Mechanical demand and multijoint control during landing depend on orientation of the body segments relative to the reaction force

The purpose of this study was to determine how diverse momentum conditions and anatomical orientation at contact influences mechanical loading and multijoint control of the reaction force during landings. Male collegiate gymnasts ( n=6) performed competition style landings ( n=3) of drop jumps, fron...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 34; no. 11; pp. 1471 - 1482
Main Authors McNitt-Gray, J.L., Hester, D.M.E., Mathiyakom, W., Munkasy, B.A.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.11.2001
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The purpose of this study was to determine how diverse momentum conditions and anatomical orientation at contact influences mechanical loading and multijoint control of the reaction force during landings. Male collegiate gymnasts ( n=6) performed competition style landings ( n=3) of drop jumps, front saltos, and back saltos from a platform (0.72 m) onto landing mats (0.12 m). Kinematics (200 fps), reaction forces (800 Hz) and muscle activation patterns (surface EMG, 1600 Hz) of seven lower extremity muscles were collected simultaneously. Between-task differences in segment orientation relative to the reaction force contributed to significant between-task differences in knee and hip net joint moments (NJM) during the impact phase. During the stabilization phase, ankle, knee, and hip NJMs acted to control joint flexion. Between-task differences in muscle activation patterns indicated that gymnasts scaled biarticular muscle activation to accommodate for between-task differences in NJM after contact. Activation of muscles on both sides of the joint suggests that impedance like control was used to stabilize the joints and satisfy the mechanical demand imposed on the lower extremity. Between-subject differences in the set of muscles used to control total body center of mass (TBCM) trajectory and achieve lower extremity NJMs suggests that control of multijoint movements involving impact needs to incorporate mechanical objectives at both the total body and local level. The functional consequences of such a control structure may prove to be an asset to gymnasts, particularly when required to perform a variety of landing tasks under a variety of environmental constraints.
AbstractList The purpose of this study was to determine how diverse momentum conditions and anatomical orientation at contact influences mechanical loading and multijoint control of the reaction force during landings. Male collegiate gymnasts (n=6) performed competition style landings (n=3) of drop jumps, front saltos, and back saltos from a platform (0.72 m) onto landing mats (0.12 m). Kinematics (200 fps), reaction forces (800 Hz) and muscle activation patterns (surface EMG, 1600 Hz) of seven lower extremity muscles were collected simultaneously. Between-task differences in segment orientation relative to the reaction force contributed to significant between-task differences in knee and hip net joint moments (NJM) during the impact phase. During the stabilization phase, ankle, knee, and hip NJMs acted to control joint flexion. Between-task differences in muscle activation patterns indicated that gymnasts scaled biarticular muscle activation to accommodate for between-task differences in NJM after contact. Activation of muscles on both sides of the joint suggests that impedance like control was used to stabilize the joints and satisfy the mechanical demand imposed on the lower extremity. Between-subject differences in the set of muscles used to control total body center of mass (TBCM) trajectory and achieve lower extremity NJMs suggests that control of multijoint movements involving impact needs to incorporate mechanical objectives at both the total body and local level. The functional consequences of such a control structure may prove to be an asset to gymnasts, particularly when required to perform a variety of landing tasks under a variety of environmental constraints.The purpose of this study was to determine how diverse momentum conditions and anatomical orientation at contact influences mechanical loading and multijoint control of the reaction force during landings. Male collegiate gymnasts (n=6) performed competition style landings (n=3) of drop jumps, front saltos, and back saltos from a platform (0.72 m) onto landing mats (0.12 m). Kinematics (200 fps), reaction forces (800 Hz) and muscle activation patterns (surface EMG, 1600 Hz) of seven lower extremity muscles were collected simultaneously. Between-task differences in segment orientation relative to the reaction force contributed to significant between-task differences in knee and hip net joint moments (NJM) during the impact phase. During the stabilization phase, ankle, knee, and hip NJMs acted to control joint flexion. Between-task differences in muscle activation patterns indicated that gymnasts scaled biarticular muscle activation to accommodate for between-task differences in NJM after contact. Activation of muscles on both sides of the joint suggests that impedance like control was used to stabilize the joints and satisfy the mechanical demand imposed on the lower extremity. Between-subject differences in the set of muscles used to control total body center of mass (TBCM) trajectory and achieve lower extremity NJMs suggests that control of multijoint movements involving impact needs to incorporate mechanical objectives at both the total body and local level. The functional consequences of such a control structure may prove to be an asset to gymnasts, particularly when required to perform a variety of landing tasks under a variety of environmental constraints.
