPSJ AJBFU AJOXV AMFUW EFLBG F3I LCYCR RIG YCJ AAYXX AGRNS ALIPV CITATION CGR CUY CVF ECM EIF NPM PKN 7X8 |
ID | FETCH-LOGICAL-c513t-80ce595842acd3cac5384a94ad31d961b52806b35a60d7287136fafc7bdc80ac3 |
IEDL.DBID | AIKHN |
ISSN | 0021-9290 |
IngestDate | Thu Jul 10 19:01:49 EDT 2025 Fri Jul 11 01:00:46 EDT 2025 Wed Feb 19 02:34:10 EST 2025 Tue Jul 01 02:43:43 EDT 2025 Thu Apr 24 23:08:09 EDT 2025 Fri Feb 23 02:18:17 EST 2024 Tue Aug 26 16:38:10 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Biomechanics Joint kinetics Landing Mulitjoint control Reaction force |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c513t-80ce595842acd3cac5384a94ad31d961b52806b35a60d7287136fafc7bdc80ac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 11672722 |
PQID | 72223853 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_771509123 proquest_miscellaneous_72223853 pubmed_primary_11672722 crossref_citationtrail_10_1016_S0021_9290_01_00110_5 crossref_primary_10_1016_S0021_9290_01_00110_5 elsevier_sciencedirect_doi_10_1016_S0021_9290_01_00110_5 elsevier_clinicalkey_doi_10_1016_S0021_9290_01_00110_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2001-11-01 |
PublicationDateYYYYMMDD | 2001-11-01 |
PublicationDate_xml | – month: 11 year: 2001 text: 2001-11-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2001 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Miller, Nelson (BIB18) 1973 McNitt-Gray (BIB16) 2000; 4 Schweitzer, L., 1985. FIG Gymnastics Equipment Testing Standards, International Federation de Gymnastique. Tsirakos, Baltzopoulos, Bartlett (BIB27) 1997; 25 Biewener, Gillis (BIB1) 1999; 202 McNitt-Gray (BIB14) 1992; 9 Hogan (BIB9) 1984; AC-29 Elliott, Blanksby (BIB6) 1979; 11 Hasan (BIB8) 1986; 53 Zatsiorsky, Seluyanov (BIB31) 1983 Bobbert, Yeadon, Nigg (BIB2) 1992; 25 Jacobs, van Ingen Schenau (BIB11) 1992; 457 Sidaway, McNitt-Gray, Davis (BIB26) 1989; 1 Prilutsky (BIB21) 2000; 4 Jackson (BIB10) 1979; 26 Ridderikhoff, Batelaan, Bobbert (BIB23) 1999; 31 Tuller, Turvey, Fitch (BIB28) 1982 Engelhorn (BIB7) 1983; 54 Prilutsky, Zatsiorsky (BIB22) 1994; 27 DeVita, Skelly (BIB4) 1992; 24 Elftman (BIB5) 1939; 125 de Leva (BIB3) 1996; 29 van Ingen Schenau, Boots, de Groot, Snackers, van Woensel (BIB29) 1992; 46 McNitt-Gray (BIB15) 1993; 25 Kendall, McCreary, Provance (BIB12) 1993 McKinley, Pedotti (BIB13) 1992; 90 McNitt-Gray, Yokoi, Millward (BIB17) 1993; 9 McNitt-Gray (10.1016/S0021-9290(01)00110-5_BIB17) 1993; 9 de Leva (10.1016/S0021-9290(01)00110-5_BIB3) 1996; 29 Kendall (10.1016/S0021-9290(01)00110-5_BIB12) 1993 Hasan (10.1016/S0021-9290(01)00110-5_BIB8) 1986; 53 Hogan (10.1016/S0021-9290(01)00110-5_BIB9) 1984; AC-29 Prilutsky (10.1016/S0021-9290(01)00110-5_BIB22) 1994; 27 Zatsiorsky (10.1016/S0021-9290(01)00110-5_BIB31) 1983 Elliott (10.1016/S0021-9290(01)00110-5_BIB6) 1979; 11 van Ingen Schenau (10.1016/S0021-9290(01)00110-5_BIB29) 1992; 46 Biewener (10.1016/S0021-9290(01)00110-5_BIB1) 1999; 202 McKinley (10.1016/S0021-9290(01)00110-5_BIB13) 1992; 90 McNitt-Gray (10.1016/S0021-9290(01)00110-5_BIB15) 1993; 25 McNitt-Gray (10.1016/S0021-9290(01)00110-5_BIB16) 2000; 4 Ridderikhoff (10.1016/S0021-9290(01)00110-5_BIB23) 1999; 31 McNitt-Gray (10.1016/S0021-9290(01)00110-5_BIB14) 1992; 9 Miller (10.1016/S0021-9290(01)00110-5_BIB18) 1973 Elftman (10.1016/S0021-9290(01)00110-5_BIB5) 1939; 125 Bobbert (10.1016/S0021-9290(01)00110-5_BIB2) 1992; 25 Jackson (10.1016/S0021-9290(01)00110-5_BIB10) 1979; 26 Prilutsky (10.1016/S0021-9290(01)00110-5_BIB21) 2000; 4 DeVita (10.1016/S0021-9290(01)00110-5_BIB4) 1992; 24 Jacobs (10.1016/S0021-9290(01)00110-5_BIB11) 1992; 457 Sidaway (10.1016/S0021-9290(01)00110-5_BIB26) 1989; 1 Engelhorn (10.1016/S0021-9290(01)00110-5_BIB7) 1983; 54 Tuller (10.1016/S0021-9290(01)00110-5_BIB28) 1982 10.1016/S0021-9290(01)00110-5_BIB25 Tsirakos (10.1016/S0021-9290(01)00110-5_BIB27) 1997; 25 |
References_xml | – volume: 25 start-page: 223 year: 1992 end-page: 334 ident: BIB2 article-title: Mechanical analysis of the landing phase in heel-toe running publication-title: Journal of Biomechanics – reference: Schweitzer, L., 1985. FIG Gymnastics Equipment Testing Standards, International Federation de Gymnastique. – volume: 26 start-page: 122 year: 1979 end-page: 124 ident: BIB10 article-title: Fitting of mathematical functions to biomechanical data publication-title: IEEE Transaction on Biomedical Engineer – volume: 25 start-page: 371 year: 1997 end-page: 407 ident: BIB27 article-title: Inverse optimization publication-title: Critical Review in Biomedical Engineering – volume: 31 start-page: 1196 year: 1999 end-page: 1204 ident: BIB23 article-title: Jumping for distance publication-title: Medicine and Science in Sports and Exercise – year: 1993 ident: BIB12 publication-title: Muscle Testing and Function – volume: 54 start-page: 315 year: 1983 end-page: 323 ident: BIB7 article-title: Agonist and antogonist muscle EMG activity pattern changes with skill acquisition publication-title: Research Quarterly for Exercise and Sport – volume: 46 start-page: 197 year: 1992 end-page: 207 ident: BIB29 article-title: The constrained control of force and position in multi-joint movements publication-title: Neuroscience – volume: 202 start-page: 3387 year: 1999 end-page: 3396 ident: BIB1 article-title: Dynamics of muscle function during locomotion publication-title: Journal of Experimental Biology – volume: 457 start-page: 611 year: 1992 end-page: 626 ident: BIB11 article-title: Control of an external force in leg extensions in humans publication-title: Journal of Physiology (London) – start-page: 253 year: 1982 end-page: 270 ident: BIB28 article-title: The Bernstein Perspective publication-title: Human Motor Behavior – volume: 90 start-page: 427 year: 1992 end-page: 440 ident: BIB13 article-title: Motor strategies in landing from a jump publication-title: Experimental Brain Research – volume: 53 start-page: 373 year: 1986 end-page: 382 ident: BIB8 article-title: Optimized movement trajectories and joint stiffness in unperturbed, inertially loaded movements publication-title: Biological Cybernetics – volume: 9 start-page: 173 year: 1993 end-page: 190 ident: BIB17 article-title: Landing strategy adjustments made by female gymnasts in response to drop height and mat composition publication-title: Journal of Applied Biomechanics – volume: 29 start-page: 1223 year: 1996 end-page: 1230 ident: BIB3 article-title: Adjustments to Zatsiorsky–Seluyanovs segment inertia parameters publication-title: Journal of Biomechanics – volume: 1 start-page: 253 year: 1989 end-page: 264 ident: BIB26 article-title: Visual timing of muscle preactivation in preparation for landing publication-title: Ecological Psychology – volume: 4 start-page: 84 year: 2000 end-page: 88 ident: BIB16 article-title: Subject specific coordination of two- and one-joint muscles during landings suggests multiple control criteria publication-title: Motor Control – volume: 11 start-page: 323 year: 1979 end-page: 327 ident: BIB6 article-title: The synchronization of muscle activity and body segment movements during a running cycle publication-title: Medicine and Science in Sports and Exercise – year: 1973 ident: BIB18 publication-title: Biomechanics of Sport – volume: 125 start-page: 357 year: 1939 end-page: 366 ident: BIB5 article-title: The function of muscles in locomotion publication-title: American Journal of Physiology – volume: 4 start-page: 1 year: 2000 end-page: 44 ident: BIB21 article-title: Coordination of two- and one-joint muscles publication-title: Motor Control – volume: 24 start-page: 108 year: 1992 end-page: 115 ident: BIB4 article-title: Effect of landing stiffness on joint kinetics and energetics in the lower extremity publication-title: Medicine and Science in Sports and Exercise – volume: AC-29 start-page: 681 year: 1984 end-page: 690 ident: BIB9 article-title: Adaptive control of mechanical impedance by coactivation of antagonist muscles publication-title: IEEE Transactions on Automatic Control – volume: 9 start-page: 19 year: 1992 end-page: 25 ident: BIB14 article-title: Biomechanical factors contributing to successful landings publication-title: USGF Sports Science Publication – start-page: 247 year: 1983 end-page: 253 ident: BIB31 article-title: The mass and inertia characteristics of the main segments of the human body publication-title: Biomechanics VIII-B – volume: 25 start-page: 1037 year: 1993 end-page: 1046 ident: BIB15 article-title: Kinetics of the lower extremities during drop landings from three heights publication-title: Journal of Biomechanics – volume: 27 start-page: 25 year: 1994 end-page: 34 ident: BIB22 article-title: Tendon action of two-joint muscles publication-title: Journal of Biomechanics – volume: 29 start-page: 1223 year: 1996 ident: 10.1016/S0021-9290(01)00110-5_BIB3 article-title: Adjustments to Zatsiorsky–Seluyanovs segment inertia parameters publication-title: Journal of Biomechanics doi: 10.1016/0021-9290(95)00178-6 – volume: 54 start-page: 315 year: 1983 ident: 10.1016/S0021-9290(01)00110-5_BIB7 article-title: Agonist and antogonist muscle EMG activity pattern changes with skill acquisition publication-title: Research Quarterly for Exercise and Sport doi: 10.1080/02701367.1983.10605315 – volume: AC-29 start-page: 681 year: 1984 ident: 10.1016/S0021-9290(01)00110-5_BIB9 article-title: Adaptive control of mechanical impedance by coactivation of antagonist muscles publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.1984.1103644 – volume: 46 start-page: 197 year: 1992 ident: 10.1016/S0021-9290(01)00110-5_BIB29 article-title: The constrained control of force and position in multi-joint movements publication-title: Neuroscience doi: 10.1016/0306-4522(92)90019-X – volume: 202 start-page: 3387 year: 1999 ident: 10.1016/S0021-9290(01)00110-5_BIB1 article-title: Dynamics of muscle function during locomotion publication-title: Journal of Experimental Biology doi: 10.1242/jeb.202.23.3387 – volume: 125 start-page: 357 year: 1939 ident: 10.1016/S0021-9290(01)00110-5_BIB5 article-title: The function of muscles in locomotion publication-title: American Journal of Physiology doi: 10.1152/ajplegacy.1939.125.2.357 – volume: 9 start-page: 173 year: 1993 ident: 10.1016/S0021-9290(01)00110-5_BIB17 article-title: Landing strategy adjustments made by female gymnasts in response to drop height and mat composition publication-title: Journal of Applied Biomechanics doi: 10.1123/jab.9.3.173 – year: 1973 ident: 10.1016/S0021-9290(01)00110-5_BIB18 – start-page: 253 year: 1982 ident: 10.1016/S0021-9290(01)00110-5_BIB28 article-title: The Bernstein Perspective – volume: 31 start-page: 1196 year: 1999 ident: 10.1016/S0021-9290(01)00110-5_BIB23 article-title: Jumping for distance publication-title: Medicine and Science in Sports and Exercise doi: 10.1097/00005768-199908000-00018 – volume: 27 start-page: 25 year: 1994 ident: 10.1016/S0021-9290(01)00110-5_BIB22 article-title: Tendon action of two-joint muscles publication-title: Journal of Biomechanics doi: 10.1016/0021-9290(94)90029-9 – volume: 90 start-page: 427 year: 1992 ident: 10.1016/S0021-9290(01)00110-5_BIB13 article-title: Motor strategies in landing from a jump publication-title: Experimental Brain Research doi: 10.1007/BF00227257 – volume: 25 start-page: 223 year: 1992 ident: 10.1016/S0021-9290(01)00110-5_BIB2 article-title: Mechanical analysis of the landing phase in heel-toe running publication-title: Journal of Biomechanics doi: 10.1016/0021-9290(92)90022-S – volume: 4 start-page: 84 year: 2000 ident: 10.1016/S0021-9290(01)00110-5_BIB16 article-title: Subject specific coordination of two- and one-joint muscles during landings suggests multiple control criteria publication-title: Motor Control doi: 10.1123/mcj.4.1.84 – volume: 24 start-page: 108 year: 1992 ident: 10.1016/S0021-9290(01)00110-5_BIB4 article-title: Effect of landing stiffness on joint kinetics and energetics in the lower extremity publication-title: Medicine and Science in Sports and Exercise doi: 10.1249/00005768-199201000-00018 – volume: 457 start-page: 611 year: 1992 ident: 10.1016/S0021-9290(01)00110-5_BIB11 article-title: Control of an external force in leg extensions in humans publication-title: Journal of Physiology (London) doi: 10.1113/jphysiol.1992.sp019397 – volume: 1 start-page: 253 year: 1989 ident: 10.1016/S0021-9290(01)00110-5_BIB26 article-title: Visual timing of muscle preactivation in preparation for landing publication-title: Ecological Psychology doi: 10.1207/s15326969eco0103_2 – volume: 4 start-page: 1 year: 2000 ident: 10.1016/S0021-9290(01)00110-5_BIB21 article-title: Coordination of two- and one-joint muscles publication-title: Motor Control doi: 10.1123/mcj.4.1.1 – ident: 10.1016/S0021-9290(01)00110-5_BIB25 – volume: 25 start-page: 371 year: 1997 ident: 10.1016/S0021-9290(01)00110-5_BIB27 article-title: Inverse optimization publication-title: Critical Review in Biomedical Engineering doi: 10.1615/CritRevBiomedEng.v25.i4-5.20 – volume: 26 start-page: 122 year: 1979 ident: 10.1016/S0021-9290(01)00110-5_BIB10 article-title: Fitting of mathematical functions to biomechanical data publication-title: IEEE Transaction on Biomedical Engineer doi: 10.1109/TBME.1979.326551 – year: 1993 ident: 10.1016/S0021-9290(01)00110-5_BIB12 – volume: 9 start-page: 19 year: 1992 ident: 10.1016/S0021-9290(01)00110-5_BIB14 article-title: Biomechanical factors contributing to successful landings publication-title: USGF Sports Science Publication – volume: 25 start-page: 1037 year: 1993 ident: 10.1016/S0021-9290(01)00110-5_BIB15 article-title: Kinetics of the lower extremities during drop landings from three heights publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(05)80003-X – volume: 53 start-page: 373 year: 1986 ident: 10.1016/S0021-9290(01)00110-5_BIB8 article-title: Optimized movement trajectories and joint stiffness in unperturbed, inertially loaded movements publication-title: Biological Cybernetics doi: 10.1007/BF00318203 – start-page: 247 year: 1983 ident: 10.1016/S0021-9290(01)00110-5_BIB31 article-title: The mass and inertia characteristics of the main segments of the human body – volume: 11 start-page: 323 year: 1979 ident: 10.1016/S0021-9290(01)00110-5_BIB6 article-title: The synchronization of muscle activity and body segment movements during a running cycle publication-title: Medicine and Science in Sports and Exercise doi: 10.1249/00005768-197901140-00002 |
SSID | ssj0007479 |
Score | 2.071565 |
Snippet | The purpose of this study was to determine how diverse momentum conditions and anatomical orientation at contact influences mechanical loading and multijoint... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1471 |
SubjectTerms | Adult Biomechanical Phenomena Biomechanics Gymnastics - physiology Hip Joint - physiology Humans Joint kinetics Joints - physiology Knee Joint - physiology Landing Leg - physiology Male Movement - physiology Mulitjoint control Muscle, Skeletal - physiology Reaction force |
Title | Mechanical demand and multijoint control during landing depend on orientation of the body segments relative to the reaction force |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929001001105 https://dx.doi.org/10.1016/S0021-9290(01)00110-5 https://www.ncbi.nlm.nih.gov/pubmed/11672722 https://www.proquest.com/docview/72223853 https://www.proquest.com/docview/771509123 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71ISF6QLAFukDLHBCCQ9o4jpPscVW1WkDbE5V6i_xEi9qkalOkXpD454wdZxcOqyIOkaLEYzmZ8cxnez4b4J1TmeLaiERYT8kpJXUpl4lE0WDIFZI5Lv18x_ysmJ3nny_ExQYcD1wYn1YZfX_v04O3jk-O4t88ul4sPMeXels28aMaH8TEJmxnfFKQaW9PP32ZnS0dMiHmmOnBEi-wIvL0lYSHH1L2MdSTiHUhah0EDaHo9Ck8iRgSp30zn8GGbUawO21o_Hx1j-8xZHWG6fIR7Pyx4eAIHs3jUvou_JpbT_r1OkJjr2Rj0F8hwfB7u2g6jFns2DMZ8bInwGB_bC62DbY3i8hconuHBCVRteYeb-23QJzDnijzw2LXhrcEUAONAgkpa_sczk9Pvh7PkngeQ6IF4x0FM8_ZIsSSSW24lpqcZS4nuTScmUnBlPDLtIoLWaSm9EMxXjjpdKmMrlKp-QvYatrG7gEaMorSVTpVjuWGOyUlF1oVlRBFKdNqDPmgglrHzcr9mRmX9SorjTRXe83VKQuZeWktxnC4FLvud-t4SKAY9FsPVFRynjXFk4cEq6XgX_b6L6JvB0OqqS_7BRrZ2Pbuti49WCP8NAZcV6JkHuFlVORlb4Kr72RhUT179f8tew2PQ4pdoFq-ga3u5s7uE-bq1AFsHv5kB7Fn_QYnjSQp |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RKvVxqNqlj-2LOVRVewjEcZxkjwgVbVuWE0jcLD-rrSBBEJC4IPWfd-x42fawouohUpR4Iifj8XyOv88G-OB1obmxIhMuSHJqRSHlC5FpGgz5SjHPVfjfMTuopkflt2NxvAa7Cy1MoFWmvn_o02Nvna5sp6-5fTafB40vRVsxCaOakMTEPbhfUviG6Ny6WfI8CC8nngfLQvGljGd4RLz4KWef41MysSpBrQKgMRHtPYUnCUHizlDJZ7Dm2hFs7LQ0ej69xo8YOZ3xZ_kIHv-x3OAIHszSRPoG_Jq5IPkNHkLrTlVrMRyRXvizm7c9Jg47DjpGPBnkLzhsmotdi935POmW6NwjAUnUnb3GC_cjyuZwkMlcOey7eJfgaRRRIOFk457D0d6Xw91plnZjyIxgvKdUFhRbhFcKZSw3ytC3LtWkVJYzO6mYFmGSVnOhqtzWYSDGK6-8qbU1Ta4MfwHrbde6V4CWmkTtG5Nrz0rLvVaKC6OrRoiqVnkzhnLhAmnSUuVhx4wTueSkkedk8JzMWeTl5VKMYevW7GxYq-Mug2rhX7kQolLXKSmb3GXY3Br-1Vr_xXRz0ZAkRXKYnlGt6y4vZB2gGqGnMeCqEjUL-K6gIi-HJrh8Txan1IvX_1-zTXg4PZzty_2vB9_fwKNItouiy7ew3p9funeEvnr9PkbXb4KmJO0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+demand+and+multijoint+control+during+landing+depend+on+orientation+of+the+body+segments+relative+to+the+reaction+force&rft.jtitle=Journal+of+biomechanics&rft.au=McNitt-Gray%2C+J+L&rft.au=Hester%2C+D+M&rft.au=Mathiyakom%2C+W&rft.au=Munkasy+BA&rft.date=2001-11-01&rft.issn=0021-9290&rft.volume=34&rft.issue=11&rft_id=info:doi/10.1016%2FS0021-9290%2801%2900110-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon |