Overview of accelerated aging and polymer degradation kinetics for combined radiation-thermal environments
Polymer aging under combined radiation-thermal oxidative conditions is intrinsically more convoluted than traditional thermal degradation. Accelerated aging methods for predictive purposes have to include thermal as well as radiative degradation pathways that initially may be regarded as independent...
Saved in:
Published in | Polymer degradation and stability Vol. 166; no. C; pp. 353 - 378 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Elsevier Ltd
01.08.2019
Elsevier BV Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polymer aging under combined radiation-thermal oxidative conditions is intrinsically more convoluted than traditional thermal degradation. Accelerated aging methods for predictive purposes have to include thermal as well as radiative degradation pathways that initially may be regarded as independent parallel processes without additional synergism. Material aging is therefore represented as the sum of a thermal and radiative contribution. Data from accelerated aging may be available as dose to equivalent damage (DED) or degradation rates, yet they require different analytical approaches to yield the underlying temperature dependence and its activation energy. Further, kinetic models that embrace combined pathways can offer guidance for extrapolation of accelerated to ambient conditions, enabling the prediction of material aging behavior or remaining performance margins for requalification purposes. The existing theoretical approaches, their implications and an alternative option for globally fitting experimental data sets to kinetic aging models for combined environments are reviewed. This overview offers a pragmatic approach towards an expanded interpretation of oxidation rate and aging data properties for combined environments, all the way to time-dependence for rates and synergistic contributions. Further evidence is provided that for some material behaviors an additional Ea for the radiative term under high dose rate conditions could be beneficial, as similarly expressed by increases in a synergistic interaction parameter. Improved kinetic aging models are derived and applied to a comprehensive set of experimental oxidation rates for a chlorosulfonated polyethylene material. Emphasized is also the issue that initial oxidation rates versus superposition of oxidation levels (integrated rates) may result in slightly different thermal Ea values through added time dependency. Constant oxidation rates relate to an exponential decay in elongation at break data. Aging predictions can be improved through measured oxidation rates, a systematic understanding of material behavior over a large dose rate - temperature regime, and application of an appropriate aging model. The most general aging model will contain a radiative Ea, time-dependence of rate, and added synergism that may grow with temperature.
[Display omitted] |
---|---|
AbstractList | Polymer aging under combined radiation-thermal oxidative conditions is intrinsically more convoluted than traditional thermal degradation. Accelerated aging methods for predictive purposes have to include thermal as well as radiative degradation pathways that initially may be regarded as independent parallel processes without additional synergism. Material aging is therefore represented as the sum of a thermal and radiative contribution. Data from accelerated aging may be available as dose to equivalent damage (DED) or degradation rates, yet they require different analytical approaches to yield the underlying temperature dependence and its activation energy. Further, kinetic models that embrace combined pathways can offer guidance for extrapolation of accelerated to ambient conditions, enabling the prediction of material aging behavior or remaining performance margins for requalification purposes. The existing theoretical approaches, their implications and an alternative option for globally fitting experimental data sets to kinetic aging models for combined environments are reviewed. This overview offers a pragmatic approach towards an expanded interpretation of oxidation rate and aging data properties for combined environments, all the way to time-dependence for rates and synergistic contributions. Further evidence is provided that for some material behaviors an additional Ea for the radiative term under high dose rate conditions could be beneficial, as similarly expressed by increases in a synergistic interaction parameter. Improved kinetic aging models are derived and applied to a comprehensive set of experimental oxidation rates for a chlorosulfonated polyethylene material. Emphasized is also the issue that initial oxidation rates versus superposition of oxidation levels (integrated rates) may result in slightly different thermal Ea values through added time dependency. Constant oxidation rates relate to an exponential decay in elongation at break data. Aging predictions can be improved through measured oxidation rates, a systematic understanding of material behavior over a large dose rate - temperature regime, and application of an appropriate aging model. The most general aging model will contain a radiative Ea, time-dependence of rate, and added synergism that may grow with temperature. Polymer aging under combined radiation-thermal oxidative conditions is intrinsically more convoluted than traditional thermal degradation. Accelerated aging methods for predictive purposes have to include thermal as well as radiative degradation pathways that initially may be regarded as independent parallel processes without additional synergism. Material aging is therefore represented as the sum of a thermal and radiative contribution. Data from accelerated aging may be available as dose to equivalent damage (DED) or degradation rates, yet they require different analytical approaches to yield the underlying temperature dependence and its activation energy. Further, kinetic models that embrace combined pathways can offer guidance for extrapolation of accelerated to ambient conditions, enabling the prediction of material aging behavior or remaining performance margins for requalification purposes. The existing theoretical approaches, their implications and an alternative option for globally fitting experimental data sets to kinetic aging models for combined environments are reviewed. This overview offers a pragmatic approach towards an expanded interpretation of oxidation rate and aging data properties for combined environments, all the way to time-dependence for rates and synergistic contributions. Further evidence is provided that for some material behaviors an additional Ea for the radiative term under high dose rate conditions could be beneficial, as similarly expressed by increases in a synergistic interaction parameter. Improved kinetic aging models are derived and applied to a comprehensive set of experimental oxidation rates for a chlorosulfonated polyethylene material. Emphasized is also the issue that initial oxidation rates versus superposition of oxidation levels (integrated rates) may result in slightly different thermal Ea values through added time dependency. Constant oxidation rates relate to an exponential decay in elongation at break data. Aging predictions can be improved through measured oxidation rates, a systematic understanding of material behavior over a large dose rate - temperature regime, and application of an appropriate aging model. The most general aging model will contain a radiative Ea, time-dependence of rate, and added synergism that may grow with temperature. [Display omitted] |
Author | Giron, Nicholas Linde, Erik Celina, Mathew Quintana, Adam Brunson, Douglas |
Author_xml | – sequence: 1 givenname: Mathew surname: Celina fullname: Celina, Mathew email: mccelin@sandia.gov – sequence: 2 givenname: Erik surname: Linde fullname: Linde, Erik – sequence: 3 givenname: Douglas surname: Brunson fullname: Brunson, Douglas – sequence: 4 givenname: Adam surname: Quintana fullname: Quintana, Adam – sequence: 5 givenname: Nicholas surname: Giron fullname: Giron, Nicholas |
BackLink | https://www.osti.gov/biblio/1776353$$D View this record in Osti.gov |
BookMark | eNqNkU9v1DAQxSNUJLaF72CBkLgkePLPyYEDWkFbqVIvcLYm9mTrkNiL7d2q3x7vhtOe6otlzW_e-M27zq6ss5Rln4EXwKH9OhV7N78smnYedYg4FCWHvuBtwbl4k22gE1VeViVcZRsONeRVD_xddh3CxNOpG9hk0-OR_NHQM3MjQ6VoJo-RNMOdsTuGVrPzEPJsnYPROMv-GEvRqMBG55lyy5DemqWyOdfz-ER-wZmRPRrv7EI2hvfZ2xHnQB_-3zfZ758_fm3v8ofH2_vt94dcNVDFvKEakIZh0DgMXc9hGHviPSJwrGisuQIUbd1QB70qsS47QKjGRmgqUQtd3WQfV10XopFBmUjqSTlrSUUJQrRVUyXoywrtvft7oBDlYkJyP6MldwiyLLu2ayqoRUI_XaCTO3ibLCRK9KJva9En6ttKKe9C8DTKvTcL-hcJXJ7ikpO8iEue4pK8lSmu1L-96E8fPy8zejTzq1VuVxVKC06x-pN_soq08Sf72plXKv0DZxnDgw |
CitedBy_id | crossref_primary_10_1016_j_polymdegradstab_2021_109810 crossref_primary_10_1016_j_triboint_2022_107890 crossref_primary_10_1007_s11356_023_28736_x crossref_primary_10_1016_j_jhazmat_2024_135793 crossref_primary_10_3390_polym14122357 crossref_primary_10_1021_acssuschemeng_3c06321 crossref_primary_10_31436_iiumej_v23i1_1693 crossref_primary_10_1016_j_biotechadv_2022_107991 crossref_primary_10_1021_acsomega_4c06241 crossref_primary_10_1016_j_envc_2025_101080 crossref_primary_10_1002_macp_202400227 crossref_primary_10_1021_acs_jctc_2c00582 crossref_primary_10_1016_j_mtchem_2023_101417 crossref_primary_10_1016_j_ijhydene_2021_12_198 crossref_primary_10_1016_j_porgcoat_2024_108281 crossref_primary_10_1016_j_polymdegradstab_2024_110772 crossref_primary_10_3390_polym16233400 crossref_primary_10_1007_s40430_021_02810_2 crossref_primary_10_1177_0967033521999115 crossref_primary_10_1002_slct_202402278 crossref_primary_10_1016_j_heliyon_2023_e17431 crossref_primary_10_1021_acsami_1c19609 crossref_primary_10_1038_s41529_023_00351_8 crossref_primary_10_1016_j_radphyschem_2022_110446 crossref_primary_10_1016_j_apsoil_2022_104486 crossref_primary_10_1016_j_ndteint_2023_102896 crossref_primary_10_1016_j_polymer_2024_127722 crossref_primary_10_1016_j_ssc_2021_114577 crossref_primary_10_1016_j_jiec_2023_11_043 crossref_primary_10_1016_j_polymdegradstab_2021_109643 crossref_primary_10_1016_j_mtsust_2023_100657 crossref_primary_10_1016_j_watres_2021_117407 crossref_primary_10_1002_ldr_5103 crossref_primary_10_1016_j_radphyschem_2024_111784 crossref_primary_10_1016_j_polymdegradstab_2022_110167 crossref_primary_10_1016_j_polymdegradstab_2024_110886 crossref_primary_10_1007_s00419_024_02746_8 crossref_primary_10_1016_j_porgcoat_2024_108271 crossref_primary_10_1016_j_envpol_2020_114864 crossref_primary_10_1016_j_radphyschem_2023_111166 crossref_primary_10_1002_app_56769 crossref_primary_10_3390_polym14020226 crossref_primary_10_1016_j_polymdegradstab_2024_110902 crossref_primary_10_3390_polym14173606 crossref_primary_10_1016_j_jhazmat_2021_126455 crossref_primary_10_1007_s11665_022_07561_2 crossref_primary_10_1021_acsami_1c10765 crossref_primary_10_1016_j_conbuildmat_2022_127140 crossref_primary_10_1016_j_polymdegradstab_2021_109794 crossref_primary_10_1016_j_polymdegradstab_2022_109873 crossref_primary_10_3390_en13030650 crossref_primary_10_3390_jcs9010047 crossref_primary_10_3390_polym13183125 crossref_primary_10_1021_acs_jctc_4c00333 crossref_primary_10_1038_s41529_022_00299_1 crossref_primary_10_3390_ma13092056 crossref_primary_10_1016_j_polymdegradstab_2024_110950 crossref_primary_10_1007_s10973_022_11366_9 crossref_primary_10_3390_polym12010123 crossref_primary_10_1002_pc_25605 crossref_primary_10_1016_j_mechmat_2020_103639 crossref_primary_10_1016_j_colsurfa_2021_126412 crossref_primary_10_1016_j_ijsolstr_2022_111800 crossref_primary_10_1109_TDEI_2024_3408800 crossref_primary_10_1080_14686996_2025_2467617 crossref_primary_10_3390_polym14132709 crossref_primary_10_1080_10643389_2023_2279894 crossref_primary_10_3390_molecules28062491 crossref_primary_10_1557_s43578_021_00455_4 crossref_primary_10_1016_j_jhazmat_2023_132636 crossref_primary_10_3389_fnuen_2023_1287370 crossref_primary_10_3390_polym16050689 |
Cites_doi | 10.1016/j.radphyschem.2009.08.019 10.5254/1.3547646 10.1016/j.polymdegradstab.2016.05.024 10.1002/pol.1985.170231011 10.1002/pol.1981.170190816 10.1016/j.polymdegradstab.2004.01.018 10.5254/1.3547590 10.1016/S0141-3910(99)00183-4 10.1016/S0032-3861(96)00716-1 10.1016/j.polymdegradstab.2016.06.014 10.1016/j.solmat.2010.08.033 10.1109/TDEI.2012.6311526 10.5254/1.3547613 10.1016/0969-806X(93)90026-Q 10.1016/j.polymdegradstab.2004.09.004 10.1016/S0969-806X(96)00185-5 10.1016/0969-806X(96)00083-7 10.1016/j.radphyschem.2012.08.009 10.1016/0141-3910(95)00053-O 10.1016/j.polymer.2018.08.024 10.1016/j.radphyschem.2012.09.008 10.1016/j.polymdegradstab.2008.02.009 10.1016/j.polymdegradstab.2005.09.011 10.1016/j.radphyschem.2010.07.045 10.1016/j.polymdegradstab.2004.11.020 10.1016/S0141-3910(97)00113-4 10.1016/j.polymdegradstab.2007.12.013 10.1016/j.polymer.2013.04.042 10.1016/0141-3910(89)90108-0 10.1016/j.nimb.2005.03.259 10.1109/TDEI.2015.004880 10.1016/S0141-3910(97)00142-0 10.1016/j.nimb.2007.08.051 10.1109/TDEI.2013.6678859 10.1109/TDEI.2013.004177 10.1016/j.radphyschem.2012.06.011 10.1016/j.polymdegradstab.2017.11.014 10.1016/j.polymdegradstab.2005.09.002 10.1016/j.polymdegradstab.2004.06.010 10.5254/rct.18.81679 10.5254/rct.14.85930 10.13182/NT82-A33037 10.1016/j.polymer.2005.09.069 10.1016/j.polymdegradstab.2013.06.024 10.1016/0141-3910(95)00137-B 10.1016/S0141-3910(00)00112-9 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Aug 2019 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Aug 2019 |
DBID | AAYXX CITATION 7SR 8FD JG9 7S9 L.6 OTOTI |
DOI | 10.1016/j.polymdegradstab.2019.06.007 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic OSTI.GOV |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-2321 |
EndPage | 378 |
ExternalDocumentID | 1776353 10_1016_j_polymdegradstab_2019_06_007 S0141391019302101 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SDF SDG SDP SES SEW SMS SPC SPCBC SSK SSM SSZ T5K WH7 WUQ XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 8FD EFKBS JG9 7S9 L.6 AALMO AAPBV ABPIF OTOTI |
ID | FETCH-LOGICAL-c513t-5e41aebbbdabb8901bf9e09aa10a3ef40c1a7645e819c2a4281a13f57de2ad7d3 |
IEDL.DBID | .~1 |
ISSN | 0141-3910 |
IngestDate | Thu May 18 22:31:25 EDT 2023 Fri Jul 11 01:37:02 EDT 2025 Sun Jul 13 04:50:23 EDT 2025 Thu Apr 24 23:10:55 EDT 2025 Tue Jul 01 02:29:49 EDT 2025 Fri Feb 23 02:32:32 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Radiation-thermal oxidative degradation Cable insulation performance under combined environments Accelerated polymer aging Predictive kinetic models Aging model evaluation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c513t-5e41aebbbdabb8901bf9e09aa10a3ef40c1a7645e819c2a4281a13f57de2ad7d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE |
OpenAccessLink | https://www.osti.gov/biblio/1776353 |
PQID | 2279796479 |
PQPubID | 2045418 |
PageCount | 26 |
ParticipantIDs | osti_scitechconnect_1776353 proquest_miscellaneous_2286853147 proquest_journals_2279796479 crossref_primary_10_1016_j_polymdegradstab_2019_06_007 crossref_citationtrail_10_1016_j_polymdegradstab_2019_06_007 elsevier_sciencedirect_doi_10_1016_j_polymdegradstab_2019_06_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United Kingdom |
PublicationTitle | Polymer degradation and stability |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV – name: Elsevier |
References | Gillen, Bernstein, Derzon (bib68) 2005; 87 Celina, Graham, Gillen, Assink, Minier (bib35) 2000; 73 Gillen, Assink, Bernstein (bib41) 2004; 84 Celina, George (bib31) 1995; 48 Celina, Gillen, Clough (bib33) 1998; 61 Celina, Wise, Ottesen, Gillen, Clough (bib34) 1998; 60 (bib66) 2014 Yamamoto, Minakawa (bib9) 2009 Shimada, Sugimoto, Kudoh, Tamura, Seguchi (bib22) 2013; 20 Quintana, Celina (bib45) 2018; 149 Gillen, Terrill, Winter (bib40) 2001; 74 Gillen, Clough (bib2) 1991 Gillen (bib71) 2019 Ito (bib53) 2009 Verdu (bib15) 2012 Clough, Gillen (bib47) 1981; 19 (bib10) 2014 Khelidj, Colin, Audouin, Verdu (bib58) 2005; 236 Gillen, Clough (bib1) 1989; 24 Celina (bib13) 2013; 98 Gillen, Bernstein, Celina (bib67) 2005; 87 Seguchi, Tamura, Shimada, Sugimoto, Kudoh (bib12) 2012; 81 (bib65) 1996 Pickett, Gibson, Gardner (bib43) 2008; 93 Gillen, Clough (bib3) 1993; 41 Ito (bib51) 1981; 17 Gillen, Celina, Keenan (bib17) 2000; 73 Chapiro (bib26) 1962 Celina, Gillen, Lindgren (bib6) 2013 (bib25) 2000 Burnay (bib49) 1991 Assink, Celina, Skutnik, Harris (bib59) 2005; 46 Gillen, Bernstein, Celina (bib14) 2015; 88 Gillen, Celina (bib39) 2000; 71 Rudd (bib64) 1990 Woods, Pikaev (bib28) 1994 Gillen, Assink, Bernstein (bib5) 2005 Pickett, Gibson, Rice, Gardner (bib42) 2008; 93 Clough, Gillen (bib48) 1982; 59 Wise, Gillen, Clough (bib37) 1995; 49 Wise, Gillen, Clough (bib4) 1997; 49 Audouin, Colin, Fayolle, Richaud, Verdu (bib19) 2012 Ito (bib52) 1988; 31 Khelidj, Colin, Audouin, Verdu, Monchy-Leroy, Prunier (bib57) 2006; 91 Celina, Wise, Ottesen, Gillen, Clough (bib36) 2000; 68 Celina, Redline, Bernstein, Giron, Quintana, White (bib7) 2014 Wise, Gillen, Clough (bib38) 1997; 38 Haillant (bib44) 2011; 95 Le Gac, Celina, Roux, Verdu, Davies, Fayolle (bib69) 2016; 130 Colin, Richaud, Verdu, Monchy-Leroy (bib55) 2010; 79 (bib29) 1972 Ito (bib50) 1981; 18 Shimada, Sugimoto, Kudoh, Tamura, Seguchi (bib21) 2012; 19 Gillen, Bernstein (bib18) 2010 Shimada, Sugimoto, Kudoh, Tamura, Seguchi (bib23) 2014; 21 Djouani, Zahra, Fayolle, Kuntz, Verdu (bib56) 2013; 82 Burnay, Dawson (bib63) 2001 Ito (bib54) 2007; 265 Linde, Giron, Celina (bib46) 2018; 153 Gillen, Clough (bib8) 1985; 23 Gillen, Celina (bib16) 2018; 91 Celina, Gillen, Wise, Clough (bib32) 1996; 48 Celina, Dayile, Quintana (bib60) 2013; 54 Makhlis (bib27) 1975 Gijsman, Dong, Quintana, Celina (bib70) 2016; 130 Sugimoto, Shimada, Kudoh, Tamura, Seguchi (bib20) 2013; 82 Seguchi, Tamura, Ohshima, Shimada, Kudoh (bib11) 2010; 80 (bib30) 1973 Seguchi, Tamura, Kudoh, Shimada, Sugimoto (bib24) 2015; 22 Bernstein, Derzon, Gillen (bib62) 2005; 88 Gillen, Assink, Bernstein, Celina (bib61) 2006; 91 Khelidj (10.1016/j.polymdegradstab.2019.06.007_bib58) 2005; 236 Burnay (10.1016/j.polymdegradstab.2019.06.007_bib49) 1991 Shimada (10.1016/j.polymdegradstab.2019.06.007_bib21) 2012; 19 Khelidj (10.1016/j.polymdegradstab.2019.06.007_bib57) 2006; 91 Gillen (10.1016/j.polymdegradstab.2019.06.007_bib3) 1993; 41 Sugimoto (10.1016/j.polymdegradstab.2019.06.007_bib20) 2013; 82 Wise (10.1016/j.polymdegradstab.2019.06.007_bib38) 1997; 38 (10.1016/j.polymdegradstab.2019.06.007_bib10) 2014 Verdu (10.1016/j.polymdegradstab.2019.06.007_bib15) 2012 Audouin (10.1016/j.polymdegradstab.2019.06.007_bib19) 2012 Celina (10.1016/j.polymdegradstab.2019.06.007_bib33) 1998; 61 Gillen (10.1016/j.polymdegradstab.2019.06.007_bib67) 2005; 87 Yamamoto (10.1016/j.polymdegradstab.2019.06.007_bib9) 2009 Clough (10.1016/j.polymdegradstab.2019.06.007_bib48) 1982; 59 Seguchi (10.1016/j.polymdegradstab.2019.06.007_bib11) 2010; 80 Makhlis (10.1016/j.polymdegradstab.2019.06.007_bib27) 1975 Djouani (10.1016/j.polymdegradstab.2019.06.007_bib56) 2013; 82 Gillen (10.1016/j.polymdegradstab.2019.06.007_bib8) 1985; 23 Gillen (10.1016/j.polymdegradstab.2019.06.007_bib14) 2015; 88 Haillant (10.1016/j.polymdegradstab.2019.06.007_bib44) 2011; 95 Seguchi (10.1016/j.polymdegradstab.2019.06.007_bib12) 2012; 81 Celina (10.1016/j.polymdegradstab.2019.06.007_bib35) 2000; 73 Ito (10.1016/j.polymdegradstab.2019.06.007_bib54) 2007; 265 Celina (10.1016/j.polymdegradstab.2019.06.007_bib36) 2000; 68 Chapiro (10.1016/j.polymdegradstab.2019.06.007_bib26) 1962 (10.1016/j.polymdegradstab.2019.06.007_bib25) 2000 Linde (10.1016/j.polymdegradstab.2019.06.007_bib46) 2018; 153 Rudd (10.1016/j.polymdegradstab.2019.06.007_bib64) 1990 Ito (10.1016/j.polymdegradstab.2019.06.007_bib52) 1988; 31 Wise (10.1016/j.polymdegradstab.2019.06.007_bib4) 1997; 49 Gillen (10.1016/j.polymdegradstab.2019.06.007_bib16) 2018; 91 Ito (10.1016/j.polymdegradstab.2019.06.007_bib50) 1981; 18 Gillen (10.1016/j.polymdegradstab.2019.06.007_bib68) 2005; 87 Celina (10.1016/j.polymdegradstab.2019.06.007_bib7) 2014 Pickett (10.1016/j.polymdegradstab.2019.06.007_bib43) 2008; 93 (10.1016/j.polymdegradstab.2019.06.007_bib65) 1996 Le Gac (10.1016/j.polymdegradstab.2019.06.007_bib69) 2016; 130 Gillen (10.1016/j.polymdegradstab.2019.06.007_bib18) 2010 Gillen (10.1016/j.polymdegradstab.2019.06.007_bib39) 2000; 71 Colin (10.1016/j.polymdegradstab.2019.06.007_bib55) 2010; 79 Gillen (10.1016/j.polymdegradstab.2019.06.007_bib71) 2019 Ito (10.1016/j.polymdegradstab.2019.06.007_bib53) 2009 Gillen (10.1016/j.polymdegradstab.2019.06.007_bib5) 2005 Celina (10.1016/j.polymdegradstab.2019.06.007_bib31) 1995; 48 Pickett (10.1016/j.polymdegradstab.2019.06.007_bib42) 2008; 93 Gillen (10.1016/j.polymdegradstab.2019.06.007_bib2) 1991 Gillen (10.1016/j.polymdegradstab.2019.06.007_bib1) 1989; 24 Gillen (10.1016/j.polymdegradstab.2019.06.007_bib17) 2000; 73 Shimada (10.1016/j.polymdegradstab.2019.06.007_bib23) 2014; 21 (10.1016/j.polymdegradstab.2019.06.007_bib29) 1972 Gillen (10.1016/j.polymdegradstab.2019.06.007_bib61) 2006; 91 Burnay (10.1016/j.polymdegradstab.2019.06.007_bib63) 2001 Celina (10.1016/j.polymdegradstab.2019.06.007_bib13) 2013; 98 Woods (10.1016/j.polymdegradstab.2019.06.007_bib28) 1994 Bernstein (10.1016/j.polymdegradstab.2019.06.007_bib62) 2005; 88 Assink (10.1016/j.polymdegradstab.2019.06.007_bib59) 2005; 46 Seguchi (10.1016/j.polymdegradstab.2019.06.007_bib24) 2015; 22 Shimada (10.1016/j.polymdegradstab.2019.06.007_bib22) 2013; 20 Clough (10.1016/j.polymdegradstab.2019.06.007_bib47) 1981; 19 Celina (10.1016/j.polymdegradstab.2019.06.007_bib32) 1996; 48 (10.1016/j.polymdegradstab.2019.06.007_bib30) 1973 Celina (10.1016/j.polymdegradstab.2019.06.007_bib6) 2013 Wise (10.1016/j.polymdegradstab.2019.06.007_bib37) 1995; 49 Ito (10.1016/j.polymdegradstab.2019.06.007_bib51) 1981; 17 Gillen (10.1016/j.polymdegradstab.2019.06.007_bib40) 2001; 74 (10.1016/j.polymdegradstab.2019.06.007_bib66) 2014 Celina (10.1016/j.polymdegradstab.2019.06.007_bib34) 1998; 60 Quintana (10.1016/j.polymdegradstab.2019.06.007_bib45) 2018; 149 Gillen (10.1016/j.polymdegradstab.2019.06.007_bib41) 2004; 84 Celina (10.1016/j.polymdegradstab.2019.06.007_bib60) 2013; 54 Gijsman (10.1016/j.polymdegradstab.2019.06.007_bib70) 2016; 130 |
References_xml | – volume: 41 start-page: 803 year: 1993 ident: bib3 article-title: Predictive aging results in radiation environments publication-title: Radiat. Phys. Chem. – year: 2009 ident: bib9 article-title: The Final Report of the Project of "Assessment of Cable Aging for Nuclear Power Plants – volume: 265 start-page: 227 year: 2007 ident: bib54 article-title: Degradation of elastomer by heat and/or radiation publication-title: Nucl. Instrum. Methods Phys. Res. B – year: 2014 ident: bib10 publication-title: Expanded Materials Degradation Assessment (EMDA) Volume 5: Aging of Cables and Cable Systems – year: 2010 ident: bib18 article-title: Review of Nuclear Power Plant Safety Cable Aging Studies with Recommendations for Improved Approaches and for Future Work – volume: 24 start-page: 137 year: 1989 ident: bib1 article-title: Time-temperature-dose rate superposition: a methodology for extrapolating accelerated radiation aging data to low dose rate conditions publication-title: Polym. Degrad. Stabil. – volume: 130 start-page: 348 year: 2016 ident: bib69 article-title: Predictive ageing of elastomers: oxidation driven modulus changes for polychloroprene publication-title: Polym. Degrad. Stabil. – volume: 23 start-page: 2683 year: 1985 ident: bib8 article-title: A kinetic model for predicting oxidative degradation rates in combined radiation-thermal environments publication-title: J. Polym. Sci. Polym. Chem. Ed. – volume: 87 start-page: 335 year: 2005 ident: bib67 article-title: Non-Arrhenius behavior for oxidative degradation of chlorosulfonated polyethylene materials publication-title: Polym. Degrad. Stabil. – year: 1975 ident: bib27 article-title: Radiation Physics and Chemistry of Polymers – volume: 17 start-page: 203 year: 1981 ident: bib51 article-title: Application of chemorheology to radiation damage of polymers—III: synergism of heat and radiation on the chemorheology of ethylene-propylene rubber publication-title: Radiat. Phys. Chem. – year: 1996 ident: bib65 article-title: Determination of long-term radiation ageing in polymers- Part 2: Procedures for predicting ageing at low dose rates publication-title: Int. Electrotech. Comm. – year: 2019 ident: bib71 article-title: Importance of synergism for combined radiation plus temperature environments publication-title: Rubber Chem. Technol. – volume: 20 start-page: 2107 year: 2013 ident: bib22 article-title: Degradation distribution in insulation materials of cables by accelerated thermal and radiation ageing publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 31 start-page: 615 year: 1988 ident: bib52 article-title: Application of chemorheology to radiation damage of elastomer publication-title: Int. J. Radiat. Appl. Instrum. C Radiat. Phys. Chem. – year: 2013 ident: bib6 article-title: Nuclear Power Plant Cable Materials: Review of Qualification and Currently Available Aging Data for Margin Assessments in Cable Performance – volume: 49 start-page: 403 year: 1995 ident: bib37 article-title: An ultrasensitive technique for testing the Arrhenius extrapolation assumption for thermally aged elastomers publication-title: Polym. Degrad. Stabil. – year: 1994 ident: bib28 article-title: Applied Radiation Chemistry Radiation Processing – volume: 87 start-page: 57 year: 2005 ident: bib68 article-title: Evidence of non-Arrhenius behavior from laboratory aging and 24-year field aging of polychloroprene rubber materials publication-title: Polym. Degrad. Stabil. – year: 2000 ident: bib25 publication-title: Assessment and Management of Ageing of Major Nuclear Power Plant Components Important to Safety: In-Containment Instrumentation and Control Cables – volume: 91 start-page: 27 year: 2018 ident: bib16 article-title: Predicting polymer degradation and mechanical property changes for combined radiation-thermal aging environments publication-title: Rubber Chem. Technol. – volume: 59 start-page: 344 year: 1982 ident: bib48 article-title: Investigation of cable deterioration inside reactor containment publication-title: Nucl. Technol. – volume: 236 start-page: 88 year: 2005 ident: bib58 article-title: A simplified approach for the lifetime prediction of PE in nuclear environments publication-title: Nucl. Instrum. Methods Phys. Res. B – volume: 19 start-page: 2041 year: 1981 ident: bib47 article-title: Combined environment aging effects: radiation-thermal degradation of poly(vinyl chloride) and polyethylene publication-title: J. Polym. Sci. Polym. Chem. Ed. – start-page: SAND2005 year: 2005 end-page: 7331 ident: bib5 article-title: Nuclear Energy Plant Optimization (NEPO): Final Report on Aging and Condition Monitoring of Low-Voltage Cable Materials – year: 1973 ident: bib30 publication-title: The Radiation Chemistry of Macromolecules II – volume: 19 start-page: 1768 year: 2012 ident: bib21 article-title: Radiation ageing technique for cable life evaluation of nuclear power plant publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 91 start-page: 1273 year: 2006 ident: bib61 article-title: Condition monitoring methods applied to degradation of chlorosulfonated polyethylene cable jacketing materials publication-title: Polym. Degrad. Stabil. – volume: 98 start-page: 2419 year: 2013 ident: bib13 article-title: Review of polymer oxidation and its relationship with materials performance and lifetime prediction publication-title: Polym. Degrad. Stabil. – year: 1990 ident: bib64 article-title: Time Temperature Dose Rate Superposition Behavior in Irradiated Polymers – year: 2012 ident: bib15 article-title: Oxidative Ageing of Polymers – volume: 18 start-page: 653 year: 1981 ident: bib50 article-title: Chemorheology of rubber under heat and radiation publication-title: Radiat. Phys. Chem. – volume: 93 start-page: 1597 year: 2008 ident: bib43 article-title: Effects of irradiation conditions on the weathering of engineering thermoplastics publication-title: Polym. Degrad. Stabil. – volume: 49 start-page: 565 year: 1997 ident: bib4 article-title: Time development of diffusion-limited oxidation profiles in a radiation environment publication-title: Radiat. Phys. Chem. – volume: 48 start-page: 297 year: 1995 ident: bib31 article-title: Characterization and degradation studies of peroxide and silane crosslinked polyethylene publication-title: Polym. Degrad. Stabil. – year: 2014 ident: bib7 article-title: Summary Report of Cable Aging and Performance Data for Fiscal Year 2014 – volume: 74 start-page: 428 year: 2001 ident: bib40 article-title: Modulus mapping of rubbers using micro- and nano-indentation techniques publication-title: Rubber Chem. Technol. – volume: 130 start-page: 83 year: 2016 ident: bib70 article-title: Influence of temperature and stabilization on oxygen diffusion limited oxidation profiles of polyamide 6 publication-title: Polym. Degrad. Stabil. – volume: 68 start-page: 171 year: 2000 ident: bib36 article-title: Correlation of chemical and mechanical property changes during oxidative degradation of neoprene publication-title: Polym. Degrad. Stabil. – volume: 21 start-page: 16 year: 2014 ident: bib23 article-title: Degradation mechanisms of silicone rubber (SiR) by accelerated ageing for cables of nuclear power plant publication-title: IEEE Trans. Dielectr. Electr. Insul. – year: 2014 ident: bib66 article-title: Determination of long-term radiation ageing in polymers – Part 2: Procedures for predicting ageing at low dose rates publication-title: Int. Electrotech. Comm. – volume: 82 start-page: 69 year: 2013 ident: bib20 article-title: Product analysis for polyethylene degradation by radiation and thermal ageing publication-title: Radiat. Phys. Chem. – volume: 79 start-page: 365 year: 2010 ident: bib55 article-title: Kinetic modelling of radiochemical aging of ethylene-propylene copolymers publication-title: Radiat. Phys. Chem. – volume: 88 start-page: 1 year: 2015 ident: bib14 article-title: Challenges of accelerated aging techniques for elastomer lifetime predictions publication-title: Rubber Chem. Technol. – volume: 54 start-page: 3290 year: 2013 ident: bib60 article-title: A perspective on the inherent oxidation sensitivity of epoxy materials publication-title: Polymer – year: 1972 ident: bib29 publication-title: The Radiation Chemistry of Macromolecules I – volume: 91 start-page: 1593 year: 2006 ident: bib57 article-title: Oxidation of polyethylene under irradiation at low temperature and low dose rate. Part I. The case of "pure" radiochemical initiation publication-title: Polym. Degrad. Stabil. – volume: 153 start-page: 653 year: 2018 ident: bib46 article-title: Water diffusion with temperature enabling predictions for sorption and transport behavior in thermoset materials publication-title: Polymer – volume: 22 start-page: 3197 year: 2015 ident: bib24 article-title: Degradation of cable insulation material by accelerated thermal radiation combined ageing publication-title: IEEE Trans. Dielectr. Electr. Insul. – volume: 48 start-page: 613 year: 1996 ident: bib32 article-title: Anomalous aging phenomena in a crosslinked polyolefin cable insulation publication-title: Radiat. Phys. Chem. – volume: 38 start-page: 1929 year: 1997 ident: bib38 article-title: Quantitative model for the time development of diffusion-limited oxidation profiles publication-title: Polymer – year: 2001 ident: bib63 article-title: Reverse temperature effect during ageing of XLPE cable insulation publication-title: Ageing Studies and Life Extension of Materials – volume: 82 start-page: 54 year: 2013 ident: bib56 article-title: Degradation of epoxy coatings under gamma irradiation publication-title: Radiat. Phys. Chem. – volume: 61 start-page: 231 year: 1998 ident: bib33 article-title: Inverse temperature and annealing phenomena during degradation of crosslinked polyolefins publication-title: Polym. Degrad. Stabil. – volume: 71 start-page: 15 year: 2000 ident: bib39 article-title: The wear-out approach for predicting the remaining lifetime of materials publication-title: Polym. Degrad. Stabil. – volume: 81 start-page: 1747 year: 2012 ident: bib12 article-title: Mechanism of antioxidant interaction on polymer oxidation by thermal and radiation ageing publication-title: Radiat. Phys. Chem. – year: 2009 ident: bib53 article-title: Methodology Study of Qualification of Electric Wire and Cable Used in Nuclear Power Plant – start-page: 457 year: 1991 ident: bib2 article-title: Quantitative confirmation of simple theoretical models for diffusion-limited oxidation publication-title: Radiation Effects on Polymers, ACS Series #475 – year: 2012 ident: bib19 article-title: Polymères en ambiance nucléaire – volume: 84 start-page: 419 year: 2004 ident: bib41 article-title: Condition monitoring approaches applied to a polychloroprene cable jacketing material publication-title: Polym. Degrad. Stabil. – volume: 60 start-page: 493 year: 1998 ident: bib34 article-title: Oxidation profiles of thermally aged nitrile rubber publication-title: Polym. Degrad. Stabil. – volume: 73 start-page: 265 year: 2000 ident: bib17 article-title: Methods for predicting more confident lifetimes of seals in air environments publication-title: Rubber Chem. Technol. – volume: 88 start-page: 480 year: 2005 ident: bib62 article-title: Nylon 6.6 accelerated aging studies: thermal-oxidative degradation and its interaction with hydrolysis publication-title: Polym. Degrad. Stabil. – volume: 80 start-page: 268 year: 2010 ident: bib11 article-title: Degradation mechanisms of cable insulation materials during radiation-thermal ageing in radiation environment publication-title: Radiat. Phys. Chem. – volume: 73 start-page: 678 year: 2000 ident: bib35 article-title: Thermal degradation studies of a polyurethane propellant binder publication-title: Rubber Chem. Technol. – volume: 149 start-page: 173 year: 2018 ident: bib45 article-title: Overview of DLO modeling and approaches to predict heterogeneous oxidative polymer degradation publication-title: Polym. Degrad. Stabil. – volume: 95 start-page: 1284 year: 2011 ident: bib44 article-title: Accelerated weathering testing principles to estimate the service life of organic PV modules publication-title: Sol. Energy Mater. Sol. Cells – start-page: 524 year: 1991 ident: bib49 article-title: A practical model for prediction of the lifetime of elastomeric seals in nuclear environments publication-title: Radiation Effects on Polymers, ACS Series #475 – year: 1962 ident: bib26 article-title: Radiation Chemistry of Polymeric Systems – volume: 93 start-page: 684 year: 2008 ident: bib42 article-title: Effects of temperature on the weathering of engineering thermoplastics publication-title: Polym. Degrad. Stabil. – volume: 46 start-page: 11648 year: 2005 ident: bib59 article-title: Use of a respirometer to measure oxidation rates of polymeric materials at ambient temperatures publication-title: Polymer – volume: 79 start-page: 365 year: 2010 ident: 10.1016/j.polymdegradstab.2019.06.007_bib55 article-title: Kinetic modelling of radiochemical aging of ethylene-propylene copolymers publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2009.08.019 – volume: 74 start-page: 428 year: 2001 ident: 10.1016/j.polymdegradstab.2019.06.007_bib40 article-title: Modulus mapping of rubbers using micro- and nano-indentation techniques publication-title: Rubber Chem. Technol. doi: 10.5254/1.3547646 – year: 2014 ident: 10.1016/j.polymdegradstab.2019.06.007_bib10 – volume: 130 start-page: 83 year: 2016 ident: 10.1016/j.polymdegradstab.2019.06.007_bib70 article-title: Influence of temperature and stabilization on oxygen diffusion limited oxidation profiles of polyamide 6 publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2016.05.024 – year: 1975 ident: 10.1016/j.polymdegradstab.2019.06.007_bib27 – volume: 31 start-page: 615 year: 1988 ident: 10.1016/j.polymdegradstab.2019.06.007_bib52 article-title: Application of chemorheology to radiation damage of elastomer publication-title: Int. J. Radiat. Appl. Instrum. C Radiat. Phys. Chem. – volume: 23 start-page: 2683 year: 1985 ident: 10.1016/j.polymdegradstab.2019.06.007_bib8 article-title: A kinetic model for predicting oxidative degradation rates in combined radiation-thermal environments publication-title: J. Polym. Sci. Polym. Chem. Ed. doi: 10.1002/pol.1985.170231011 – volume: 19 start-page: 2041 year: 1981 ident: 10.1016/j.polymdegradstab.2019.06.007_bib47 article-title: Combined environment aging effects: radiation-thermal degradation of poly(vinyl chloride) and polyethylene publication-title: J. Polym. Sci. Polym. Chem. Ed. doi: 10.1002/pol.1981.170190816 – year: 2001 ident: 10.1016/j.polymdegradstab.2019.06.007_bib63 article-title: Reverse temperature effect during ageing of XLPE cable insulation – volume: 84 start-page: 419 year: 2004 ident: 10.1016/j.polymdegradstab.2019.06.007_bib41 article-title: Condition monitoring approaches applied to a polychloroprene cable jacketing material publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2004.01.018 – volume: 73 start-page: 265 year: 2000 ident: 10.1016/j.polymdegradstab.2019.06.007_bib17 article-title: Methods for predicting more confident lifetimes of seals in air environments publication-title: Rubber Chem. Technol. doi: 10.5254/1.3547590 – volume: 68 start-page: 171 year: 2000 ident: 10.1016/j.polymdegradstab.2019.06.007_bib36 article-title: Correlation of chemical and mechanical property changes during oxidative degradation of neoprene publication-title: Polym. Degrad. Stabil. doi: 10.1016/S0141-3910(99)00183-4 – volume: 38 start-page: 1929 year: 1997 ident: 10.1016/j.polymdegradstab.2019.06.007_bib38 article-title: Quantitative model for the time development of diffusion-limited oxidation profiles publication-title: Polymer doi: 10.1016/S0032-3861(96)00716-1 – year: 1990 ident: 10.1016/j.polymdegradstab.2019.06.007_bib64 – volume: 130 start-page: 348 year: 2016 ident: 10.1016/j.polymdegradstab.2019.06.007_bib69 article-title: Predictive ageing of elastomers: oxidation driven modulus changes for polychloroprene publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2016.06.014 – year: 1973 ident: 10.1016/j.polymdegradstab.2019.06.007_bib30 – year: 2014 ident: 10.1016/j.polymdegradstab.2019.06.007_bib7 – year: 1962 ident: 10.1016/j.polymdegradstab.2019.06.007_bib26 – volume: 95 start-page: 1284 year: 2011 ident: 10.1016/j.polymdegradstab.2019.06.007_bib44 article-title: Accelerated weathering testing principles to estimate the service life of organic PV modules publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2010.08.033 – start-page: SAND2005 year: 2005 ident: 10.1016/j.polymdegradstab.2019.06.007_bib5 – volume: 19 start-page: 1768 year: 2012 ident: 10.1016/j.polymdegradstab.2019.06.007_bib21 article-title: Radiation ageing technique for cable life evaluation of nuclear power plant publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2012.6311526 – volume: 73 start-page: 678 year: 2000 ident: 10.1016/j.polymdegradstab.2019.06.007_bib35 article-title: Thermal degradation studies of a polyurethane propellant binder publication-title: Rubber Chem. Technol. doi: 10.5254/1.3547613 – volume: 41 start-page: 803 year: 1993 ident: 10.1016/j.polymdegradstab.2019.06.007_bib3 article-title: Predictive aging results in radiation environments publication-title: Radiat. Phys. Chem. doi: 10.1016/0969-806X(93)90026-Q – year: 1996 ident: 10.1016/j.polymdegradstab.2019.06.007_bib65 article-title: Determination of long-term radiation ageing in polymers- Part 2: Procedures for predicting ageing at low dose rates publication-title: Int. Electrotech. Comm. – year: 1972 ident: 10.1016/j.polymdegradstab.2019.06.007_bib29 – volume: 18 start-page: 653 year: 1981 ident: 10.1016/j.polymdegradstab.2019.06.007_bib50 article-title: Chemorheology of rubber under heat and radiation publication-title: Radiat. Phys. Chem. – volume: 87 start-page: 335 year: 2005 ident: 10.1016/j.polymdegradstab.2019.06.007_bib67 article-title: Non-Arrhenius behavior for oxidative degradation of chlorosulfonated polyethylene materials publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2004.09.004 – volume: 49 start-page: 565 year: 1997 ident: 10.1016/j.polymdegradstab.2019.06.007_bib4 article-title: Time development of diffusion-limited oxidation profiles in a radiation environment publication-title: Radiat. Phys. Chem. doi: 10.1016/S0969-806X(96)00185-5 – volume: 48 start-page: 613 year: 1996 ident: 10.1016/j.polymdegradstab.2019.06.007_bib32 article-title: Anomalous aging phenomena in a crosslinked polyolefin cable insulation publication-title: Radiat. Phys. Chem. doi: 10.1016/0969-806X(96)00083-7 – year: 2009 ident: 10.1016/j.polymdegradstab.2019.06.007_bib9 – volume: 82 start-page: 69 year: 2013 ident: 10.1016/j.polymdegradstab.2019.06.007_bib20 article-title: Product analysis for polyethylene degradation by radiation and thermal ageing publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2012.08.009 – volume: 48 start-page: 297 year: 1995 ident: 10.1016/j.polymdegradstab.2019.06.007_bib31 article-title: Characterization and degradation studies of peroxide and silane crosslinked polyethylene publication-title: Polym. Degrad. Stabil. doi: 10.1016/0141-3910(95)00053-O – volume: 153 start-page: 653 year: 2018 ident: 10.1016/j.polymdegradstab.2019.06.007_bib46 article-title: Water diffusion with temperature enabling predictions for sorption and transport behavior in thermoset materials publication-title: Polymer doi: 10.1016/j.polymer.2018.08.024 – volume: 82 start-page: 54 year: 2013 ident: 10.1016/j.polymdegradstab.2019.06.007_bib56 article-title: Degradation of epoxy coatings under gamma irradiation publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2012.09.008 – volume: 93 start-page: 1597 year: 2008 ident: 10.1016/j.polymdegradstab.2019.06.007_bib43 article-title: Effects of irradiation conditions on the weathering of engineering thermoplastics publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2008.02.009 – volume: 91 start-page: 1593 year: 2006 ident: 10.1016/j.polymdegradstab.2019.06.007_bib57 article-title: Oxidation of polyethylene under irradiation at low temperature and low dose rate. Part I. The case of "pure" radiochemical initiation publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2005.09.011 – volume: 80 start-page: 268 year: 2010 ident: 10.1016/j.polymdegradstab.2019.06.007_bib11 article-title: Degradation mechanisms of cable insulation materials during radiation-thermal ageing in radiation environment publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2010.07.045 – start-page: 524 year: 1991 ident: 10.1016/j.polymdegradstab.2019.06.007_bib49 article-title: A practical model for prediction of the lifetime of elastomeric seals in nuclear environments – volume: 88 start-page: 480 year: 2005 ident: 10.1016/j.polymdegradstab.2019.06.007_bib62 article-title: Nylon 6.6 accelerated aging studies: thermal-oxidative degradation and its interaction with hydrolysis publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2004.11.020 – year: 2019 ident: 10.1016/j.polymdegradstab.2019.06.007_bib71 article-title: Importance of synergism for combined radiation plus temperature environments publication-title: Rubber Chem. Technol. – volume: 60 start-page: 493 year: 1998 ident: 10.1016/j.polymdegradstab.2019.06.007_bib34 article-title: Oxidation profiles of thermally aged nitrile rubber publication-title: Polym. Degrad. Stabil. doi: 10.1016/S0141-3910(97)00113-4 – volume: 93 start-page: 684 year: 2008 ident: 10.1016/j.polymdegradstab.2019.06.007_bib42 article-title: Effects of temperature on the weathering of engineering thermoplastics publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2007.12.013 – volume: 54 start-page: 3290 year: 2013 ident: 10.1016/j.polymdegradstab.2019.06.007_bib60 article-title: A perspective on the inherent oxidation sensitivity of epoxy materials publication-title: Polymer doi: 10.1016/j.polymer.2013.04.042 – volume: 24 start-page: 137 year: 1989 ident: 10.1016/j.polymdegradstab.2019.06.007_bib1 article-title: Time-temperature-dose rate superposition: a methodology for extrapolating accelerated radiation aging data to low dose rate conditions publication-title: Polym. Degrad. Stabil. doi: 10.1016/0141-3910(89)90108-0 – volume: 236 start-page: 88 year: 2005 ident: 10.1016/j.polymdegradstab.2019.06.007_bib58 article-title: A simplified approach for the lifetime prediction of PE in nuclear environments publication-title: Nucl. Instrum. Methods Phys. Res. B doi: 10.1016/j.nimb.2005.03.259 – volume: 22 start-page: 3197 year: 2015 ident: 10.1016/j.polymdegradstab.2019.06.007_bib24 article-title: Degradation of cable insulation material by accelerated thermal radiation combined ageing publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2015.004880 – volume: 61 start-page: 231 year: 1998 ident: 10.1016/j.polymdegradstab.2019.06.007_bib33 article-title: Inverse temperature and annealing phenomena during degradation of crosslinked polyolefins publication-title: Polym. Degrad. Stabil. doi: 10.1016/S0141-3910(97)00142-0 – year: 2013 ident: 10.1016/j.polymdegradstab.2019.06.007_bib6 – volume: 265 start-page: 227 year: 2007 ident: 10.1016/j.polymdegradstab.2019.06.007_bib54 article-title: Degradation of elastomer by heat and/or radiation publication-title: Nucl. Instrum. Methods Phys. Res. B doi: 10.1016/j.nimb.2007.08.051 – volume: 20 start-page: 2107 year: 2013 ident: 10.1016/j.polymdegradstab.2019.06.007_bib22 article-title: Degradation distribution in insulation materials of cables by accelerated thermal and radiation ageing publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2013.6678859 – volume: 21 start-page: 16 year: 2014 ident: 10.1016/j.polymdegradstab.2019.06.007_bib23 article-title: Degradation mechanisms of silicone rubber (SiR) by accelerated ageing for cables of nuclear power plant publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2013.004177 – volume: 81 start-page: 1747 year: 2012 ident: 10.1016/j.polymdegradstab.2019.06.007_bib12 article-title: Mechanism of antioxidant interaction on polymer oxidation by thermal and radiation ageing publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2012.06.011 – volume: 149 start-page: 173 year: 2018 ident: 10.1016/j.polymdegradstab.2019.06.007_bib45 article-title: Overview of DLO modeling and approaches to predict heterogeneous oxidative polymer degradation publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2017.11.014 – volume: 91 start-page: 1273 year: 2006 ident: 10.1016/j.polymdegradstab.2019.06.007_bib61 article-title: Condition monitoring methods applied to degradation of chlorosulfonated polyethylene cable jacketing materials publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2005.09.002 – year: 2012 ident: 10.1016/j.polymdegradstab.2019.06.007_bib19 – year: 2009 ident: 10.1016/j.polymdegradstab.2019.06.007_bib53 – year: 2014 ident: 10.1016/j.polymdegradstab.2019.06.007_bib66 article-title: Determination of long-term radiation ageing in polymers – Part 2: Procedures for predicting ageing at low dose rates publication-title: Int. Electrotech. Comm. – volume: 87 start-page: 57 year: 2005 ident: 10.1016/j.polymdegradstab.2019.06.007_bib68 article-title: Evidence of non-Arrhenius behavior from laboratory aging and 24-year field aging of polychloroprene rubber materials publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2004.06.010 – volume: 91 start-page: 27 year: 2018 ident: 10.1016/j.polymdegradstab.2019.06.007_bib16 article-title: Predicting polymer degradation and mechanical property changes for combined radiation-thermal aging environments publication-title: Rubber Chem. Technol. doi: 10.5254/rct.18.81679 – volume: 88 start-page: 1 year: 2015 ident: 10.1016/j.polymdegradstab.2019.06.007_bib14 article-title: Challenges of accelerated aging techniques for elastomer lifetime predictions publication-title: Rubber Chem. Technol. doi: 10.5254/rct.14.85930 – volume: 59 start-page: 344 year: 1982 ident: 10.1016/j.polymdegradstab.2019.06.007_bib48 article-title: Investigation of cable deterioration inside reactor containment publication-title: Nucl. Technol. doi: 10.13182/NT82-A33037 – volume: 46 start-page: 11648 year: 2005 ident: 10.1016/j.polymdegradstab.2019.06.007_bib59 article-title: Use of a respirometer to measure oxidation rates of polymeric materials at ambient temperatures publication-title: Polymer doi: 10.1016/j.polymer.2005.09.069 – volume: 98 start-page: 2419 year: 2013 ident: 10.1016/j.polymdegradstab.2019.06.007_bib13 article-title: Review of polymer oxidation and its relationship with materials performance and lifetime prediction publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2013.06.024 – year: 2012 ident: 10.1016/j.polymdegradstab.2019.06.007_bib15 – year: 1994 ident: 10.1016/j.polymdegradstab.2019.06.007_bib28 – year: 2000 ident: 10.1016/j.polymdegradstab.2019.06.007_bib25 – volume: 17 start-page: 203 year: 1981 ident: 10.1016/j.polymdegradstab.2019.06.007_bib51 article-title: Application of chemorheology to radiation damage of polymers—III: synergism of heat and radiation on the chemorheology of ethylene-propylene rubber publication-title: Radiat. Phys. Chem. – volume: 49 start-page: 403 year: 1995 ident: 10.1016/j.polymdegradstab.2019.06.007_bib37 article-title: An ultrasensitive technique for testing the Arrhenius extrapolation assumption for thermally aged elastomers publication-title: Polym. Degrad. Stabil. doi: 10.1016/0141-3910(95)00137-B – volume: 71 start-page: 15 year: 2000 ident: 10.1016/j.polymdegradstab.2019.06.007_bib39 article-title: The wear-out approach for predicting the remaining lifetime of materials publication-title: Polym. Degrad. Stabil. doi: 10.1016/S0141-3910(00)00112-9 – year: 2010 ident: 10.1016/j.polymdegradstab.2019.06.007_bib18 – start-page: 457 year: 1991 ident: 10.1016/j.polymdegradstab.2019.06.007_bib2 article-title: Quantitative confirmation of simple theoretical models for diffusion-limited oxidation |
SSID | ssj0000451 |
Score | 2.5448542 |
SecondaryResourceType | review_article |
Snippet | Polymer aging under combined radiation-thermal oxidative conditions is intrinsically more convoluted than traditional thermal degradation. Accelerated aging... |
SourceID | osti proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 353 |
SubjectTerms | accelerated aging Accelerated polymer aging activation energy Aging (materials) Aging model evaluation analytical methods Cable insulation performance under combined environments data collection Dosage Elongation Environment models Interaction parameters kinetics Oxidation Oxidation rate Photodegradation polyethylene Polyethylenes Polymers prediction Predictions Predictive kinetic models Radiation Radiation-thermal oxidative degradation Reaction kinetics Superposition (mathematics) synergism temperature Temperature dependence Thermal degradation Thermal environments Time dependence |
Title | Overview of accelerated aging and polymer degradation kinetics for combined radiation-thermal environments |
URI | https://dx.doi.org/10.1016/j.polymdegradstab.2019.06.007 https://www.proquest.com/docview/2279796479 https://www.proquest.com/docview/2286853147 https://www.osti.gov/biblio/1776353 |
Volume | 166 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9xADBZhA30cQpu2dJM0TKE9TnfHHr8gh4SlYdtCemkgt2EeMuRlL5tNSy797ZXGdpI-DoGCL37IiJEsafCnTwDvqhKRCpFKOp2j1C4LssyKIDWzf9Wlr5M6sn0e5fNj_fkkO1mD2dALw7DKPvZ3MT1G6_7KpF_NyeL0dMKwJCpfyKWqlDcusYNdF-zlH37ewTyYP6WDMSrJTz-C93cYr0V7cXMZmJUhXHGHAmXDKtJ58nTZf-epUUuf3l-BO2ajw2ew0ZeR4qDT9DmsYbMJj2fD9LZNeHqPaPAFnH39zjEBf4i2FtZ7yjVMERFEnFEkbBNEVBKXotMz2kuc0xuYxllQZStohWgXTTJLpjPg-5KLx0tS43633Es4Pvz4bTaX_ZQF6TOVrmSGWll0zgXrXEnlgasrnFbWqqlNsdZTr2yR6wypdvCJpe2KsiqtyaCY2FCE9BWMmrbB1yAKlXmKGEmFZanTpHSY8Z_AzGOd0-HHsDesqfE9BTlPwrgwA9bszPxhEsMmMRF7V4whvxVfdFwcDxXcHwxofnMuQ3njoa_YZsOzOJPrekYhkbwqmNAvHcPO4A-mjwFXhrkZY6NvNYa3t7fJDfiXjG2wveZnypwKJqWLrf_XcRue8FkHT9yB0Wp5jW-oZFq53fhN7ML6wacv86Nflgkb7g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB_khNo-lNa29KptU2gfw112k_0AH5RDOau9vij4FvK14NfucZ4V__vOZHfV1j4IhX3a7CxDJpn5hcz8BuBrWYSAQKTkVmaBS6s8L1TuuST2r6pwVVJFts9ZNj2W30_UyQpM-loYSqvsfH_r06O37t6MutkczU9PR5SWhPAFl1SZ0sEFj0CrxE6lBrC6s38wnd07ZKnatoRScBJ4Bt_u07zmzcXtpSdiBn9FRQoYEMvI6EkNZv8dqgYN7r5HvjsGpL1X8LJDkmynVfY1rIR6HdYmfQO3dXjxgGvwDZz9_EVuIdywpmLGOQw3xBLhWWxTxEztWVQyLFirZzQZO8c_EJMzQ3DLcJLwII0yC2I0oHFO-PES1XhYMPcWjvd2jyZT3jVa4E6JdMlVkMIEa6031haIEGxVhnFpjBibNFRy7ITJM6kCwgeXGDyxCCPSCm0aEuNzn76DQd3U4T2wXCiHTiMpQ1HINClsUHQZqFyoMnzcELb6OdWuYyGnZhgXuk83O9N_mUSTSXRMv8uHkN2Jz1s6jqcKbvcG1H-sL42h46m_2CDDkzjx6zpKREJ5kROnXzqEzX496M4NXGmiZ4y1vuUQvtwN4zKgWxlTh-aavikyxExC5h_-X8fPsDY9-nGoD_dnBxvwnEbabMVNGCwX1-EjIqil_dTtkN8vkB6f |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overview+of+accelerated+aging+and+polymer+degradation+kinetics+for+combined+radiation-thermal+environments&rft.jtitle=Polymer+degradation+and+stability&rft.au=Celina%2C+Mathew&rft.au=Linde%2C+Erik&rft.au=Brunson%2C+Douglas&rft.au=Quintana%2C+Adam&rft.date=2019-08-01&rft.issn=0141-3910&rft.volume=166+p.353-378&rft.spage=353&rft.epage=378&rft_id=info:doi/10.1016%2Fj.polymdegradstab.2019.06.007&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-3910&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-3910&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-3910&client=summon |