The purpose of this study was to determine how diverse momentum conditions and anatomical orientation at contact influences mechanical loading and multijoint control of the reaction force during landings. Male collegiate gymnasts ( n=6) performed competition style landings ( n=3) of drop jumps, front saltos, and back saltos from a platform (0.72 m) onto landing mats (0.12 m). Kinematics (200 fps), reaction forces (800 Hz) and muscle activation patterns (surface EMG, 1600 Hz) of seven lower extremity muscles were collected simultaneously. Between-task differences in segment orientation relative to the reaction force contributed to significant between-task differences in knee and hip net joint moments (NJM) during the impact phase. During the stabilization phase, ankle, knee, and hip NJMs acted to control joint flexion. Between-task differences in muscle activation patterns indicated that gymnasts scaled biarticular muscle activation to accommodate for between-task differences in NJM after contact. Activation of muscles on both sides of the joint suggests that impedance like control was used to stabilize the joints and satisfy the mechanical demand imposed on the lower extremity. Between-subject differences in the set of muscles used to control total body center of mass (TBCM) trajectory and achieve lower extremity NJMs suggests that control of multijoint movements involving impact needs to incorporate mechanical objectives at both the total body and local level. The functional consequences of such a control structure may prove to be an asset to gymnasts, particularly when required to perform a variety of landing tasks under a variety of environmental constraints.
The purpose of this study was to determine how diverse momentum conditions and anatomical orientation at contact influences mechanical loading and multijoint control of the reaction force during landings. Male collegiate gymnasts (n=6) performed competition style landings (n=3) of drop jumps, front saltos, and back saltos from a platform (0.72 m) onto landing mats (0.12 m). Kinematics (200 fps), reaction forces (800 Hz) and muscle activation patterns (surface EMG, 1600 Hz) of seven lower extremity muscles were collected simultaneously. Between-task differences in segment orientation relative to the reaction force contributed to significant between-task differences in knee and hip net joint moments (NJM) during the impact phase. During the stabilization phase, ankle, knee, and hip NJMs acted to control joint flexion. Between-task differences in muscle activation patterns indicated that gymnasts scaled biarticular muscle activation to accommodate for between-task differences in NJM after contact. Activation of muscles on both sides of the joint suggests that impedance like control was used to stabilize the joints and satisfy the mechanical demand imposed on the lower extremity. Between-subject differences in the set of muscles used to control total body center of mass (TBCM) trajectory and achieve lower extremity NJMs suggests that control of multijoint movements involving impact needs to incorporate mechanical objectives at both the total body and local level. The functional consequences of such a control structure may prove to be an asset to gymnasts, particularly when required to perform a variety of landing tasks under a variety of environmental constraints.
The purpose of this study was to determine how diverse momentum conditions and anatomical orientation at contact influences mechanical loading and multijoint control of the reaction force during landings. Male collegiate gymnasts (n = 6) performed competition style landings (n = 3) of drop jumps, front saltos, and back saltos from a platform (0.72m) onto landing mats (0.12 m). Kinematics (200 fps), reaction forces (800 Hz) and muscle activation patterns (surface EMG, 1600 Hz) of seven lower extremity muscles were collected simultaneously. Between-task differences in segment orientation relative to the reaction force contributed to significant between-task differences in knee and hip net joint moments (NJM) during the impact phase. During the stabilization phase, ankle, knee, and hip NJMs acted to control joint flexion. Between-task differences in muscle activation patterns indicated that gymnasts scaled biarticular muscle activation to accommodate for between-task differences in NJM after contact. Activation of muscles on both sides of the joint suggests that impedance like control was used to stabilize the joints and satisfy the mechanical demand imposed on the lower extremity. Between-subject differences in the set of muscles used to control total body center of mass (TBCM) trajectory and achieve lower extremity NJMs suggests that control of multijoint movements involving impact needs to incorporate mechanical objectives at both the total body and local level. The functional consequences of such a control structure may prove to be an asset to gymnasts, particularly when required to perform a variety of landing tasks under a variety of environmental constraints.
Author Munkasy, B.A.
McNitt-Gray, J.L.
Mathiyakom, W.
Hester, D.M.E.
Author_xml – sequence: 1
  givenname: J.L.
  surname: McNitt-Gray
  fullname: McNitt-Gray, J.L.
  email: mcnitt@usc.edu
  organization: Biomechanics Research Laboratory, Department of Kinesiology, University of Southern California, 3560 Watt Way, PED 107, Los Angeles, CA 90089-0652, USA
– sequence: 2
  givenname: D.M.E.
  surname: Hester
  fullname: Hester, D.M.E.
  organization: Biomechanics Research Laboratory, Department of Kinesiology, University of Southern California, 3560 Watt Way, PED 107, Los Angeles, CA 90089-0652, USA
– sequence: 3
  givenname: W.
  surname: Mathiyakom
  fullname: Mathiyakom, W.
  organization: Biomechanics Research Laboratory, Department of Kinesiology, University of Southern California, 3560 Watt Way, PED 107, Los Angeles, CA 90089-0652, USA
– sequence: 4
  givenname: B.A.
  surname: Munkasy
  fullname: Munkasy, B.A.
  organization: Georgia Southern University, Statesboro, GA 30458-8076, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11672722$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URKeFnwDyisci4Mc4ToQQQlV5SEUsgLXlub5pXZJ4sJ1Ks-Sf18mULrqgLCxbOt-5ls_xETkYw4iEPOXsNWe8fvOdMcGrVrTsJeOvGOOcVeoBWfFGy0rIhh2Q1S1ySI5SumSM6bVuH5FDzmsttBAr8ucrwoUdPdieOhzs6Oi8hqnP_jL4MVMIY46hqFP04zntizzvDrdYwDDSED2O2WY_nzuaL5BugtvRhOdDERKN2Bf1CmkOixrRwkJ3IQI-Jg872yd8crMfk58fT3-cfK7Ovn36cvLhrALFZa4aBqha1ayFBSfBgpLN2rZr6yR3bc03SjSs3khla-a0aDSXdWc70BsHDbMgj8mL_dxtDL8nTNkMPgH25UEYpmS05oq1XMhCPv83KUQJWM3gsxtw2gzozDb6wcad-RtvAd7uAYghpYidAb9PKkfre8OZmcs0S5lmbsowbpYyjSpudcd9e8E9vvd7H5Y4rzxGk6BUBOh8RMjGBX_vhHd3JkDvl0_yC3f_4b8G-ibKxA
CitedBy_id crossref_primary_10_1177_1754337114565381
crossref_primary_10_1123_jab_23_2_149
crossref_primary_10_1519_JSC_0b013e31820f50b6
crossref_primary_10_1097_BPO_0000000000000096
crossref_primary_10_3390_app13179934
crossref_primary_10_1016_j_clinbiomech_2004_08_005
crossref_primary_10_1016_j_ptsp_2017_03_002
crossref_primary_10_1080_02640414_2020_1757374
crossref_primary_10_1136_bjsports_2013_092952
crossref_primary_10_1249_JSR_0b013e31821b1442
crossref_primary_10_1007_s00422_006_0063_y
crossref_primary_10_5812_asjsm_34258
crossref_primary_10_1590_S1517_86922006000400004
crossref_primary_10_3390_biomechanics3010005
crossref_primary_10_1016_j_jbiomech_2016_12_017
crossref_primary_10_1080_17461391_2021_1976842
crossref_primary_10_1177_0363546511432544
crossref_primary_10_1016_j_gaitpost_2004_01_005
crossref_primary_10_1016_j_clinbiomech_2011_10_001
crossref_primary_10_1123_mc_2018_0050
crossref_primary_10_1016_j_jbiomech_2009_06_058
crossref_primary_10_1007_s00221_005_0150_7
crossref_primary_10_1519_SSC_0b013e31825ab4bb
crossref_primary_10_1519_SSC_0000000000000619
crossref_primary_10_1590_1807_55092016000100079
crossref_primary_10_1007_s00422_004_0473_7
crossref_primary_10_1177_0363546506294077
crossref_primary_10_3389_fbioe_2015_00171
crossref_primary_10_1249_MSS_0b013e318240d564
crossref_primary_10_4085_1062_6050_44_4_350
crossref_primary_10_1115_1_2947275
crossref_primary_10_1177_0363546519850165
crossref_primary_10_1177_19386400231208522
crossref_primary_10_1007_BF03262292
crossref_primary_10_3390_healthcare8040480
crossref_primary_10_1123_jab_28_6_677
crossref_primary_10_1519_JSC_0000000000004700
crossref_primary_10_1109_TRO_2024_3408005
crossref_primary_10_1016_j_ptsp_2019_07_004
crossref_primary_10_1080_14763140608522878
crossref_primary_10_1016_j_humov_2020_102634
crossref_primary_10_1016_j_jbiomech_2018_06_004
crossref_primary_10_1016_j_scispo_2019_03_011
crossref_primary_10_1016_j_jbiomech_2007_10_001
crossref_primary_10_1111_j_1439_0310_2007_01395_x
crossref_primary_10_1249_01_mss_0000175053_81453_aa
crossref_primary_10_1016_j_gaitpost_2006_07_001
crossref_primary_10_61186_JSportBiomech_8_3_266
crossref_primary_10_1016_j_knee_2017_12_005
crossref_primary_10_1007_s11332_021_00797_w
crossref_primary_10_7717_peerj_7914
crossref_primary_10_1123_jab_2017_0270
crossref_primary_10_1016_j_pmrj_2009_01_013
crossref_primary_10_1177_1747954120970310
crossref_primary_10_2519_jospt_2006_2013
crossref_primary_10_1123_jab_22_3_177
crossref_primary_10_1016_j_jelekin_2007_08_002
crossref_primary_10_1249_01_MSS_0000145467_79916_46
crossref_primary_10_1177_0363546516629419
crossref_primary_10_1016_j_jbiomech_2023_111666
crossref_primary_10_1016_j_magis_2016_10_001
crossref_primary_10_1080_14763141_2012_738699
crossref_primary_10_1088_1748_3190_aa806e
crossref_primary_10_1093_ptj_85_8_750
crossref_primary_10_1519_JSC_0b013e31828ddf19
crossref_primary_10_1123_jab_29_3_253
crossref_primary_10_1080_02640410601129615
crossref_primary_10_5103_KJSB_2011_21_4_437
crossref_primary_10_1098_rspb_2011_0382
crossref_primary_10_1136_bjsm_2009_068098
crossref_primary_10_3390_app11010130
crossref_primary_10_1249_mss_0b013e3181343629
crossref_primary_10_2519_jospt_2003_33_8_A_1
crossref_primary_10_2519_jospt_2019_8248
crossref_primary_10_4085_1062_6050_48_4_09
crossref_primary_10_3390_jfmk8010010
crossref_primary_10_1123_jsr_14_1_58
crossref_primary_10_1080_14763141_2011_650186
crossref_primary_10_1152_japplphysiol_01316_2007
crossref_primary_10_1016_j_jbmt_2006_03_003
crossref_primary_10_1038_s41598_023_38435_9
crossref_primary_10_5103_KJSB_2012_22_3_325
crossref_primary_10_1007_s00167_018_4893_7
crossref_primary_10_1016_j_scispo_2020_05_006
crossref_primary_10_3390_ijerph21070947
crossref_primary_10_1016_j_clinbiomech_2006_05_001
crossref_primary_10_4085_1062_6050_45_5_445
crossref_primary_10_3951_sobim_38_269
crossref_primary_10_3390_app14093661
crossref_primary_10_1080_14763141_2015_1029514
crossref_primary_10_1186_1758_2555_4_4
crossref_primary_10_1007_BF02933569
crossref_primary_10_1123_jab_26_2_159
crossref_primary_10_1080_02640414_2018_1523034
crossref_primary_10_3390_biomechanics4040050
crossref_primary_10_4085_1062_6050_43_2_164
crossref_primary_10_1177_0031512517717853
crossref_primary_10_1016_j_humov_2022_103035
crossref_primary_10_1080_00222895_2019_1664976
crossref_primary_10_1016_j_jelekin_2013_04_012
crossref_primary_10_1016_j_ptsp_2014_06_003
crossref_primary_10_1152_japplphysiol_90776_2008
crossref_primary_10_1016_j_jbiomech_2005_02_022
crossref_primary_10_1016_j_jelekin_2011_11_001
crossref_primary_10_1519_SSC_0b013e31822236ad
crossref_primary_10_1080_14763141_2024_2369206
crossref_primary_10_1016_j_clinbiomech_2025_106463
Cites_doi 10.1016/0021-9290(95)00178-6
10.1080/02701367.1983.10605315
10.1109/TAC.1984.1103644
10.1016/0306-4522(92)90019-X
10.1242/jeb.202.23.3387
10.1152/ajplegacy.1939.125.2.357
10.1123/jab.9.3.173
10.1097/00005768-199908000-00018
10.1016/0021-9290(94)90029-9
10.1007/BF00227257
10.1016/0021-9290(92)90022-S
10.1123/mcj.4.1.84
10.1249/00005768-199201000-00018
10.1113/jphysiol.1992.sp019397
10.1207/s15326969eco0103_2
10.1123/mcj.4.1.1
10.1615/CritRevBiomedEng.v25.i4-5.20
10.1109/TBME.1979.326551
10.1016/S0021-9290(05)80003-X
10.1007/BF00318203
10.1249/00005768-197901140-00002
ContentType Journal Article
Copyright 2001 Elsevier Science Ltd
Copyright_xml – notice: 2001 Elsevier Science Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/S0021-9290(01)00110-5
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
EndPage 1482
ExternalDocumentID 11672722
10_1016_S0021_9290_01_00110_5
S0021929001001105
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBD
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HEE
HMCUK
HMK
HMO
HVGLF
HZ~
H~9
I-F
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
ML~
MO0
MVM
N9A
O-L
O9-
OAUVE
OH.
OHT
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
VH1
WUQ
X7M
XOL
XPP
YQT
Z5R
ZGI
ZMT
~G-
3V.
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFFDN
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
EFLBG
F3I
LCYCR
RIG
YCJ
AAYXX
AGRNS
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
ID FETCH-LOGICAL-c513t-80ce595842acd3cac5384a94ad31d961b52806b35a60d7287136fafc7bdc80ac3
IEDL.DBID AIKHN
ISSN 0021-9290
IngestDate Thu Jul 10 19:01:49 EDT 2025
Fri Jul 11 01:00:46 EDT 2025
Wed Feb 19 02:34:10 EST 2025
Tue Jul 01 02:43:43 EDT 2025
Thu Apr 24 23:08:09 EDT 2025
Fri Feb 23 02:18:17 EST 2024
Tue Aug 26 16:38:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Biomechanics
Joint kinetics
Landing
Mulitjoint control
Reaction force
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c513t-80ce595842acd3cac5384a94ad31d961b52806b35a60d7287136fafc7bdc80ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 11672722
PQID 72223853
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_771509123
proquest_miscellaneous_72223853
pubmed_primary_11672722
crossref_citationtrail_10_1016_S0021_9290_01_00110_5
crossref_primary_10_1016_S0021_9290_01_00110_5
elsevier_sciencedirect_doi_10_1016_S0021_9290_01_00110_5
elsevier_clinicalkey_doi_10_1016_S0021_9290_01_00110_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2001-11-01
PublicationDateYYYYMMDD 2001-11-01
PublicationDate_xml – month: 11
  year: 2001
  text: 2001-11-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2001
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Miller, Nelson (BIB18) 1973
McNitt-Gray (BIB16) 2000; 4
Schweitzer, L., 1985. FIG Gymnastics Equipment Testing Standards, International Federation de Gymnastique.
Tsirakos, Baltzopoulos, Bartlett (BIB27) 1997; 25
Biewener, Gillis (BIB1) 1999; 202
McNitt-Gray (BIB14) 1992; 9
Hogan (BIB9) 1984; AC-29
Elliott, Blanksby (BIB6) 1979; 11
Hasan (BIB8) 1986; 53
Zatsiorsky, Seluyanov (BIB31) 1983
Bobbert, Yeadon, Nigg (BIB2) 1992; 25
Jacobs, van Ingen Schenau (BIB11) 1992; 457
Sidaway, McNitt-Gray, Davis (BIB26) 1989; 1
Prilutsky (BIB21) 2000; 4
Jackson (BIB10) 1979; 26
Ridderikhoff, Batelaan, Bobbert (BIB23) 1999; 31
Tuller, Turvey, Fitch (BIB28) 1982
Engelhorn (BIB7) 1983; 54
Prilutsky, Zatsiorsky (BIB22) 1994; 27
DeVita, Skelly (BIB4) 1992; 24
Elftman (BIB5) 1939; 125
de Leva (BIB3) 1996; 29
van Ingen Schenau, Boots, de Groot, Snackers, van Woensel (BIB29) 1992; 46
McNitt-Gray (BIB15) 1993; 25
Kendall, McCreary, Provance (BIB12) 1993
McKinley, Pedotti (BIB13) 1992; 90
McNitt-Gray, Yokoi, Millward (BIB17) 1993; 9
McNitt-Gray (10.1016/S0021-9290(01)00110-5_BIB17) 1993; 9
de Leva (10.1016/S0021-9290(01)00110-5_BIB3) 1996; 29
Kendall (10.1016/S0021-9290(01)00110-5_BIB12) 1993
Hasan (10.1016/S0021-9290(01)00110-5_BIB8) 1986; 53
Hogan (10.1016/S0021-9290(01)00110-5_BIB9) 1984; AC-29
Prilutsky (10.1016/S0021-9290(01)00110-5_BIB22) 1994; 27
Zatsiorsky (10.1016/S0021-9290(01)00110-5_BIB31) 1983
Elliott (10.1016/S0021-9290(01)00110-5_BIB6) 1979; 11
van Ingen Schenau (10.1016/S0021-9290(01)00110-5_BIB29) 1992; 46
Biewener (10.1016/S0021-9290(01)00110-5_BIB1) 1999; 202
McKinley (10.1016/S0021-9290(01)00110-5_BIB13) 1992; 90
McNitt-Gray (10.1016/S0021-9290(01)00110-5_BIB15) 1993; 25
McNitt-Gray (10.1016/S0021-9290(01)00110-5_BIB16) 2000; 4
Ridderikhoff (10.1016/S0021-9290(01)00110-5_BIB23) 1999; 31
McNitt-Gray (10.1016/S0021-9290(01)00110-5_BIB14) 1992; 9
Miller (10.1016/S0021-9290(01)00110-5_BIB18) 1973
Elftman (10.1016/S0021-9290(01)00110-5_BIB5) 1939; 125
Bobbert (10.1016/S0021-9290(01)00110-5_BIB2) 1992; 25
Jackson (10.1016/S0021-9290(01)00110-5_BIB10) 1979; 26
Prilutsky (10.1016/S0021-9290(01)00110-5_BIB21) 2000; 4
DeVita (10.1016/S0021-9290(01)00110-5_BIB4) 1992; 24
Jacobs (10.1016/S0021-9290(01)00110-5_BIB11) 1992; 457
Sidaway (10.1016/S0021-9290(01)00110-5_BIB26) 1989; 1
Engelhorn (10.1016/S0021-9290(01)00110-5_BIB7) 1983; 54
Tuller (10.1016/S0021-9290(01)00110-5_BIB28) 1982
10.1016/S0021-9290(01)00110-5_BIB25
Tsirakos (10.1016/S0021-9290(01)00110-5_BIB27) 1997; 25
References_xml – volume: 25
  start-page: 223
  year: 1992
  end-page: 334
  ident: BIB2
  article-title: Mechanical analysis of the landing phase in heel-toe running
  publication-title: Journal of Biomechanics
– reference: Schweitzer, L., 1985. FIG Gymnastics Equipment Testing Standards, International Federation de Gymnastique.
