The C terminus of p73 is essential for hippocampal development
The p53 family member p73 has a complex gene structure, including alternative promoters and alternative splicing of the 3′ UTR. This results in a complex range of isoforms whose biological relevance largely remains to be determined. By deleting exon 13 (which encodes a sterile α motif) from the Trp7...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 27; pp. 15694 - 15701 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
07.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The p53 family member p73 has a complex gene structure, including alternative promoters and alternative splicing of the 3′ UTR. This results in a complex range of isoforms whose biological relevance largely remains to be determined. By deleting exon 13 (which encodes a sterile α motif) from the Trp73 gene, we selectively engineered mice to replace the most abundantly expressed C-terminal isoform, p73α, with a shorter product of alternative splicing, p73β. These mice (Trp73Δ13/Δ13
) display severe neurodevelopmental defects with significant functional and morphological abnormalities. Replacement of p73α with p73β results in the depletion of Cajal–Retzius (CR) cells in embryonic stages, thus depriving the developing hippocampus of the pool of neurons necessary for correct hippocampal architecture. Consequently, Trp73Δ13/Δ13
mice display severe hippocampal dysgenesis, reduced synaptic functionality and impaired learning and memory capabilities. Our data shed light on the relevance of p73 alternative splicing and show that the fulllength C terminus of p73 is essential for hippocampal development. |
---|---|
AbstractList | Alteration of splicing is emerging as a relevant cause of human disease. The C-terminal region of p73 is subject to complex alternative splicing that can give rise to seven different isoforms. Here, using a newly generated mouse model, we determine the functional consequence of in vivo ectopic switch from the physiologically expressed and most abundant isoform p73α to the shorter p73β isoform. Expression of p73β leads to neurodevelopmental defects with functional and morphological abnormalities in the mouse hippocampus. The ectopic isoform switch results in depletion of Cajal–Retzius (CR) neurons in embryonic stages, leading to aberrant hippocampal architecture. Our study indicates that deregulation in p73 alternative splicing might underlie neurodevelopmental human conditions.
The p53 family member p73 has a complex gene structure, including alternative promoters and alternative splicing of the 3′ UTR. This results in a complex range of isoforms whose biological relevance largely remains to be determined. By deleting exon 13 (which encodes a sterile α motif) from the Trp73 gene, we selectively engineered mice to replace the most abundantly expressed C-terminal isoform, p73α, with a shorter product of alternative splicing, p73β. These mice (
Trp73
Δ13/Δ13
) display severe neurodevelopmental defects with significant functional and morphological abnormalities. Replacement of p73α with p73β results in the depletion of Cajal–Retzius (CR) cells in embryonic stages, thus depriving the developing hippocampus of the pool of neurons necessary for correct hippocampal architecture. Consequently,
Trp73
Δ13/Δ13
mice display severe hippocampal dysgenesis, reduced synaptic functionality and impaired learning and memory capabilities. Our data shed light on the relevance of p73 alternative splicing and show that the full-length C terminus of p73 is essential for hippocampal development. The p53 family member p73 has a complex gene structure, including alternative promoters and alternative splicing of the 3′ UTR. This results in a complex range of isoforms whose biological relevance largely remains to be determined. By deleting exon 13 (which encodes a sterile α motif) from the Trp73 gene, we selectively engineered mice to replace the most abundantly expressed C-terminal isoform, p73α, with a shorter product of alternative splicing, p73β. These mice (Trp73Δ13/Δ13) display severe neurodevelopmental defects with significant functional and morphological abnormalities. Replacement of p73α with p73β results in the depletion of Cajal–Retzius (CR) cells in embryonic stages, thus depriving the developing hippocampus of the pool of neurons necessary for correct hippocampal architecture. Consequently, Trp73Δ13/Δ13 mice display severe hippocampal dysgenesis, reduced synaptic functionality and impaired learning and memory capabilities. Our data shed light on the relevance of p73 alternative splicing and show that the full-length C terminus of p73 is essential for hippocampal development. The p53 family member p73 has a complex gene structure, including alternative promoters and alternative splicing of the 3' UTR. This results in a complex range of isoforms whose biological relevance largely remains to be determined. By deleting exon 13 (which encodes a sterile α motif) from the Trp73 gene, we selectively engineered mice to replace the most abundantly expressed C-terminal isoform, p73α, with a shorter product of alternative splicing, p73β. These mice (Trp73Δ13/Δ13 ) display severe neurodevelopmental defects with significant functional and morphological abnormalities. Replacement of p73α with p73β results in the depletion of Cajal-Retzius (CR) cells in embryonic stages, thus depriving the developing hippocampus of the pool of neurons necessary for correct hippocampal architecture. Consequently, Trp73Δ13/Δ13 mice display severe hippocampal dysgenesis, reduced synaptic functionality and impaired learning and memory capabilities. Our data shed light on the relevance of p73 alternative splicing and show that the full-length C terminus of p73 is essential for hippocampal development.The p53 family member p73 has a complex gene structure, including alternative promoters and alternative splicing of the 3' UTR. This results in a complex range of isoforms whose biological relevance largely remains to be determined. By deleting exon 13 (which encodes a sterile α motif) from the Trp73 gene, we selectively engineered mice to replace the most abundantly expressed C-terminal isoform, p73α, with a shorter product of alternative splicing, p73β. These mice (Trp73Δ13/Δ13 ) display severe neurodevelopmental defects with significant functional and morphological abnormalities. Replacement of p73α with p73β results in the depletion of Cajal-Retzius (CR) cells in embryonic stages, thus depriving the developing hippocampus of the pool of neurons necessary for correct hippocampal architecture. Consequently, Trp73Δ13/Δ13 mice display severe hippocampal dysgenesis, reduced synaptic functionality and impaired learning and memory capabilities. Our data shed light on the relevance of p73 alternative splicing and show that the full-length C terminus of p73 is essential for hippocampal development. The p53 family member p73 has a complex gene structure, including alternative promoters and alternative splicing of the 3' UTR. This results in a complex range of isoforms whose biological relevance largely remains to be determined. By deleting exon 13 (which encodes a sterile α motif) from the Trp73 gene, we selectively engineered mice to replace the most abundantly expressed C-terminal isoform, p73α, with a shorter product of alternative splicing, p73β. These mice ( ) display severe neurodevelopmental defects with significant functional and morphological abnormalities. Replacement of p73α with p73β results in the depletion of Cajal-Retzius (CR) cells in embryonic stages, thus depriving the developing hippocampus of the pool of neurons necessary for correct hippocampal architecture. Consequently, mice display severe hippocampal dysgenesis, reduced synaptic functionality and impaired learning and memory capabilities. Our data shed light on the relevance of p73 alternative splicing and show that the full-length C terminus of p73 is essential for hippocampal development. The p53 family member p73 has a complex gene structure, including alternative promoters and alternative splicing of the 3′ UTR. This results in a complex range of isoforms whose biological relevance largely remains to be determined. By deleting exon 13 (which encodes a sterile α motif) from the Trp73 gene, we selectively engineered mice to replace the most abundantly expressed C-terminal isoform, p73α, with a shorter product of alternative splicing, p73β. These mice (Trp73Δ13/Δ13 ) display severe neurodevelopmental defects with significant functional and morphological abnormalities. Replacement of p73α with p73β results in the depletion of Cajal–Retzius (CR) cells in embryonic stages, thus depriving the developing hippocampus of the pool of neurons necessary for correct hippocampal architecture. Consequently, Trp73Δ13/Δ13 mice display severe hippocampal dysgenesis, reduced synaptic functionality and impaired learning and memory capabilities. Our data shed light on the relevance of p73 alternative splicing and show that the fulllength C terminus of p73 is essential for hippocampal development. |
Author | Amelio, Ivano Morone, Nobuhiro Niklison-Chirou, Maria Victoria Steinert, Joern R. Melino, Gerry Agostini, Massimiliano Knight, Richard A. Panatta, Emanuele |
Author_xml | – sequence: 1 givenname: Ivano surname: Amelio fullname: Amelio, Ivano – sequence: 2 givenname: Emanuele surname: Panatta fullname: Panatta, Emanuele – sequence: 3 givenname: Maria Victoria surname: Niklison-Chirou fullname: Niklison-Chirou, Maria Victoria – sequence: 4 givenname: Joern R. surname: Steinert fullname: Steinert, Joern R. – sequence: 5 givenname: Massimiliano surname: Agostini fullname: Agostini, Massimiliano – sequence: 6 givenname: Nobuhiro surname: Morone fullname: Morone, Nobuhiro – sequence: 7 givenname: Richard A. surname: Knight fullname: Knight, Richard A. – sequence: 8 givenname: Gerry surname: Melino fullname: Melino, Gerry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32571922$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1r3DAQxUXZ0N0kPffUYuilFyejD1vyZaEsSRMI5JKchdYedbXYlivZgf73ldkkbRZyksT83punmVOy6H2PhHymcEFB8suhN_GCAUBFJaXyA1nRdM1LUcGCrACYzJVgYklOY9zPWKHgI1lyVkhaMbYi64cdZptsxNC5foqZt9kgeeZihjFiPzrTZtaHbOeGwdemG9K7wSds_dCl8jk5saaN-On5PCOP11cPm5v87v7n7ebHXV4XlI95YbhRDbWGQk0RhGq2qgGBsrSykpLzamulEY3ilUHegG0E0BKFsrzcSlXyM7I--A7TtsOmTq2DafUQXGfCH-2N028rvdvpX_5JS14UADwZfH82CP73hHHUnYs1tq3p0U9RM0FLJgXIude3I3Tvp9Cn7yWKMZCK09nw6_-JXqO8jDYBxQGog48xoNW1G83o_BzQtZqCnleo5xXqfytMussj3Yv1-4ovB8U-jj684qyseJq-4H8BAz6m5g |
CitedBy_id | crossref_primary_10_1016_j_devcel_2023_05_011 crossref_primary_10_1523_ENEURO_0054_23_2023 crossref_primary_10_1134_S0006297920100089 crossref_primary_10_1016_j_conb_2023_102686 crossref_primary_10_1038_s41419_022_05529_7 crossref_primary_10_1186_s13062_020_00274_3 crossref_primary_10_1038_s41418_022_00975_4 crossref_primary_10_3390_cancers13133182 crossref_primary_10_1038_s41419_024_07130_6 crossref_primary_10_3390_cancers13122885 crossref_primary_10_1242_dev_199409 crossref_primary_10_3389_fcell_2021_716957 crossref_primary_10_1073_pnas_2123202119 crossref_primary_10_1073_pnas_2318591121 crossref_primary_10_1016_j_celrep_2022_110822 crossref_primary_10_3390_ijms21144869 crossref_primary_10_18632_aging_203182 crossref_primary_10_3390_cells11101604 crossref_primary_10_1007_s10555_022_10057_z |
Cites_doi | 10.4161/cc.22787 10.1073/pnas.1323416111 10.1073/pnas.1410609111 10.1038/s41588-019-0539-z 10.1038/cdd.2017.178 10.1038/s41588-018-0238-1 10.1101/gad.1695308 10.1111/j.1469-7580.2010.01266.x 10.1084/jem.188.9.1763 10.1158/0008-5472.CAN-04-3047 10.1038/sj.onc.1202817 10.1101/cshperspect.a018812 10.1007/BF02996215 10.1074/jbc.M413889200 10.1073/pnas.94.6.2665 10.1073/pnas.1112063108 10.1038/35003607 10.1006/geno.1997.4983 10.1126/science.289.5477.304 10.1093/cercor/bhh010 10.1038/4151030a 10.1523/JNEUROSCI.17-21-08613.1997 10.1101/gad.279836.116 10.1038/374719a0 10.1007/BF00227262 10.3390/cells8020125 10.1523/JNEUROSCI.3060-04.2004 10.1093/nar/gkr028 10.1038/cdd.2014.61 10.1073/pnas.1112061109 10.1038/s41593-017-0056-2 10.1111/j.1749-6632.2000.tb05602.x 10.1101/gad.1873910 10.1242/dev.00654 10.1002/cne.10644 |
ContentType | Journal Article |
Copyright | Copyright © 2020 the Author(s). Published by PNAS. Copyright National Academy of Sciences Jul 7, 2020 Copyright © 2020 the Author(s). Published by PNAS. 2020 |
Copyright_xml | – notice: Copyright © 2020 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Jul 7, 2020 – notice: Copyright © 2020 the Author(s). Published by PNAS. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2000917117 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 15701 |
ExternalDocumentID | PMC7355003 32571922 10_1073_pnas_2000917117 26935134 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: MC_U132681855 – fundername: Associazione Italiana per la Ricerca sul Cancro (AIRC) grantid: IG#20473 – fundername: Associazione Italiana per la Ricerca sul Cancro (AIRC) grantid: ID 23219 – fundername: RCUK | Medical Research Council (MRC) grantid: n/a |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c513t-5a3a8d1fa10c1e048db8d04e76f7977339bf7a4d839ae3d0fd4016e48f36b7863 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:01:31 EDT 2025 Thu Jul 10 23:26:42 EDT 2025 Mon Jun 30 08:21:26 EDT 2025 Sat May 31 02:12:47 EDT 2025 Thu Apr 24 23:08:25 EDT 2025 Tue Jul 01 03:40:24 EDT 2025 Thu May 29 09:13:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Keywords | alternative splicing neurodevelopment p53 family |
Language | English |
License | Copyright © 2020 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c513t-5a3a8d1fa10c1e048db8d04e76f7977339bf7a4d839ae3d0fd4016e48f36b7863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: I.A., R.A.K., and G.M. designed research; E.P., M.V.N.-C., J.R.S., and N.M. performed research; J.R.S., M.A., and N.M. contributed new reagents/analytic tools; E.P. and N.M. analyzed data; and I.A., E.P. and G.M. wrote the paper. Edited by Vishva M. Dixit, Genentech, San Francisco, CA, and approved May 28, 2020 (received for review January 16, 2020) 1I.A. and E.P. share the first authorship. |
ORCID | 0000-0003-1640-0845 0000-0001-9428-5972 0000-0002-2147-370X 0000-0001-8723-9564 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7355003 |
PMID | 32571922 |
PQID | 2422078313 |
PQPubID | 42026 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7355003 proquest_miscellaneous_2416274076 proquest_journals_2422078313 pubmed_primary_32571922 crossref_citationtrail_10_1073_pnas_2000917117 crossref_primary_10_1073_pnas_2000917117 jstor_primary_26935134 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-07 |
PublicationDateYYYYMMDD | 2020-07-07 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2020 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_2_2 e_1_3_4_1_2 e_1_3_4_9_2 e_1_3_4_8_2 e_1_3_4_7_2 e_1_3_4_6_2 e_1_3_4_5_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_23_2 e_1_3_4_20_2 e_1_3_4_21_2 e_1_3_4_26_2 e_1_3_4_27_2 e_1_3_4_24_2 e_1_3_4_25_2 e_1_3_4_28_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_32_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_15_2 e_1_3_4_16_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_14_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_18_2 Jordan V. K. (e_1_3_4_35_2) 2015; 8 |
References_xml | – ident: e_1_3_4_16_2 doi: 10.4161/cc.22787 – ident: e_1_3_4_8_2 doi: 10.1073/pnas.1323416111 – ident: e_1_3_4_9_2 doi: 10.1073/pnas.1410609111 – ident: e_1_3_4_32_2 doi: 10.1038/s41588-019-0539-z – ident: e_1_3_4_10_2 doi: 10.1038/cdd.2017.178 – volume: 8 start-page: 189 year: 2015 ident: e_1_3_4_35_2 article-title: 1p36 deletion syndrome: An update publication-title: Appl. Clin. Genet. – ident: e_1_3_4_33_2 doi: 10.1038/s41588-018-0238-1 – ident: e_1_3_4_6_2 doi: 10.1101/gad.1695308 – ident: e_1_3_4_31_2 doi: 10.1111/j.1469-7580.2010.01266.x – ident: e_1_3_4_1_2 doi: 10.1084/jem.188.9.1763 – ident: e_1_3_4_14_2 doi: 10.1158/0008-5472.CAN-04-3047 – ident: e_1_3_4_11_2 doi: 10.1038/sj.onc.1202817 – ident: e_1_3_4_27_2 doi: 10.1101/cshperspect.a018812 – ident: e_1_3_4_17_2 doi: 10.1007/BF02996215 – ident: e_1_3_4_13_2 doi: 10.1074/jbc.M413889200 – ident: e_1_3_4_24_2 doi: 10.1073/pnas.94.6.2665 – ident: e_1_3_4_29_2 doi: 10.1073/pnas.1112063108 – ident: e_1_3_4_2_2 doi: 10.1038/35003607 – ident: e_1_3_4_20_2 doi: 10.1006/geno.1997.4983 – ident: e_1_3_4_34_2 doi: 10.1126/science.289.5477.304 – ident: e_1_3_4_5_2 doi: 10.1093/cercor/bhh010 – ident: e_1_3_4_26_2 doi: 10.1038/4151030a – ident: e_1_3_4_23_2 doi: 10.1523/JNEUROSCI.17-21-08613.1997 – ident: e_1_3_4_36_2 doi: 10.1101/gad.279836.116 – ident: e_1_3_4_18_2 doi: 10.1038/374719a0 – ident: e_1_3_4_19_2 doi: 10.1007/BF00227262 – ident: e_1_3_4_25_2 doi: 10.3390/cells8020125 – ident: e_1_3_4_4_2 doi: 10.1523/JNEUROSCI.3060-04.2004 – ident: e_1_3_4_15_2 doi: 10.1093/nar/gkr028 – ident: e_1_3_4_3_2 doi: 10.1038/cdd.2014.61 – ident: e_1_3_4_28_2 doi: 10.1073/pnas.1112061109 – ident: e_1_3_4_30_2 doi: 10.1038/s41593-017-0056-2 – ident: e_1_3_4_12_2 doi: 10.1111/j.1749-6632.2000.tb05602.x – ident: e_1_3_4_7_2 doi: 10.1101/gad.1873910 – ident: e_1_3_4_21_2 doi: 10.1242/dev.00654 – ident: e_1_3_4_22_2 doi: 10.1002/cne.10644 |
SSID | ssj0009580 |
Score | 2.4471455 |
Snippet | The p53 family member p73 has a complex gene structure, including alternative promoters and alternative splicing of the 3′ UTR. This results in a complex range... Alteration of splicing is emerging as a relevant cause of human disease. The C-terminal region of p73 is subject to complex alternative splicing that can give... The p53 family member p73 has a complex gene structure, including alternative promoters and alternative splicing of the 3' UTR. This results in a complex range... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 15694 |
SubjectTerms | Abnormalities Alternative splicing Alternative Splicing - genetics Animals Apoptosis - genetics Biological Sciences Depletion Embryonic Development - genetics Hippocampus Hippocampus - growth & development Hippocampus - metabolism Humans Interstitial Cells of Cajal - metabolism Isoforms Learning - physiology Memory - physiology Mice Neurons - metabolism p53 Protein Promoter Regions, Genetic Splicing Tumor Protein p73 - genetics |
Title | The C terminus of p73 is essential for hippocampal development |
URI | https://www.jstor.org/stable/26935134 https://www.ncbi.nlm.nih.gov/pubmed/32571922 https://www.proquest.com/docview/2422078313 https://www.proquest.com/docview/2416274076 https://pubmed.ncbi.nlm.nih.gov/PMC7355003 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pj5QwFG_G9eLFuOoqupqaeFhDGIEWCheTyWR13cTJRnfN3CYFSoYsC5MduPiF_Jq-0lKYddeoF0KglKbv9f1p3-89hN6mYEJEeUidWLgMHJSMOQnNAydgIvJ5GMU5l2jkL4vw5IKeLoPlZPJzFLXUNsk0_XErruR_qArPgK4SJfsPlDWdwgO4B_rCFSgM17-m8dxW8SxtF5OxYUSWKJcJwaumUOBEe11sNqCyYOGXPUjKxLtou_TM6LFtHzWw6LcJZwPoREuCre3YZ4uhhPHsSpRFt-f6GQzzejiWqnijrNPjK161ojRctCguSxnH5MzXxXXdatRQwe3vhTxFKIyy-CarcWpc0Wkty7Z9nY53KsAt7XZBh0COPwx7LKJ9UJtUAaunQkllMGqckKq6okZsK8yn5k-VYEBLYfBJYzpS6V7A1I7Jb_oCBJwsclzxLnM7_Ib13e4m4fbDmAQeoffQfR_8EVkq49PSG2V3jhTWSY-9zyHFyPsbfe-YPyoC9jbf5maI7sjmOX-EHmpnBc8U5-2jiageo_1-NvGRzln-7gn6AKyI57hnRVznGFgRF1tsWBEDK-IRK-IRKz5FFx-Pz-cnji7N4aQwDY0TcMKjzMu556aeAC2QJVHmUsHCnIFHQUic5IzTDMxvLkjm5hn48aGgUU7ChEUhOUB7VV2J5wiDw53QyE19IWHagsdpCmaVyz0hBGdRYKFpP2OrVOetl-VTylUXP8HISk7xaphiCx2ZDzYqZcvdTQ86Eph2PZ0tdNjTZKUXPHxHfV-eenvEQm_MaxDH8oyNV6JuZRtPVrNyWWihZ4qEpnMC6hEcKt9CbIe4poFM9b77pirWXcp3Bm4B6N8Xd433JXowrLhDtNdct-IVWMtN8rrj1F8tpb8H |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+C+terminus+of+p73+is+essential+for+hippocampal+development&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Amelio%2C+Ivano&rft.au=Panatta%2C+Emanuele&rft.au=Niklison-Chirou%2C+Maria+Victoria&rft.au=Steinert%2C+Joern+R.&rft.date=2020-07-07&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=27&rft.spage=15694&rft.epage=15701&rft_id=info:doi/10.1073%2Fpnas.2000917117&rft.externalDocID=26935134 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |