Cytochrome P450 and O-methyltransferase catalyze the final steps in the biosynthesis of the anti-addictive alkaloid ibogaine from Tabernanthe iboga

Monoterpenoid indole alkaloids are a large (∼3000 members) and structurally diverse class of metabolites restricted to a limited number of plant families in the order Gentianales. Tabernanthe iboga or iboga (Apocynaceae) is native to western equatorial Africa and has been used in traditional medicin...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 293; no. 36; pp. 13821 - 13833
Main Authors Farrow, Scott C., Kamileen, Mohamed O., Meades, Jessica, Ameyaw, Belinda, Xiao, Youli, O'Connor, Sarah E.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 07.09.2018
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Monoterpenoid indole alkaloids are a large (∼3000 members) and structurally diverse class of metabolites restricted to a limited number of plant families in the order Gentianales. Tabernanthe iboga or iboga (Apocynaceae) is native to western equatorial Africa and has been used in traditional medicine for centuries. Howard Lotsof is credited with bringing iboga to the attention of Western medicine through his accidental discovery that iboga can alleviate opioid withdrawal symptoms. Since this observation, iboga has been investigated for its use in the general management of addiction. We were interested in elucidating ibogaine biosynthesis to understand the unique reaction steps en route to ibogaine. Furthermore, because ibogaine is currently sourced from plant material, these studies may help improve the ibogaine supply chain through synthetic biology approaches. Here, we used next-generation sequencing to generate the first iboga transcriptome and leveraged homology-guided gene discovery to identify the penultimate hydroxylase and final O-methyltransferase steps in ibogaine biosynthesis, herein named ibogamine 10-hydroxylase (I10H) and noribogaine-10-O-methyltransferase (N10OMT). Heterologous expression in Saccharomyces cerevisiae (I10H) or Escherichia coli (N10OMT) and incubation with putative precursors, along with HPLC–MS analysis, confirmed the predicted activities of both enzymes. Moreover, high expression levels of their transcripts were detected in ibogaine-accumulating plant tissues. These discoveries coupled with our publicly available iboga transcriptome will contribute to additional gene discovery efforts and could lead to the stabilization of the global ibogaine supply chain and to the development of ibogaine as a treatment for addiction.
Bibliography:Supported by the CAS-BBSRC alliance.
Supported by European Molecular Biology Organization (EMBO) Long-term Fellowship ALTF 846-2016.
Edited by F. Peter Guengerich
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.RA118.004060