– volume: 26
  start-page: 122
  year: 1979
  end-page: 124
  ident: BIB10
  article-title: Fitting of mathematical functions to biomechanical data
  publication-title: IEEE Transaction on Biomedical Engineer
– volume: 25
  start-page: 371
  year: 1997
  end-page: 407
  ident: BIB27
  article-title: Inverse optimization
  publication-title: Critical Review in Biomedical Engineering
– volume: 31
  start-page: 1196
  year: 1999
  end-page: 1204
  ident: BIB23
  article-title: Jumping for distance
  publication-title: Medicine and Science in Sports and Exercise
– year: 1993
  ident: BIB12
  publication-title: Muscle Testing and Function
– volume: 54
  start-page: 315
  year: 1983
  end-page: 323
  ident: BIB7
  article-title: Agonist and antogonist muscle EMG activity pattern changes with skill acquisition
  publication-title: Research Quarterly for Exercise and Sport
– volume: 46
  start-page: 197
  year: 1992
  end-page: 207
  ident: BIB29
  article-title: The constrained control of force and position in multi-joint movements
  publication-title: Neuroscience
– volume: 202
  start-page: 3387
  year: 1999
  end-page: 3396
  ident: BIB1
  article-title: Dynamics of muscle function during locomotion
  publication-title: Journal of Experimental Biology
– volume: 457
  start-page: 611
  year: 1992
  end-page: 626
  ident: BIB11
  article-title: Control of an external force in leg extensions in humans
  publication-title: Journal of Physiology (London)
– start-page: 253
  year: 1982
  end-page: 270
  ident: BIB28
  article-title: The Bernstein Perspective
  publication-title: Human Motor Behavior
– volume: 90
  start-page: 427
  year: 1992
  end-page: 440
  ident: BIB13
  article-title: Motor strategies in landing from a jump
  publication-title: Experimental Brain Research
– volume: 53
  start-page: 373
  year: 1986
  end-page: 382
  ident: BIB8
  article-title: Optimized movement trajectories and joint stiffness in unperturbed, inertially loaded movements
  publication-title: Biological Cybernetics
– volume: 9
  start-page: 173
  year: 1993
  end-page: 190
  ident: BIB17
  article-title: Landing strategy adjustments made by female gymnasts in response to drop height and mat composition
  publication-title: Journal of Applied Biomechanics
– volume: 29
  start-page: 1223
  year: 1996
  end-page: 1230
  ident: BIB3
  article-title: Adjustments to Zatsiorsky–Seluyanovs segment inertia parameters
  publication-title: Journal of Biomechanics
– volume: 1
  start-page: 253
  year: 1989
  end-page: 264
  ident: BIB26
  article-title: Visual timing of muscle preactivation in preparation for landing
  publication-title: Ecological Psychology
– volume: 4
  start-page: 84
  year: 2000
  end-page: 88
  ident: BIB16
  article-title: Subject specific coordination of two- and one-joint muscles during landings suggests multiple control criteria
  publication-title: Motor Control
– volume: 11
  start-page: 323
  year: 1979
  end-page: 327
  ident: BIB6
  article-title: The synchronization of muscle activity and body segment movements during a running cycle
  publication-title: Medicine and Science in Sports and Exercise
– year: 1973
  ident: BIB18
  publication-title: Biomechanics of Sport
– volume: 125
  start-page: 357
  year: 1939
  end-page: 366
  ident: BIB5
  article-title: The function of muscles in locomotion
  publication-title: American Journal of Physiology
– volume: 4
  start-page: 1
  year: 2000
  end-page: 44
  ident: BIB21
  article-title: Coordination of two- and one-joint muscles
  publication-title: Motor Control
– volume: 24
  start-page: 108
  year: 1992
  end-page: 115
  ident: BIB4
  article-title: Effect of landing stiffness on joint kinetics and energetics in the lower extremity
  publication-title: Medicine and Science in Sports and Exercise
– volume: AC-29
  start-page: 681
  year: 1984
  end-page: 690
  ident: BIB9
  article-title: Adaptive control of mechanical impedance by coactivation of antagonist muscles
  publication-title: IEEE Transactions on Automatic Control
– volume: 9
  start-page: 19
  year: 1992
  end-page: 25
  ident: BIB14
  article-title: Biomechanical factors contributing to successful landings
  publication-title: USGF Sports Science Publication
– start-page: 247
  year: 1983
  end-page: 253
  ident: BIB31
  article-title: The mass and inertia characteristics of the main segments of the human body
  publication-title: Biomechanics VIII-B
– volume: 25
  start-page: 1037
  year: 1993
  end-page: 1046
  ident: BIB15
  article-title: Kinetics of the lower extremities during drop landings from three heights
  publication-title: Journal of Biomechanics
– volume: 27
  start-page: 25
  year: 1994
  end-page: 34
  ident: BIB22
  article-title: Tendon action of two-joint muscles
  publication-title: Journal of Biomechanics
– volume: 29
  start-page: 1223
  year: 1996
  ident: 10.1016/S0021-9290(01)00110-5_BIB3
  article-title: Adjustments to Zatsiorsky–Seluyanovs segment inertia parameters
  publication-title: Journal of Biomechanics
  doi: 10.1016/0021-9290(95)00178-6
– volume: 54
  start-page: 315
  year: 1983
  ident: 10.1016/S0021-9290(01)00110-5_BIB7
  article-title: Agonist and antogonist muscle EMG activity pattern changes with skill acquisition
  publication-title: Research Quarterly for Exercise and Sport
  doi: 10.1080/02701367.1983.10605315
– volume: AC-29
  start-page: 681
  year: 1984
  ident: 10.1016/S0021-9290(01)00110-5_BIB9
  article-title: Adaptive control of mechanical impedance by coactivation of antagonist muscles
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.1984.1103644
– volume: 46
  start-page: 197
  year: 1992
  ident: 10.1016/S0021-9290(01)00110-5_BIB29
  article-title: The constrained control of force and position in multi-joint movements
  publication-title: Neuroscience
  doi: 10.1016/0306-4522(92)90019-X
– volume: 202
  start-page: 3387
  year: 1999
  ident: 10.1016/S0021-9290(01)00110-5_BIB1
  article-title: Dynamics of muscle function during locomotion
  publication-title: Journal of Experimental Biology
  doi: 10.1242/jeb.202.23.3387
– volume: 125
  start-page: 357
  year: 1939
  ident: 10.1016/S0021-9290(01)00110-5_BIB5
  article-title: The function of muscles in locomotion
  publication-title: American Journal of Physiology
  doi: 10.1152/ajplegacy.1939.125.2.357
– volume: 9
  start-page: 173
  year: 1993
  ident: 10.1016/S0021-9290(01)00110-5_BIB17
  article-title: Landing strategy adjustments made by female gymnasts in response to drop height and mat composition
  publication-title: Journal of Applied Biomechanics
  doi: 10.1123/jab.9.3.173
– year: 1973
  ident: 10.1016/S0021-9290(01)00110-5_BIB18
– start-page: 253
  year: 1982
  ident: 10.1016/S0021-9290(01)00110-5_BIB28
  article-title: The Bernstein Perspective
– volume: 31
  start-page: 1196
  year: 1999
  ident: 10.1016/S0021-9290(01)00110-5_BIB23
  article-title: Jumping for distance
  publication-title: Medicine and Science in Sports and Exercise
  doi: 10.1097/00005768-199908000-00018
– volume: 27
  start-page: 25
  year: 1994
  ident: 10.1016/S0021-9290(01)00110-5_BIB22
  article-title: Tendon action of two-joint muscles
  publication-title: Journal of Biomechanics
  doi: 10.1016/0021-9290(94)90029-9
– volume: 90
  start-page: 427
  year: 1992
  ident: 10.1016/S0021-9290(01)00110-5_BIB13
  article-title: Motor strategies in landing from a jump
  publication-title: Experimental Brain Research
  doi: 10.1007/BF00227257
– volume: 25
  start-page: 223
  year: 1992
  ident: 10.1016/S0021-9290(01)00110-5_BIB2
  article-title: Mechanical analysis of the landing phase in heel-toe running
  publication-title: Journal of Biomechanics
  doi: 10.1016/0021-9290(92)90022-S
– volume: 4
  start-page: 84
  year: 2000
  ident: 10.1016/S0021-9290(01)00110-5_BIB16
  article-title: Subject specific coordination of two- and one-joint muscles during landings suggests multiple control criteria
  publication-title: Motor Control
  doi: 10.1123/mcj.4.1.84
– volume: 24
  start-page: 108
  year: 1992
  ident: 10.1016/S0021-9290(01)00110-5_BIB4
  article-title: Effect of landing stiffness on joint kinetics and energetics in the lower extremity
  publication-title: Medicine and Science in Sports and Exercise
  doi: 10.1249/00005768-199201000-00018
– volume: 457
  start-page: 611
  year: 1992
  ident: 10.1016/S0021-9290(01)00110-5_BIB11
  article-title: Control of an external force in leg extensions in humans
  publication-title: Journal of Physiology (London)
  doi: 10.1113/jphysiol.1992.sp019397
– volume: 1
  start-page: 253
  year: 1989
  ident: 10.1016/S0021-9290(01)00110-5_BIB26
  article-title: Visual timing of muscle preactivation in preparation for landing
  publication-title: Ecological Psychology
  doi: 10.1207/s15326969eco0103_2
– volume: 4
  start-page: 1
  year: 2000
  ident: 10.1016/S0021-9290(01)00110-5_BIB21
  article-title: Coordination of two- and one-joint muscles
  publication-title: Motor Control
  doi: 10.1123/mcj.4.1.1
– ident: 10.1016/S0021-9290(01)00110-5_BIB25
– volume: 25
  start-page: 371
  year: 1997
  ident: 10.1016/S0021-9290(01)00110-5_BIB27
