Recovery of cortical effective connectivity and recovery of consciousness in vegetative patients

Patients surviving severe brain injury may regain consciousness without recovering their ability to understand, move and communicate. Recently, electrophysiological and neuroimaging approaches, employing simple sensory stimulations or verbal commands, have proven useful in detecting higher order pro...

Full description

Saved in:
Bibliographic Details
Published inBrain (London, England : 1878) Vol. 135; no. 4; pp. 1308 - 1320
Main Authors Rosanova, Mario, Gosseries, Olivia, Casarotto, Silvia, Boly, Mélanie, Casali, Adenauer G., Bruno, Marie-Aurélie, Mariotti, Maurizio, Boveroux, Pierre, Tononi, Giulio, Laureys, Steven, Massimini, Marcello
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.04.2012
Subjects
Online AccessGet full text
ISSN0006-8950
1460-2156
1460-2156
DOI10.1093/brain/awr340

Cover

Loading…
Abstract Patients surviving severe brain injury may regain consciousness without recovering their ability to understand, move and communicate. Recently, electrophysiological and neuroimaging approaches, employing simple sensory stimulations or verbal commands, have proven useful in detecting higher order processing and, in some cases, in establishing some degree of communication in brain-injured subjects with severe impairment of motor function. To complement these approaches, it would be useful to develop methods to detect recovery of consciousness in ways that do not depend on the integrity of sensory pathways or on the subject's ability to comprehend or carry out instructions. As suggested by theoretical and experimental work, a key requirement for consciousness is that multiple, specialized cortical areas can engage in rapid causal interactions (effective connectivity). Here, we employ transcranial magnetic stimulation together with high-density electroencephalography to evaluate effective connectivity at the bedside of severely brain injured, non-communicating subjects. In patients in a vegetative state, who were open-eyed, behaviourally awake but unresponsive, transcranial magnetic stimulation triggered a simple, local response indicating a breakdown of effective connectivity, similar to the one previously observed in unconscious sleeping or anaesthetized subjects. In contrast, in minimally conscious patients, who showed fluctuating signs of non-reflexive behaviour, transcranial magnetic stimulation invariably triggered complex activations that sequentially involved distant cortical areas ipsi- and contralateral to the site of stimulation, similar to activations we recorded in locked-in, conscious patients. Longitudinal measurements performed in patients who gradually recovered consciousness revealed that this clear-cut change in effective connectivity could occur at an early stage, before reliable communication was established with the subject and before the spontaneous electroencephalogram showed significant modifications. Measurements of effective connectivity by means of transcranial magnetic stimulation combined with electroencephalography can be performed at the bedside while by-passing subcortical afferent and efferent pathways, and without requiring active participation of subjects or language comprehension; hence, they offer an effective way to detect and track recovery of consciousness in brain-injured patients who are unable to exchange information with the external environment.
AbstractList Patients surviving severe brain injury may regain consciousness without recovering their ability to understand, move and communicate. Recently, electrophysiological and neuroimaging approaches, employing simple sensory stimulations or verbal commands, have proven useful in detecting higher order processing and, in some cases, in establishing some degree of communication in brain-injured subjects with severe impairment of motor function. To complement these approaches, it would be useful to develop methods to detect recovery of consciousness in ways that do not depend on the integrity of sensory pathways or on the subject's ability to comprehend or carry out instructions. As suggested by theoretical and experimental work, a key requirement for consciousness is that multiple, specialized cortical areas can engage in rapid causal interactions (effective connectivity). Here, we employ transcranial magnetic stimulation together with high-density electroencephalography to evaluate effective connectivity at the bedside of severely brain injured, non-communicating subjects. In patients in a vegetative state, who were open-eyed, behaviourally awake but unresponsive, transcranial magnetic stimulation triggered a simple, local response indicating a breakdown of effective connectivity, similar to the one previously observed in unconscious sleeping or anaesthetized subjects. In contrast, in minimally conscious patients, who showed fluctuating signs of non-reflexive behaviour, transcranial magnetic stimulation invariably triggered complex activations that sequentially involved distant cortical areas ipsi- and contralateral to the site of stimulation, similar to activations we recorded in locked-in, conscious patients. Longitudinal measurements performed in patients who gradually recovered consciousness revealed that this clear-cut change in effective connectivity could occur at an early stage, before reliable communication was established with the subject and before the spontaneous electroencephalogram showed significant modifications. Measurements of effective connectivity by means of transcranial magnetic stimulation combined with electroencephalography can be performed at the bedside while by-passing subcortical afferent and efferent pathways, and without requiring active participation of subjects or language comprehension; hence, they offer an effective way to detect and track recovery of consciousness in brain-injured patients who are unable to exchange information with the external environment.Patients surviving severe brain injury may regain consciousness without recovering their ability to understand, move and communicate. Recently, electrophysiological and neuroimaging approaches, employing simple sensory stimulations or verbal commands, have proven useful in detecting higher order processing and, in some cases, in establishing some degree of communication in brain-injured subjects with severe impairment of motor function. To complement these approaches, it would be useful to develop methods to detect recovery of consciousness in ways that do not depend on the integrity of sensory pathways or on the subject's ability to comprehend or carry out instructions. As suggested by theoretical and experimental work, a key requirement for consciousness is that multiple, specialized cortical areas can engage in rapid causal interactions (effective connectivity). Here, we employ transcranial magnetic stimulation together with high-density electroencephalography to evaluate effective connectivity at the bedside of severely brain injured, non-communicating subjects. In patients in a vegetative state, who were open-eyed, behaviourally awake but unresponsive, transcranial magnetic stimulation triggered a simple, local response indicating a breakdown of effective connectivity, similar to the one previously observed in unconscious sleeping or anaesthetized subjects. In contrast, in minimally conscious patients, who showed fluctuating signs of non-reflexive behaviour, transcranial magnetic stimulation invariably triggered complex activations that sequentially involved distant cortical areas ipsi- and contralateral to the site of stimulation, similar to activations we recorded in locked-in, conscious patients. Longitudinal measurements performed in patients who gradually recovered consciousness revealed that this clear-cut change in effective connectivity could occur at an early stage, before reliable communication was established with the subject and before the spontaneous electroencephalogram showed significant modifications. Measurements of effective connectivity by means of transcranial magnetic stimulation combined with electroencephalography can be performed at the bedside while by-passing subcortical afferent and efferent pathways, and without requiring active participation of subjects or language comprehension; hence, they offer an effective way to detect and track recovery of consciousness in brain-injured patients who are unable to exchange information with the external environment.
Patients surviving severe brain injury may regain consciousness without recovering their ability to understand, move and communicate. Recently, electrophysiological and neuroimaging approaches, employing simple sensory stimulations or verbal commands, have proven useful in detecting higher order processing and, in some cases, in establishing some degree of communication in brain-injured subjects with severe impairment of motor function. To complement these approaches, it would be useful to develop methods to detect recovery of consciousness in ways that do not depend on the integrity of sensory pathways or on the subject's ability to comprehend or carry out instructions. As suggested by theoretical and experimental work, a key requirement for consciousness is that multiple, specialized cortical areas can engage in rapid causal interactions (effective connectivity). Here, we employ transcranial magnetic stimulation together with high-density electroencephalography to evaluate effective connectivity at the bedside of severely brain injured, non-communicating subjects. In patients in a vegetative state, who were open-eyed, behaviourally awake but unresponsive, transcranial magnetic stimulation triggered a simple, local response indicating a breakdown of effective connectivity, similar to the one previously observed in unconscious sleeping or anaesthetized subjects. In contrast, in minimally conscious patients, who showed fluctuating signs of non-reflexive behaviour, transcranial magnetic stimulation invariably triggered complex activations that sequentially involved distant cortical areas ipsi- and contralateral to the site of stimulation, similar to activations we recorded in locked-in, conscious patients. Longitudinal measurements performed in patients who gradually recovered consciousness revealed that this clear-cut change in effective connectivity could occur at an early stage, before reliable communication was established with the subject and before the spontaneous electroencephalogram showed significant modifications. Measurements of effective connectivity by means of transcranial magnetic stimulation combined with electroencephalography can be performed at the bedside while by-passing subcortical afferent and efferent pathways, and without requiring active participation of subjects or language comprehension; hence, they offer an effective way to detect and track recovery of consciousness in brain-injured patients who are unable to exchange information with the external environment.
Author Casarotto, Silvia
Casali, Adenauer G.
Bruno, Marie-Aurélie
Boveroux, Pierre
Gosseries, Olivia
Laureys, Steven
Massimini, Marcello
Rosanova, Mario
Boly, Mélanie
Mariotti, Maurizio
Tononi, Giulio
AuthorAffiliation 2 Coma Science Group, Cyclotron Research Centre, University of Liège, 4000 Liège, Belgium
3 Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA
1 Department of Clinical Sciences ‘Luigi Sacco’, University of Milan, 20157 Milan, Italy
4 Department of Neurology, University Hospital of Liège, 4000 Liège, Belgium
AuthorAffiliation_xml – name: 2 Coma Science Group, Cyclotron Research Centre, University of Liège, 4000 Liège, Belgium
– name: 3 Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA
– name: 1 Department of Clinical Sciences ‘Luigi Sacco’, University of Milan, 20157 Milan, Italy
– name: 4 Department of Neurology, University Hospital of Liège, 4000 Liège, Belgium
Author_xml – sequence: 1
  givenname: Mario
  surname: Rosanova
  fullname: Rosanova, Mario
– sequence: 2
  givenname: Olivia
  surname: Gosseries
  fullname: Gosseries, Olivia
– sequence: 3
  givenname: Silvia
  surname: Casarotto
  fullname: Casarotto, Silvia
– sequence: 4
  givenname: Mélanie
  surname: Boly
  fullname: Boly, Mélanie
– sequence: 5
  givenname: Adenauer G.
  surname: Casali
  fullname: Casali, Adenauer G.
– sequence: 6
  givenname: Marie-Aurélie
  surname: Bruno
  fullname: Bruno, Marie-Aurélie
– sequence: 7
  givenname: Maurizio
  surname: Mariotti
  fullname: Mariotti, Maurizio
– sequence: 8
  givenname: Pierre
  surname: Boveroux
  fullname: Boveroux, Pierre
– sequence: 9
  givenname: Giulio
  surname: Tononi
  fullname: Tononi, Giulio
– sequence: 10
  givenname: Steven
  surname: Laureys
  fullname: Laureys, Steven
– sequence: 11
  givenname: Marcello
  surname: Massimini
  fullname: Massimini, Marcello
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25836077$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22226806$$D View this record in MEDLINE/PubMed
BookMark eNqNkstv1DAQhy1URLelN84oFyQODR3bseNckFDVl1QJCbVn4zjjYpS1Fzu7aP97vI8Wijjgy1jjb37z8ByRgxADEvKGwgcKHT_rk_HhzPxMvIEXZEYbCTWjQh6QGQDIWnUCDslRzt8BaMOZfEUOWTlSgZyRr1_QxhWmdRVdZWOavDVjhc6hnfwKiyuE7dVP68qEoUrP-JCtj8scMOfKh2qFDziZbeCiGAxTfk1eOjNmPNnbY3J_eXF3fl3ffr66Of90W1tB-VSLTrXQst4xy60QSvRWgcFBDFKprqNSukYKhkPvGjBMcjY4NFYMQrWO9cCPyced7mLZz3GwJXcyo14kPzdpraPx-vlL8N_0Q1xpXkbCGlUE3u8FUvyxxDzpuc8Wx9EELC1qCrTtJDSi_Q8UaCdbqWhB3_5Z1lM9jz9QgHd7wOQyepdMsD7_5oTiEtpNTrbjbIo5J3Ta-s2o46YbP5acerMOersOercOJej0r6BH3X_ivwBuzrtd
CitedBy_id crossref_primary_10_1007_s11916_013_0374_3
crossref_primary_10_1007_s11055_021_01173_4
crossref_primary_10_1371_journal_pcbi_1004654
crossref_primary_10_3389_fneur_2017_00182
crossref_primary_10_1016_j_neuron_2017_05_015
crossref_primary_10_1177_1545968314562114
crossref_primary_10_1016_j_clinph_2018_08_004
crossref_primary_10_1016_j_neuron_2016_07_031
crossref_primary_10_1016_S1280_4703_22_47055_1
crossref_primary_10_5607_en_2012_21_3_113
crossref_primary_10_1016_j_neuroimage_2021_118272
crossref_primary_10_1080_00207454_2017_1403440
crossref_primary_10_1038_nrneurol_2013_279
crossref_primary_10_1371_journal_pone_0133532
crossref_primary_10_1016_j_concog_2017_05_003
crossref_primary_10_3389_fnhum_2016_00248
crossref_primary_10_1038_s41598_019_41274_2
crossref_primary_10_3389_fnins_2025_1512724
crossref_primary_10_1016_j_nicl_2021_102797
crossref_primary_10_1097_WNR_0000000000000886
crossref_primary_10_1111_ejn_12374
crossref_primary_10_1016_j_yebeh_2013_09_014
crossref_primary_10_1111_ejn_16299
crossref_primary_10_1016_j_brs_2024_07_008
crossref_primary_10_1016_j_jneumeth_2018_12_011
crossref_primary_10_1007_s00415_013_6982_3
crossref_primary_10_1080_09602011_2019_1706585
crossref_primary_10_1016_j_clinph_2019_06_006
crossref_primary_10_1007_s12028_023_01706_4
crossref_primary_10_1093_brain_awv169
crossref_primary_10_1007_s13546_014_0898_5
crossref_primary_10_1371_journal_pone_0184910
crossref_primary_10_1038_ncomms11828
crossref_primary_10_1007_s10548_023_01024_0
crossref_primary_10_1089_neu_2012_2654
crossref_primary_10_1016_j_jneumeth_2018_11_006
crossref_primary_10_1016_j_brs_2014_09_001
crossref_primary_10_1097_MD_0000000000035510
crossref_primary_10_1186_s40779_024_00585_w
crossref_primary_10_3389_fneur_2018_01012
crossref_primary_10_1155_2012_624724
crossref_primary_10_1177_0300060520976472
crossref_primary_10_3390_brainsci9050103
crossref_primary_10_1007_s11571_023_09995_3
crossref_primary_10_1007_s10877_020_00603_x
crossref_primary_10_12677_ACM_2024_141233
crossref_primary_10_1016_j_nicl_2020_102356
crossref_primary_10_1016_j_cortex_2015_07_027
crossref_primary_10_1177_1550059413510703
crossref_primary_10_1016_j_brs_2023_10_008
crossref_primary_10_1523_JNEUROSCI_5089_13_2014
crossref_primary_10_1097_CM9_0000000000001377
crossref_primary_10_1016_j_clinph_2023_01_022
crossref_primary_10_1371_journal_pcbi_1010662
crossref_primary_10_1038_s41598_023_30639_3
crossref_primary_10_1212_WNL_0000000000200038
crossref_primary_10_1017_sjp_2016_89
crossref_primary_10_1016_j_brs_2017_11_006
crossref_primary_10_1177_15500594221131680
crossref_primary_10_36425_rehab624889
crossref_primary_10_1097_MD_0000000000031808
crossref_primary_10_3109_02699052_2014_888477
crossref_primary_10_1371_journal_pcbi_1003887
crossref_primary_10_1016_j_nicl_2017_10_003
crossref_primary_10_1016_j_neuroimage_2015_02_056
crossref_primary_10_1016_j_neuroimage_2017_07_047
crossref_primary_10_1007_s41252_017_0025_5
crossref_primary_10_1097_WNR_0000000000002079
crossref_primary_10_1016_j_neuroimage_2018_10_052
crossref_primary_10_3390_biomedicines10081897
crossref_primary_10_1371_journal_pone_0074711
crossref_primary_10_5665_sleep_1718
crossref_primary_10_1016_j_plrev_2012_07_001
crossref_primary_10_3389_fneur_2018_00982
crossref_primary_10_1007_s12264_018_0243_5
crossref_primary_10_1016_j_clinph_2017_06_037
crossref_primary_10_1093_nc_niad016
crossref_primary_10_1038_s41598_018_35211_y
crossref_primary_10_1155_2019_7089543
crossref_primary_10_1080_02699052_2018_1553309
crossref_primary_10_3389_fnins_2016_00473
crossref_primary_10_1093_cercor_bhx122
crossref_primary_10_3390_s23218833
crossref_primary_10_1016_j_clinph_2025_01_002
crossref_primary_10_1016_j_jneumeth_2022_109651
crossref_primary_10_1016_j_nicl_2017_01_025
crossref_primary_10_1142_S2705078520710022
crossref_primary_10_1038_s41467_022_28451_0
crossref_primary_10_4103_ATN_ATN_D_24_00006
crossref_primary_10_4329_wjr_v6_i8_589
crossref_primary_10_1016_S1474_4422_12_70154_0
crossref_primary_10_3389_fncir_2016_00073
crossref_primary_10_1016_j_neuroimage_2015_12_006
crossref_primary_10_1097_ACO_0b013e3283628b5d
crossref_primary_10_3390_brainsci10010042
crossref_primary_10_1016_j_brs_2021_12_002
crossref_primary_10_1111_pcn_12936
crossref_primary_10_1142_S0129065717500599
crossref_primary_10_1016_j_neuron_2024_02_004
crossref_primary_10_3389_fnhum_2014_00616
crossref_primary_10_1097_WNP_0000000000000846
crossref_primary_10_3390_s21020637
crossref_primary_10_1016_j_neuroimage_2013_07_013
crossref_primary_10_1177_1550059413513723
crossref_primary_10_1136_jnnp_2015_310958
crossref_primary_10_1007_s10548_015_0461_3
crossref_primary_10_1016_j_neurol_2021_12_004
crossref_primary_10_2174_1874440001610010052
crossref_primary_10_1016_j_compbiomed_2023_107547
crossref_primary_10_1038_nrn3188
crossref_primary_10_1111_ene_14151
crossref_primary_10_5334_jeps_cj
crossref_primary_10_1371_journal_pone_0101496
crossref_primary_10_1007_s12671_025_02519_6
crossref_primary_10_1038_s41467_024_51586_1
crossref_primary_10_3390_e24111539
crossref_primary_10_1016_j_pmr_2023_07_005
crossref_primary_10_1016_j_resuscitation_2016_08_012
crossref_primary_10_1016_j_clinph_2021_08_027
crossref_primary_10_1080_21507740_2012_762067
crossref_primary_10_3389_fnhum_2015_00157
crossref_primary_10_1073_pnas_1418730112
crossref_primary_10_3389_fpsyg_2014_00940
crossref_primary_10_1016_j_concog_2015_12_011
crossref_primary_10_1016_j_cortex_2021_02_024
crossref_primary_10_1016_j_brs_2014_10_008
crossref_primary_10_1016_j_neubiorev_2016_03_006
crossref_primary_10_1038_s41467_018_06871_1
crossref_primary_10_1093_brain_awx324
crossref_primary_10_3389_fnins_2023_1343471
crossref_primary_10_1007_s10548_016_0489_z
crossref_primary_10_3389_fpsyg_2018_00585
crossref_primary_10_1136_bmjopen_2017_016286
crossref_primary_10_1186_s13054_022_04119_5
crossref_primary_10_1080_03036758_2020_1840405
crossref_primary_10_1109_TNSRE_2022_3154772
crossref_primary_10_1016_j_jocn_2018_09_020
crossref_primary_10_1016_j_neubiorev_2019_11_014
crossref_primary_10_1111_cns_14009
crossref_primary_10_1111_nyas_12261
crossref_primary_10_1016_j_neuron_2023_08_007
crossref_primary_10_1016_j_neubiorev_2018_05_027
crossref_primary_10_3389_fnins_2022_771393
crossref_primary_10_1016_j_concog_2015_04_024
crossref_primary_10_1093_brain_aws060
crossref_primary_10_1177_1550059412474929
crossref_primary_10_1016_j_cub_2013_07_075
crossref_primary_10_1016_j_conb_2013_10_007
crossref_primary_10_1093_nc_niac001
crossref_primary_10_1016_j_neubiorev_2024_105670
crossref_primary_10_1212_WNL_0000000000210208
crossref_primary_10_3109_02699052_2016_1147078
crossref_primary_10_1080_00207454_2020_1744598
crossref_primary_10_1055_s_0043_1775792
crossref_primary_10_1186_s12883_022_02958_x
crossref_primary_10_1016_j_lpm_2023_104180
crossref_primary_10_1016_j_brs_2013_06_006
crossref_primary_10_1016_j_conb_2012_12_003
crossref_primary_10_1016_j_neuroimage_2016_05_009
crossref_primary_10_1002_hbm_22308
crossref_primary_10_3389_fneur_2018_00315
crossref_primary_10_1007_s11682_012_9205_0
crossref_primary_10_3389_fneur_2018_00439
crossref_primary_10_1017_cjn_2022_301
crossref_primary_10_1142_S0219635214400044
crossref_primary_10_1016_j_tics_2016_03_009
crossref_primary_10_1016_j_neuroimage_2017_12_009
crossref_primary_10_1038_srep30932
crossref_primary_10_3389_fnhum_2015_00105
crossref_primary_10_1002_hbm_26022
crossref_primary_10_1097_WNP_0000000000000881
crossref_primary_10_1126_scitranslmed_3006294
crossref_primary_10_3390_organoids2010004
crossref_primary_10_3389_fnins_2022_1071594
crossref_primary_10_1016_j_clinph_2023_03_010
crossref_primary_10_3389_fnhum_2022_992649
crossref_primary_10_1016_j_neucli_2025_103048
crossref_primary_10_1093_brain_awu141
crossref_primary_10_1016_j_neuron_2017_03_028
crossref_primary_10_1016_j_cortex_2018_03_029
crossref_primary_10_1371_journal_pone_0093252
crossref_primary_10_1089_brain_2016_0462
crossref_primary_10_1016_j_bandc_2018_11_007
crossref_primary_10_3389_fnins_2022_1024278
crossref_primary_10_1016_S1474_4422_12_70188_6
crossref_primary_10_1016_j_clinph_2019_01_001
crossref_primary_10_1016_j_clinph_2015_12_010
crossref_primary_10_1016_j_neuroimage_2018_03_073
crossref_primary_10_1097_ANA_0000000000000040
crossref_primary_10_1038_s42003_024_06613_8
crossref_primary_10_1016_j_brainres_2012_04_045
crossref_primary_10_1515_tnsci_2020_0138
crossref_primary_10_1523_JNEUROSCI_1838_17_2017
crossref_primary_10_1186_s13054_016_1318_1
crossref_primary_10_1016_j_plrev_2012_09_001
crossref_primary_10_1038_s41598_022_05397_3
crossref_primary_10_1007_s11910_023_01276_0
crossref_primary_10_1186_s41984_021_00111_3
crossref_primary_10_1093_nc_niaa017
crossref_primary_10_1016_j_plrev_2019_05_002
crossref_primary_10_1007_s11571_023_09944_0
crossref_primary_10_1016_j_nicl_2017_02_002
crossref_primary_10_1134_S0362119714030116
crossref_primary_10_1001_jamaneurol_2023_5634
crossref_primary_10_1186_s42466_020_00060_6
crossref_primary_10_3390_brainsci10100746
crossref_primary_10_1016_j_brs_2013_11_004
crossref_primary_10_1073_pnas_1911240117
crossref_primary_10_1016_j_neuroimage_2014_07_037
crossref_primary_10_1016_j_clinph_2020_07_015
crossref_primary_10_1016_j_tics_2013_09_012
crossref_primary_10_1088_1741_2552_ad618b
crossref_primary_10_4103_1673_5374_251299
crossref_primary_10_3238_arztebl_2015_0235
crossref_primary_10_1016_j_nicl_2020_102471
crossref_primary_10_1016_j_annfar_2013_11_006
crossref_primary_10_1016_j_bpsc_2022_12_005
crossref_primary_10_3389_fneur_2020_588233
crossref_primary_10_1016_j_annfar_2013_11_002
crossref_primary_10_1152_jn_00390_2013
crossref_primary_10_3389_fnins_2018_00370
crossref_primary_10_1016_j_neubiorev_2014_12_014
crossref_primary_10_1007_s12028_023_01795_1
crossref_primary_10_1089_neu_2015_4003
crossref_primary_10_1016_j_bja_2018_07_006
crossref_primary_10_1162_netn_a_00119
crossref_primary_10_1016_j_neucom_2014_01_048
crossref_primary_10_1016_j_clinph_2016_12_011
crossref_primary_10_1103_PhysRevE_100_032405
crossref_primary_10_1523_JNEUROSCI_0938_22_2022
crossref_primary_10_1007_s00701_022_05378_5
crossref_primary_10_1523_JNEUROSCI_1910_19_2019
crossref_primary_10_1038_s41598_018_34957_9
crossref_primary_10_1016_j_neucli_2018_09_002
crossref_primary_10_1093_brain_awaa127
crossref_primary_10_1016_j_brs_2019_05_013
crossref_primary_10_7554_eLife_83232
crossref_primary_10_1007_s11571_022_09852_9
crossref_primary_10_1016_j_brs_2024_04_011
crossref_primary_10_1016_j_tics_2019_12_010
crossref_primary_10_1016_j_brs_2018_08_003
crossref_primary_10_1111_ejn_16149
crossref_primary_10_3389_fnsys_2020_00062
crossref_primary_10_1080_02699052_2017_1327673
crossref_primary_10_1111_cns_14469
crossref_primary_10_3389_fpsyg_2018_01820
crossref_primary_10_3389_fneur_2021_510424
crossref_primary_10_3390_jcm8030306
crossref_primary_10_1038_s41583_022_00598_1
crossref_primary_10_1097_WNR_0000000000001362
crossref_primary_10_1016_j_clinph_2013_06_016
crossref_primary_10_1016_j_neubiorev_2013_09_007
crossref_primary_10_1016_j_neubiorev_2020_07_019
crossref_primary_10_2217_fnl_12_77
crossref_primary_10_3389_fnhum_2017_00524
crossref_primary_10_1016_j_cortex_2015_04_023
crossref_primary_10_1016_j_neubiorev_2013_09_009
crossref_primary_10_1016_j_brs_2020_07_012
crossref_primary_10_1016_j_clinph_2014_08_028
crossref_primary_10_1016_j_neubiorev_2021_09_029
crossref_primary_10_1146_annurev_neuro_062012_170339
crossref_primary_10_3389_fnins_2018_00393
crossref_primary_10_3109_02699052_2014_920527
crossref_primary_10_1002_brb3_336
crossref_primary_10_3390_brainsci14040371
crossref_primary_10_3109_02699052_2014_920523
crossref_primary_10_3109_02699052_2014_920524
crossref_primary_10_3389_fneur_2024_1283140
crossref_primary_10_1007_s12028_021_01246_9
crossref_primary_10_1007_s00415_020_10095_z
crossref_primary_10_3109_02699052_2014_920522
crossref_primary_10_1142_S0129065720500525
crossref_primary_10_3233_RNN_170741
crossref_primary_10_1007_s12264_018_0258_y
crossref_primary_10_1093_nc_niab023
crossref_primary_10_3171_2018_5_FOCUS18168
crossref_primary_10_3390_neurolint16060106
crossref_primary_10_3389_frobt_2018_00121
crossref_primary_10_1002_ana_25214
Cites_doi 10.1016/j.neuroimage.2003.12.018
10.1126/science.1117256
10.1016/j.clinph.2004.02.009
10.1016/j.tics.2006.03.007
10.1016/j.clinph.2010.02.005
10.1146/annurev.neuro.25.112701.142846
10.1111/j.1460-9568.2010.07420.x
10.1056/NEJMoa0905370
10.1016/S0079-6123(05)50028-1
10.1002/ana.21110
10.1080/17588921003731578
10.1098/rstb.2005.1652
10.1176/appi.ajp.2008.07111733
10.1212/WNL.0b013e3181e8e8df
10.1212/WNL.58.3.349
10.1056/NEJM199405263302107
10.1126/science.1130197
10.1097/WNR.0b013e328011b89a
10.1146/annurev.bioeng.9.061206.133100
10.1093/brain/awq316
10.1073/pnas.0903941106
10.1371/journal.pbio.0050260
10.1016/j.neuroimage.2007.05.015
10.1002/hbm.10159
10.1073/pnas.0702495104
10.1016/j.clinph.2011.03.004
10.1111/j.1460-9568.2009.06720.x
10.1017/S0140525X00003976
10.1016/S0079-6123(09)17714-2
10.1038/nn.2237
10.1126/science.1202043
10.1093/brain/awr005
10.1016/j.clinph.2003.10.034
10.1093/brain/awr152
10.1016/j.clinph.2005.03.028
10.1523/JNEUROSCI.0445-09.2009
10.1016/j.tics.2008.04.008
10.1016/j.clinph.2006.05.006
10.1196/annals.1440.004
10.1073/pnas.0913008107
10.1007/s002210000404
10.1371/journal.pone.0010281
10.1212/01.WNL.0000134670.10384.E2
10.1007/BF02512476
10.1016/j.clinph.2006.11.019
10.1016/j.apmr.2004.02.033
10.1007/s00213-005-2197-3
10.1080/13554790902724904
10.1097/00001756-199711100-00024
10.1016/S0079-6123(09)17704-X
10.1016/S0140-6736(72)90242-5
10.1016/j.medengphy.2006.03.001
10.1126/science.1149213
10.1016/j.neuroimage.2009.09.026
10.1007/BF02345746
10.1016/j.tics.2005.10.010
10.1007/BF02513307
10.1136/bmj.c3765
10.1001/archneur.58.7.1139
10.1097/00005072-199411000-00002
10.1016/S1053-8119(03)00062-4
10.1016/j.jneumeth.2007.10.003
10.1016/0013-4694(80)90419-8
10.1186/1471-2202-5-42
10.1016/0013-4694(94)90113-9
10.1016/S0079-6123(09)17705-1
10.1016/j.neuroimage.2004.09.048
10.1016/j.tins.2009.11.002
10.1016/S1474-4422(04)00852-X
10.1093/brain/awf131
10.1093/brain/123.7.1327
10.1523/JNEUROSCI.6198-09.2010
10.1212/WNL.0b013e3182217ee8
10.1212/01.wnl.0000334754.15330.69
10.1038/nature06041
10.1073/pnas.0809667106
10.1016/j.jneumeth.2003.10.009
10.1016/j.ijpsycho.2011.02.013
10.1016/j.neuroimage.2010.08.035
10.1073/pnas.0709515104
10.1016/j.clinph.2011.02.009
10.1016/j.clinph.2006.11.020
ContentType Journal Article
Copyright 2015 INIST-CNRS
The Author (2012). Published by Oxford University Press on behalf of the Guarantors of Brain. 2012
Copyright_xml – notice: 2015 INIST-CNRS
– notice: The Author (2012). Published by Oxford University Press on behalf of the Guarantors of Brain. 2012
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1093/brain/awr340
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList MEDLINE - Academic
Neurosciences Abstracts

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1460-2156
EndPage 1320
ExternalDocumentID PMC3326248
22226806
25836077
10_1093_brain_awr340
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-E4
-~X
.2P
.55
.GJ
.I3
.XZ
.ZR
0R~
1CY
1TH
23N
2WC
354
3O-
4.4
41~
482
48X
53G
5GY
5RE
5VS
5WA
5WD
6PF
70D
AABZA
AACZT
AAGKA
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AAQQT
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
AAWTL
AAYJJ
AAYXX
ABDFA
ABDPE
ABEJV
ABEUO
ABGNP
ABIME
ABIVO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNGD
ABNHQ
ABNKS
ABPIB
ABPQP
ABPTD
ABQLI
ABQNK
ABSMQ
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ABZEO
ACBNA
ACFRR
ACGFS
ACIWK
ACPQN
ACPRK
ACUFI
ACUKT
ACUTJ
ACUTO
ACVCV
ACYHN
ACZBC
ADBBV
ADEYI
ADEZT
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADMTO
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEHUL
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFQV
AFFZL
AFGWE
AFIYH
AFOFC
AFSHK
AFXAL
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGORE
AGQPQ
AGQXC
AGSYK
AGUTN
AHGBF
AHMBA
AHMMS
AHXPO
AI.
AIJHB
AJBYB
AJDVS
AJEEA
AJNCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
ANFBD
APIBT
APJGH
APWMN
AQDSO
AQKUS
ARIXL
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVNTJ
AVWKF
AXUDD
AYOIW
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BR6
BSWAC
BTRTY
BVRKM
BZKNY
C1A
C45
CAG
CDBKE
CITATION
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EIHJH
EJD
ELUNK
EMOBN
ENERS
F5P
F9B
FECEO
FEDTE
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
J5H
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
MBLQV
MBTAY
MHKGH
ML0
MVM
N4W
N9A
NGC
NLBLG
NOMLY
NOYVH
NTWIH
NU-
NVLIB
O0~
O9-
OAUYM
OAWHX
OBFPC
OBOKY
OCZFY
ODMLO
OHH
OHT
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
TCN
TCURE
TEORI
TJX
TLC
TMA
TR2
VH1
VVN
W8F
WH7
WOQ
X7H
X7M
XJT
XOL
YAYTL
YKOAZ
YQJ
YSK
YXANX
ZCG
ZGI
ZKB
ZKX
ZXP
~91
ABQTQ
IQODW
M49
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
ID FETCH-LOGICAL-c513t-5987072bf2c3c5585bc80aed5d68899166f4652edbf40a2632dfeac5d587f2b03
ISSN 0006-8950
1460-2156
IngestDate Thu Aug 21 14:10:11 EDT 2025
Thu Jul 10 21:57:03 EDT 2025
Fri Jul 11 00:00:02 EDT 2025
Mon Jul 21 06:04:52 EDT 2025
Wed Apr 02 07:21:17 EDT 2025
Tue Jul 01 00:46:04 EDT 2025
Thu Apr 24 23:07:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Coma
Human
Cerebral cortex
Nervous system diseases
Consciousness impairment
EEG
Central nervous system
Electrophysiology
Electroencephalography
Recovery
Encephalon
minimally conscious state
TMS
Neurological disorder
Language English
License CC BY 4.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c513t-5987072bf2c3c5585bc80aed5d68899166f4652edbf40a2632dfeac5d587f2b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
These authors contributed equally to this work.
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3326248
PMID 22226806
PQID 1001967681
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3326248
proquest_miscellaneous_1017960457
proquest_miscellaneous_1001967681
pubmed_primary_22226806
pascalfrancis_primary_25836077
crossref_citationtrail_10_1093_brain_awr340
crossref_primary_10_1093_brain_awr340
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-04-01
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Brain (London, England : 1878)
PublicationTitleAlternate Brain
PublicationYear 2012
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Kahkonen ( key 20170624055837_awr340-B37) 2005; 24
Schnakers ( key 20170624055837_awr340-B72) 2009; 15
Schiff ( key 20170624055837_awr340-B70) 2007; 448
Schiff ( key 20170624055837_awr340-B69) 2010; 33
Shulman ( key 20170624055837_awr340-B76) 2009; 106
Royal College of Physicians ( key 20170624055837_awr340-B68) 1994; 330
Lv ( key 20170624055837_awr340-B50) 2007; 29
Luaute ( key 20170624055837_awr340-B49) 2010; 75
Hobson ( key 20170624055837_awr340-B32) 2000; 23
Maandag ( key 20170624055837_awr340-B51) 2007; 104
Tononi ( key 20170624055837_awr340-B79) 2008; 1124
Englot ( key 20170624055837_awr340-B18) 2010; 133
Fernandez-Espejo ( key 20170624055837_awr340-B21) 2011; 54
Babiloni ( key 20170624055837_awr340-B4) 2000; 38
Seth ( key 20170624055837_awr340-B74) 2008; 12
Casarotto ( key 20170624055837_awr340-B12) 2010; 5
Ferrarelli ( key 20170624055837_awr340-B23) 2010; 107
Giacino ( key 20170624055837_awr340-B29) 2009; 177
Kahkonen ( key 20170624055837_awr340-B36) 2005; 181
Kinney ( key 20170624055837_awr340-B38) 1994; 53
Alkire ( key 20170624055837_awr340-B3) 2008; 322
Hamalainen ( key 20170624055837_awr340-B30) 1994; 32
Shah ( key 20170624055837_awr340-B75) 2010; 32
Giacino ( key 20170624055837_awr340-B28) 2004; 85
Duncan ( key 20170624055837_awr340-B17) 2011; 82
Delorme ( key 20170624055837_awr340-B16) 2004; 134
Landsness ( key 20170624055837_awr340-B43) 2011; 134
Fischer ( key 20170624055837_awr340-B24) 2004; 63
Owen ( key 20170624055837_awr340-B65) 2006; 313
Schiff ( key 20170624055837_awr340-B71) 2002; 125
Ferrarelli ( key 20170624055837_awr340-B22) 2008; 165
Hauk ( key 20170624055837_awr340-B31) 2004; 21
Holler ( key 20170624055837_awr340-B33) 2011; 122
Massimini ( key 20170624055837_awr340-B57) 2005; 309
Faugeras ( key 20170624055837_awr340-B19) 2011; 77
Rosanova ( key 20170624055837_awr340-B67) 2009; 29
Fischer ( key 20170624055837_awr340-B25) 2010; 121
Giacino ( key 20170624055837_awr340-B27) 2002; 58
Friston ( key 20170624055837_awr340-B26) 2002; 25
Jennett ( key 20170624055837_awr340-B35) 1972; 1
McCubbin ( key 20170624055837_awr340-B61) 2008; 168
Ilmoniemi ( key 20170624055837_awr340-B34) 1997; 8
Paus ( key 20170624055837_awr340-B66) 2005; 360
Laureys ( key 20170624055837_awr340-B45) 2004; 3
Kotchoubey ( key 20170624055837_awr340-B42) 2005; 116
Komssi ( key 20170624055837_awr340-B40) 2004; 21
Tononi ( key 20170624055837_awr340-B78) 2004; 5
Dehaene ( key 20170624055837_awr340-B14) 2006; 10
Adams ( key 20170624055837_awr340-B1) 2000; 123
Monti ( key 20170624055837_awr340-B62) 2010; 341
Bardin ( key 20170624055837_awr340-B5) 2011; 134
Fellinger ( key 20170624055837_awr340-B20) 2011; 122
Massimini ( key 20170624055837_awr340-B55) 2009; 177
Mataro ( key 20170624055837_awr340-B60) 2001; 58
Wagner ( key 20170624055837_awr340-B81) 2007; 9
Markowitsch ( key 20170624055837_awr340-B54) 2000; 133
Komssi ( key 20170624055837_awr340-B39) 2004; 115
Monti ( key 20170624055837_awr340-B63) 2010; 362
Akaishi ( key 20170624055837_awr340-B2) 2010; 30
Massimini ( key 20170624055837_awr340-B56) 2007; 104
Morishima ( key 20170624055837_awr340-B64) 2009; 12
Laureys ( key 20170624055837_awr340-B44) 2005; 9
Bekinschtein ( key 20170624055837_awr340-B6) 2009; 106
Massimini ( key 20170624055837_awr340-B59) 2009; 29
Schnakers ( key 20170624055837_awr340-B73) 2008; 71
Wijnen ( key 20170624055837_awr340-B82) 2007; 118
Casali ( key 20170624055837_awr340-B11) 2010; 49
Majerus ( key 20170624055837_awr340-B52) 2009; 177
Majerus ( key 20170624055837_awr340-B53) 2005; 150
Litvak ( key 20170624055837_awr340-B48) 2007; 37
Berg ( key 20170624055837_awr340-B7) 1994; 90
Silva ( key 20170624055837_awr340-B77) 2004; 115
Komssi ( key 20170624055837_awr340-B41) 2007; 18
Lehmann ( key 20170624055837_awr340-B47) 1980; 48
Boly ( key 20170624055837_awr340-B8) 2011; 332
Daltrozzo ( key 20170624055837_awr340-B13) 2007; 118
Brefel-Courbon ( key 20170624055837_awr340-B10) 2007; 62
Lee ( key 20170624055837_awr340-B46) 2003; 19
Virtanen ( key 20170624055837_awr340-B80) 1999; 37
Del Cul ( key 20170624055837_awr340-B15) 2007; 5
Massimini ( key 20170624055837_awr340-B58) 2010; 1
Bonato ( key 20170624055837_awr340-B9) 2006; 117
4111204 - Lancet. 1972 Apr 1;1(7753):734-7
21566197 - Science. 2011 May 13;332(6031):858-62
19549837 - Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11096-101
20728553 - Neuroimage. 2011 Jan 1;54(1):103-12
21377413 - Clin Neurophysiol. 2011 Sep;122(9):1744-54
19818893 - Prog Brain Res. 2009;177:33-48
20133802 - Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2681-6
16087451 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1109-14
15324722 - Lancet Neurol. 2004 Sep;3(9):537-46
7964896 - J Neuropathol Exp Neurol. 1994 Nov;53(6):548-58
15203067 - Clin Neurophysiol. 2004 Jul;115(7):1657-68
11515143 - Behav Brain Sci. 2000 Dec;23(6):793-842; discussion 904-1121
21593438 - Neurology. 2011 Jul 19;77(3):264-8
19098905 - Nat Neurosci. 2009 Jan;12(1):85-91
16621656 - Med Eng Phys. 2007 Mar;29(2):191-8
19001251 - Neurology. 2008 Nov 11;71(20):1614-20
16959998 - Science. 2006 Sep 8;313(5792):1402
18483133 - Am J Psychiatry. 2008 Aug;165(8):996-1005
19818903 - Prog Brain Res. 2009;177:201-14
18054084 - J Neurosci Methods. 2008 Feb 15;168(1):265-72
14755835 - Hum Brain Mapp. 2004 Mar;21(3):154-64
18988836 - Science. 2008 Nov 7;322(5903):876-80
21356253 - Int J Psychophysiol. 2011 Oct;82(1):24-40
15605342 - Arch Phys Med Rehabil. 2004 Dec;85(12):2020-9
17357126 - Ann Neurol. 2007 Jul;62(1):102-5
20554940 - Neurology. 2010 Jul 20;75(3):246-52
17208048 - Clin Neurophysiol. 2007 Mar;118(3):606-14
17896866 - PLoS Biol. 2007 Oct;5(10):e260
15670672 - Neuroimage. 2005 Feb 15;24(4):955-60
20130250 - N Engl J Med. 2010 Feb 18;362(7):579-89
7509274 - Electroencephalogr Clin Neurophysiol. 1994 Jan;90(1):58-64
12814594 - Neuroimage. 2003 Jun;19(2 Pt 1):457-65
21039953 - Eur J Neurosci. 2010 Oct;32(7):1135-44
15326240 - Neurology. 2004 Aug 24;63(4):669-73
20421968 - PLoS One. 2010;5(4):e10281
21841201 - Brain. 2011 Aug;134(Pt 8):2222-32
11839831 - Neurology. 2002 Feb 12;58(3):349-53
11094807 - Med Biol Eng Comput. 2000 Sep;38(5):512-9
18079290 - Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20546-51
21511524 - Clin Neurophysiol. 2011 Nov;122(11):2177-84
11448304 - Arch Neurol. 2001 Jul;58(7):1139-42
15036048 - Clin Neurophysiol. 2004 Mar;115(3):534-42
16797232 - Clin Neurophysiol. 2006 Aug;117(8):1699-707
17239656 - Clin Neurophysiol. 2007 Mar;118(3):597-605
10505382 - Med Biol Eng Comput. 1999 May;37(3):322-6
16195466 - Science. 2005 Sep 30;309(5744):2228-32
15522121 - BMC Neurosci. 2004 Nov 2;5:42
20335465 - J Neurosci. 2010 Mar 24;30(12):4295-305
20823938 - Cogn Neurosci. 2010 Sep;1(3):176-183
20679291 - BMJ. 2010;341:c3765
19473231 - Eur J Neurosci. 2009 May;29(9):1761-70
15719214 - Psychopharmacology (Berl). 2005 Aug;181(1):16-20
19954851 - Trends Neurosci. 2010 Jan;33(1):1-9
19164526 - Proc Natl Acad Sci U S A. 2009 Feb 3;106(5):1672-7
10933214 - Exp Brain Res. 2000 Jul;133(1):94-102
8182960 - Med Biol Eng Comput. 1994 Jan;32(1):35-42
19770048 - Neuroimage. 2010 Jan 15;49(2):1459-68
18606562 - Trends Cogn Sci. 2008 Aug;12(8):314-21
18400934 - Ann N Y Acad Sci. 2008 Mar;1124:239-61
16186038 - Prog Brain Res. 2005;150:397-413
16002333 - Clin Neurophysiol. 2005 Oct;116(10):2441-53
17259853 - Neuroreport. 2007 Jan 8;18(1):13-6
20202899 - Clin Neurophysiol. 2010 Jul;121(7):1032-42
16603406 - Trends Cogn Sci. 2006 May;10(5):204-11
6155251 - Electroencephalogr Clin Neurophysiol. 1980 Jun;48(6):609-21
19241281 - Neurocase. 2009 Aug;15(4):271-7
19535579 - J Neurosci. 2009 Jun 17;29(24):7679-85
19818894 - Prog Brain Res. 2009;177:49-61
17574872 - Neuroimage. 2007 Aug 1;37(1):56-70
17483481 - Proc Natl Acad Sci U S A. 2007 May 15;104(20):8496-501
21081551 - Brain. 2010 Dec;133(Pt 12):3764-77
15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21
16271507 - Trends Cogn Sci. 2005 Dec;9(12):556-9
17444810 - Annu Rev Biomed Eng. 2007;9:527-65
15050585 - Neuroimage. 2004 Apr;21(4):1612-21
12023311 - Brain. 2002 Jun;125(Pt 6):1210-34
17671503 - Nature. 2007 Aug 2;448(7153):600-3
10869046 - Brain. 2000 Jul;123 ( Pt 7):1327-38
21354974 - Brain. 2011 Mar;134(Pt 3):769-82
7818633 - N Engl J Med. 1994 May 26;330(21):1499-508
12052909 - Annu Rev Neurosci. 2002;25:221-50
9427322 - Neuroreport. 1997 Nov 10;8(16):3537-40
References_xml – volume: 21
  start-page: 1612
  year: 2004
  ident: key 20170624055837_awr340-B31
  article-title: Keep it simple: a case for using classical minimum norm estimation in the analysis of EEG and MEG data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2003.12.018
– volume: 309
  start-page: 2228
  year: 2005
  ident: key 20170624055837_awr340-B57
  article-title: Breakdown of cortical effective connectivity during sleep
  publication-title: Science
  doi: 10.1126/science.1117256
– volume: 115
  start-page: 1657
  year: 2004
  ident: key 20170624055837_awr340-B77
  article-title: Evaluation of L1 and L2 minimum norm performances on EEG localizations
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2004.02.009
– volume: 10
  start-page: 204
  year: 2006
  ident: key 20170624055837_awr340-B14
  article-title: Conscious, preconscious, and subliminal processing: a testable taxonomy
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2006.03.007
– volume: 121
  start-page: 1032
  year: 2010
  ident: key 20170624055837_awr340-B25
  article-title: Event-related potentials (MMN and novelty P3) in permanent vegetative or minimally conscious states
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2010.02.005
– volume: 25
  start-page: 221
  year: 2002
  ident: key 20170624055837_awr340-B26
  article-title: Beyond phrenology: what can neuroimaging tell us about distributed circuitry?
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev.neuro.25.112701.142846
– volume: 32
  start-page: 1135
  year: 2010
  ident: key 20170624055837_awr340-B75
  article-title: Central thalamic deep brain stimulation for cognitive neuromodulation - a review of proposed mechanisms and investigational studies
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2010.07420.x
– volume: 362
  start-page: 579
  year: 2010
  ident: key 20170624055837_awr340-B63
  article-title: Willful modulation of brain activity in disorders of consciousness
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0905370
– volume: 150
  start-page: 397
  year: 2005
  ident: key 20170624055837_awr340-B53
  article-title: Behavioral evaluation of consciousness in severe brain damage
  publication-title: Prog Brain Res
  doi: 10.1016/S0079-6123(05)50028-1
– volume: 62
  start-page: 102
  year: 2007
  ident: key 20170624055837_awr340-B10
  article-title: Clinical and imaging evidence of zolpidem effect in hypoxic encephalopathy
  publication-title: Ann Neurol
  doi: 10.1002/ana.21110
– volume: 1
  start-page: 176
  year: 2010
  ident: key 20170624055837_awr340-B58
  article-title: Cortical reactivity and effective connectivity during REM sleep in humans
  publication-title: Cogn Neurosci
  doi: 10.1080/17588921003731578
– volume: 360
  start-page: 1109
  year: 2005
  ident: key 20170624055837_awr340-B66
  article-title: Inferring causality in brain images: a perturbation approach
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2005.1652
– volume: 165
  start-page: 996
  year: 2008
  ident: key 20170624055837_awr340-B22
  article-title: Reduced evoked gamma oscillations in the frontal cortex in schizophrenia patients: a TMS/EEG study
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.2008.07111733
– volume: 75
  start-page: 246
  year: 2010
  ident: key 20170624055837_awr340-B49
  article-title: Long-term outcomes of chronic minimally conscious and vegetative states
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181e8e8df
– volume: 58
  start-page: 349
  year: 2002
  ident: key 20170624055837_awr340-B27
  article-title: The minimally conscious state: definition and diagnostic criteria
  publication-title: Neurology
  doi: 10.1212/WNL.58.3.349
– volume: 330
  start-page: 1499
  year: 1994
  ident: key 20170624055837_awr340-B68
  article-title: Medical aspects of the persistent vegetative state (1). The Multi-Society Task Force on PVS
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199405263302107
– volume: 313
  start-page: 1402
  year: 2006
  ident: key 20170624055837_awr340-B65
  article-title: Detecting awareness in the vegetative state
  publication-title: Science
  doi: 10.1126/science.1130197
– volume: 18
  start-page: 13
  year: 2007
  ident: key 20170624055837_awr340-B41
  article-title: Excitation threshold of the motor cortex estimated with transcranial magnetic stimulation electroencephalography
  publication-title: Neuroreport
  doi: 10.1097/WNR.0b013e328011b89a
– volume: 9
  start-page: 527
  year: 2007
  ident: key 20170624055837_awr340-B81
  article-title: Noninvasive human brain stimulation
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev.bioeng.9.061206.133100
– volume: 133
  start-page: 3764
  year: 2010
  ident: key 20170624055837_awr340-B18
  article-title: Impaired consciousness in temporal lobe seizures: role of cortical slow activity
  publication-title: Brain
  doi: 10.1093/brain/awq316
– volume: 106
  start-page: 11096
  year: 2009
  ident: key 20170624055837_awr340-B76
  article-title: Baseline brain energy supports the state of consciousness
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0903941106
– volume: 5
  start-page: e260
  year: 2007
  ident: key 20170624055837_awr340-B15
  article-title: Brain dynamics underlying the nonlinear threshold for access to consciousness
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0050260
– volume: 37
  start-page: 56
  year: 2007
  ident: key 20170624055837_awr340-B48
  article-title: Artifact correction and source analysis of early electroencephalographic responses evoked by transcranial magnetic stimulation over primary motor cortex
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.05.015
– volume: 21
  start-page: 154
  year: 2004
  ident: key 20170624055837_awr340-B40
  article-title: The effect of stimulus intensity on brain responses evoked by transcranial magnetic stimulation
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.10159
– volume: 104
  start-page: 8496
  year: 2007
  ident: key 20170624055837_awr340-B56
  article-title: Triggering sleep slow waves by transcranial magnetic stimulation
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0702495104
– volume: 122
  start-page: 2177
  year: 2011
  ident: key 20170624055837_awr340-B20
  article-title: Cognitive processes in disorders of consciousness as revealed by EEG time-frequency analyses
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2011.03.004
– volume: 29
  start-page: 1761
  year: 2009
  ident: key 20170624055837_awr340-B59
  article-title: Slow waves, synaptic plasticity and information processing: insights from transcranial magnetic stimulation and high-density EEG experiments
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2009.06720.x
– volume: 23
  start-page: 793
  year: 2000
  ident: key 20170624055837_awr340-B32
  article-title: Dreaming and the brain: toward a cognitive neuroscience of conscious states
  publication-title: Behav Brain Sci
  doi: 10.1017/S0140525X00003976
– volume: 177
  start-page: 201
  year: 2009
  ident: key 20170624055837_awr340-B55
  article-title: A perturbational approach for evaluating the brain's capacity for consciousness
  publication-title: Prog Brain Res
  doi: 10.1016/S0079-6123(09)17714-2
– volume: 12
  start-page: 85
  year: 2009
  ident: key 20170624055837_awr340-B64
  article-title: Task-specific signal transmission from prefrontal cortex in visual selective attention
  publication-title: Nat Neurosci
  doi: 10.1038/nn.2237
– volume: 332
  start-page: 858
  year: 2011
  ident: key 20170624055837_awr340-B8
  article-title: Preserved feedforward but impaired top-down processes in the vegetative state
  publication-title: Science
  doi: 10.1126/science.1202043
– volume: 134
  start-page: 769
  year: 2011
  ident: key 20170624055837_awr340-B5
  article-title: Dissociations between behavioural and functional magnetic resonance imaging-based evaluations of cognitive function after brain injury
  publication-title: Brain
  doi: 10.1093/brain/awr005
– volume: 115
  start-page: 534
  year: 2004
  ident: key 20170624055837_awr340-B39
  article-title: EEG minimum-norm estimation compared with MEG dipole fitting in the localization of somatosensory sources at S1
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2003.10.034
– volume: 134
  start-page: 2222
  year: 2011
  ident: key 20170624055837_awr340-B43
  article-title: Electrophysiological correlates of behavioural changes in vigilance in vegetative state and minimally conscious state
  publication-title: Brain
  doi: 10.1093/brain/awr152
– volume: 116
  start-page: 2441
  year: 2005
  ident: key 20170624055837_awr340-B42
  article-title: Information processing in severe disorders of consciousness: vegetative state and minimally conscious state
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2005.03.028
– volume: 29
  start-page: 7679
  year: 2009
  ident: key 20170624055837_awr340-B67
  article-title: Natural frequencies of human corticothalamic circuits
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0445-09.2009
– volume: 12
  start-page: 314
  year: 2008
  ident: key 20170624055837_awr340-B74
  article-title: Measuring consciousness: relating behavioural and neurophysiological approaches
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2008.04.008
– volume: 117
  start-page: 1699
  year: 2006
  ident: key 20170624055837_awr340-B9
  article-title: Transcranial magnetic stimulation and cortical evoked potentials: a TMS/EEG co-registration study
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2006.05.006
– volume: 1124
  start-page: 239
  year: 2008
  ident: key 20170624055837_awr340-B79
  article-title: The neural correlates of consciousness: an update
  publication-title: Ann N Y Acad Sci
  doi: 10.1196/annals.1440.004
– volume: 107
  start-page: 2681
  year: 2010
  ident: key 20170624055837_awr340-B23
  article-title: Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0913008107
– volume: 133
  start-page: 94
  year: 2000
  ident: key 20170624055837_awr340-B54
  article-title: Massive impairment in executive functions with partial preservation of other cognitive functions: the case of a young patient with severe degeneration of the prefrontal cortex
  publication-title: Exp Brain Res
  doi: 10.1007/s002210000404
– volume: 5
  start-page: e10281
  year: 2010
  ident: key 20170624055837_awr340-B12
  article-title: EEG responses to TMS are sensitive to changes in the perturbation parameters and repeatable over time
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0010281
– volume: 63
  start-page: 669
  year: 2004
  ident: key 20170624055837_awr340-B24
  article-title: Predictive value of sensory and cognitive evoked potentials for awakening from coma
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000134670.10384.E2
– volume: 32
  start-page: 35
  year: 1994
  ident: key 20170624055837_awr340-B30
  article-title: Interpreting magnetic fields of the brain: minimum norm estimates
  publication-title: Med Biol Eng Comput
  doi: 10.1007/BF02512476
– volume: 118
  start-page: 606
  year: 2007
  ident: key 20170624055837_awr340-B13
  article-title: Predicting coma and other low responsive patients outcome using event-related brain potentials: a meta-analysis
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2006.11.019
– volume: 85
  start-page: 2020
  year: 2004
  ident: key 20170624055837_awr340-B28
  article-title: The JFK Coma Recovery Scale-Revised: measurement characteristics and diagnostic utility
  publication-title: Arch Phys Med Rehabil
  doi: 10.1016/j.apmr.2004.02.033
– volume: 181
  start-page: 16
  year: 2005
  ident: key 20170624055837_awr340-B36
  article-title: Prefrontal TMS produces smaller EEG responses than motor-cortex TMS: implications for rTMS treatment in depression
  publication-title: Psychopharmacol
  doi: 10.1007/s00213-005-2197-3
– volume: 15
  start-page: 271
  year: 2009
  ident: key 20170624055837_awr340-B72
  article-title: Detecting consciousness in a total locked-in syndrome: an active event-related paradigm
  publication-title: Neurocase
  doi: 10.1080/13554790902724904
– volume: 8
  start-page: 3537
  year: 1997
  ident: key 20170624055837_awr340-B34
  article-title: Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity
  publication-title: Neuroreport
  doi: 10.1097/00001756-199711100-00024
– volume: 177
  start-page: 33
  year: 2009
  ident: key 20170624055837_awr340-B29
  article-title: Behavioral assessment in patients with disorders of consciousness: gold standard or fool's gold?
  publication-title: Prog Brain Res
  doi: 10.1016/S0079-6123(09)17704-X
– volume: 1
  start-page: 734
  year: 1972
  ident: key 20170624055837_awr340-B35
  article-title: Persistent vegetative state after brain damage. A syndrome in search of a name
  publication-title: Lancet
  doi: 10.1016/S0140-6736(72)90242-5
– volume: 29
  start-page: 191
  year: 2007
  ident: key 20170624055837_awr340-B50
  article-title: Objective detection of evoked potentials using a bootstrap technique
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2006.03.001
– volume: 322
  start-page: 876
  year: 2008
  ident: key 20170624055837_awr340-B3
  article-title: Consciousness and anesthesia
  publication-title: Science
  doi: 10.1126/science.1149213
– volume: 49
  start-page: 1459
  year: 2010
  ident: key 20170624055837_awr340-B11
  article-title: General indices to characterize the electrical response of the cerebral cortex to TMS
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.09.026
– volume: 38
  start-page: 512
  year: 2000
  ident: key 20170624055837_awr340-B4
  article-title: High-resolution electro-encephalogram: source estimates of Laplacian-transformed somatosensory-evoked potentials using a realistic subject head model constructed from magnetic resonance images
  publication-title: Med Biol Eng Comput
  doi: 10.1007/BF02345746
– volume: 9
  start-page: 556
  year: 2005
  ident: key 20170624055837_awr340-B44
  article-title: The neural correlate of (un)awareness: lessons from the vegetative state
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2005.10.010
– volume: 37
  start-page: 322
  year: 1999
  ident: key 20170624055837_awr340-B80
  article-title: Instrumentation for the measurement of electric brain responses to transcranial magnetic stimulation
  publication-title: Med Biol Eng Comput
  doi: 10.1007/BF02513307
– volume: 341
  start-page: c3765
  year: 2010
  ident: key 20170624055837_awr340-B62
  article-title: The vegetative state
  publication-title: BMJ
  doi: 10.1136/bmj.c3765
– volume: 58
  start-page: 1139
  year: 2001
  ident: key 20170624055837_awr340-B60
  article-title: Long-term effects of bilateral frontal brain lesion: 60 years after injury with an iron bar
  publication-title: Arch Neurol
  doi: 10.1001/archneur.58.7.1139
– volume: 53
  start-page: 548
  year: 1994
  ident: key 20170624055837_awr340-B38
  article-title: Neuropathology of the persistent vegetative state. A review
  publication-title: J Neuropathol Exp Neurol
  doi: 10.1097/00005072-199411000-00002
– volume: 19
  start-page: 457
  year: 2003
  ident: key 20170624055837_awr340-B46
  article-title: A report of the functional connectivity workshop, Dusseldorf 2002
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00062-4
– volume: 168
  start-page: 265
  year: 2008
  ident: key 20170624055837_awr340-B61
  article-title: Bootstrap significance of low SNR evoked response
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2007.10.003
– volume: 48
  start-page: 609
  year: 1980
  ident: key 20170624055837_awr340-B47
  article-title: Reference-free identification of components of checkerboard-evoked multichannel potential fields
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(80)90419-8
– volume: 5
  start-page: 42
  year: 2004
  ident: key 20170624055837_awr340-B78
  article-title: An information integration theory of consciousness
  publication-title: BMC Neurosci
  doi: 10.1186/1471-2202-5-42
– volume: 90
  start-page: 58
  year: 1994
  ident: key 20170624055837_awr340-B7
  article-title: A fast method for forward computation of multiple-shell spherical head models
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(94)90113-9
– volume: 177
  start-page: 49
  year: 2009
  ident: key 20170624055837_awr340-B52
  article-title: The problem of aphasia in the assessment of consciousness in brain-damaged patients
  publication-title: Prog Brain Res
  doi: 10.1016/S0079-6123(09)17705-1
– volume: 24
  start-page: 955
  year: 2005
  ident: key 20170624055837_awr340-B37
  article-title: Prefrontal transcranial magnetic stimulation produces intensity-dependent EEG responses in humans
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.09.048
– volume: 33
  start-page: 1
  year: 2010
  ident: key 20170624055837_awr340-B69
  article-title: Recovery of consciousness after brain injury: a mesocircuit hypothesis
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2009.11.002
– volume: 3
  start-page: 537
  year: 2004
  ident: key 20170624055837_awr340-B45
  article-title: Brain function in coma, vegetative state, and related disorders
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(04)00852-X
– volume: 125
  start-page: 1210
  year: 2002
  ident: key 20170624055837_awr340-B71
  article-title: Residual cerebral activity and behavioural fragments can remain in the persistently vegetative brain
  publication-title: Brain
  doi: 10.1093/brain/awf131
– volume: 123
  start-page: 1327
  year: 2000
  ident: key 20170624055837_awr340-B1
  article-title: The neuropathology of the vegetative state after an acute brain insult
  publication-title: Brain
  doi: 10.1093/brain/123.7.1327
– volume: 30
  start-page: 4295
  year: 2010
  ident: key 20170624055837_awr340-B2
  article-title: Stimulation of the frontal eye field reveals persistent effective connectivity after controlled behavior
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.6198-09.2010
– volume: 77
  start-page: 264
  year: 2011
  ident: key 20170624055837_awr340-B19
  article-title: Probing consciousness with event-related potentials in the vegetative state
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3182217ee8
– volume: 71
  start-page: 1614
  year: 2008
  ident: key 20170624055837_awr340-B73
  article-title: Voluntary brain processing in disorders of consciousness
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000334754.15330.69
– volume: 448
  start-page: 600
  year: 2007
  ident: key 20170624055837_awr340-B70
  article-title: Behavioural improvements with thalamic stimulation after severe traumatic brain injury
  publication-title: Nature
  doi: 10.1038/nature06041
– volume: 106
  start-page: 1672
  year: 2009
  ident: key 20170624055837_awr340-B6
  article-title: Neural signature of the conscious processing of auditory regularities
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0809667106
– volume: 134
  start-page: 9
  year: 2004
  ident: key 20170624055837_awr340-B16
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 82
  start-page: 24
  year: 2011
  ident: key 20170624055837_awr340-B17
  article-title: Evaluation of traumatic brain injury: brain potentials in diagnosis, function, and prognosis
  publication-title: Int J Psychophysiol
  doi: 10.1016/j.ijpsycho.2011.02.013
– volume: 54
  start-page: 103
  year: 2011
  ident: key 20170624055837_awr340-B21
  article-title: Diffusion weighted imaging distinguishes the vegetative state from the minimally conscious state
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.08.035
– volume: 104
  start-page: 20546
  year: 2007
  ident: key 20170624055837_awr340-B51
  article-title: Energetics of neuronal signaling and fMRI activity
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0709515104
– volume: 122
  start-page: 1744
  year: 2011
  ident: key 20170624055837_awr340-B33
  article-title: Preserved oscillatory response but lack of mismatch negativity in patients with disorders of consciousness
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2011.02.009
– volume: 118
  start-page: 597
  year: 2007
  ident: key 20170624055837_awr340-B82
  article-title: Mismatch negativity predicts recovery from the vegetative state
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2006.11.020
– reference: 19164526 - Proc Natl Acad Sci U S A. 2009 Feb 3;106(5):1672-7
– reference: 16603406 - Trends Cogn Sci. 2006 May;10(5):204-11
– reference: 21593438 - Neurology. 2011 Jul 19;77(3):264-8
– reference: 16621656 - Med Eng Phys. 2007 Mar;29(2):191-8
– reference: 16087451 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1109-14
– reference: 15605342 - Arch Phys Med Rehabil. 2004 Dec;85(12):2020-9
– reference: 15719214 - Psychopharmacology (Berl). 2005 Aug;181(1):16-20
– reference: 15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21
– reference: 21566197 - Science. 2011 May 13;332(6031):858-62
– reference: 21081551 - Brain. 2010 Dec;133(Pt 12):3764-77
– reference: 19549837 - Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11096-101
– reference: 21354974 - Brain. 2011 Mar;134(Pt 3):769-82
– reference: 20133802 - Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2681-6
– reference: 15036048 - Clin Neurophysiol. 2004 Mar;115(3):534-42
– reference: 18483133 - Am J Psychiatry. 2008 Aug;165(8):996-1005
– reference: 20421968 - PLoS One. 2010;5(4):e10281
– reference: 19954851 - Trends Neurosci. 2010 Jan;33(1):1-9
– reference: 12052909 - Annu Rev Neurosci. 2002;25:221-50
– reference: 16271507 - Trends Cogn Sci. 2005 Dec;9(12):556-9
– reference: 16186038 - Prog Brain Res. 2005;150:397-413
– reference: 19241281 - Neurocase. 2009 Aug;15(4):271-7
– reference: 17239656 - Clin Neurophysiol. 2007 Mar;118(3):597-605
– reference: 10933214 - Exp Brain Res. 2000 Jul;133(1):94-102
– reference: 15203067 - Clin Neurophysiol. 2004 Jul;115(7):1657-68
– reference: 17444810 - Annu Rev Biomed Eng. 2007;9:527-65
– reference: 20130250 - N Engl J Med. 2010 Feb 18;362(7):579-89
– reference: 16959998 - Science. 2006 Sep 8;313(5792):1402
– reference: 18054084 - J Neurosci Methods. 2008 Feb 15;168(1):265-72
– reference: 19818903 - Prog Brain Res. 2009;177:201-14
– reference: 20554940 - Neurology. 2010 Jul 20;75(3):246-52
– reference: 19098905 - Nat Neurosci. 2009 Jan;12(1):85-91
– reference: 19001251 - Neurology. 2008 Nov 11;71(20):1614-20
– reference: 8182960 - Med Biol Eng Comput. 1994 Jan;32(1):35-42
– reference: 19535579 - J Neurosci. 2009 Jun 17;29(24):7679-85
– reference: 15670672 - Neuroimage. 2005 Feb 15;24(4):955-60
– reference: 20335465 - J Neurosci. 2010 Mar 24;30(12):4295-305
– reference: 17896866 - PLoS Biol. 2007 Oct;5(10):e260
– reference: 11839831 - Neurology. 2002 Feb 12;58(3):349-53
– reference: 12023311 - Brain. 2002 Jun;125(Pt 6):1210-34
– reference: 19770048 - Neuroimage. 2010 Jan 15;49(2):1459-68
– reference: 16002333 - Clin Neurophysiol. 2005 Oct;116(10):2441-53
– reference: 21841201 - Brain. 2011 Aug;134(Pt 8):2222-32
– reference: 7964896 - J Neuropathol Exp Neurol. 1994 Nov;53(6):548-58
– reference: 18988836 - Science. 2008 Nov 7;322(5903):876-80
– reference: 17574872 - Neuroimage. 2007 Aug 1;37(1):56-70
– reference: 20728553 - Neuroimage. 2011 Jan 1;54(1):103-12
– reference: 7818633 - N Engl J Med. 1994 May 26;330(21):1499-508
– reference: 21356253 - Int J Psychophysiol. 2011 Oct;82(1):24-40
– reference: 17208048 - Clin Neurophysiol. 2007 Mar;118(3):606-14
– reference: 19473231 - Eur J Neurosci. 2009 May;29(9):1761-70
– reference: 14755835 - Hum Brain Mapp. 2004 Mar;21(3):154-64
– reference: 15522121 - BMC Neurosci. 2004 Nov 2;5:42
– reference: 20823938 - Cogn Neurosci. 2010 Sep;1(3):176-183
– reference: 15326240 - Neurology. 2004 Aug 24;63(4):669-73
– reference: 21377413 - Clin Neurophysiol. 2011 Sep;122(9):1744-54
– reference: 11094807 - Med Biol Eng Comput. 2000 Sep;38(5):512-9
– reference: 15050585 - Neuroimage. 2004 Apr;21(4):1612-21
– reference: 17357126 - Ann Neurol. 2007 Jul;62(1):102-5
– reference: 10869046 - Brain. 2000 Jul;123 ( Pt 7):1327-38
– reference: 21511524 - Clin Neurophysiol. 2011 Nov;122(11):2177-84
– reference: 18606562 - Trends Cogn Sci. 2008 Aug;12(8):314-21
– reference: 19818894 - Prog Brain Res. 2009;177:49-61
– reference: 17483481 - Proc Natl Acad Sci U S A. 2007 May 15;104(20):8496-501
– reference: 18400934 - Ann N Y Acad Sci. 2008 Mar;1124:239-61
– reference: 6155251 - Electroencephalogr Clin Neurophysiol. 1980 Jun;48(6):609-21
– reference: 16195466 - Science. 2005 Sep 30;309(5744):2228-32
– reference: 11448304 - Arch Neurol. 2001 Jul;58(7):1139-42
– reference: 16797232 - Clin Neurophysiol. 2006 Aug;117(8):1699-707
– reference: 19818893 - Prog Brain Res. 2009;177:33-48
– reference: 9427322 - Neuroreport. 1997 Nov 10;8(16):3537-40
– reference: 20679291 - BMJ. 2010;341:c3765
– reference: 17259853 - Neuroreport. 2007 Jan 8;18(1):13-6
– reference: 10505382 - Med Biol Eng Comput. 1999 May;37(3):322-6
– reference: 15324722 - Lancet Neurol. 2004 Sep;3(9):537-46
– reference: 18079290 - Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20546-51
– reference: 4111204 - Lancet. 1972 Apr 1;1(7753):734-7
– reference: 7509274 - Electroencephalogr Clin Neurophysiol. 1994 Jan;90(1):58-64
– reference: 11515143 - Behav Brain Sci. 2000 Dec;23(6):793-842; discussion 904-1121
– reference: 17671503 - Nature. 2007 Aug 2;448(7153):600-3
– reference: 21039953 - Eur J Neurosci. 2010 Oct;32(7):1135-44
– reference: 12814594 - Neuroimage. 2003 Jun;19(2 Pt 1):457-65
– reference: 20202899 - Clin Neurophysiol. 2010 Jul;121(7):1032-42
SSID ssj0014326
Score 2.545751
Snippet Patients surviving severe brain injury may regain consciousness without recovering their ability to understand, move and communicate. Recently,...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1308
SubjectTerms Adult
Aged
Biological and medical sciences
Brain injury
Brain Mapping
Brain Waves - physiology
Cerebral Cortex - diagnostic imaging
Cerebral Cortex - physiopathology
Communication
Consciousness
Consciousness - physiology
EEG
Electroencephalography
Female
Fundamental and applied biological sciences. Psychology
General aspects
Humans
Language
Longitudinal Studies
Male
Medical sciences
Middle Aged
Neural networks
Neural Pathways - physiology
Neuroimaging
Neurology
Original
Persistent Vegetative State - pathology
Persistent Vegetative State - physiopathology
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Recovery of Function - physiology
Sensory neurons
Spectrum Analysis
Tomography, X-Ray Computed
Transcranial Magnetic Stimulation
Title Recovery of cortical effective connectivity and recovery of consciousness in vegetative patients
URI https://www.ncbi.nlm.nih.gov/pubmed/22226806
https://www.proquest.com/docview/1001967681
https://www.proquest.com/docview/1017960457
https://pubmed.ncbi.nlm.nih.gov/PMC3326248
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEF_qCSKI-G39OFbQp5K7XJLdbB9VrhxyvQNtoW8xm2TPQEmONKfoo3-5v91N0kSqnPYhlGSyCTuT-dj9zQwhr-XUk2EoMwe2QzmBTFMHXhFzpExEOJUqUabO9vyMnyyDDyu2Go1-9lBLV7U8SH7szCv5H67iHPiqs2T_gbPdoDiB_-AvjuAwjtfisY4d8dLfLTa8ssvSFqGhAUGJBrEkTXsIgyMf0Bewfoj7ja7Li8nX7MJAD3FjU2x1M9jx1b0kdjYAsasKIhS9VYWP5SbW7VabdCAL9rJ1-PX-f26V0_ka77aFCsWbuCpr09dp8ilf9y69K21D7Hm21inx_aUKjfnoEC6t-uWOmNpKsweZ1bgBdx34HXygkm0Jk0b2gp6ChckVPWOtE8B3GgJbJEtWZnllFn-r_MDdmrx2m__sPJotT0-jxfFqcYPc9BBqmPYfqw4mBHfStOzrXr1JnsD4h2b0Qzv2wK25cxlvwHBlW6Psil1-h-D2fJrFPXK3CUboWytZ98koKx6QW_MGbvGQfG4FjJaKtgJGOwGjfQGjkARaDeh7Akbzgm4FjLYC9ogsZ8eL9ydO05LDSdiRXztsCv0eelJ5iZ8whJr4pN04S1nKhdChBlcBZ16WShW4se4FkCqYdpYyESpPuv5jsleURfaU0ACBs4S3mCqVBkLxGMF_6uMGhAAJk2JMJu2MRklTr163TVlHFjfhR2b-Izv_Y_Kmo760dVr-QLc_YE5H7DGdzhSGY_Kq5VYETau3z-Iiw2Tp6t4wVwjPj_5GAwPHESZhnCeWw9sn4MeFy8ckHPC-I9CV3odXivyLqfiOaeFeIJ5d47nPye3tp_eC7NXVVfYSfnMt941g_wJVzMyz
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recovery+of+cortical+effective+connectivity+and+recovery+of+consciousness+in+vegetative+patients&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Rosanova%2C+Mario&rft.au=Gosseries%2C+Olivia&rft.au=Casarotto%2C+Silvia&rft.au=Boly%2C+Melanie&rft.date=2012-04-01&rft.issn=0006-8950&rft.eissn=1460-2156&rft.volume=135&rft.issue=4&rft.spage=1308&rft.epage=1320&rft_id=info:doi/10.1093%2Fbrain%2Fawr340&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon