Overview of accelerated aging and polymer degradation kinetics for combined radiation-thermal environments

Polymer aging under combined radiation-thermal oxidative conditions is intrinsically more convoluted than traditional thermal degradation. Accelerated aging methods for predictive purposes have to include thermal as well as radiative degradation pathways that initially may be regarded as independent...

Full description

Saved in:
Bibliographic Details
Published inPolymer degradation and stability Vol. 166; no. C; pp. 353 - 378
Main Authors Celina, Mathew, Linde, Erik, Brunson, Douglas, Quintana, Adam, Giron, Nicholas
Format Journal Article
LanguageEnglish
Published London Elsevier Ltd 01.08.2019
Elsevier BV
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polymer aging under combined radiation-thermal oxidative conditions is intrinsically more convoluted than traditional thermal degradation. Accelerated aging methods for predictive purposes have to include thermal as well as radiative degradation pathways that initially may be regarded as independent parallel processes without additional synergism. Material aging is therefore represented as the sum of a thermal and radiative contribution. Data from accelerated aging may be available as dose to equivalent damage (DED) or degradation rates, yet they require different analytical approaches to yield the underlying temperature dependence and its activation energy. Further, kinetic models that embrace combined pathways can offer guidance for extrapolation of accelerated to ambient conditions, enabling the prediction of material aging behavior or remaining performance margins for requalification purposes. The existing theoretical approaches, their implications and an alternative option for globally fitting experimental data sets to kinetic aging models for combined environments are reviewed. This overview offers a pragmatic approach towards an expanded interpretation of oxidation rate and aging data properties for combined environments, all the way to time-dependence for rates and synergistic contributions. Further evidence is provided that for some material behaviors an additional Ea for the radiative term under high dose rate conditions could be beneficial, as similarly expressed by increases in a synergistic interaction parameter. Improved kinetic aging models are derived and applied to a comprehensive set of experimental oxidation rates for a chlorosulfonated polyethylene material. Emphasized is also the issue that initial oxidation rates versus superposition of oxidation levels (integrated rates) may result in slightly different thermal Ea values through added time dependency. Constant oxidation rates relate to an exponential decay in elongation at break data. Aging predictions can be improved through measured oxidation rates, a systematic understanding of material behavior over a large dose rate - temperature regime, and application of an appropriate aging model. The most general aging model will contain a radiative Ea, time-dependence of rate, and added synergism that may grow with temperature. [Display omitted]
AbstractList Polymer aging under combined radiation-thermal oxidative conditions is intrinsically more convoluted than traditional thermal degradation. Accelerated aging methods for predictive purposes have to include thermal as well as radiative degradation pathways that initially may be regarded as independent parallel processes without additional synergism. Material aging is therefore represented as the sum of a thermal and radiative contribution. Data from accelerated aging may be available as dose to equivalent damage (DED) or degradation rates, yet they require different analytical approaches to yield the underlying temperature dependence and its activation energy. Further, kinetic models that embrace combined pathways can offer guidance for extrapolation of accelerated to ambient conditions, enabling the prediction of material aging behavior or remaining performance margins for requalification purposes. The existing theoretical approaches, their implications and an alternative option for globally fitting experimental data sets to kinetic aging models for combined environments are reviewed. This overview offers a pragmatic approach towards an expanded interpretation of oxidation rate and aging data properties for combined environments, all the way to time-dependence for rates and synergistic contributions. Further evidence is provided that for some material behaviors an additional Ea for the radiative term under high dose rate conditions could be beneficial, as similarly expressed by increases in a synergistic interaction parameter. Improved kinetic aging models are derived and applied to a comprehensive set of experimental oxidation rates for a chlorosulfonated polyethylene material. Emphasized is also the issue that initial oxidation rates versus superposition of oxidation levels (integrated rates) may result in slightly different thermal Ea values through added time dependency. Constant oxidation rates relate to an exponential decay in elongation at break data. Aging predictions can be improved through measured oxidation rates, a systematic understanding of material behavior over a large dose rate - temperature regime, and application of an appropriate aging model. The most general aging model will contain a radiative Ea, time-dependence of rate, and added synergism that may grow with temperature.
Polymer aging under combined radiation-thermal oxidative conditions is intrinsically more convoluted than traditional thermal degradation. Accelerated aging methods for predictive purposes have to include thermal as well as radiative degradation pathways that initially may be regarded as independent parallel processes without additional synergism. Material aging is therefore represented as the sum of a thermal and radiative contribution. Data from accelerated aging may be available as dose to equivalent damage (DED) or degradation rates, yet they require different analytical approaches to yield the underlying temperature dependence and its activation energy. Further, kinetic models that embrace combined pathways can offer guidance for extrapolation of accelerated to ambient conditions, enabling the prediction of material aging behavior or remaining performance margins for requalification purposes. The existing theoretical approaches, their implications and an alternative option for globally fitting experimental data sets to kinetic aging models for combined environments are reviewed. This overview offers a pragmatic approach towards an expanded interpretation of oxidation rate and aging data properties for combined environments, all the way to time-dependence for rates and synergistic contributions. Further evidence is provided that for some material behaviors an additional Ea for the radiative term under high dose rate conditions could be beneficial, as similarly expressed by increases in a synergistic interaction parameter. Improved kinetic aging models are derived and applied to a comprehensive set of experimental oxidation rates for a chlorosulfonated polyethylene material. Emphasized is also the issue that initial oxidation rates versus superposition of oxidation levels (integrated rates) may result in slightly different thermal Ea values through added time dependency. Constant oxidation rates relate to an exponential decay in elongation at break data. Aging predictions can be improved through measured oxidation rates, a systematic understanding of material behavior over a large dose rate - temperature regime, and application of an appropriate aging model. The most general aging model will contain a radiative Ea, time-dependence of rate, and added synergism that may grow with temperature. [Display omitted]
Author Giron, Nicholas
Linde, Erik
Celina, Mathew
Quintana, Adam
Brunson, Douglas
Author_xml – sequence: 1
  givenname: Mathew
  surname: Celina
  fullname: Celina, Mathew
  email: mccelin@sandia.gov
– sequence: 2
  givenname: Erik
  surname: Linde
  fullname: Linde, Erik
– sequence: 3
  givenname: Douglas
  surname: Brunson
  fullname: Brunson, Douglas
– sequence: 4
  givenname: Adam
  surname: Quintana
  fullname: Quintana, Adam
– sequence: 5
  givenname: Nicholas
  surname: Giron
  fullname: Giron, Nicholas
BackLink https://www.osti.gov/biblio/1776353$$D View this record in Osti.gov
BookMark eNqNkU9v1DAQxSNUJLaF72CBkLgkePLPyYEDWkFbqVIvcLYm9mTrkNiL7d2q3x7vhtOe6otlzW_e-M27zq6ss5Rln4EXwKH9OhV7N78smnYedYg4FCWHvuBtwbl4k22gE1VeViVcZRsONeRVD_xddh3CxNOpG9hk0-OR_NHQM3MjQ6VoJo-RNMOdsTuGVrPzEPJsnYPROMv-GEvRqMBG55lyy5DemqWyOdfz-ER-wZmRPRrv7EI2hvfZ2xHnQB_-3zfZ758_fm3v8ofH2_vt94dcNVDFvKEakIZh0DgMXc9hGHviPSJwrGisuQIUbd1QB70qsS47QKjGRmgqUQtd3WQfV10XopFBmUjqSTlrSUUJQrRVUyXoywrtvft7oBDlYkJyP6MldwiyLLu2ayqoRUI_XaCTO3ibLCRK9KJva9En6ttKKe9C8DTKvTcL-hcJXJ7ikpO8iEue4pK8lSmu1L-96E8fPy8zejTzq1VuVxVKC06x-pN_soq08Sf72plXKv0DZxnDgw
CitedBy_id crossref_primary_10_1016_j_polymdegradstab_2021_109810
crossref_primary_10_1016_j_triboint_2022_107890
crossref_primary_10_1007_s11356_023_28736_x
crossref_primary_10_1016_j_jhazmat_2024_135793
crossref_primary_10_3390_polym14122357
crossref_primary_10_1021_acssuschemeng_3c06321
crossref_primary_10_31436_iiumej_v23i1_1693
crossref_primary_10_1016_j_biotechadv_2022_107991
crossref_primary_10_1021_acsomega_4c06241
crossref_primary_10_1016_j_envc_2025_101080
crossref_primary_10_1002_macp_202400227
crossref_primary_10_1021_acs_jctc_2c00582
crossref_primary_10_1016_j_mtchem_2023_101417
crossref_primary_10_1016_j_ijhydene_2021_12_198
crossref_primary_10_1016_j_porgcoat_2024_108281
crossref_primary_10_1016_j_polymdegradstab_2024_110772
crossref_primary_10_3390_polym16233400
crossref_primary_10_1007_s40430_021_02810_2
crossref_primary_10_1177_0967033521999115
crossref_primary_10_1002_slct_202402278
crossref_primary_10_1016_j_heliyon_2023_e17431
crossref_primary_10_1021_acsami_1c19609
crossref_primary_10_1038_s41529_023_00351_8
crossref_primary_10_1016_j_radphyschem_2022_110446
crossref_primary_10_1016_j_apsoil_2022_104486
crossref_primary_10_1016_j_ndteint_2023_102896
crossref_primary_10_1016_j_polymer_2024_127722
crossref_primary_10_1016_j_ssc_2021_114577
crossref_primary_10_1016_j_jiec_2023_11_043
crossref_primary_10_1016_j_polymdegradstab_2021_109643
crossref_primary_10_1016_j_mtsust_2023_100657
crossref_primary_10_1016_j_watres_2021_117407
crossref_primary_10_1002_ldr_5103
crossref_primary_10_1016_j_radphyschem_2024_111784
crossref_primary_10_1016_j_polymdegradstab_2022_110167
crossref_primary_10_1016_j_polymdegradstab_2024_110886
crossref_primary_10_1007_s00419_024_02746_8
crossref_primary_10_1016_j_porgcoat_2024_108271
crossref_primary_10_1016_j_envpol_2020_114864
crossref_primary_10_1016_j_radphyschem_2023_111166
crossref_primary_10_1002_app_56769
crossref_primary_10_3390_polym14020226
crossref_primary_10_1016_j_polymdegradstab_2024_110902
crossref_primary_10_3390_polym14173606
crossref_primary_10_1016_j_jhazmat_2021_126455
crossref_primary_10_1007_s11665_022_07561_2
crossref_primary_10_1021_acsami_1c10765
crossref_primary_10_1016_j_conbuildmat_2022_127140
crossref_primary_10_1016_j_polymdegradstab_2021_109794
crossref_primary_10_1016_j_polymdegradstab_2022_109873
crossref_primary_10_3390_en13030650
crossref_primary_10_3390_jcs9010047
crossref_primary_10_3390_polym13183125
crossref_primary_10_1021_acs_jctc_4c00333
crossref_primary_10_1038_s41529_022_00299_1
crossref_primary_10_3390_ma13092056
crossref_primary_10_1016_j_polymdegradstab_2024_110950
crossref_primary_10_1007_s10973_022_11366_9
crossref_primary_10_3390_polym12010123
crossref_primary_10_1002_pc_25605
crossref_primary_10_1016_j_mechmat_2020_103639
crossref_primary_10_1016_j_colsurfa_2021_126412
crossref_primary_10_1016_j_ijsolstr_2022_111800
crossref_primary_10_1109_TDEI_2024_3408800
crossref_primary_10_1080_14686996_2025_2467617
crossref_primary_10_3390_polym14132709
crossref_primary_10_1080_10643389_2023_2279894
crossref_primary_10_3390_molecules28062491
crossref_primary_10_1557_s43578_021_00455_4
crossref_primary_10_1016_j_jhazmat_2023_132636
crossref_primary_10_3389_fnuen_2023_1287370
crossref_primary_10_3390_polym16050689
Cites_doi 10.1016/j.radphyschem.2009.08.019
10.5254/1.3547646
10.1016/j.polymdegradstab.2016.05.024
10.1002/pol.1985.170231011
10.1002/pol.1981.170190816
10.1016/j.polymdegradstab.2004.01.018
10.5254/1.3547590
10.1016/S0141-3910(99)00183-4
10.1016/S0032-3861(96)00716-1
10.1016/j.polymdegradstab.2016.06.014
10.1016/j.solmat.2010.08.033
10.1109/TDEI.2012.6311526
10.5254/1.3547613
10.1016/0969-806X(93)90026-Q
10.1016/j.polymdegradstab.2004.09.004
10.1016/S0969-806X(96)00185-5
10.1016/0969-806X(96)00083-7
10.1016/j.radphyschem.2012.08.009
10.1016/0141-3910(95)00053-O
10.1016/j.polymer.2018.08.024
10.1016/j.radphyschem.2012.09.008
10.1016/j.polymdegradstab.2008.02.009
10.1016/j.polymdegradstab.2005.09.011
10.1016/j.radphyschem.2010.07.045
10.1016/j.polymdegradstab.2004.11.020
10.1016/S0141-3910(97)00113-4
10.1016/j.polymdegradstab.2007.12.013
10.1016/j.polymer.2013.04.042
10.1016/0141-3910(89)90108-0
10.1016/j.nimb.2005.03.259
10.1109/TDEI.2015.004880
10.1016/S0141-3910(97)00142-0
10.1016/j.nimb.2007.08.051
10.1109/TDEI.2013.6678859
10.1109/TDEI.2013.004177
10.1016/j.radphyschem.2012.06.011
10.1016/j.polymdegradstab.2017.11.014
10.1016/j.polymdegradstab.2005.09.002
10.1016/j.polymdegradstab.2004.06.010
10.5254/rct.18.81679
10.5254/rct.14.85930
10.13182/NT82-A33037
10.1016/j.polymer.2005.09.069
10.1016/j.polymdegradstab.2013.06.024
10.1016/0141-3910(95)00137-B
10.1016/S0141-3910(00)00112-9
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Aug 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 2019
DBID AAYXX
CITATION
7SR
8FD
JG9
7S9
L.6
OTOTI
DOI 10.1016/j.polymdegradstab.2019.06.007
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-2321
EndPage 378
ExternalDocumentID 1776353
10_1016_j_polymdegradstab_2019_06_007
S0141391019302101
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSK
SSM
SSZ
T5K
WH7
WUQ
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
8FD
EFKBS
JG9
7S9
L.6
AALMO
AAPBV
ABPIF
OTOTI
ID FETCH-LOGICAL-c513t-5e41aebbbdabb8901bf9e09aa10a3ef40c1a7645e819c2a4281a13f57de2ad7d3
IEDL.DBID .~1
ISSN 0141-3910
IngestDate Thu May 18 22:31:25 EDT 2023
Fri Jul 11 01:37:02 EDT 2025
Sun Jul 13 04:50:23 EDT 2025
Thu Apr 24 23:10:55 EDT 2025
Tue Jul 01 02:29:49 EDT 2025
Fri Feb 23 02:32:32 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Radiation-thermal oxidative degradation
Cable insulation performance under combined environments
Accelerated polymer aging
Predictive kinetic models
Aging model evaluation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c513t-5e41aebbbdabb8901bf9e09aa10a3ef40c1a7645e819c2a4281a13f57de2ad7d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
OpenAccessLink https://www.osti.gov/biblio/1776353
PQID 2279796479
PQPubID 2045418
PageCount 26
ParticipantIDs osti_scitechconnect_1776353
proquest_miscellaneous_2286853147
proquest_journals_2279796479
crossref_primary_10_1016_j_polymdegradstab_2019_06_007
crossref_citationtrail_10_1016_j_polymdegradstab_2019_06_007
elsevier_sciencedirect_doi_10_1016_j_polymdegradstab_2019_06_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: United Kingdom
PublicationTitle Polymer degradation and stability
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
– name: Elsevier
References Gillen, Bernstein, Derzon (bib68) 2005; 87
Celina, Graham, Gillen, Assink, Minier (bib35) 2000; 73
Gillen, Assink, Bernstein (bib41) 2004; 84
Celina, George (bib31) 1995; 48
Celina, Gillen, Clough (bib33) 1998; 61
Celina, Wise, Ottesen, Gillen, Clough (bib34) 1998; 60
(bib66) 2014
Yamamoto, Minakawa (bib9) 2009
Shimada, Sugimoto, Kudoh, Tamura, Seguchi (bib22) 2013; 20
Quintana, Celina (bib45) 2018; 149
Gillen, Terrill, Winter (bib40) 2001; 74
Gillen, Clough (bib2) 1991
Gillen (bib71) 2019
Ito (bib53) 2009
Verdu (bib15) 2012
Clough, Gillen (bib47) 1981; 19
(bib10) 2014
Khelidj, Colin, Audouin, Verdu (bib58) 2005; 236
Gillen, Clough (bib1) 1989; 24
Celina (bib13) 2013; 98
Gillen, Bernstein, Celina (bib67) 2005; 87
Seguchi, Tamura, Shimada, Sugimoto, Kudoh (bib12) 2012; 81
(bib65) 1996
Pickett, Gibson, Gardner (bib43) 2008; 93
Gillen, Clough (bib3) 1993; 41
Ito (bib51) 1981; 17
Gillen, Celina, Keenan (bib17) 2000; 73
Chapiro (bib26) 1962
Celina, Gillen, Lindgren (bib6) 2013
(bib25) 2000
Burnay (bib49) 1991
Assink, Celina, Skutnik, Harris (bib59) 2005; 46
Gillen, Bernstein, Celina (bib14) 2015; 88
Gillen, Celina (bib39) 2000; 71
Rudd (bib64) 1990
Woods, Pikaev (bib28) 1994
Gillen, Assink, Bernstein (bib5) 2005
Pickett, Gibson, Rice, Gardner (bib42) 2008; 93
Clough, Gillen (bib48) 1982; 59
Wise, Gillen, Clough (bib37) 1995; 49
Wise, Gillen, Clough (bib4) 1997; 49
Audouin, Colin, Fayolle, Richaud, Verdu (bib19) 2012
Ito (bib52) 1988; 31
Khelidj, Colin, Audouin, Verdu, Monchy-Leroy, Prunier (bib57) 2006; 91
Celina, Wise, Ottesen, Gillen, Clough (bib36) 2000; 68
Celina, Redline, Bernstein, Giron, Quintana, White (bib7) 2014
Wise, Gillen, Clough (bib38) 1997; 38
Haillant (bib44) 2011; 95
Le Gac, Celina, Roux, Verdu, Davies, Fayolle (bib69) 2016; 130
Colin, Richaud, Verdu, Monchy-Leroy (bib55) 2010; 79
(bib29) 1972
Ito (bib50) 1981; 18
Shimada, Sugimoto, Kudoh, Tamura, Seguchi (bib21) 2012; 19
Gillen, Bernstein (bib18) 2010
Shimada, Sugimoto, Kudoh, Tamura, Seguchi (bib23) 2014; 21
Djouani, Zahra, Fayolle, Kuntz, Verdu (bib56) 2013; 82
Burnay, Dawson (bib63) 2001
Ito (bib54) 2007; 265
Linde, Giron, Celina (bib46) 2018; 153
Gillen, Clough (bib8) 1985; 23
Gillen, Celina (bib16) 2018; 91
Celina, Gillen, Wise, Clough (bib32) 1996; 48
Celina, Dayile, Quintana (bib60) 2013; 54
Makhlis (bib27) 1975
Gijsman, Dong, Quintana, Celina (bib70) 2016; 130
Sugimoto, Shimada, Kudoh, Tamura, Seguchi (bib20) 2013; 82
Seguchi, Tamura, Ohshima, Shimada, Kudoh (bib11) 2010; 80
(bib30) 1973
Seguchi, Tamura, Kudoh, Shimada, Sugimoto (bib24) 2015; 22
Bernstein, Derzon, Gillen (bib62) 2005; 88
Gillen, Assink, Bernstein, Celina (bib61) 2006; 91
Khelidj (10.1016/j.polymdegradstab.2019.06.007_bib58) 2005; 236
Burnay (10.1016/j.polymdegradstab.2019.06.007_bib49) 1991
Shimada (10.1016/j.polymdegradstab.2019.06.007_bib21) 2012; 19
Khelidj (10.1016/j.polymdegradstab.2019.06.007_bib57) 2006; 91
Gillen (10.1016/j.polymdegradstab.2019.06.007_bib3) 1993; 41
Sugimoto (10.1016/j.polymdegradstab.2019.06.007_bib20) 2013; 82
Wise (10.1016/j.polymdegradstab.2019.06.007_bib38) 1997; 38
(10.1016/j.polymdegradstab.2019.06.007_bib10) 2014
Verdu (10.1016/j.polymdegradstab.2019.06.007_bib15) 2012
Audouin (10.1016/j.polymdegradstab.2019.06.007_bib19) 2012
Celina (10.1016/j.polymdegradstab.2019.06.007_bib33) 1998; 61
Gillen (10.1016/j.polymdegradstab.2019.06.007_bib67) 2005; 87
Yamamoto (10.1016/j.polymdegradstab.2019.06.007_bib9) 2009
Clough (10.1016/j.polymdegradstab.2019.06.007_bib48) 1982; 59
Seguchi (10.1016/j.polymdegradstab.2019.06.007_bib11) 2010; 80
Makhlis (10.1016/j.polymdegradstab.2019.06.007_bib27) 1975
Djouani (10.1016/j.polymdegradstab.2019.06.007_bib56) 2013; 82
Gillen (10.1016/j.polymdegradstab.2019.06.007_bib8) 1985; 23
Gillen (10.1016/j.polymdegradstab.2019.06.007_bib14) 2015; 88
Haillant (10.1016/j.polymdegradstab.2019.06.007_bib44) 2011; 95
Seguchi (10.1016/j.polymdegradstab.2019.06.007_bib12) 2012; 81
Celina (10.1016/j.polymdegradstab.2019.06.007_bib35) 2000; 73
Ito (10.1016/j.polymdegradstab.2019.06.007_bib54) 2007; 265
Celina (10.1016/j.polymdegradstab.2019.06.007_bib36) 2000; 68
Chapiro (10.1016/j.polymdegradstab.2019.06.007_bib26) 1962
(10.1016/j.polymdegradstab.2019.06.007_bib25) 2000
Linde (10.1016/j.polymdegradstab.2019.06.007_bib46) 2018; 153
Rudd (10.1016/j.polymdegradstab.2019.06.007_bib64) 1990
Ito (10.1016/j.polymdegradstab.2019.06.007_bib52) 1988; 31
Wise (10.1016/j.polymdegradstab.2019.06.007_bib4) 1997; 49
Gillen (10.1016/j.polymdegradstab.2019.06.007_bib16) 2018; 91
Ito (10.1016/j.polymdegradstab.2019.06.007_bib50) 1981; 18
Gillen (10.1016/j.polymdegradstab.2019.06.007_bib68) 2005; 87
Celina (10.1016/j.polymdegradstab.2019.06.007_bib7) 2014
Pickett (10.1016/j.polymdegradstab.2019.06.007_bib43) 2008; 93
(10.1016/j.polymdegradstab.2019.06.007_bib65) 1996
Le Gac (10.1016/j.polymdegradstab.2019.06.007_bib69) 2016; 130
Gillen (10.1016/j.polymdegradstab.2019.06.007_bib18) 2010
Gillen (10.1016/j.polymdegradstab.2019.06.007_bib39) 2000; 71
Colin (10.1016/j.polymdegradstab.2019.06.007_bib55) 2010; 79
Gillen (10.1016/j.polymdegradstab.2019.06.007_bib71) 2019
Ito (10.1016/j.polymdegradstab.2019.06.007_bib53) 2009
Gillen (10.1016/j.polymdegradstab.2019.06.007_bib5) 2005
Celina (10.1016/j.polymdegradstab.2019.06.007_bib31) 1995; 48
Pickett (10.1016/j.polymdegradstab.2019.06.007_bib42) 2008; 93
Gillen (10.1016/j.polymdegradstab.2019.06.007_bib2) 1991
Gillen (10.1016/j.polymdegradstab.2019.06.007_bib1) 1989; 24
Gillen (10.1016/j.polymdegradstab.2019.06.007_bib17) 2000; 73
Shimada (10.1016/j.polymdegradstab.2019.06.007_bib23) 2014; 21
(10.1016/j.polymdegradstab.2019.06.007_bib29) 1972
Gillen (10.1016/j.polymdegradstab.2019.06.007_bib61) 2006; 91
Burnay (10.1016/j.polymdegradstab.2019.06.007_bib63) 2001
Celina (10.1016/j.polymdegradstab.2019.06.007_bib13) 2013; 98
Woods (10.1016/j.polymdegradstab.2019.06.007_bib28) 1994
Bernstein (10.1016/j.polymdegradstab.2019.06.007_bib62) 2005; 88
Assink (10.1016/j.polymdegradstab.2019.06.007_bib59) 2005; 46
Seguchi (10.1016/j.polymdegradstab.2019.06.007_bib24) 2015; 22
Shimada (10.1016/j.polymdegradstab.2019.06.007_bib22) 2013; 20
Clough (10.1016/j.polymdegradstab.2019.06.007_bib47) 1981; 19
Celina (10.1016/j.polymdegradstab.2019.06.007_bib32) 1996; 48
(10.1016/j.polymdegradstab.2019.06.007_bib30) 1973
Celina (10.1016/j.polymdegradstab.2019.06.007_bib6) 2013
Wise (10.1016/j.polymdegradstab.2019.06.007_bib37) 1995; 49
Ito (10.1016/j.polymdegradstab.2019.06.007_bib51) 1981; 17
Gillen (10.1016/j.polymdegradstab.2019.06.007_bib40) 2001; 74
(10.1016/j.polymdegradstab.2019.06.007_bib66) 2014
Celina (10.1016/j.polymdegradstab.2019.06.007_bib34) 1998; 60
Quintana (10.1016/j.polymdegradstab.2019.06.007_bib45) 2018; 149
Gillen (10.1016/j.polymdegradstab.2019.06.007_bib41) 2004; 84
Celina (10.1016/j.polymdegradstab.2019.06.007_bib60) 2013; 54
Gijsman (10.1016/j.polymdegradstab.2019.06.007_bib70) 2016; 130
References_xml – volume: 41
  start-page: 803
  year: 1993
  ident: bib3
  article-title: Predictive aging results in radiation environments
  publication-title: Radiat. Phys. Chem.
– year: 2009
  ident: bib9
  article-title: The Final Report of the Project of "Assessment of Cable Aging for Nuclear Power Plants
– volume: 265
  start-page: 227
  year: 2007
  ident: bib54
  article-title: Degradation of elastomer by heat and/or radiation
  publication-title: Nucl. Instrum. Methods Phys. Res. B
– year: 2014
  ident: bib10
  publication-title: Expanded Materials Degradation Assessment (EMDA) Volume 5: Aging of Cables and Cable Systems
– year: 2010
  ident: bib18
  article-title: Review of Nuclear Power Plant Safety Cable Aging Studies with Recommendations for Improved Approaches and for Future Work
– volume: 24
  start-page: 137
  year: 1989
  ident: bib1
  article-title: Time-temperature-dose rate superposition: a methodology for extrapolating accelerated radiation aging data to low dose rate conditions
  publication-title: Polym. Degrad. Stabil.
– volume: 130
  start-page: 348
  year: 2016
  ident: bib69
  article-title: Predictive ageing of elastomers: oxidation driven modulus changes for polychloroprene
  publication-title: Polym. Degrad. Stabil.
– volume: 23
  start-page: 2683
  year: 1985
  ident: bib8
  article-title: A kinetic model for predicting oxidative degradation rates in combined radiation-thermal environments
  publication-title: J. Polym. Sci. Polym. Chem. Ed.
– volume: 87
  start-page: 335
  year: 2005
  ident: bib67
  article-title: Non-Arrhenius behavior for oxidative degradation of chlorosulfonated polyethylene materials
  publication-title: Polym. Degrad. Stabil.
– year: 1975
  ident: bib27
  article-title: Radiation Physics and Chemistry of Polymers
– volume: 17
  start-page: 203
  year: 1981
  ident: bib51
  article-title: Application of chemorheology to radiation damage of polymers—III: synergism of heat and radiation on the chemorheology of ethylene-propylene rubber
  publication-title: Radiat. Phys. Chem.
– year: 1996
  ident: bib65
  article-title: Determination of long-term radiation ageing in polymers- Part 2: Procedures for predicting ageing at low dose rates
  publication-title: Int. Electrotech. Comm.
– year: 2019
  ident: bib71
  article-title: Importance of synergism for combined radiation plus temperature environments
  publication-title: Rubber Chem. Technol.
– volume: 20
  start-page: 2107
  year: 2013
  ident: bib22
  article-title: Degradation distribution in insulation materials of cables by accelerated thermal and radiation ageing
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 31
  start-page: 615
  year: 1988
  ident: bib52
  article-title: Application of chemorheology to radiation damage of elastomer
  publication-title: Int. J. Radiat. Appl. Instrum. C Radiat. Phys. Chem.
– year: 2013
  ident: bib6
  article-title: Nuclear Power Plant Cable Materials: Review of Qualification and Currently Available Aging Data for Margin Assessments in Cable Performance
– volume: 49
  start-page: 403
  year: 1995
  ident: bib37
  article-title: An ultrasensitive technique for testing the Arrhenius extrapolation assumption for thermally aged elastomers
  publication-title: Polym. Degrad. Stabil.
– year: 1994
  ident: bib28
  article-title: Applied Radiation Chemistry Radiation Processing
– volume: 87
  start-page: 57
  year: 2005
  ident: bib68
  article-title: Evidence of non-Arrhenius behavior from laboratory aging and 24-year field aging of polychloroprene rubber materials
  publication-title: Polym. Degrad. Stabil.
– year: 2000
  ident: bib25
  publication-title: Assessment and Management of Ageing of Major Nuclear Power Plant Components Important to Safety: In-Containment Instrumentation and Control Cables
– volume: 91
  start-page: 27
  year: 2018
  ident: bib16
  article-title: Predicting polymer degradation and mechanical property changes for combined radiation-thermal aging environments
  publication-title: Rubber Chem. Technol.
– volume: 59
  start-page: 344
  year: 1982
  ident: bib48
  article-title: Investigation of cable deterioration inside reactor containment
  publication-title: Nucl. Technol.
– volume: 236
  start-page: 88
  year: 2005
  ident: bib58
  article-title: A simplified approach for the lifetime prediction of PE in nuclear environments
  publication-title: Nucl. Instrum. Methods Phys. Res. B
– volume: 19
  start-page: 2041
  year: 1981
  ident: bib47
  article-title: Combined environment aging effects: radiation-thermal degradation of poly(vinyl chloride) and polyethylene
  publication-title: J. Polym. Sci. Polym. Chem. Ed.
– start-page: SAND2005
  year: 2005
  end-page: 7331
  ident: bib5
  article-title: Nuclear Energy Plant Optimization (NEPO): Final Report on Aging and Condition Monitoring of Low-Voltage Cable Materials
– year: 1973
  ident: bib30
  publication-title: The Radiation Chemistry of Macromolecules II
– volume: 19
  start-page: 1768
  year: 2012
  ident: bib21
  article-title: Radiation ageing technique for cable life evaluation of nuclear power plant
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 91
  start-page: 1273
  year: 2006
  ident: bib61
  article-title: Condition monitoring methods applied to degradation of chlorosulfonated polyethylene cable jacketing materials
  publication-title: Polym. Degrad. Stabil.
– volume: 98
  start-page: 2419
  year: 2013
  ident: bib13
  article-title: Review of polymer oxidation and its relationship with materials performance and lifetime prediction
  publication-title: Polym. Degrad. Stabil.
– year: 1990
  ident: bib64
  article-title: Time Temperature Dose Rate Superposition Behavior in Irradiated Polymers
– year: 2012
  ident: bib15
  article-title: Oxidative Ageing of Polymers
– volume: 18
  start-page: 653
  year: 1981
  ident: bib50
  article-title: Chemorheology of rubber under heat and radiation
  publication-title: Radiat. Phys. Chem.
– volume: 93
  start-page: 1597
  year: 2008
  ident: bib43
  article-title: Effects of irradiation conditions on the weathering of engineering thermoplastics
  publication-title: Polym. Degrad. Stabil.
– volume: 49
  start-page: 565
  year: 1997
  ident: bib4
  article-title: Time development of diffusion-limited oxidation profiles in a radiation environment
  publication-title: Radiat. Phys. Chem.
– volume: 48
  start-page: 297
  year: 1995
  ident: bib31
  article-title: Characterization and degradation studies of peroxide and silane crosslinked polyethylene
  publication-title: Polym. Degrad. Stabil.
– year: 2014
  ident: bib7
  article-title: Summary Report of Cable Aging and Performance Data for Fiscal Year 2014
– volume: 74
  start-page: 428
  year: 2001
  ident: bib40
  article-title: Modulus mapping of rubbers using micro- and nano-indentation techniques
  publication-title: Rubber Chem. Technol.
– volume: 130
  start-page: 83
  year: 2016
  ident: bib70
  article-title: Influence of temperature and stabilization on oxygen diffusion limited oxidation profiles of polyamide 6
  publication-title: Polym. Degrad. Stabil.
– volume: 68
  start-page: 171
  year: 2000
  ident: bib36
  article-title: Correlation of chemical and mechanical property changes during oxidative degradation of neoprene
  publication-title: Polym. Degrad. Stabil.
– volume: 21
  start-page: 16
  year: 2014
  ident: bib23
  article-title: Degradation mechanisms of silicone rubber (SiR) by accelerated ageing for cables of nuclear power plant
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– year: 2014
  ident: bib66
  article-title: Determination of long-term radiation ageing in polymers – Part 2: Procedures for predicting ageing at low dose rates
  publication-title: Int. Electrotech. Comm.
– volume: 82
  start-page: 69
  year: 2013
  ident: bib20
  article-title: Product analysis for polyethylene degradation by radiation and thermal ageing
  publication-title: Radiat. Phys. Chem.
– volume: 79
  start-page: 365
  year: 2010
  ident: bib55
  article-title: Kinetic modelling of radiochemical aging of ethylene-propylene copolymers
  publication-title: Radiat. Phys. Chem.
– volume: 88
  start-page: 1
  year: 2015
  ident: bib14
  article-title: Challenges of accelerated aging techniques for elastomer lifetime predictions
  publication-title: Rubber Chem. Technol.
– volume: 54
  start-page: 3290
  year: 2013
  ident: bib60
  article-title: A perspective on the inherent oxidation sensitivity of epoxy materials
  publication-title: Polymer
– year: 1972
  ident: bib29
  publication-title: The Radiation Chemistry of Macromolecules I
– volume: 91
  start-page: 1593
  year: 2006
  ident: bib57
  article-title: Oxidation of polyethylene under irradiation at low temperature and low dose rate. Part I. The case of "pure" radiochemical initiation
  publication-title: Polym. Degrad. Stabil.
– volume: 153
  start-page: 653
  year: 2018
  ident: bib46
  article-title: Water diffusion with temperature enabling predictions for sorption and transport behavior in thermoset materials
  publication-title: Polymer
– volume: 22
  start-page: 3197
  year: 2015
  ident: bib24
  article-title: Degradation of cable insulation material by accelerated thermal radiation combined ageing
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– volume: 48
  start-page: 613
  year: 1996
  ident: bib32
  article-title: Anomalous aging phenomena in a crosslinked polyolefin cable insulation
  publication-title: Radiat. Phys. Chem.
– volume: 38
  start-page: 1929
  year: 1997
  ident: bib38
  article-title: Quantitative model for the time development of diffusion-limited oxidation profiles
  publication-title: Polymer
– year: 2001
  ident: bib63
  article-title: Reverse temperature effect during ageing of XLPE cable insulation
  publication-title: Ageing Studies and Life Extension of Materials
– volume: 82
  start-page: 54
  year: 2013
  ident: bib56
  article-title: Degradation of epoxy coatings under gamma irradiation
  publication-title: Radiat. Phys. Chem.
– volume: 61
  start-page: 231
  year: 1998
  ident: bib33
  article-title: Inverse temperature and annealing phenomena during degradation of crosslinked polyolefins
  publication-title: Polym. Degrad. Stabil.
– volume: 71
  start-page: 15
  year: 2000
  ident: bib39
  article-title: The wear-out approach for predicting the remaining lifetime of materials
  publication-title: Polym. Degrad. Stabil.
– volume: 81
  start-page: 1747
  year: 2012
  ident: bib12
  article-title: Mechanism of antioxidant interaction on polymer oxidation by thermal and radiation ageing
  publication-title: Radiat. Phys. Chem.
– year: 2009
  ident: bib53
  article-title: Methodology Study of Qualification of Electric Wire and Cable Used in Nuclear Power Plant
– start-page: 457
  year: 1991
  ident: bib2
  article-title: Quantitative confirmation of simple theoretical models for diffusion-limited oxidation
  publication-title: Radiation Effects on Polymers, ACS Series #475
– year: 2012
  ident: bib19
  article-title: Polymères en ambiance nucléaire
– volume: 84
  start-page: 419
  year: 2004
  ident: bib41
  article-title: Condition monitoring approaches applied to a polychloroprene cable jacketing material
  publication-title: Polym. Degrad. Stabil.
– volume: 60
  start-page: 493
  year: 1998
  ident: bib34
  article-title: Oxidation profiles of thermally aged nitrile rubber
  publication-title: Polym. Degrad. Stabil.
– volume: 73
  start-page: 265
  year: 2000
  ident: bib17
  article-title: Methods for predicting more confident lifetimes of seals in air environments
  publication-title: Rubber Chem. Technol.
– volume: 88
  start-page: 480
  year: 2005
  ident: bib62
  article-title: Nylon 6.6 accelerated aging studies: thermal-oxidative degradation and its interaction with hydrolysis
  publication-title: Polym. Degrad. Stabil.
– volume: 80
  start-page: 268
  year: 2010
  ident: bib11
  article-title: Degradation mechanisms of cable insulation materials during radiation-thermal ageing in radiation environment
  publication-title: Radiat. Phys. Chem.
– volume: 73
  start-page: 678
  year: 2000
  ident: bib35
  article-title: Thermal degradation studies of a polyurethane propellant binder
  publication-title: Rubber Chem. Technol.
– volume: 149
  start-page: 173
  year: 2018
  ident: bib45
  article-title: Overview of DLO modeling and approaches to predict heterogeneous oxidative polymer degradation
  publication-title: Polym. Degrad. Stabil.
– volume: 95
  start-page: 1284
  year: 2011
  ident: bib44
  article-title: Accelerated weathering testing principles to estimate the service life of organic PV modules
  publication-title: Sol. Energy Mater. Sol. Cells
– start-page: 524
  year: 1991
  ident: bib49
  article-title: A practical model for prediction of the lifetime of elastomeric seals in nuclear environments
  publication-title: Radiation Effects on Polymers, ACS Series #475
– year: 1962
  ident: bib26
  article-title: Radiation Chemistry of Polymeric Systems
– volume: 93
  start-page: 684
  year: 2008
  ident: bib42
  article-title: Effects of temperature on the weathering of engineering thermoplastics
  publication-title: Polym. Degrad. Stabil.
– volume: 46
  start-page: 11648
  year: 2005
  ident: bib59
  article-title: Use of a respirometer to measure oxidation rates of polymeric materials at ambient temperatures
  publication-title: Polymer
– volume: 79
  start-page: 365
  year: 2010
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib55
  article-title: Kinetic modelling of radiochemical aging of ethylene-propylene copolymers
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2009.08.019
– volume: 74
  start-page: 428
  year: 2001
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib40
  article-title: Modulus mapping of rubbers using micro- and nano-indentation techniques
  publication-title: Rubber Chem. Technol.
  doi: 10.5254/1.3547646
– year: 2014
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib10
– volume: 130
  start-page: 83
  year: 2016
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib70
  article-title: Influence of temperature and stabilization on oxygen diffusion limited oxidation profiles of polyamide 6
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2016.05.024
– year: 1975
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib27
– volume: 31
  start-page: 615
  year: 1988
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib52
  article-title: Application of chemorheology to radiation damage of elastomer
  publication-title: Int. J. Radiat. Appl. Instrum. C Radiat. Phys. Chem.
– volume: 23
  start-page: 2683
  year: 1985
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib8
  article-title: A kinetic model for predicting oxidative degradation rates in combined radiation-thermal environments
  publication-title: J. Polym. Sci. Polym. Chem. Ed.
  doi: 10.1002/pol.1985.170231011
– volume: 19
  start-page: 2041
  year: 1981
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib47
  article-title: Combined environment aging effects: radiation-thermal degradation of poly(vinyl chloride) and polyethylene
  publication-title: J. Polym. Sci. Polym. Chem. Ed.
  doi: 10.1002/pol.1981.170190816
– year: 2001
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib63
  article-title: Reverse temperature effect during ageing of XLPE cable insulation
– volume: 84
  start-page: 419
  year: 2004
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib41
  article-title: Condition monitoring approaches applied to a polychloroprene cable jacketing material
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2004.01.018
– volume: 73
  start-page: 265
  year: 2000
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib17
  article-title: Methods for predicting more confident lifetimes of seals in air environments
  publication-title: Rubber Chem. Technol.
  doi: 10.5254/1.3547590
– volume: 68
  start-page: 171
  year: 2000
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib36
  article-title: Correlation of chemical and mechanical property changes during oxidative degradation of neoprene
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/S0141-3910(99)00183-4
– volume: 38
  start-page: 1929
  year: 1997
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib38
  article-title: Quantitative model for the time development of diffusion-limited oxidation profiles
  publication-title: Polymer
  doi: 10.1016/S0032-3861(96)00716-1
– year: 1990
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib64
– volume: 130
  start-page: 348
  year: 2016
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib69
  article-title: Predictive ageing of elastomers: oxidation driven modulus changes for polychloroprene
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2016.06.014
– year: 1973
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib30
– year: 2014
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib7
– year: 1962
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib26
– volume: 95
  start-page: 1284
  year: 2011
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib44
  article-title: Accelerated weathering testing principles to estimate the service life of organic PV modules
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2010.08.033
– start-page: SAND2005
  year: 2005
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib5
– volume: 19
  start-page: 1768
  year: 2012
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib21
  article-title: Radiation ageing technique for cable life evaluation of nuclear power plant
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2012.6311526
– volume: 73
  start-page: 678
  year: 2000
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib35
  article-title: Thermal degradation studies of a polyurethane propellant binder
  publication-title: Rubber Chem. Technol.
  doi: 10.5254/1.3547613
– volume: 41
  start-page: 803
  year: 1993
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib3
  article-title: Predictive aging results in radiation environments
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/0969-806X(93)90026-Q
– year: 1996
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib65
  article-title: Determination of long-term radiation ageing in polymers- Part 2: Procedures for predicting ageing at low dose rates
  publication-title: Int. Electrotech. Comm.
– year: 1972
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib29
– volume: 18
  start-page: 653
  year: 1981
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib50
  article-title: Chemorheology of rubber under heat and radiation
  publication-title: Radiat. Phys. Chem.
– volume: 87
  start-page: 335
  year: 2005
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib67
  article-title: Non-Arrhenius behavior for oxidative degradation of chlorosulfonated polyethylene materials
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2004.09.004
– volume: 49
  start-page: 565
  year: 1997
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib4
  article-title: Time development of diffusion-limited oxidation profiles in a radiation environment
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/S0969-806X(96)00185-5
– volume: 48
  start-page: 613
  year: 1996
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib32
  article-title: Anomalous aging phenomena in a crosslinked polyolefin cable insulation
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/0969-806X(96)00083-7
– year: 2009
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib9
– volume: 82
  start-page: 69
  year: 2013
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib20
  article-title: Product analysis for polyethylene degradation by radiation and thermal ageing
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2012.08.009
– volume: 48
  start-page: 297
  year: 1995
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib31
  article-title: Characterization and degradation studies of peroxide and silane crosslinked polyethylene
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/0141-3910(95)00053-O
– volume: 153
  start-page: 653
  year: 2018
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib46
  article-title: Water diffusion with temperature enabling predictions for sorption and transport behavior in thermoset materials
  publication-title: Polymer
  doi: 10.1016/j.polymer.2018.08.024
– volume: 82
  start-page: 54
  year: 2013
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib56
  article-title: Degradation of epoxy coatings under gamma irradiation
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2012.09.008
– volume: 93
  start-page: 1597
  year: 2008
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib43
  article-title: Effects of irradiation conditions on the weathering of engineering thermoplastics
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2008.02.009
– volume: 91
  start-page: 1593
  year: 2006
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib57
  article-title: Oxidation of polyethylene under irradiation at low temperature and low dose rate. Part I. The case of "pure" radiochemical initiation
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2005.09.011
– volume: 80
  start-page: 268
  year: 2010
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib11
  article-title: Degradation mechanisms of cable insulation materials during radiation-thermal ageing in radiation environment
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2010.07.045
– start-page: 524
  year: 1991
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib49
  article-title: A practical model for prediction of the lifetime of elastomeric seals in nuclear environments
– volume: 88
  start-page: 480
  year: 2005
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib62
  article-title: Nylon 6.6 accelerated aging studies: thermal-oxidative degradation and its interaction with hydrolysis
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2004.11.020
– year: 2019
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib71
  article-title: Importance of synergism for combined radiation plus temperature environments
  publication-title: Rubber Chem. Technol.
– volume: 60
  start-page: 493
  year: 1998
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib34
  article-title: Oxidation profiles of thermally aged nitrile rubber
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/S0141-3910(97)00113-4
– volume: 93
  start-page: 684
  year: 2008
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib42
  article-title: Effects of temperature on the weathering of engineering thermoplastics
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2007.12.013
– volume: 54
  start-page: 3290
  year: 2013
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib60
  article-title: A perspective on the inherent oxidation sensitivity of epoxy materials
  publication-title: Polymer
  doi: 10.1016/j.polymer.2013.04.042
– volume: 24
  start-page: 137
  year: 1989
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib1
  article-title: Time-temperature-dose rate superposition: a methodology for extrapolating accelerated radiation aging data to low dose rate conditions
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/0141-3910(89)90108-0
– volume: 236
  start-page: 88
  year: 2005
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib58
  article-title: A simplified approach for the lifetime prediction of PE in nuclear environments
  publication-title: Nucl. Instrum. Methods Phys. Res. B
  doi: 10.1016/j.nimb.2005.03.259
– volume: 22
  start-page: 3197
  year: 2015
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib24
  article-title: Degradation of cable insulation material by accelerated thermal radiation combined ageing
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2015.004880
– volume: 61
  start-page: 231
  year: 1998
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib33
  article-title: Inverse temperature and annealing phenomena during degradation of crosslinked polyolefins
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/S0141-3910(97)00142-0
– year: 2013
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib6
– volume: 265
  start-page: 227
  year: 2007
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib54
  article-title: Degradation of elastomer by heat and/or radiation
  publication-title: Nucl. Instrum. Methods Phys. Res. B
  doi: 10.1016/j.nimb.2007.08.051
– volume: 20
  start-page: 2107
  year: 2013
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib22
  article-title: Degradation distribution in insulation materials of cables by accelerated thermal and radiation ageing
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2013.6678859
– volume: 21
  start-page: 16
  year: 2014
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib23
  article-title: Degradation mechanisms of silicone rubber (SiR) by accelerated ageing for cables of nuclear power plant
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2013.004177
– volume: 81
  start-page: 1747
  year: 2012
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib12
  article-title: Mechanism of antioxidant interaction on polymer oxidation by thermal and radiation ageing
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2012.06.011
– volume: 149
  start-page: 173
  year: 2018
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib45
  article-title: Overview of DLO modeling and approaches to predict heterogeneous oxidative polymer degradation
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2017.11.014
– volume: 91
  start-page: 1273
  year: 2006
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib61
  article-title: Condition monitoring methods applied to degradation of chlorosulfonated polyethylene cable jacketing materials
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2005.09.002
– year: 2012
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib19
– year: 2009
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib53
– year: 2014
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib66
  article-title: Determination of long-term radiation ageing in polymers – Part 2: Procedures for predicting ageing at low dose rates
  publication-title: Int. Electrotech. Comm.
– volume: 87
  start-page: 57
  year: 2005
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib68
  article-title: Evidence of non-Arrhenius behavior from laboratory aging and 24-year field aging of polychloroprene rubber materials
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2004.06.010
– volume: 91
  start-page: 27
  year: 2018
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib16
  article-title: Predicting polymer degradation and mechanical property changes for combined radiation-thermal aging environments
  publication-title: Rubber Chem. Technol.
  doi: 10.5254/rct.18.81679
– volume: 88
  start-page: 1
  year: 2015
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib14
  article-title: Challenges of accelerated aging techniques for elastomer lifetime predictions
  publication-title: Rubber Chem. Technol.
  doi: 10.5254/rct.14.85930
– volume: 59
  start-page: 344
  year: 1982
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib48
  article-title: Investigation of cable deterioration inside reactor containment
  publication-title: Nucl. Technol.
  doi: 10.13182/NT82-A33037
– volume: 46
  start-page: 11648
  year: 2005
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib59
  article-title: Use of a respirometer to measure oxidation rates of polymeric materials at ambient temperatures
  publication-title: Polymer
  doi: 10.1016/j.polymer.2005.09.069
– volume: 98
  start-page: 2419
  year: 2013
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib13
  article-title: Review of polymer oxidation and its relationship with materials performance and lifetime prediction
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2013.06.024
– year: 2012
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib15
– year: 1994
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib28
– year: 2000
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib25
– volume: 17
  start-page: 203
  year: 1981
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib51
  article-title: Application of chemorheology to radiation damage of polymers—III: synergism of heat and radiation on the chemorheology of ethylene-propylene rubber
  publication-title: Radiat. Phys. Chem.
– volume: 49
  start-page: 403
  year: 1995
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib37
  article-title: An ultrasensitive technique for testing the Arrhenius extrapolation assumption for thermally aged elastomers
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/0141-3910(95)00137-B
– volume: 71
  start-page: 15
  year: 2000
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib39
  article-title: The wear-out approach for predicting the remaining lifetime of materials
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/S0141-3910(00)00112-9
– year: 2010
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib18
– start-page: 457
  year: 1991
  ident: 10.1016/j.polymdegradstab.2019.06.007_bib2
  article-title: Quantitative confirmation of simple theoretical models for diffusion-limited oxidation
SSID ssj0000451
Score 2.5448542
SecondaryResourceType review_article
Snippet Polymer aging under combined radiation-thermal oxidative conditions is intrinsically more convoluted than traditional thermal degradation. Accelerated aging...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 353
SubjectTerms accelerated aging
Accelerated polymer aging
activation energy
Aging (materials)
Aging model evaluation
analytical methods
Cable insulation performance under combined environments
data collection
Dosage
Elongation
Environment models
Interaction parameters
kinetics
Oxidation
Oxidation rate
Photodegradation
polyethylene
Polyethylenes
Polymers
prediction
Predictions
Predictive kinetic models
Radiation
Radiation-thermal oxidative degradation
Reaction kinetics
Superposition (mathematics)
synergism
temperature
Temperature dependence
Thermal degradation
Thermal environments
Time dependence
Title Overview of accelerated aging and polymer degradation kinetics for combined radiation-thermal environments
URI https://dx.doi.org/10.1016/j.polymdegradstab.2019.06.007
https://www.proquest.com/docview/2279796479
https://www.proquest.com/docview/2286853147
https://www.osti.gov/biblio/1776353
Volume 166
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9xADBZhA30cQpu2dJM0TKE9TnfHHr8gh4SlYdtCemkgt2EeMuRlL5tNSy797ZXGdpI-DoGCL37IiJEsafCnTwDvqhKRCpFKOp2j1C4LssyKIDWzf9Wlr5M6sn0e5fNj_fkkO1mD2dALw7DKPvZ3MT1G6_7KpF_NyeL0dMKwJCpfyKWqlDcusYNdF-zlH37ewTyYP6WDMSrJTz-C93cYr0V7cXMZmJUhXHGHAmXDKtJ58nTZf-epUUuf3l-BO2ajw2ew0ZeR4qDT9DmsYbMJj2fD9LZNeHqPaPAFnH39zjEBf4i2FtZ7yjVMERFEnFEkbBNEVBKXotMz2kuc0xuYxllQZStohWgXTTJLpjPg-5KLx0tS43633Es4Pvz4bTaX_ZQF6TOVrmSGWll0zgXrXEnlgasrnFbWqqlNsdZTr2yR6wypdvCJpe2KsiqtyaCY2FCE9BWMmrbB1yAKlXmKGEmFZanTpHSY8Z_AzGOd0-HHsDesqfE9BTlPwrgwA9bszPxhEsMmMRF7V4whvxVfdFwcDxXcHwxofnMuQ3njoa_YZsOzOJPrekYhkbwqmNAvHcPO4A-mjwFXhrkZY6NvNYa3t7fJDfiXjG2wveZnypwKJqWLrf_XcRue8FkHT9yB0Wp5jW-oZFq53fhN7ML6wacv86Nflgkb7g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB_khNo-lNa29KptU2gfw112k_0AH5RDOau9vij4FvK14NfucZ4V__vOZHfV1j4IhX3a7CxDJpn5hcz8BuBrWYSAQKTkVmaBS6s8L1TuuST2r6pwVVJFts9ZNj2W30_UyQpM-loYSqvsfH_r06O37t6MutkczU9PR5SWhPAFl1SZ0sEFj0CrxE6lBrC6s38wnd07ZKnatoRScBJ4Bt_u07zmzcXtpSdiBn9FRQoYEMvI6EkNZv8dqgYN7r5HvjsGpL1X8LJDkmynVfY1rIR6HdYmfQO3dXjxgGvwDZz9_EVuIdywpmLGOQw3xBLhWWxTxEztWVQyLFirZzQZO8c_EJMzQ3DLcJLwII0yC2I0oHFO-PES1XhYMPcWjvd2jyZT3jVa4E6JdMlVkMIEa6031haIEGxVhnFpjBibNFRy7ITJM6kCwgeXGDyxCCPSCm0aEuNzn76DQd3U4T2wXCiHTiMpQ1HINClsUHQZqFyoMnzcELb6OdWuYyGnZhgXuk83O9N_mUSTSXRMv8uHkN2Jz1s6jqcKbvcG1H-sL42h46m_2CDDkzjx6zpKREJ5kROnXzqEzX496M4NXGmiZ4y1vuUQvtwN4zKgWxlTh-aavikyxExC5h_-X8fPsDY9-nGoD_dnBxvwnEbabMVNGCwX1-EjIqil_dTtkN8vkB6f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overview+of+accelerated+aging+and+polymer+degradation+kinetics+for+combined+radiation-thermal+environments&rft.jtitle=Polymer+degradation+and+stability&rft.au=Celina%2C+Mathew&rft.au=Linde%2C+Erik&rft.au=Brunson%2C+Douglas&rft.au=Quintana%2C+Adam&rft.date=2019-08-01&rft.issn=0141-3910&rft.volume=166+p.353-378&rft.spage=353&rft.epage=378&rft_id=info:doi/10.1016%2Fj.polymdegradstab.2019.06.007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-3910&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-3910&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-3910&client=summon