  article-title: Inverse optimization
  publication-title: Critical Review in Biomedical Engineering
  doi: 10.1615/CritRevBiomedEng.v25.i4-5.20
– volume: 26
  start-page: 122
  year: 1979
  ident: 10.1016/S0021-9290(01)00110-5_BIB10
  article-title: Fitting of mathematical functions to biomechanical data
  publication-title: IEEE Transaction on Biomedical Engineer
  doi: 10.1109/TBME.1979.326551
– year: 1993
  ident: 10.1016/S0021-9290(01)00110-5_BIB12
– volume: 9
  start-page: 19
  year: 1992
  ident: 10.1016/S0021-9290(01)00110-5_BIB14
  article-title: Biomechanical factors contributing to successful landings
  publication-title: USGF Sports Science Publication
– volume: 25
  start-page: 1037
  year: 1993
  ident: 10.1016/S0021-9290(01)00110-5_BIB15
  article-title: Kinetics of the lower extremities during drop landings from three heights
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(05)80003-X
– volume: 53
  start-page: 373
  year: 1986
  ident: 10.1016/S0021-9290(01)00110-5_BIB8
  article-title: Optimized movement trajectories and joint stiffness in unperturbed, inertially loaded movements
  publication-title: Biological Cybernetics
  doi: 10.1007/BF00318203
– start-page: 247
  year: 1983
  ident: 10.1016/S0021-9290(01)00110-5_BIB31
  article-title: The mass and inertia characteristics of the main segments of the human body
– volume: 11
  start-page: 323
  year: 1979
  ident: 10.1016/S0021-9290(01)00110-5_BIB6
  article-title: The synchronization of muscle activity and body segment movements during a running cycle
  publication-title: Medicine and Science in Sports and Exercise
  doi: 10.1249/00005768-197901140-00002
SSID ssj0007479
Score 2.071565
Snippet The purpose of this study was to determine how diverse momentum conditions and anatomical orientation at contact influences mechanical loading and multijoint...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1471
SubjectTerms Adult
Biomechanical Phenomena
Biomechanics
Gymnastics - physiology
Hip Joint - physiology
Humans
Joint kinetics
Joints - physiology
Knee Joint - physiology
Landing
Leg - physiology
Male
Movement - physiology
Mulitjoint control
Muscle, Skeletal - physiology
Reaction force
Title Mechanical demand and multijoint control during landing depend on orientation of the body segments relative to the reaction force
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929001001105
https://dx.doi.org/10.1016/S0021-9290(01)00110-5
https://www.ncbi.nlm.nih.gov/pubmed/11672722
https://www.proquest.com/docview/72223853
https://www.proquest.com/docview/771509123
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71ISF6QLAFukDLHBCCQ9o4jpPscVW1WkDbE5V6i_xEi9qkalOkXpD454wdZxcOqyIOkaLEYzmZ8cxnez4b4J1TmeLaiERYT8kpJXUpl4lE0WDIFZI5Lv18x_ysmJ3nny_ExQYcD1wYn1YZfX_v04O3jk-O4t88ul4sPMeXels28aMaH8TEJmxnfFKQaW9PP32ZnS0dMiHmmOnBEi-wIvL0lYSHH1L2MdSTiHUhah0EDaHo9Ck8iRgSp30zn8GGbUawO21o_Hx1j-8xZHWG6fIR7Pyx4eAIHs3jUvou_JpbT_r1OkJjr2Rj0F8hwfB7u2g6jFns2DMZ8bInwGB_bC62DbY3i8hconuHBCVRteYeb-23QJzDnijzw2LXhrcEUAONAgkpa_sczk9Pvh7PkngeQ6IF4x0FM8_ZIsSSSW24lpqcZS4nuTScmUnBlPDLtIoLWaSm9EMxXjjpdKmMrlKp-QvYatrG7gEaMorSVTpVjuWGOyUlF1oVlRBFKdNqDPmgglrHzcr9mRmX9SorjTRXe83VKQuZeWktxnC4FLvud-t4SKAY9FsPVFRynjXFk4cEq6XgX_b6L6JvB0OqqS_7BRrZ2Pbuti49WCP8NAZcV6JkHuFlVORlb4Kr72RhUT179f8tew2PQ4pdoFq-ga3u5s7uE-bq1AFsHv5kB7Fn_QYnjSQp
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RKvVxqNqlj-2LOVRVewjEcZxkjwgVbVuWE0jcLD-rrSBBEJC4IPWfd-x42fawouohUpR4Iifj8XyOv88G-OB1obmxIhMuSHJqRSHlC5FpGgz5SjHPVfjfMTuopkflt2NxvAa7Cy1MoFWmvn_o02Nvna5sp6-5fTafB40vRVsxCaOakMTEPbhfUviG6Ny6WfI8CC8nngfLQvGljGd4RLz4KWef41MysSpBrQKgMRHtPYUnCUHizlDJZ7Dm2hFs7LQ0ej69xo8YOZ3xZ_kIHv-x3OAIHszSRPoG_Jq5IPkNHkLrTlVrMRyRXvizm7c9Jg47DjpGPBnkLzhsmotdi935POmW6NwjAUnUnb3GC_cjyuZwkMlcOey7eJfgaRRRIOFk457D0d6Xw91plnZjyIxgvKdUFhRbhFcKZSw3ytC3LtWkVJYzO6mYFmGSVnOhqtzWYSDGK6-8qbU1Ta4MfwHrbde6V4CWmkTtG5Nrz0rLvVaKC6OrRoiqVnkzhnLhAmnSUuVhx4wTueSkkedk8JzMWeTl5VKMYevW7GxYq-Mug2rhX7kQolLXKSmb3GXY3Br-1Vr_xXRz0ZAkRXKYnlGt6y4vZB2gGqGnMeCqEjUL-K6gIi-HJrh8Txan1IvX_1-zTXg4PZzty_2vB9_fwKNItouiy7ew3p9funeEvnr9PkbXb4KmJO0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+demand+and+multijoint+control+during+landing+depend+on+orientation+of+the+body+segments+relative+to+the+reaction+force&rft.jtitle=Journal+of+biomechanics&rft.au=McNitt-Gray%2C+J+L&rft.au=Hester%2C+D+M&rft.au=Mathiyakom%2C+W&rft.au=Munkasy+BA&rft.date=2001-11-01&rft.issn=0021-9290&rft.volume=34&rft.issue=11&rft_id=info:doi/10.1016%2FS0021-9290%2801%2900110-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon