Recovery of cortical effective connectivity and recovery of consciousness in vegetative patients
Patients surviving severe brain injury may regain consciousness without recovering their ability to understand, move and communicate. Recently, electrophysiological and neuroimaging approaches, employing simple sensory stimulations or verbal commands, have proven useful in detecting higher order pro...
Saved in:
Published in | Brain (London, England : 1878) Vol. 135; no. 4; pp. 1308 - 1320 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.04.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0006-8950 1460-2156 1460-2156 |
DOI | 10.1093/brain/awr340 |
Cover
Loading…
Abstract | Patients surviving severe brain injury may regain consciousness without recovering their ability to understand, move and communicate. Recently, electrophysiological and neuroimaging approaches, employing simple sensory stimulations or verbal commands, have proven useful in detecting higher order processing and, in some cases, in establishing some degree of communication in brain-injured subjects with severe impairment of motor function. To complement these approaches, it would be useful to develop methods to detect recovery of consciousness in ways that do not depend on the integrity of sensory pathways or on the subject's ability to comprehend or carry out instructions. As suggested by theoretical and experimental work, a key requirement for consciousness is that multiple, specialized cortical areas can engage in rapid causal interactions (effective connectivity). Here, we employ transcranial magnetic stimulation together with high-density electroencephalography to evaluate effective connectivity at the bedside of severely brain injured, non-communicating subjects. In patients in a vegetative state, who were open-eyed, behaviourally awake but unresponsive, transcranial magnetic stimulation triggered a simple, local response indicating a breakdown of effective connectivity, similar to the one previously observed in unconscious sleeping or anaesthetized subjects. In contrast, in minimally conscious patients, who showed fluctuating signs of non-reflexive behaviour, transcranial magnetic stimulation invariably triggered complex activations that sequentially involved distant cortical areas ipsi- and contralateral to the site of stimulation, similar to activations we recorded in locked-in, conscious patients. Longitudinal measurements performed in patients who gradually recovered consciousness revealed that this clear-cut change in effective connectivity could occur at an early stage, before reliable communication was established with the subject and before the spontaneous electroencephalogram showed significant modifications. Measurements of effective connectivity by means of transcranial magnetic stimulation combined with electroencephalography can be performed at the bedside while by-passing subcortical afferent and efferent pathways, and without requiring active participation of subjects or language comprehension; hence, they offer an effective way to detect and track recovery of consciousness in brain-injured patients who are unable to exchange information with the external environment. |
---|---|
AbstractList | Patients surviving severe brain injury may regain consciousness without recovering their ability to understand, move and communicate. Recently, electrophysiological and neuroimaging approaches, employing simple sensory stimulations or verbal commands, have proven useful in detecting higher order processing and, in some cases, in establishing some degree of communication in brain-injured subjects with severe impairment of motor function. To complement these approaches, it would be useful to develop methods to detect recovery of consciousness in ways that do not depend on the integrity of sensory pathways or on the subject's ability to comprehend or carry out instructions. As suggested by theoretical and experimental work, a key requirement for consciousness is that multiple, specialized cortical areas can engage in rapid causal interactions (effective connectivity). Here, we employ transcranial magnetic stimulation together with high-density electroencephalography to evaluate effective connectivity at the bedside of severely brain injured, non-communicating subjects. In patients in a vegetative state, who were open-eyed, behaviourally awake but unresponsive, transcranial magnetic stimulation triggered a simple, local response indicating a breakdown of effective connectivity, similar to the one previously observed in unconscious sleeping or anaesthetized subjects. In contrast, in minimally conscious patients, who showed fluctuating signs of non-reflexive behaviour, transcranial magnetic stimulation invariably triggered complex activations that sequentially involved distant cortical areas ipsi- and contralateral to the site of stimulation, similar to activations we recorded in locked-in, conscious patients. Longitudinal measurements performed in patients who gradually recovered consciousness revealed that this clear-cut change in effective connectivity could occur at an early stage, before reliable communication was established with the subject and before the spontaneous electroencephalogram showed significant modifications. Measurements of effective connectivity by means of transcranial magnetic stimulation combined with electroencephalography can be performed at the bedside while by-passing subcortical afferent and efferent pathways, and without requiring active participation of subjects or language comprehension; hence, they offer an effective way to detect and track recovery of consciousness in brain-injured patients who are unable to exchange information with the external environment.Patients surviving severe brain injury may regain consciousness without recovering their ability to understand, move and communicate. Recently, electrophysiological and neuroimaging approaches, employing simple sensory stimulations or verbal commands, have proven useful in detecting higher order processing and, in some cases, in establishing some degree of communication in brain-injured subjects with severe impairment of motor function. To complement these approaches, it would be useful to develop methods to detect recovery of consciousness in ways that do not depend on the integrity of sensory pathways or on the subject's ability to comprehend or carry out instructions. As suggested by theoretical and experimental work, a key requirement for consciousness is that multiple, specialized cortical areas can engage in rapid causal interactions (effective connectivity). Here, we employ transcranial magnetic stimulation together with high-density electroencephalography to evaluate effective connectivity at the bedside of severely brain injured, non-communicating subjects. In patients in a vegetative state, who were open-eyed, behaviourally awake but unresponsive, transcranial magnetic stimulation triggered a simple, local response indicating a breakdown of effective connectivity, similar to the one previously observed in unconscious sleeping or anaesthetized subjects. In contrast, in minimally conscious patients, who showed fluctuating signs of non-reflexive behaviour, transcranial magnetic stimulation invariably triggered complex activations that sequentially involved distant cortical areas ipsi- and contralateral to the site of stimulation, similar to activations we recorded in locked-in, conscious patients. Longitudinal measurements performed in patients who gradually recovered consciousness revealed that this clear-cut change in effective connectivity could occur at an early stage, before reliable communication was established with the subject and before the spontaneous electroencephalogram showed significant modifications. Measurements of effective connectivity by means of transcranial magnetic stimulation combined with electroencephalography can be performed at the bedside while by-passing subcortical afferent and efferent pathways, and without requiring active participation of subjects or language comprehension; hence, they offer an effective way to detect and track recovery of consciousness in brain-injured patients who are unable to exchange information with the external environment. Patients surviving severe brain injury may regain consciousness without recovering their ability to understand, move and communicate. Recently, electrophysiological and neuroimaging approaches, employing simple sensory stimulations or verbal commands, have proven useful in detecting higher order processing and, in some cases, in establishing some degree of communication in brain-injured subjects with severe impairment of motor function. To complement these approaches, it would be useful to develop methods to detect recovery of consciousness in ways that do not depend on the integrity of sensory pathways or on the subject's ability to comprehend or carry out instructions. As suggested by theoretical and experimental work, a key requirement for consciousness is that multiple, specialized cortical areas can engage in rapid causal interactions (effective connectivity). Here, we employ transcranial magnetic stimulation together with high-density electroencephalography to evaluate effective connectivity at the bedside of severely brain injured, non-communicating subjects. In patients in a vegetative state, who were open-eyed, behaviourally awake but unresponsive, transcranial magnetic stimulation triggered a simple, local response indicating a breakdown of effective connectivity, similar to the one previously observed in unconscious sleeping or anaesthetized subjects. In contrast, in minimally conscious patients, who showed fluctuating signs of non-reflexive behaviour, transcranial magnetic stimulation invariably triggered complex activations that sequentially involved distant cortical areas ipsi- and contralateral to the site of stimulation, similar to activations we recorded in locked-in, conscious patients. Longitudinal measurements performed in patients who gradually recovered consciousness revealed that this clear-cut change in effective connectivity could occur at an early stage, before reliable communication was established with the subject and before the spontaneous electroencephalogram showed significant modifications. Measurements of effective connectivity by means of transcranial magnetic stimulation combined with electroencephalography can be performed at the bedside while by-passing subcortical afferent and efferent pathways, and without requiring active participation of subjects or language comprehension; hence, they offer an effective way to detect and track recovery of consciousness in brain-injured patients who are unable to exchange information with the external environment. |
Author | Casarotto, Silvia Casali, Adenauer G. Bruno, Marie-Aurélie Boveroux, Pierre Gosseries, Olivia Laureys, Steven Massimini, Marcello Rosanova, Mario Boly, Mélanie Mariotti, Maurizio Tononi, Giulio |
AuthorAffiliation | 2 Coma Science Group, Cyclotron Research Centre, University of Liège, 4000 Liège, Belgium 3 Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA 1 Department of Clinical Sciences ‘Luigi Sacco’, University of Milan, 20157 Milan, Italy 4 Department of Neurology, University Hospital of Liège, 4000 Liège, Belgium |
AuthorAffiliation_xml | – name: 2 Coma Science Group, Cyclotron Research Centre, University of Liège, 4000 Liège, Belgium – name: 3 Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA – name: 1 Department of Clinical Sciences ‘Luigi Sacco’, University of Milan, 20157 Milan, Italy – name: 4 Department of Neurology, University Hospital of Liège, 4000 Liège, Belgium |
Author_xml | – sequence: 1 givenname: Mario surname: Rosanova fullname: Rosanova, Mario – sequence: 2 givenname: Olivia surname: Gosseries fullname: Gosseries, Olivia – sequence: 3 givenname: Silvia surname: Casarotto fullname: Casarotto, Silvia – sequence: 4 givenname: Mélanie surname: Boly fullname: Boly, Mélanie – sequence: 5 givenname: Adenauer G. surname: Casali fullname: Casali, Adenauer G. – sequence: 6 givenname: Marie-Aurélie surname: Bruno fullname: Bruno, Marie-Aurélie – sequence: 7 givenname: Maurizio surname: Mariotti fullname: Mariotti, Maurizio – sequence: 8 givenname: Pierre surname: Boveroux fullname: Boveroux, Pierre – sequence: 9 givenname: Giulio surname: Tononi fullname: Tononi, Giulio – sequence: 10 givenname: Steven surname: Laureys fullname: Laureys, Steven – sequence: 11 givenname: Marcello surname: Massimini fullname: Massimini, Marcello |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25836077$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22226806$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstv1DAQhy1URLelN84oFyQODR3bseNckFDVl1QJCbVn4zjjYpS1Fzu7aP97vI8Wijjgy1jjb37z8ByRgxADEvKGwgcKHT_rk_HhzPxMvIEXZEYbCTWjQh6QGQDIWnUCDslRzt8BaMOZfEUOWTlSgZyRr1_QxhWmdRVdZWOavDVjhc6hnfwKiyuE7dVP68qEoUrP-JCtj8scMOfKh2qFDziZbeCiGAxTfk1eOjNmPNnbY3J_eXF3fl3ffr66Of90W1tB-VSLTrXQst4xy60QSvRWgcFBDFKprqNSukYKhkPvGjBMcjY4NFYMQrWO9cCPyced7mLZz3GwJXcyo14kPzdpraPx-vlL8N_0Q1xpXkbCGlUE3u8FUvyxxDzpuc8Wx9EELC1qCrTtJDSi_Q8UaCdbqWhB3_5Z1lM9jz9QgHd7wOQyepdMsD7_5oTiEtpNTrbjbIo5J3Ta-s2o46YbP5acerMOersOercOJej0r6BH3X_ivwBuzrtd |
CitedBy_id | crossref_primary_10_1007_s11916_013_0374_3 crossref_primary_10_1007_s11055_021_01173_4 crossref_primary_10_1371_journal_pcbi_1004654 crossref_primary_10_3389_fneur_2017_00182 crossref_primary_10_1016_j_neuron_2017_05_015 crossref_primary_10_1177_1545968314562114 crossref_primary_10_1016_j_clinph_2018_08_004 crossref_primary_10_1016_j_neuron_2016_07_031 crossref_primary_10_1016_S1280_4703_22_47055_1 crossref_primary_10_5607_en_2012_21_3_113 crossref_primary_10_1016_j_neuroimage_2021_118272 crossref_primary_10_1080_00207454_2017_1403440 crossref_primary_10_1038_nrneurol_2013_279 crossref_primary_10_1371_journal_pone_0133532 crossref_primary_10_1016_j_concog_2017_05_003 crossref_primary_10_3389_fnhum_2016_00248 crossref_primary_10_1038_s41598_019_41274_2 crossref_primary_10_3389_fnins_2025_1512724 crossref_primary_10_1016_j_nicl_2021_102797 crossref_primary_10_1097_WNR_0000000000000886 crossref_primary_10_1111_ejn_12374 crossref_primary_10_1016_j_yebeh_2013_09_014 crossref_primary_10_1111_ejn_16299 crossref_primary_10_1016_j_brs_2024_07_008 crossref_primary_10_1016_j_jneumeth_2018_12_011 crossref_primary_10_1007_s00415_013_6982_3 crossref_primary_10_1080_09602011_2019_1706585 crossref_primary_10_1016_j_clinph_2019_06_006 crossref_primary_10_1007_s12028_023_01706_4 crossref_primary_10_1093_brain_awv169 crossref_primary_10_1007_s13546_014_0898_5 crossref_primary_10_1371_journal_pone_0184910 crossref_primary_10_1038_ncomms11828 crossref_primary_10_1007_s10548_023_01024_0 crossref_primary_10_1089_neu_2012_2654 crossref_primary_10_1016_j_jneumeth_2018_11_006 crossref_primary_10_1016_j_brs_2014_09_001 crossref_primary_10_1097_MD_0000000000035510 crossref_primary_10_1186_s40779_024_00585_w crossref_primary_10_3389_fneur_2018_01012 crossref_primary_10_1155_2012_624724 crossref_primary_10_1177_0300060520976472 crossref_primary_10_3390_brainsci9050103 crossref_primary_10_1007_s11571_023_09995_3 crossref_primary_10_1007_s10877_020_00603_x crossref_primary_10_12677_ACM_2024_141233 crossref_primary_10_1016_j_nicl_2020_102356 crossref_primary_10_1016_j_cortex_2015_07_027 crossref_primary_10_1177_1550059413510703 crossref_primary_10_1016_j_brs_2023_10_008 crossref_primary_10_1523_JNEUROSCI_5089_13_2014 crossref_primary_10_1097_CM9_0000000000001377 crossref_primary_10_1016_j_clinph_2023_01_022 crossref_primary_10_1371_journal_pcbi_1010662 crossref_primary_10_1038_s41598_023_30639_3 crossref_primary_10_1212_WNL_0000000000200038 crossref_primary_10_1017_sjp_2016_89 crossref_primary_10_1016_j_brs_2017_11_006 crossref_primary_10_1177_15500594221131680 crossref_primary_10_36425_rehab624889 crossref_primary_10_1097_MD_0000000000031808 crossref_primary_10_3109_02699052_2014_888477 crossref_primary_10_1371_journal_pcbi_1003887 crossref_primary_10_1016_j_nicl_2017_10_003 crossref_primary_10_1016_j_neuroimage_2015_02_056 crossref_primary_10_1016_j_neuroimage_2017_07_047 crossref_primary_10_1007_s41252_017_0025_5 crossref_primary_10_1097_WNR_0000000000002079 crossref_primary_10_1016_j_neuroimage_2018_10_052 crossref_primary_10_3390_biomedicines10081897 crossref_primary_10_1371_journal_pone_0074711 crossref_primary_10_5665_sleep_1718 crossref_primary_10_1016_j_plrev_2012_07_001 crossref_primary_10_3389_fneur_2018_00982 crossref_primary_10_1007_s12264_018_0243_5 crossref_primary_10_1016_j_clinph_2017_06_037 crossref_primary_10_1093_nc_niad016 crossref_primary_10_1038_s41598_018_35211_y crossref_primary_10_1155_2019_7089543 crossref_primary_10_1080_02699052_2018_1553309 crossref_primary_10_3389_fnins_2016_00473 crossref_primary_10_1093_cercor_bhx122 crossref_primary_10_3390_s23218833 crossref_primary_10_1016_j_clinph_2025_01_002 crossref_primary_10_1016_j_jneumeth_2022_109651 crossref_primary_10_1016_j_nicl_2017_01_025 crossref_primary_10_1142_S2705078520710022 crossref_primary_10_1038_s41467_022_28451_0 crossref_primary_10_4103_ATN_ATN_D_24_00006 crossref_primary_10_4329_wjr_v6_i8_589 crossref_primary_10_1016_S1474_4422_12_70154_0 crossref_primary_10_3389_fncir_2016_00073 crossref_primary_10_1016_j_neuroimage_2015_12_006 crossref_primary_10_1097_ACO_0b013e3283628b5d crossref_primary_10_3390_brainsci10010042 crossref_primary_10_1016_j_brs_2021_12_002 crossref_primary_10_1111_pcn_12936 crossref_primary_10_1142_S0129065717500599 crossref_primary_10_1016_j_neuron_2024_02_004 crossref_primary_10_3389_fnhum_2014_00616 crossref_primary_10_1097_WNP_0000000000000846 crossref_primary_10_3390_s21020637 crossref_primary_10_1016_j_neuroimage_2013_07_013 crossref_primary_10_1177_1550059413513723 crossref_primary_10_1136_jnnp_2015_310958 crossref_primary_10_1007_s10548_015_0461_3 crossref_primary_10_1016_j_neurol_2021_12_004 crossref_primary_10_2174_1874440001610010052 crossref_primary_10_1016_j_compbiomed_2023_107547 crossref_primary_10_1038_nrn3188 crossref_primary_10_1111_ene_14151 crossref_primary_10_5334_jeps_cj crossref_primary_10_1371_journal_pone_0101496 crossref_primary_10_1007_s12671_025_02519_6 crossref_primary_10_1038_s41467_024_51586_1 crossref_primary_10_3390_e24111539 crossref_primary_10_1016_j_pmr_2023_07_005 crossref_primary_10_1016_j_resuscitation_2016_08_012 crossref_primary_10_1016_j_clinph_2021_08_027 crossref_primary_10_1080_21507740_2012_762067 crossref_primary_10_3389_fnhum_2015_00157 crossref_primary_10_1073_pnas_1418730112 crossref_primary_10_3389_fpsyg_2014_00940 crossref_primary_10_1016_j_concog_2015_12_011 crossref_primary_10_1016_j_cortex_2021_02_024 crossref_primary_10_1016_j_brs_2014_10_008 crossref_primary_10_1016_j_neubiorev_2016_03_006 crossref_primary_10_1038_s41467_018_06871_1 crossref_primary_10_1093_brain_awx324 crossref_primary_10_3389_fnins_2023_1343471 crossref_primary_10_1007_s10548_016_0489_z crossref_primary_10_3389_fpsyg_2018_00585 crossref_primary_10_1136_bmjopen_2017_016286 crossref_primary_10_1186_s13054_022_04119_5 crossref_primary_10_1080_03036758_2020_1840405 crossref_primary_10_1109_TNSRE_2022_3154772 crossref_primary_10_1016_j_jocn_2018_09_020 crossref_primary_10_1016_j_neubiorev_2019_11_014 crossref_primary_10_1111_cns_14009 crossref_primary_10_1111_nyas_12261 crossref_primary_10_1016_j_neuron_2023_08_007 crossref_primary_10_1016_j_neubiorev_2018_05_027 crossref_primary_10_3389_fnins_2022_771393 crossref_primary_10_1016_j_concog_2015_04_024 crossref_primary_10_1093_brain_aws060 crossref_primary_10_1177_1550059412474929 crossref_primary_10_1016_j_cub_2013_07_075 crossref_primary_10_1016_j_conb_2013_10_007 crossref_primary_10_1093_nc_niac001 crossref_primary_10_1016_j_neubiorev_2024_105670 crossref_primary_10_1212_WNL_0000000000210208 crossref_primary_10_3109_02699052_2016_1147078 crossref_primary_10_1080_00207454_2020_1744598 crossref_primary_10_1055_s_0043_1775792 crossref_primary_10_1186_s12883_022_02958_x crossref_primary_10_1016_j_lpm_2023_104180 crossref_primary_10_1016_j_brs_2013_06_006 crossref_primary_10_1016_j_conb_2012_12_003 crossref_primary_10_1016_j_neuroimage_2016_05_009 crossref_primary_10_1002_hbm_22308 crossref_primary_10_3389_fneur_2018_00315 crossref_primary_10_1007_s11682_012_9205_0 crossref_primary_10_3389_fneur_2018_00439 crossref_primary_10_1017_cjn_2022_301 crossref_primary_10_1142_S0219635214400044 crossref_primary_10_1016_j_tics_2016_03_009 crossref_primary_10_1016_j_neuroimage_2017_12_009 crossref_primary_10_1038_srep30932 crossref_primary_10_3389_fnhum_2015_00105 crossref_primary_10_1002_hbm_26022 crossref_primary_10_1097_WNP_0000000000000881 crossref_primary_10_1126_scitranslmed_3006294 crossref_primary_10_3390_organoids2010004 crossref_primary_10_3389_fnins_2022_1071594 crossref_primary_10_1016_j_clinph_2023_03_010 crossref_primary_10_3389_fnhum_2022_992649 crossref_primary_10_1016_j_neucli_2025_103048 crossref_primary_10_1093_brain_awu141 crossref_primary_10_1016_j_neuron_2017_03_028 crossref_primary_10_1016_j_cortex_2018_03_029 crossref_primary_10_1371_journal_pone_0093252 crossref_primary_10_1089_brain_2016_0462 crossref_primary_10_1016_j_bandc_2018_11_007 crossref_primary_10_3389_fnins_2022_1024278 crossref_primary_10_1016_S1474_4422_12_70188_6 crossref_primary_10_1016_j_clinph_2019_01_001 crossref_primary_10_1016_j_clinph_2015_12_010 crossref_primary_10_1016_j_neuroimage_2018_03_073 crossref_primary_10_1097_ANA_0000000000000040 crossref_primary_10_1038_s42003_024_06613_8 crossref_primary_10_1016_j_brainres_2012_04_045 crossref_primary_10_1515_tnsci_2020_0138 crossref_primary_10_1523_JNEUROSCI_1838_17_2017 crossref_primary_10_1186_s13054_016_1318_1 crossref_primary_10_1016_j_plrev_2012_09_001 crossref_primary_10_1038_s41598_022_05397_3 crossref_primary_10_1007_s11910_023_01276_0 crossref_primary_10_1186_s41984_021_00111_3 crossref_primary_10_1093_nc_niaa017 crossref_primary_10_1016_j_plrev_2019_05_002 crossref_primary_10_1007_s11571_023_09944_0 crossref_primary_10_1016_j_nicl_2017_02_002 crossref_primary_10_1134_S0362119714030116 crossref_primary_10_1001_jamaneurol_2023_5634 crossref_primary_10_1186_s42466_020_00060_6 crossref_primary_10_3390_brainsci10100746 crossref_primary_10_1016_j_brs_2013_11_004 crossref_primary_10_1073_pnas_1911240117 crossref_primary_10_1016_j_neuroimage_2014_07_037 crossref_primary_10_1016_j_clinph_2020_07_015 crossref_primary_10_1016_j_tics_2013_09_012 crossref_primary_10_1088_1741_2552_ad618b crossref_primary_10_4103_1673_5374_251299 crossref_primary_10_3238_arztebl_2015_0235 crossref_primary_10_1016_j_nicl_2020_102471 crossref_primary_10_1016_j_annfar_2013_11_006 crossref_primary_10_1016_j_bpsc_2022_12_005 crossref_primary_10_3389_fneur_2020_588233 crossref_primary_10_1016_j_annfar_2013_11_002 crossref_primary_10_1152_jn_00390_2013 crossref_primary_10_3389_fnins_2018_00370 crossref_primary_10_1016_j_neubiorev_2014_12_014 crossref_primary_10_1007_s12028_023_01795_1 crossref_primary_10_1089_neu_2015_4003 crossref_primary_10_1016_j_bja_2018_07_006 crossref_primary_10_1162_netn_a_00119 crossref_primary_10_1016_j_neucom_2014_01_048 crossref_primary_10_1016_j_clinph_2016_12_011 crossref_primary_10_1103_PhysRevE_100_032405 crossref_primary_10_1523_JNEUROSCI_0938_22_2022 crossref_primary_10_1007_s00701_022_05378_5 crossref_primary_10_1523_JNEUROSCI_1910_19_2019 crossref_primary_10_1038_s41598_018_34957_9 crossref_primary_10_1016_j_neucli_2018_09_002 crossref_primary_10_1093_brain_awaa127 crossref_primary_10_1016_j_brs_2019_05_013 crossref_primary_10_7554_eLife_83232 crossref_primary_10_1007_s11571_022_09852_9 crossref_primary_10_1016_j_brs_2024_04_011 crossref_primary_10_1016_j_tics_2019_12_010 crossref_primary_10_1016_j_brs_2018_08_003 crossref_primary_10_1111_ejn_16149 crossref_primary_10_3389_fnsys_2020_00062 crossref_primary_10_1080_02699052_2017_1327673 crossref_primary_10_1111_cns_14469 crossref_primary_10_3389_fpsyg_2018_01820 crossref_primary_10_3389_fneur_2021_510424 crossref_primary_10_3390_jcm8030306 crossref_primary_10_1038_s41583_022_00598_1 crossref_primary_10_1097_WNR_0000000000001362 crossref_primary_10_1016_j_clinph_2013_06_016 crossref_primary_10_1016_j_neubiorev_2013_09_007 crossref_primary_10_1016_j_neubiorev_2020_07_019 crossref_primary_10_2217_fnl_12_77 crossref_primary_10_3389_fnhum_2017_00524 crossref_primary_10_1016_j_cortex_2015_04_023 crossref_primary_10_1016_j_neubiorev_2013_09_009 crossref_primary_10_1016_j_brs_2020_07_012 crossref_primary_10_1016_j_clinph_2014_08_028 crossref_primary_10_1016_j_neubiorev_2021_09_029 crossref_primary_10_1146_annurev_neuro_062012_170339 crossref_primary_10_3389_fnins_2018_00393 crossref_primary_10_3109_02699052_2014_920527 crossref_primary_10_1002_brb3_336 crossref_primary_10_3390_brainsci14040371 crossref_primary_10_3109_02699052_2014_920523 crossref_primary_10_3109_02699052_2014_920524 crossref_primary_10_3389_fneur_2024_1283140 crossref_primary_10_1007_s12028_021_01246_9 crossref_primary_10_1007_s00415_020_10095_z crossref_primary_10_3109_02699052_2014_920522 crossref_primary_10_1142_S0129065720500525 crossref_primary_10_3233_RNN_170741 crossref_primary_10_1007_s12264_018_0258_y crossref_primary_10_1093_nc_niab023 crossref_primary_10_3171_2018_5_FOCUS18168 crossref_primary_10_3390_neurolint16060106 crossref_primary_10_3389_frobt_2018_00121 crossref_primary_10_1002_ana_25214 |
Cites_doi | 10.1016/j.neuroimage.2003.12.018 10.1126/science.1117256 10.1016/j.clinph.2004.02.009 10.1016/j.tics.2006.03.007 10.1016/j.clinph.2010.02.005 10.1146/annurev.neuro.25.112701.142846 10.1111/j.1460-9568.2010.07420.x 10.1056/NEJMoa0905370 10.1016/S0079-6123(05)50028-1 10.1002/ana.21110 10.1080/17588921003731578 10.1098/rstb.2005.1652 10.1176/appi.ajp.2008.07111733 10.1212/WNL.0b013e3181e8e8df 10.1212/WNL.58.3.349 10.1056/NEJM199405263302107 10.1126/science.1130197 10.1097/WNR.0b013e328011b89a 10.1146/annurev.bioeng.9.061206.133100 10.1093/brain/awq316 10.1073/pnas.0903941106 10.1371/journal.pbio.0050260 10.1016/j.neuroimage.2007.05.015 10.1002/hbm.10159 10.1073/pnas.0702495104 10.1016/j.clinph.2011.03.004 10.1111/j.1460-9568.2009.06720.x 10.1017/S0140525X00003976 10.1016/S0079-6123(09)17714-2 10.1038/nn.2237 10.1126/science.1202043 10.1093/brain/awr005 10.1016/j.clinph.2003.10.034 10.1093/brain/awr152 10.1016/j.clinph.2005.03.028 10.1523/JNEUROSCI.0445-09.2009 10.1016/j.tics.2008.04.008 10.1016/j.clinph.2006.05.006 10.1196/annals.1440.004 10.1073/pnas.0913008107 10.1007/s002210000404 10.1371/journal.pone.0010281 10.1212/01.WNL.0000134670.10384.E2 10.1007/BF02512476 10.1016/j.clinph.2006.11.019 10.1016/j.apmr.2004.02.033 10.1007/s00213-005-2197-3 10.1080/13554790902724904 10.1097/00001756-199711100-00024 10.1016/S0079-6123(09)17704-X 10.1016/S0140-6736(72)90242-5 10.1016/j.medengphy.2006.03.001 10.1126/science.1149213 10.1016/j.neuroimage.2009.09.026 10.1007/BF02345746 10.1016/j.tics.2005.10.010 10.1007/BF02513307 10.1136/bmj.c3765 10.1001/archneur.58.7.1139 10.1097/00005072-199411000-00002 10.1016/S1053-8119(03)00062-4 10.1016/j.jneumeth.2007.10.003 10.1016/0013-4694(80)90419-8 10.1186/1471-2202-5-42 10.1016/0013-4694(94)90113-9 10.1016/S0079-6123(09)17705-1 10.1016/j.neuroimage.2004.09.048 10.1016/j.tins.2009.11.002 10.1016/S1474-4422(04)00852-X 10.1093/brain/awf131 10.1093/brain/123.7.1327 10.1523/JNEUROSCI.6198-09.2010 10.1212/WNL.0b013e3182217ee8 10.1212/01.wnl.0000334754.15330.69 10.1038/nature06041 10.1073/pnas.0809667106 10.1016/j.jneumeth.2003.10.009 10.1016/j.ijpsycho.2011.02.013 10.1016/j.neuroimage.2010.08.035 10.1073/pnas.0709515104 10.1016/j.clinph.2011.02.009 10.1016/j.clinph.2006.11.020 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS The Author (2012). Published by Oxford University Press on behalf of the Guarantors of Brain. 2012 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: The Author (2012). Published by Oxford University Press on behalf of the Guarantors of Brain. 2012 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.1093/brain/awr340 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | MEDLINE - Academic Neurosciences Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1460-2156 |
EndPage | 1320 |
ExternalDocumentID | PMC3326248 22226806 25836077 10_1093_brain_awr340 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -E4 -~X .2P .55 .GJ .I3 .XZ .ZR 0R~ 1CY 1TH 23N 2WC 354 3O- 4.4 41~ 482 48X 53G 5GY 5RE 5VS 5WA 5WD 6PF 70D AABZA AACZT AAGKA AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPGJ AAPNW AAPQZ AAPXW AAQQT AARHZ AAUAY AAUQX AAVAP AAVLN AAWDT AAWTL AAYJJ AAYXX ABDFA ABDPE ABEJV ABEUO ABGNP ABIME ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNGD ABNHQ ABNKS ABPIB ABPQP ABPTD ABQLI ABQNK ABSMQ ABVGC ABWST ABXVV ABXZS ABZBJ ABZEO ACBNA ACFRR ACGFS ACIWK ACPQN ACPRK ACUFI ACUKT ACUTJ ACUTO ACVCV ACYHN ACZBC ADBBV ADEYI ADEZT ADGKP ADGZP ADHKW ADHZD ADIPN ADMTO ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEHUL AEJOX AEKPW AEKSI AELWJ AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFQV AFFZL AFGWE AFIYH AFOFC AFSHK AFXAL AFYAG AGINJ AGKEF AGKRT AGMDO AGORE AGQPQ AGQXC AGSYK AGUTN AHGBF AHMBA AHMMS AHXPO AI. AIJHB AJBYB AJDVS AJEEA AJNCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX ANFBD APIBT APJGH APWMN AQDSO AQKUS ARIXL ASAOO ASPBG ATDFG ATGXG ATTQO AVNTJ AVWKF AXUDD AYOIW AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BR6 BSWAC BTRTY BVRKM BZKNY C1A C45 CAG CDBKE CITATION COF CS3 CXTWN CZ4 DAKXR DFGAJ DIK DILTD DU5 D~K E3Z EBS EE~ EIHJH EJD ELUNK EMOBN ENERS F5P F9B FECEO FEDTE FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 J5H JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z MBLQV MBTAY MHKGH ML0 MVM N4W N9A NGC NLBLG NOMLY NOYVH NTWIH NU- NVLIB O0~ O9- OAUYM OAWHX OBFPC OBOKY OCZFY ODMLO OHH OHT OJQWA OJZSN OK1 OPAEJ OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO TCN TCURE TEORI TJX TLC TMA TR2 VH1 VVN W8F WH7 WOQ X7H X7M XJT XOL YAYTL YKOAZ YQJ YSK YXANX ZCG ZGI ZKB ZKX ZXP ~91 ABQTQ IQODW M49 CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c513t-5987072bf2c3c5585bc80aed5d68899166f4652edbf40a2632dfeac5d587f2b03 |
ISSN | 0006-8950 1460-2156 |
IngestDate | Thu Aug 21 14:10:11 EDT 2025 Thu Jul 10 21:57:03 EDT 2025 Fri Jul 11 00:00:02 EDT 2025 Mon Jul 21 06:04:52 EDT 2025 Wed Apr 02 07:21:17 EDT 2025 Tue Jul 01 00:46:04 EDT 2025 Thu Apr 24 23:07:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Coma Human Cerebral cortex Nervous system diseases Consciousness impairment EEG Central nervous system Electrophysiology Electroencephalography Recovery Encephalon minimally conscious state TMS Neurological disorder |
Language | English |
License | CC BY 4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c513t-5987072bf2c3c5585bc80aed5d68899166f4652edbf40a2632dfeac5d587f2b03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 These authors contributed equally to this work. |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3326248 |
PMID | 22226806 |
PQID | 1001967681 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3326248 proquest_miscellaneous_1017960457 proquest_miscellaneous_1001967681 pubmed_primary_22226806 pascalfrancis_primary_25836077 crossref_citationtrail_10_1093_brain_awr340 crossref_primary_10_1093_brain_awr340 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-04-01 |
PublicationDateYYYYMMDD | 2012-04-01 |
PublicationDate_xml | – month: 04 year: 2012 text: 2012-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: England |
PublicationTitle | Brain (London, England : 1878) |
PublicationTitleAlternate | Brain |
PublicationYear | 2012 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Kahkonen ( key 20170624055837_awr340-B37) 2005; 24 Schnakers ( key 20170624055837_awr340-B72) 2009; 15 Schiff ( key 20170624055837_awr340-B70) 2007; 448 Schiff ( key 20170624055837_awr340-B69) 2010; 33 Shulman ( key 20170624055837_awr340-B76) 2009; 106 Royal College of Physicians ( key 20170624055837_awr340-B68) 1994; 330 Lv ( key 20170624055837_awr340-B50) 2007; 29 Luaute ( key 20170624055837_awr340-B49) 2010; 75 Hobson ( key 20170624055837_awr340-B32) 2000; 23 Maandag ( key 20170624055837_awr340-B51) 2007; 104 Tononi ( key 20170624055837_awr340-B79) 2008; 1124 Englot ( key 20170624055837_awr340-B18) 2010; 133 Fernandez-Espejo ( key 20170624055837_awr340-B21) 2011; 54 Babiloni ( key 20170624055837_awr340-B4) 2000; 38 Seth ( key 20170624055837_awr340-B74) 2008; 12 Casarotto ( key 20170624055837_awr340-B12) 2010; 5 Ferrarelli ( key 20170624055837_awr340-B23) 2010; 107 Giacino ( key 20170624055837_awr340-B29) 2009; 177 Kahkonen ( key 20170624055837_awr340-B36) 2005; 181 Kinney ( key 20170624055837_awr340-B38) 1994; 53 Alkire ( key 20170624055837_awr340-B3) 2008; 322 Hamalainen ( key 20170624055837_awr340-B30) 1994; 32 Shah ( key 20170624055837_awr340-B75) 2010; 32 Giacino ( key 20170624055837_awr340-B28) 2004; 85 Duncan ( key 20170624055837_awr340-B17) 2011; 82 Delorme ( key 20170624055837_awr340-B16) 2004; 134 Landsness ( key 20170624055837_awr340-B43) 2011; 134 Fischer ( key 20170624055837_awr340-B24) 2004; 63 Owen ( key 20170624055837_awr340-B65) 2006; 313 Schiff ( key 20170624055837_awr340-B71) 2002; 125 Ferrarelli ( key 20170624055837_awr340-B22) 2008; 165 Hauk ( key 20170624055837_awr340-B31) 2004; 21 Holler ( key 20170624055837_awr340-B33) 2011; 122 Massimini ( key 20170624055837_awr340-B57) 2005; 309 Faugeras ( key 20170624055837_awr340-B19) 2011; 77 Rosanova ( key 20170624055837_awr340-B67) 2009; 29 Fischer ( key 20170624055837_awr340-B25) 2010; 121 Giacino ( key 20170624055837_awr340-B27) 2002; 58 Friston ( key 20170624055837_awr340-B26) 2002; 25 Jennett ( key 20170624055837_awr340-B35) 1972; 1 McCubbin ( key 20170624055837_awr340-B61) 2008; 168 Ilmoniemi ( key 20170624055837_awr340-B34) 1997; 8 Paus ( key 20170624055837_awr340-B66) 2005; 360 Laureys ( key 20170624055837_awr340-B45) 2004; 3 Kotchoubey ( key 20170624055837_awr340-B42) 2005; 116 Komssi ( key 20170624055837_awr340-B40) 2004; 21 Tononi ( key 20170624055837_awr340-B78) 2004; 5 Dehaene ( key 20170624055837_awr340-B14) 2006; 10 Adams ( key 20170624055837_awr340-B1) 2000; 123 Monti ( key 20170624055837_awr340-B62) 2010; 341 Bardin ( key 20170624055837_awr340-B5) 2011; 134 Fellinger ( key 20170624055837_awr340-B20) 2011; 122 Massimini ( key 20170624055837_awr340-B55) 2009; 177 Mataro ( key 20170624055837_awr340-B60) 2001; 58 Wagner ( key 20170624055837_awr340-B81) 2007; 9 Markowitsch ( key 20170624055837_awr340-B54) 2000; 133 Komssi ( key 20170624055837_awr340-B39) 2004; 115 Monti ( key 20170624055837_awr340-B63) 2010; 362 Akaishi ( key 20170624055837_awr340-B2) 2010; 30 Massimini ( key 20170624055837_awr340-B56) 2007; 104 Morishima ( key 20170624055837_awr340-B64) 2009; 12 Laureys ( key 20170624055837_awr340-B44) 2005; 9 Bekinschtein ( key 20170624055837_awr340-B6) 2009; 106 Massimini ( key 20170624055837_awr340-B59) 2009; 29 Schnakers ( key 20170624055837_awr340-B73) 2008; 71 Wijnen ( key 20170624055837_awr340-B82) 2007; 118 Casali ( key 20170624055837_awr340-B11) 2010; 49 Majerus ( key 20170624055837_awr340-B52) 2009; 177 Majerus ( key 20170624055837_awr340-B53) 2005; 150 Litvak ( key 20170624055837_awr340-B48) 2007; 37 Berg ( key 20170624055837_awr340-B7) 1994; 90 Silva ( key 20170624055837_awr340-B77) 2004; 115 Komssi ( key 20170624055837_awr340-B41) 2007; 18 Lehmann ( key 20170624055837_awr340-B47) 1980; 48 Boly ( key 20170624055837_awr340-B8) 2011; 332 Daltrozzo ( key 20170624055837_awr340-B13) 2007; 118 Brefel-Courbon ( key 20170624055837_awr340-B10) 2007; 62 Lee ( key 20170624055837_awr340-B46) 2003; 19 Virtanen ( key 20170624055837_awr340-B80) 1999; 37 Del Cul ( key 20170624055837_awr340-B15) 2007; 5 Massimini ( key 20170624055837_awr340-B58) 2010; 1 Bonato ( key 20170624055837_awr340-B9) 2006; 117 4111204 - Lancet. 1972 Apr 1;1(7753):734-7 21566197 - Science. 2011 May 13;332(6031):858-62 19549837 - Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11096-101 20728553 - Neuroimage. 2011 Jan 1;54(1):103-12 21377413 - Clin Neurophysiol. 2011 Sep;122(9):1744-54 19818893 - Prog Brain Res. 2009;177:33-48 20133802 - Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2681-6 16087451 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1109-14 15324722 - Lancet Neurol. 2004 Sep;3(9):537-46 7964896 - J Neuropathol Exp Neurol. 1994 Nov;53(6):548-58 15203067 - Clin Neurophysiol. 2004 Jul;115(7):1657-68 11515143 - Behav Brain Sci. 2000 Dec;23(6):793-842; discussion 904-1121 21593438 - Neurology. 2011 Jul 19;77(3):264-8 19098905 - Nat Neurosci. 2009 Jan;12(1):85-91 16621656 - Med Eng Phys. 2007 Mar;29(2):191-8 19001251 - Neurology. 2008 Nov 11;71(20):1614-20 16959998 - Science. 2006 Sep 8;313(5792):1402 18483133 - Am J Psychiatry. 2008 Aug;165(8):996-1005 19818903 - Prog Brain Res. 2009;177:201-14 18054084 - J Neurosci Methods. 2008 Feb 15;168(1):265-72 14755835 - Hum Brain Mapp. 2004 Mar;21(3):154-64 18988836 - Science. 2008 Nov 7;322(5903):876-80 21356253 - Int J Psychophysiol. 2011 Oct;82(1):24-40 15605342 - Arch Phys Med Rehabil. 2004 Dec;85(12):2020-9 17357126 - Ann Neurol. 2007 Jul;62(1):102-5 20554940 - Neurology. 2010 Jul 20;75(3):246-52 17208048 - Clin Neurophysiol. 2007 Mar;118(3):606-14 17896866 - PLoS Biol. 2007 Oct;5(10):e260 15670672 - Neuroimage. 2005 Feb 15;24(4):955-60 20130250 - N Engl J Med. 2010 Feb 18;362(7):579-89 7509274 - Electroencephalogr Clin Neurophysiol. 1994 Jan;90(1):58-64 12814594 - Neuroimage. 2003 Jun;19(2 Pt 1):457-65 21039953 - Eur J Neurosci. 2010 Oct;32(7):1135-44 15326240 - Neurology. 2004 Aug 24;63(4):669-73 20421968 - PLoS One. 2010;5(4):e10281 21841201 - Brain. 2011 Aug;134(Pt 8):2222-32 11839831 - Neurology. 2002 Feb 12;58(3):349-53 11094807 - Med Biol Eng Comput. 2000 Sep;38(5):512-9 18079290 - Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20546-51 21511524 - Clin Neurophysiol. 2011 Nov;122(11):2177-84 11448304 - Arch Neurol. 2001 Jul;58(7):1139-42 15036048 - Clin Neurophysiol. 2004 Mar;115(3):534-42 16797232 - Clin Neurophysiol. 2006 Aug;117(8):1699-707 17239656 - Clin Neurophysiol. 2007 Mar;118(3):597-605 10505382 - Med Biol Eng Comput. 1999 May;37(3):322-6 16195466 - Science. 2005 Sep 30;309(5744):2228-32 15522121 - BMC Neurosci. 2004 Nov 2;5:42 20335465 - J Neurosci. 2010 Mar 24;30(12):4295-305 20823938 - Cogn Neurosci. 2010 Sep;1(3):176-183 20679291 - BMJ. 2010;341:c3765 19473231 - Eur J Neurosci. 2009 May;29(9):1761-70 15719214 - Psychopharmacology (Berl). 2005 Aug;181(1):16-20 19954851 - Trends Neurosci. 2010 Jan;33(1):1-9 19164526 - Proc Natl Acad Sci U S A. 2009 Feb 3;106(5):1672-7 10933214 - Exp Brain Res. 2000 Jul;133(1):94-102 8182960 - Med Biol Eng Comput. 1994 Jan;32(1):35-42 19770048 - Neuroimage. 2010 Jan 15;49(2):1459-68 18606562 - Trends Cogn Sci. 2008 Aug;12(8):314-21 18400934 - Ann N Y Acad Sci. 2008 Mar;1124:239-61 16186038 - Prog Brain Res. 2005;150:397-413 16002333 - Clin Neurophysiol. 2005 Oct;116(10):2441-53 17259853 - Neuroreport. 2007 Jan 8;18(1):13-6 20202899 - Clin Neurophysiol. 2010 Jul;121(7):1032-42 16603406 - Trends Cogn Sci. 2006 May;10(5):204-11 6155251 - Electroencephalogr Clin Neurophysiol. 1980 Jun;48(6):609-21 19241281 - Neurocase. 2009 Aug;15(4):271-7 19535579 - J Neurosci. 2009 Jun 17;29(24):7679-85 19818894 - Prog Brain Res. 2009;177:49-61 17574872 - Neuroimage. 2007 Aug 1;37(1):56-70 17483481 - Proc Natl Acad Sci U S A. 2007 May 15;104(20):8496-501 21081551 - Brain. 2010 Dec;133(Pt 12):3764-77 15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21 16271507 - Trends Cogn Sci. 2005 Dec;9(12):556-9 17444810 - Annu Rev Biomed Eng. 2007;9:527-65 15050585 - Neuroimage. 2004 Apr;21(4):1612-21 12023311 - Brain. 2002 Jun;125(Pt 6):1210-34 17671503 - Nature. 2007 Aug 2;448(7153):600-3 10869046 - Brain. 2000 Jul;123 ( Pt 7):1327-38 21354974 - Brain. 2011 Mar;134(Pt 3):769-82 7818633 - N Engl J Med. 1994 May 26;330(21):1499-508 12052909 - Annu Rev Neurosci. 2002;25:221-50 9427322 - Neuroreport. 1997 Nov 10;8(16):3537-40 |
References_xml | – volume: 21 start-page: 1612 year: 2004 ident: key 20170624055837_awr340-B31 article-title: Keep it simple: a case for using classical minimum norm estimation in the analysis of EEG and MEG data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2003.12.018 – volume: 309 start-page: 2228 year: 2005 ident: key 20170624055837_awr340-B57 article-title: Breakdown of cortical effective connectivity during sleep publication-title: Science doi: 10.1126/science.1117256 – volume: 115 start-page: 1657 year: 2004 ident: key 20170624055837_awr340-B77 article-title: Evaluation of L1 and L2 minimum norm performances on EEG localizations publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2004.02.009 – volume: 10 start-page: 204 year: 2006 ident: key 20170624055837_awr340-B14 article-title: Conscious, preconscious, and subliminal processing: a testable taxonomy publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2006.03.007 – volume: 121 start-page: 1032 year: 2010 ident: key 20170624055837_awr340-B25 article-title: Event-related potentials (MMN and novelty P3) in permanent vegetative or minimally conscious states publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2010.02.005 – volume: 25 start-page: 221 year: 2002 ident: key 20170624055837_awr340-B26 article-title: Beyond phrenology: what can neuroimaging tell us about distributed circuitry? publication-title: Annu Rev Neurosci doi: 10.1146/annurev.neuro.25.112701.142846 – volume: 32 start-page: 1135 year: 2010 ident: key 20170624055837_awr340-B75 article-title: Central thalamic deep brain stimulation for cognitive neuromodulation - a review of proposed mechanisms and investigational studies publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2010.07420.x – volume: 362 start-page: 579 year: 2010 ident: key 20170624055837_awr340-B63 article-title: Willful modulation of brain activity in disorders of consciousness publication-title: N Engl J Med doi: 10.1056/NEJMoa0905370 – volume: 150 start-page: 397 year: 2005 ident: key 20170624055837_awr340-B53 article-title: Behavioral evaluation of consciousness in severe brain damage publication-title: Prog Brain Res doi: 10.1016/S0079-6123(05)50028-1 – volume: 62 start-page: 102 year: 2007 ident: key 20170624055837_awr340-B10 article-title: Clinical and imaging evidence of zolpidem effect in hypoxic encephalopathy publication-title: Ann Neurol doi: 10.1002/ana.21110 – volume: 1 start-page: 176 year: 2010 ident: key 20170624055837_awr340-B58 article-title: Cortical reactivity and effective connectivity during REM sleep in humans publication-title: Cogn Neurosci doi: 10.1080/17588921003731578 – volume: 360 start-page: 1109 year: 2005 ident: key 20170624055837_awr340-B66 article-title: Inferring causality in brain images: a perturbation approach publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2005.1652 – volume: 165 start-page: 996 year: 2008 ident: key 20170624055837_awr340-B22 article-title: Reduced evoked gamma oscillations in the frontal cortex in schizophrenia patients: a TMS/EEG study publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.2008.07111733 – volume: 75 start-page: 246 year: 2010 ident: key 20170624055837_awr340-B49 article-title: Long-term outcomes of chronic minimally conscious and vegetative states publication-title: Neurology doi: 10.1212/WNL.0b013e3181e8e8df – volume: 58 start-page: 349 year: 2002 ident: key 20170624055837_awr340-B27 article-title: The minimally conscious state: definition and diagnostic criteria publication-title: Neurology doi: 10.1212/WNL.58.3.349 – volume: 330 start-page: 1499 year: 1994 ident: key 20170624055837_awr340-B68 article-title: Medical aspects of the persistent vegetative state (1). The Multi-Society Task Force on PVS publication-title: N Engl J Med doi: 10.1056/NEJM199405263302107 – volume: 313 start-page: 1402 year: 2006 ident: key 20170624055837_awr340-B65 article-title: Detecting awareness in the vegetative state publication-title: Science doi: 10.1126/science.1130197 – volume: 18 start-page: 13 year: 2007 ident: key 20170624055837_awr340-B41 article-title: Excitation threshold of the motor cortex estimated with transcranial magnetic stimulation electroencephalography publication-title: Neuroreport doi: 10.1097/WNR.0b013e328011b89a – volume: 9 start-page: 527 year: 2007 ident: key 20170624055837_awr340-B81 article-title: Noninvasive human brain stimulation publication-title: Annu Rev Biomed Eng doi: 10.1146/annurev.bioeng.9.061206.133100 – volume: 133 start-page: 3764 year: 2010 ident: key 20170624055837_awr340-B18 article-title: Impaired consciousness in temporal lobe seizures: role of cortical slow activity publication-title: Brain doi: 10.1093/brain/awq316 – volume: 106 start-page: 11096 year: 2009 ident: key 20170624055837_awr340-B76 article-title: Baseline brain energy supports the state of consciousness publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0903941106 – volume: 5 start-page: e260 year: 2007 ident: key 20170624055837_awr340-B15 article-title: Brain dynamics underlying the nonlinear threshold for access to consciousness publication-title: PLoS Biol doi: 10.1371/journal.pbio.0050260 – volume: 37 start-page: 56 year: 2007 ident: key 20170624055837_awr340-B48 article-title: Artifact correction and source analysis of early electroencephalographic responses evoked by transcranial magnetic stimulation over primary motor cortex publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.05.015 – volume: 21 start-page: 154 year: 2004 ident: key 20170624055837_awr340-B40 article-title: The effect of stimulus intensity on brain responses evoked by transcranial magnetic stimulation publication-title: Hum Brain Mapp doi: 10.1002/hbm.10159 – volume: 104 start-page: 8496 year: 2007 ident: key 20170624055837_awr340-B56 article-title: Triggering sleep slow waves by transcranial magnetic stimulation publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0702495104 – volume: 122 start-page: 2177 year: 2011 ident: key 20170624055837_awr340-B20 article-title: Cognitive processes in disorders of consciousness as revealed by EEG time-frequency analyses publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2011.03.004 – volume: 29 start-page: 1761 year: 2009 ident: key 20170624055837_awr340-B59 article-title: Slow waves, synaptic plasticity and information processing: insights from transcranial magnetic stimulation and high-density EEG experiments publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2009.06720.x – volume: 23 start-page: 793 year: 2000 ident: key 20170624055837_awr340-B32 article-title: Dreaming and the brain: toward a cognitive neuroscience of conscious states publication-title: Behav Brain Sci doi: 10.1017/S0140525X00003976 – volume: 177 start-page: 201 year: 2009 ident: key 20170624055837_awr340-B55 article-title: A perturbational approach for evaluating the brain's capacity for consciousness publication-title: Prog Brain Res doi: 10.1016/S0079-6123(09)17714-2 – volume: 12 start-page: 85 year: 2009 ident: key 20170624055837_awr340-B64 article-title: Task-specific signal transmission from prefrontal cortex in visual selective attention publication-title: Nat Neurosci doi: 10.1038/nn.2237 – volume: 332 start-page: 858 year: 2011 ident: key 20170624055837_awr340-B8 article-title: Preserved feedforward but impaired top-down processes in the vegetative state publication-title: Science doi: 10.1126/science.1202043 – volume: 134 start-page: 769 year: 2011 ident: key 20170624055837_awr340-B5 article-title: Dissociations between behavioural and functional magnetic resonance imaging-based evaluations of cognitive function after brain injury publication-title: Brain doi: 10.1093/brain/awr005 – volume: 115 start-page: 534 year: 2004 ident: key 20170624055837_awr340-B39 article-title: EEG minimum-norm estimation compared with MEG dipole fitting in the localization of somatosensory sources at S1 publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2003.10.034 – volume: 134 start-page: 2222 year: 2011 ident: key 20170624055837_awr340-B43 article-title: Electrophysiological correlates of behavioural changes in vigilance in vegetative state and minimally conscious state publication-title: Brain doi: 10.1093/brain/awr152 – volume: 116 start-page: 2441 year: 2005 ident: key 20170624055837_awr340-B42 article-title: Information processing in severe disorders of consciousness: vegetative state and minimally conscious state publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2005.03.028 – volume: 29 start-page: 7679 year: 2009 ident: key 20170624055837_awr340-B67 article-title: Natural frequencies of human corticothalamic circuits publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0445-09.2009 – volume: 12 start-page: 314 year: 2008 ident: key 20170624055837_awr340-B74 article-title: Measuring consciousness: relating behavioural and neurophysiological approaches publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2008.04.008 – volume: 117 start-page: 1699 year: 2006 ident: key 20170624055837_awr340-B9 article-title: Transcranial magnetic stimulation and cortical evoked potentials: a TMS/EEG co-registration study publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2006.05.006 – volume: 1124 start-page: 239 year: 2008 ident: key 20170624055837_awr340-B79 article-title: The neural correlates of consciousness: an update publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1440.004 – volume: 107 start-page: 2681 year: 2010 ident: key 20170624055837_awr340-B23 article-title: Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0913008107 – volume: 133 start-page: 94 year: 2000 ident: key 20170624055837_awr340-B54 article-title: Massive impairment in executive functions with partial preservation of other cognitive functions: the case of a young patient with severe degeneration of the prefrontal cortex publication-title: Exp Brain Res doi: 10.1007/s002210000404 – volume: 5 start-page: e10281 year: 2010 ident: key 20170624055837_awr340-B12 article-title: EEG responses to TMS are sensitive to changes in the perturbation parameters and repeatable over time publication-title: PLoS One doi: 10.1371/journal.pone.0010281 – volume: 63 start-page: 669 year: 2004 ident: key 20170624055837_awr340-B24 article-title: Predictive value of sensory and cognitive evoked potentials for awakening from coma publication-title: Neurology doi: 10.1212/01.WNL.0000134670.10384.E2 – volume: 32 start-page: 35 year: 1994 ident: key 20170624055837_awr340-B30 article-title: Interpreting magnetic fields of the brain: minimum norm estimates publication-title: Med Biol Eng Comput doi: 10.1007/BF02512476 – volume: 118 start-page: 606 year: 2007 ident: key 20170624055837_awr340-B13 article-title: Predicting coma and other low responsive patients outcome using event-related brain potentials: a meta-analysis publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2006.11.019 – volume: 85 start-page: 2020 year: 2004 ident: key 20170624055837_awr340-B28 article-title: The JFK Coma Recovery Scale-Revised: measurement characteristics and diagnostic utility publication-title: Arch Phys Med Rehabil doi: 10.1016/j.apmr.2004.02.033 – volume: 181 start-page: 16 year: 2005 ident: key 20170624055837_awr340-B36 article-title: Prefrontal TMS produces smaller EEG responses than motor-cortex TMS: implications for rTMS treatment in depression publication-title: Psychopharmacol doi: 10.1007/s00213-005-2197-3 – volume: 15 start-page: 271 year: 2009 ident: key 20170624055837_awr340-B72 article-title: Detecting consciousness in a total locked-in syndrome: an active event-related paradigm publication-title: Neurocase doi: 10.1080/13554790902724904 – volume: 8 start-page: 3537 year: 1997 ident: key 20170624055837_awr340-B34 article-title: Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity publication-title: Neuroreport doi: 10.1097/00001756-199711100-00024 – volume: 177 start-page: 33 year: 2009 ident: key 20170624055837_awr340-B29 article-title: Behavioral assessment in patients with disorders of consciousness: gold standard or fool's gold? publication-title: Prog Brain Res doi: 10.1016/S0079-6123(09)17704-X – volume: 1 start-page: 734 year: 1972 ident: key 20170624055837_awr340-B35 article-title: Persistent vegetative state after brain damage. A syndrome in search of a name publication-title: Lancet doi: 10.1016/S0140-6736(72)90242-5 – volume: 29 start-page: 191 year: 2007 ident: key 20170624055837_awr340-B50 article-title: Objective detection of evoked potentials using a bootstrap technique publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2006.03.001 – volume: 322 start-page: 876 year: 2008 ident: key 20170624055837_awr340-B3 article-title: Consciousness and anesthesia publication-title: Science doi: 10.1126/science.1149213 – volume: 49 start-page: 1459 year: 2010 ident: key 20170624055837_awr340-B11 article-title: General indices to characterize the electrical response of the cerebral cortex to TMS publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.09.026 – volume: 38 start-page: 512 year: 2000 ident: key 20170624055837_awr340-B4 article-title: High-resolution electro-encephalogram: source estimates of Laplacian-transformed somatosensory-evoked potentials using a realistic subject head model constructed from magnetic resonance images publication-title: Med Biol Eng Comput doi: 10.1007/BF02345746 – volume: 9 start-page: 556 year: 2005 ident: key 20170624055837_awr340-B44 article-title: The neural correlate of (un)awareness: lessons from the vegetative state publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2005.10.010 – volume: 37 start-page: 322 year: 1999 ident: key 20170624055837_awr340-B80 article-title: Instrumentation for the measurement of electric brain responses to transcranial magnetic stimulation publication-title: Med Biol Eng Comput doi: 10.1007/BF02513307 – volume: 341 start-page: c3765 year: 2010 ident: key 20170624055837_awr340-B62 article-title: The vegetative state publication-title: BMJ doi: 10.1136/bmj.c3765 – volume: 58 start-page: 1139 year: 2001 ident: key 20170624055837_awr340-B60 article-title: Long-term effects of bilateral frontal brain lesion: 60 years after injury with an iron bar publication-title: Arch Neurol doi: 10.1001/archneur.58.7.1139 – volume: 53 start-page: 548 year: 1994 ident: key 20170624055837_awr340-B38 article-title: Neuropathology of the persistent vegetative state. A review publication-title: J Neuropathol Exp Neurol doi: 10.1097/00005072-199411000-00002 – volume: 19 start-page: 457 year: 2003 ident: key 20170624055837_awr340-B46 article-title: A report of the functional connectivity workshop, Dusseldorf 2002 publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00062-4 – volume: 168 start-page: 265 year: 2008 ident: key 20170624055837_awr340-B61 article-title: Bootstrap significance of low SNR evoked response publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2007.10.003 – volume: 48 start-page: 609 year: 1980 ident: key 20170624055837_awr340-B47 article-title: Reference-free identification of components of checkerboard-evoked multichannel potential fields publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(80)90419-8 – volume: 5 start-page: 42 year: 2004 ident: key 20170624055837_awr340-B78 article-title: An information integration theory of consciousness publication-title: BMC Neurosci doi: 10.1186/1471-2202-5-42 – volume: 90 start-page: 58 year: 1994 ident: key 20170624055837_awr340-B7 article-title: A fast method for forward computation of multiple-shell spherical head models publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(94)90113-9 – volume: 177 start-page: 49 year: 2009 ident: key 20170624055837_awr340-B52 article-title: The problem of aphasia in the assessment of consciousness in brain-damaged patients publication-title: Prog Brain Res doi: 10.1016/S0079-6123(09)17705-1 – volume: 24 start-page: 955 year: 2005 ident: key 20170624055837_awr340-B37 article-title: Prefrontal transcranial magnetic stimulation produces intensity-dependent EEG responses in humans publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.09.048 – volume: 33 start-page: 1 year: 2010 ident: key 20170624055837_awr340-B69 article-title: Recovery of consciousness after brain injury: a mesocircuit hypothesis publication-title: Trends Neurosci doi: 10.1016/j.tins.2009.11.002 – volume: 3 start-page: 537 year: 2004 ident: key 20170624055837_awr340-B45 article-title: Brain function in coma, vegetative state, and related disorders publication-title: Lancet Neurol doi: 10.1016/S1474-4422(04)00852-X – volume: 125 start-page: 1210 year: 2002 ident: key 20170624055837_awr340-B71 article-title: Residual cerebral activity and behavioural fragments can remain in the persistently vegetative brain publication-title: Brain doi: 10.1093/brain/awf131 – volume: 123 start-page: 1327 year: 2000 ident: key 20170624055837_awr340-B1 article-title: The neuropathology of the vegetative state after an acute brain insult publication-title: Brain doi: 10.1093/brain/123.7.1327 – volume: 30 start-page: 4295 year: 2010 ident: key 20170624055837_awr340-B2 article-title: Stimulation of the frontal eye field reveals persistent effective connectivity after controlled behavior publication-title: J Neurosci doi: 10.1523/JNEUROSCI.6198-09.2010 – volume: 77 start-page: 264 year: 2011 ident: key 20170624055837_awr340-B19 article-title: Probing consciousness with event-related potentials in the vegetative state publication-title: Neurology doi: 10.1212/WNL.0b013e3182217ee8 – volume: 71 start-page: 1614 year: 2008 ident: key 20170624055837_awr340-B73 article-title: Voluntary brain processing in disorders of consciousness publication-title: Neurology doi: 10.1212/01.wnl.0000334754.15330.69 – volume: 448 start-page: 600 year: 2007 ident: key 20170624055837_awr340-B70 article-title: Behavioural improvements with thalamic stimulation after severe traumatic brain injury publication-title: Nature doi: 10.1038/nature06041 – volume: 106 start-page: 1672 year: 2009 ident: key 20170624055837_awr340-B6 article-title: Neural signature of the conscious processing of auditory regularities publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0809667106 – volume: 134 start-page: 9 year: 2004 ident: key 20170624055837_awr340-B16 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 82 start-page: 24 year: 2011 ident: key 20170624055837_awr340-B17 article-title: Evaluation of traumatic brain injury: brain potentials in diagnosis, function, and prognosis publication-title: Int J Psychophysiol doi: 10.1016/j.ijpsycho.2011.02.013 – volume: 54 start-page: 103 year: 2011 ident: key 20170624055837_awr340-B21 article-title: Diffusion weighted imaging distinguishes the vegetative state from the minimally conscious state publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.08.035 – volume: 104 start-page: 20546 year: 2007 ident: key 20170624055837_awr340-B51 article-title: Energetics of neuronal signaling and fMRI activity publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0709515104 – volume: 122 start-page: 1744 year: 2011 ident: key 20170624055837_awr340-B33 article-title: Preserved oscillatory response but lack of mismatch negativity in patients with disorders of consciousness publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2011.02.009 – volume: 118 start-page: 597 year: 2007 ident: key 20170624055837_awr340-B82 article-title: Mismatch negativity predicts recovery from the vegetative state publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2006.11.020 – reference: 19164526 - Proc Natl Acad Sci U S A. 2009 Feb 3;106(5):1672-7 – reference: 16603406 - Trends Cogn Sci. 2006 May;10(5):204-11 – reference: 21593438 - Neurology. 2011 Jul 19;77(3):264-8 – reference: 16621656 - Med Eng Phys. 2007 Mar;29(2):191-8 – reference: 16087451 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1109-14 – reference: 15605342 - Arch Phys Med Rehabil. 2004 Dec;85(12):2020-9 – reference: 15719214 - Psychopharmacology (Berl). 2005 Aug;181(1):16-20 – reference: 15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21 – reference: 21566197 - Science. 2011 May 13;332(6031):858-62 – reference: 21081551 - Brain. 2010 Dec;133(Pt 12):3764-77 – reference: 19549837 - Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11096-101 – reference: 21354974 - Brain. 2011 Mar;134(Pt 3):769-82 – reference: 20133802 - Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2681-6 – reference: 15036048 - Clin Neurophysiol. 2004 Mar;115(3):534-42 – reference: 18483133 - Am J Psychiatry. 2008 Aug;165(8):996-1005 – reference: 20421968 - PLoS One. 2010;5(4):e10281 – reference: 19954851 - Trends Neurosci. 2010 Jan;33(1):1-9 – reference: 12052909 - Annu Rev Neurosci. 2002;25:221-50 – reference: 16271507 - Trends Cogn Sci. 2005 Dec;9(12):556-9 – reference: 16186038 - Prog Brain Res. 2005;150:397-413 – reference: 19241281 - Neurocase. 2009 Aug;15(4):271-7 – reference: 17239656 - Clin Neurophysiol. 2007 Mar;118(3):597-605 – reference: 10933214 - Exp Brain Res. 2000 Jul;133(1):94-102 – reference: 15203067 - Clin Neurophysiol. 2004 Jul;115(7):1657-68 – reference: 17444810 - Annu Rev Biomed Eng. 2007;9:527-65 – reference: 20130250 - N Engl J Med. 2010 Feb 18;362(7):579-89 – reference: 16959998 - Science. 2006 Sep 8;313(5792):1402 – reference: 18054084 - J Neurosci Methods. 2008 Feb 15;168(1):265-72 – reference: 19818903 - Prog Brain Res. 2009;177:201-14 – reference: 20554940 - Neurology. 2010 Jul 20;75(3):246-52 – reference: 19098905 - Nat Neurosci. 2009 Jan;12(1):85-91 – reference: 19001251 - Neurology. 2008 Nov 11;71(20):1614-20 – reference: 8182960 - Med Biol Eng Comput. 1994 Jan;32(1):35-42 – reference: 19535579 - J Neurosci. 2009 Jun 17;29(24):7679-85 – reference: 15670672 - Neuroimage. 2005 Feb 15;24(4):955-60 – reference: 20335465 - J Neurosci. 2010 Mar 24;30(12):4295-305 – reference: 17896866 - PLoS Biol. 2007 Oct;5(10):e260 – reference: 11839831 - Neurology. 2002 Feb 12;58(3):349-53 – reference: 12023311 - Brain. 2002 Jun;125(Pt 6):1210-34 – reference: 19770048 - Neuroimage. 2010 Jan 15;49(2):1459-68 – reference: 16002333 - Clin Neurophysiol. 2005 Oct;116(10):2441-53 – reference: 21841201 - Brain. 2011 Aug;134(Pt 8):2222-32 – reference: 7964896 - J Neuropathol Exp Neurol. 1994 Nov;53(6):548-58 – reference: 18988836 - Science. 2008 Nov 7;322(5903):876-80 – reference: 17574872 - Neuroimage. 2007 Aug 1;37(1):56-70 – reference: 20728553 - Neuroimage. 2011 Jan 1;54(1):103-12 – reference: 7818633 - N Engl J Med. 1994 May 26;330(21):1499-508 – reference: 21356253 - Int J Psychophysiol. 2011 Oct;82(1):24-40 – reference: 17208048 - Clin Neurophysiol. 2007 Mar;118(3):606-14 – reference: 19473231 - Eur J Neurosci. 2009 May;29(9):1761-70 – reference: 14755835 - Hum Brain Mapp. 2004 Mar;21(3):154-64 – reference: 15522121 - BMC Neurosci. 2004 Nov 2;5:42 – reference: 20823938 - Cogn Neurosci. 2010 Sep;1(3):176-183 – reference: 15326240 - Neurology. 2004 Aug 24;63(4):669-73 – reference: 21377413 - Clin Neurophysiol. 2011 Sep;122(9):1744-54 – reference: 11094807 - Med Biol Eng Comput. 2000 Sep;38(5):512-9 – reference: 15050585 - Neuroimage. 2004 Apr;21(4):1612-21 – reference: 17357126 - Ann Neurol. 2007 Jul;62(1):102-5 – reference: 10869046 - Brain. 2000 Jul;123 ( Pt 7):1327-38 – reference: 21511524 - Clin Neurophysiol. 2011 Nov;122(11):2177-84 – reference: 18606562 - Trends Cogn Sci. 2008 Aug;12(8):314-21 – reference: 19818894 - Prog Brain Res. 2009;177:49-61 – reference: 17483481 - Proc Natl Acad Sci U S A. 2007 May 15;104(20):8496-501 – reference: 18400934 - Ann N Y Acad Sci. 2008 Mar;1124:239-61 – reference: 6155251 - Electroencephalogr Clin Neurophysiol. 1980 Jun;48(6):609-21 – reference: 16195466 - Science. 2005 Sep 30;309(5744):2228-32 – reference: 11448304 - Arch Neurol. 2001 Jul;58(7):1139-42 – reference: 16797232 - Clin Neurophysiol. 2006 Aug;117(8):1699-707 – reference: 19818893 - Prog Brain Res. 2009;177:33-48 – reference: 9427322 - Neuroreport. 1997 Nov 10;8(16):3537-40 – reference: 20679291 - BMJ. 2010;341:c3765 – reference: 17259853 - Neuroreport. 2007 Jan 8;18(1):13-6 – reference: 10505382 - Med Biol Eng Comput. 1999 May;37(3):322-6 – reference: 15324722 - Lancet Neurol. 2004 Sep;3(9):537-46 – reference: 18079290 - Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20546-51 – reference: 4111204 - Lancet. 1972 Apr 1;1(7753):734-7 – reference: 7509274 - Electroencephalogr Clin Neurophysiol. 1994 Jan;90(1):58-64 – reference: 11515143 - Behav Brain Sci. 2000 Dec;23(6):793-842; discussion 904-1121 – reference: 17671503 - Nature. 2007 Aug 2;448(7153):600-3 – reference: 21039953 - Eur J Neurosci. 2010 Oct;32(7):1135-44 – reference: 12814594 - Neuroimage. 2003 Jun;19(2 Pt 1):457-65 – reference: 20202899 - Clin Neurophysiol. 2010 Jul;121(7):1032-42 |
SSID | ssj0014326 |
Score | 2.545751 |
Snippet | Patients surviving severe brain injury may regain consciousness without recovering their ability to understand, move and communicate. Recently,... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1308 |
SubjectTerms | Adult Aged Biological and medical sciences Brain injury Brain Mapping Brain Waves - physiology Cerebral Cortex - diagnostic imaging Cerebral Cortex - physiopathology Communication Consciousness Consciousness - physiology EEG Electroencephalography Female Fundamental and applied biological sciences. Psychology General aspects Humans Language Longitudinal Studies Male Medical sciences Middle Aged Neural networks Neural Pathways - physiology Neuroimaging Neurology Original Persistent Vegetative State - pathology Persistent Vegetative State - physiopathology Psychology. Psychoanalysis. Psychiatry Psychology. Psychophysiology Recovery of Function - physiology Sensory neurons Spectrum Analysis Tomography, X-Ray Computed Transcranial Magnetic Stimulation |
Title | Recovery of cortical effective connectivity and recovery of consciousness in vegetative patients |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22226806 https://www.proquest.com/docview/1001967681 https://www.proquest.com/docview/1017960457 https://pubmed.ncbi.nlm.nih.gov/PMC3326248 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEF_qCSKI-G39OFbQp5K7XJLdbB9VrhxyvQNtoW8xm2TPQEmONKfoo3-5v91N0kSqnPYhlGSyCTuT-dj9zQwhr-XUk2EoMwe2QzmBTFMHXhFzpExEOJUqUabO9vyMnyyDDyu2Go1-9lBLV7U8SH7szCv5H67iHPiqs2T_gbPdoDiB_-AvjuAwjtfisY4d8dLfLTa8ssvSFqGhAUGJBrEkTXsIgyMf0Bewfoj7ja7Li8nX7MJAD3FjU2x1M9jx1b0kdjYAsasKIhS9VYWP5SbW7VabdCAL9rJ1-PX-f26V0_ka77aFCsWbuCpr09dp8ilf9y69K21D7Hm21inx_aUKjfnoEC6t-uWOmNpKsweZ1bgBdx34HXygkm0Jk0b2gp6ChckVPWOtE8B3GgJbJEtWZnllFn-r_MDdmrx2m__sPJotT0-jxfFqcYPc9BBqmPYfqw4mBHfStOzrXr1JnsD4h2b0Qzv2wK25cxlvwHBlW6Psil1-h-D2fJrFPXK3CUboWytZ98koKx6QW_MGbvGQfG4FjJaKtgJGOwGjfQGjkARaDeh7Akbzgm4FjLYC9ogsZ8eL9ydO05LDSdiRXztsCv0eelJ5iZ8whJr4pN04S1nKhdChBlcBZ16WShW4se4FkCqYdpYyESpPuv5jsleURfaU0ACBs4S3mCqVBkLxGMF_6uMGhAAJk2JMJu2MRklTr163TVlHFjfhR2b-Izv_Y_Kmo760dVr-QLc_YE5H7DGdzhSGY_Kq5VYETau3z-Iiw2Tp6t4wVwjPj_5GAwPHESZhnCeWw9sn4MeFy8ckHPC-I9CV3odXivyLqfiOaeFeIJ5d47nPye3tp_eC7NXVVfYSfnMt941g_wJVzMyz |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recovery+of+cortical+effective+connectivity+and+recovery+of+consciousness+in+vegetative+patients&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Rosanova%2C+Mario&rft.au=Gosseries%2C+Olivia&rft.au=Casarotto%2C+Silvia&rft.au=Boly%2C+Melanie&rft.date=2012-04-01&rft.issn=0006-8950&rft.eissn=1460-2156&rft.volume=135&rft.issue=4&rft.spage=1308&rft.epage=1320&rft_id=info:doi/10.1093%2Fbrain%2Fawr340&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon |