HSF1 Protects Neurons through a Novel Trimerization- and HSP-Independent Mechanism

Heat shock factor 1 (HSF1) protects neurons from death caused by the accumulation of misfolded proteins. It is believed that this protective effect is mediated by the transcriptional stimulation of genes encoding heat shock proteins (HSPs), a family of chaperones that refold or degrade misfolded pro...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 34; no. 5; pp. 1599 - 1612
Main Authors Verma, Pragya, Pfister, Jason A., Mallick, Sathi, D'Mello, Santosh R.
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 29.01.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Heat shock factor 1 (HSF1) protects neurons from death caused by the accumulation of misfolded proteins. It is believed that this protective effect is mediated by the transcriptional stimulation of genes encoding heat shock proteins (HSPs), a family of chaperones that refold or degrade misfolded proteins. Whether HSF1 is protective when neuronal death is not caused by protein misfolding has not been studied. Here, we report that HSF1 expression is necessary for the survival of rat neurons and that HSF1 mRNA and protein expression is reduced in neurons primed to die. Knock-down of HSF1 induces death of otherwise healthy neurons, whereas reestablishment of elevated levels of HSF1 protects neurons even when death is not due to accumulation of misfolded proteins. Neuroprotection by HSF1 does not require its trimerization, an event obligatory for the binding of HSF1 to heat shock elements within HSP gene promoters. Moreover, knock-down of HSP70 or blockade of HSP90 signaling does not reduce neuroprotection by HSF1. Although several neuroprotective molecules and signaling pathways, including CaMK, PKA, Casein kinase-II, and the Raf-MEK-ERK and PI-3K-Akt pathways, are not required for HSF1-mediated neuroprotection, protection is abrogated by inhibition of classical histone deacetylases (HDACs). We report that the novel mechanism of neuroprotection by HSF1 involves cooperation with SIRT1, an HDAC with well documented neuroprotective effects. Using a cell culture model of Huntington's disease, we show that HSF1 trimerization is not required for protection against mutant huntingtin-induced neurotoxicity, suggesting that HSF1 can protect neurons against both proteinopathic and nonproteinopathic death through a noncanonical pathway.
AbstractList Heat shock factor 1 (HSF1) protects neurons from death caused by the accumulation of misfolded proteins. It is believed that this protective effect is mediated by the transcriptional stimulation of genes encoding heat shock proteins (HSPs), a family of chaperones that refold or degrade misfolded proteins. Whether HSF1 is protective when neuronal death is not caused by protein misfolding has not been studied. Here, we report that HSF1 expression is necessary for the survival of rat neurons and that HSF1 mRNA and protein expression is reduced in neurons primed to die. Knock-down of HSF1 induces death of otherwise healthy neurons, whereas reestablishment of elevated levels of HSF1 protects neurons even when death is not due to accumulation of misfolded proteins. Neuroprotection by HSF1 does not require its trimerization, an event obligatory for the binding of HSF1 to heat shock elements within HSP gene promoters. Moreover, knock-down of HSP70 or blockade of HSP90 signaling does not reduce neuroprotection by HSF1. Although several neuroprotective molecules and signaling pathways, including CaMK, PKA, Casein kinase-II, and the Raf-MEK-ERK and PI-3K-Akt pathways, are not required for HSF1-mediated neuroprotection, protection is abrogated by inhibition of classical histone deacetylases (HDACs). We report that the novel mechanism of neuroprotection by HSF1 involves cooperation with SIRT1, an HDAC with well documented neuroprotective effects. Using a cell culture model of Huntington's disease, we show that HSF1 trimerization is not required for protection against mutant huntingtin-induced neurotoxicity, suggesting that HSF1 can protect neurons against both proteinopathic and nonproteinopathic death through a noncanonical pathway.
Heat shock factor 1 (HSF1) protects neurons from death caused by the accumulation of misfolded proteins. It is believed that this protective effect is mediated by the transcriptional stimulation of genes encoding heat shock proteins (HSPs), a family of chaperones that refold or degrade misfolded proteins. Whether HSF1 is protective when neuronal death is not caused by protein misfolding has not been studied. Here, we report that HSF1 expression is necessary for the survival of rat neurons and that HSF1 mRNA and protein expression is reduced in neurons primed to die. Knock-down of HSF1 induces death of otherwise healthy neurons, whereas reestablishment of elevated levels of HSF1 protects neurons even when death is not due to accumulation of misfolded proteins. Neuroprotection by HSF1 does not require its trimerization, an event obligatory for the binding of HSF1 to heat shock elements within HSP gene promoters. Moreover, knock-down of HSP70 or blockade of HSP90 signaling does not reduce neuroprotection by HSF1. Although several neuroprotective molecules and signaling pathways, including CaMK, PKA, Casein kinase-II, and the Raf-MEK-ERK and PI-3K-Akt pathways, are not required for HSF1-mediated neuroprotection, protection is abrogated by inhibition of classical histone deacetylases (HDACs). We report that the novel mechanism of neuroprotection by HSF1 involves cooperation with SIRT1, an HDAC with well documented neuroprotective effects. Using a cell culture model of Huntington's disease, we show that HSF1 trimerization is not required for protection against mutant huntingtin-induced neurotoxicity, suggesting that HSF1 can protect neurons against both proteinopathic and nonproteinopathic death through a noncanonical pathway.Heat shock factor 1 (HSF1) protects neurons from death caused by the accumulation of misfolded proteins. It is believed that this protective effect is mediated by the transcriptional stimulation of genes encoding heat shock proteins (HSPs), a family of chaperones that refold or degrade misfolded proteins. Whether HSF1 is protective when neuronal death is not caused by protein misfolding has not been studied. Here, we report that HSF1 expression is necessary for the survival of rat neurons and that HSF1 mRNA and protein expression is reduced in neurons primed to die. Knock-down of HSF1 induces death of otherwise healthy neurons, whereas reestablishment of elevated levels of HSF1 protects neurons even when death is not due to accumulation of misfolded proteins. Neuroprotection by HSF1 does not require its trimerization, an event obligatory for the binding of HSF1 to heat shock elements within HSP gene promoters. Moreover, knock-down of HSP70 or blockade of HSP90 signaling does not reduce neuroprotection by HSF1. Although several neuroprotective molecules and signaling pathways, including CaMK, PKA, Casein kinase-II, and the Raf-MEK-ERK and PI-3K-Akt pathways, are not required for HSF1-mediated neuroprotection, protection is abrogated by inhibition of classical histone deacetylases (HDACs). We report that the novel mechanism of neuroprotection by HSF1 involves cooperation with SIRT1, an HDAC with well documented neuroprotective effects. Using a cell culture model of Huntington's disease, we show that HSF1 trimerization is not required for protection against mutant huntingtin-induced neurotoxicity, suggesting that HSF1 can protect neurons against both proteinopathic and nonproteinopathic death through a noncanonical pathway.
Author Pfister, Jason A.
Verma, Pragya
D'Mello, Santosh R.
Mallick, Sathi
Author_xml – sequence: 1
  givenname: Pragya
  surname: Verma
  fullname: Verma, Pragya
– sequence: 2
  givenname: Jason A.
  surname: Pfister
  fullname: Pfister, Jason A.
– sequence: 3
  givenname: Sathi
  surname: Mallick
  fullname: Mallick, Sathi
– sequence: 4
  givenname: Santosh R.
  surname: D'Mello
  fullname: D'Mello, Santosh R.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24478344$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEUhS1URNPCK1Resplg-9qxLSEkFLUkqKRV064t1-NpjCZ2sGcqwdPj0B8Bm258F_ec40_3HKGDmKJH6ISSKRUMPnxdnd5cXaznyykQ0A2FKSOUv0KTutUN44QeoAlhkjQzLvkhOirlOyFEEirfoEPGuVTA-QRdLdZnFF_mNHg3FLzyY06x4GGT03i3wRav0r3v8XUOW5_DLzuEFBtsY4sX68tmGVu_8_WJA_7m3cbGULZv0evO9sW_e5zH6Obs9Hq-aM4vviznn88bJygMjVCMKtYyZWdMA1hJPecCPGWtktxZ1QlwwDsChDvaMX6rBbNCWwXSWWHhGH16yN2Nt1vfugqRbW92FdXmnybZYP7dxLAxd-negCaVYFYD3j8G5PRj9GUw21Cc73sbfRqLqXhSKaaZeFnKNUitKN1LT_7GeuZ5unkVfHwQuJxKyb4zLgx_DlspQ28oMfuKzXPFZl-xoWD2FVf77D_70w8vGH8DNQOqeQ
CitedBy_id crossref_primary_10_3892_mmr_2017_8199
crossref_primary_10_1007_s12035_020_01989_0
crossref_primary_10_1074_jbc_M114_597575
crossref_primary_10_3390_cells10071638
crossref_primary_10_1371_journal_pone_0215208
crossref_primary_10_1242_jcs_210724
crossref_primary_10_1007_s00018_018_2836_6
crossref_primary_10_1074_jbc_RA119_010524
crossref_primary_10_1242_bio_061605
crossref_primary_10_1371_journal_pone_0129329
crossref_primary_10_1007_s12033_022_00467_3
crossref_primary_10_1007_s12192_016_0709_1
crossref_primary_10_1016_j_biocel_2017_01_006
crossref_primary_10_1021_acschembio_5b00740
crossref_primary_10_3389_fncel_2023_1131683
crossref_primary_10_1177_1535370214551688
crossref_primary_10_1093_hmg_ddv445
crossref_primary_10_1016_j_devcel_2017_12_020
crossref_primary_10_1016_j_pep_2020_105722
crossref_primary_10_55697_tnd_2024_110
crossref_primary_10_1016_j_brainres_2015_07_034
crossref_primary_10_1186_s12868_019_0546_0
crossref_primary_10_1007_s12035_023_03471_z
crossref_primary_10_1097_WNR_0000000000002022
crossref_primary_10_1186_s40035_017_0077_5
crossref_primary_10_1016_j_jtherbio_2022_103393
crossref_primary_10_1016_j_jmb_2015_02_010
crossref_primary_10_1007_s10522_023_10063_w
crossref_primary_10_1016_j_preteyeres_2016_03_001
crossref_primary_10_1074_jbc_M116_723015
crossref_primary_10_18632_oncotarget_10847
crossref_primary_10_1038_s41598_018_35610_1
crossref_primary_10_3349_ymj_2018_59_9_1041
crossref_primary_10_1016_j_exger_2019_02_011
crossref_primary_10_1186_s12974_021_02271_3
crossref_primary_10_1111_febs_13764
crossref_primary_10_3892_mmr_2017_6869
crossref_primary_10_1007_s12035_015_9452_3
crossref_primary_10_1177_1535370218761149
crossref_primary_10_3390_ijms19082329
crossref_primary_10_1016_j_nbd_2015_06_001
crossref_primary_10_1248_bpb_b16_00641
crossref_primary_10_1007_s00221_024_06858_z
crossref_primary_10_1093_hmg_ddx329
crossref_primary_10_1158_1541_7786_MCR_15_0135
crossref_primary_10_1016_j_ejphar_2018_01_005
crossref_primary_10_1038_pr_2016_185
crossref_primary_10_1007_s11356_023_29880_0
crossref_primary_10_3389_fnmol_2023_1230436
Cites_doi 10.1146/annurev.bi.55.070186.005443
10.1126/science.1165946
10.1073/pnas.0806319105
10.1073/pnas.0307697101
10.1093/hmg/ddr076
10.1371/journal.pgen.1000027
10.1016/j.molcel.2011.07.038
10.1371/journal.pgen.1000350
10.1073/pnas.1003996107
10.1007/s11033-009-9623-2
10.1016/0896-6273(91)90348-4
10.1074/jbc.M408741200
10.1073/pnas.152330499
10.1073/pnas.90.23.10989
10.1038/emboj.2010.225
10.1523/JNEUROSCI.5831-12.2013
10.1186/1750-1326-5-24
10.1128/MCB.16.12.7018
10.1021/bi802255c
10.1021/bi702185u
10.1074/jbc.M602909200
10.1073/pnas.0506249102
10.1016/j.bcmd.2009.10.002
10.1091/mbc.E03-10-0738
10.1091/mbc.E09-07-0639
10.1038/ncomms2417
10.1038/sj.emboj.7601370
10.1111/j.1745-7254.2007.00504.x
10.1161/ATVBAHA.107.155499
10.1038/nm1102-1185
10.1074/jbc.M607556200
10.1038/nm.2558
10.1111/j.1742-4658.2010.07828.x
10.1016/j.mam.2007.02.001
10.1038/nm.2559
10.1038/nrd3453
10.1155/2011/618127
10.1093/emboj/20.14.3800
10.1074/jbc.M704471200
10.1038/nature06500
10.1039/b606129j
10.1074/jbc.271.17.10194
10.1016/j.ab.2003.08.007
10.1523/JNEUROSCI.3200-07.2008
10.1523/JNEUROSCI.14-07-04385.1994
10.1074/jbc.M113.488346
10.1101/gad.12.24.3788
10.1016/j.neuroscience.2004.03.023
10.1074/jbc.M304663200
10.1093/hmg/ddl067
10.1046/j.1471-4159.2003.01540.x
10.1038/nm1298
10.1128/MCB.18.2.906
10.1016/j.nbd.2006.06.017
10.1152/physrev.00041.2009
10.1111/j.1742-4658.2010.07827.x
10.1523/JNEUROSCI.15-02-01172.1995
10.2174/138920110790909650
10.1371/journal.pone.0031304
10.1038/70532
10.1074/jbc.M710521200
10.1038/sj.emboj.7601758
10.1371/journal.pone.0004090
10.1074/jbc.M112.394544
10.1002/gene.10200
10.1128/MCB.24.12.5249-5256.2004
10.1523/JNEUROSCI.5704-10.2011
10.1093/emboj/21.11.2591
10.1371/journal.pbio.1000291
10.1161/01.RES.83.10.980
10.1159/000321548
10.1038/nm1021
10.1074/jbc.M111.328336
10.1016/0896-6273(91)90349-5
10.1002/(SICI)1097-4547(19980901)53:5<531::AID-JNR3>3.0.CO;2-A
10.1074/jbc.M506288200
10.1523/JNEUROSCI.0006-07.2007
10.1046/j.1471-4159.2001.00134.x
ContentType Journal Article
Copyright Copyright © 2014 the authors 0270-6474/14/341599-14$15.00/0 2014
Copyright_xml – notice: Copyright © 2014 the authors 0270-6474/14/341599-14$15.00/0 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1523/JNEUROSCI.3039-13.2014
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList Neurosciences Abstracts
CrossRef
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 1612
ExternalDocumentID PMC3905136
24478344
10_1523_JNEUROSCI_3039_13_2014
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS040408
– fundername: NINDS NIH HHS
  grantid: NS40408
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
53G
5GY
5RE
5VS
AAFWJ
AAJMC
AAYXX
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
ADHGD
AENEX
AETEA
AFCFT
AFOSN
AFSQR
AHWXS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
OK1
P0W
P2P
QZG
R.V
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
XJT
YBU
YHG
YKV
YNH
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
ID FETCH-LOGICAL-c513t-582182d28a62933a71e4453e12d874ca8f53c34f0304c1f24b952a59a837ca5a3
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 18:01:53 EDT 2025
Sun Aug 24 04:13:18 EDT 2025
Thu Jul 10 22:18:04 EDT 2025
Mon Jul 21 06:05:33 EDT 2025
Tue Jul 01 03:47:08 EDT 2025
Thu Apr 24 23:09:00 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c513t-582182d28a62933a71e4453e12d874ca8f53c34f0304c1f24b952a59a837ca5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: P.V. and S.R.D., designed research; P.V., J.A.P., and S.M. performed research; P.V. analyzed data; J.A.P. and S.R.D., wrote the paper.
OpenAccessLink https://www.jneurosci.org/content/jneuro/34/5/1599.full.pdf
PMID 24478344
PQID 1493798115
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3905136
proquest_miscellaneous_1827882925
proquest_miscellaneous_1493798115
pubmed_primary_24478344
crossref_citationtrail_10_1523_JNEUROSCI_3039_13_2014
crossref_primary_10_1523_JNEUROSCI_3039_13_2014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01-29
PublicationDateYYYYMMDD 2014-01-29
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-29
  day: 29
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2014
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References 2023041304090785000_34.5.1599.18
2023041304090785000_34.5.1599.19
2023041304090785000_34.5.1599.14
2023041304090785000_34.5.1599.15
2023041304090785000_34.5.1599.59
2023041304090785000_34.5.1599.17
2023041304090785000_34.5.1599.10
2023041304090785000_34.5.1599.54
2023041304090785000_34.5.1599.11
2023041304090785000_34.5.1599.55
2023041304090785000_34.5.1599.56
2023041304090785000_34.5.1599.13
2023041304090785000_34.5.1599.57
2023041304090785000_34.5.1599.50
2023041304090785000_34.5.1599.51
2023041304090785000_34.5.1599.52
2023041304090785000_34.5.1599.53
Chen (2023041304090785000_34.5.1599.12) 2004; 25
Orosz (2023041304090785000_34.5.1599.58) 1996; 16
2023041304090785000_34.5.1599.47
2023041304090785000_34.5.1599.48
2023041304090785000_34.5.1599.49
2023041304090785000_34.5.1599.43
2023041304090785000_34.5.1599.44
2023041304090785000_34.5.1599.45
2023041304090785000_34.5.1599.46
Ratan (2023041304090785000_34.5.1599.63) 1994; 14
2023041304090785000_34.5.1599.40
2023041304090785000_34.5.1599.41
2023041304090785000_34.5.1599.42
Galli (2023041304090785000_34.5.1599.21) 1995; 15
2023041304090785000_34.5.1599.36
2023041304090785000_34.5.1599.37
2023041304090785000_34.5.1599.38
2023041304090785000_34.5.1599.39
2023041304090785000_34.5.1599.32
2023041304090785000_34.5.1599.76
2023041304090785000_34.5.1599.33
2023041304090785000_34.5.1599.77
2023041304090785000_34.5.1599.34
2023041304090785000_34.5.1599.78
2023041304090785000_34.5.1599.35
2023041304090785000_34.5.1599.79
2023041304090785000_34.5.1599.72
2023041304090785000_34.5.1599.73
2023041304090785000_34.5.1599.30
2023041304090785000_34.5.1599.74
2023041304090785000_34.5.1599.31
2023041304090785000_34.5.1599.75
2023041304090785000_34.5.1599.71
2023041304090785000_34.5.1599.6
2023041304090785000_34.5.1599.5
2023041304090785000_34.5.1599.8
2023041304090785000_34.5.1599.7
2023041304090785000_34.5.1599.2
2023041304090785000_34.5.1599.1
2023041304090785000_34.5.1599.4
2023041304090785000_34.5.1599.3
2023041304090785000_34.5.1599.29
Farkas (2023041304090785000_34.5.1599.16) 1998; 18
2023041304090785000_34.5.1599.25
2023041304090785000_34.5.1599.69
2023041304090785000_34.5.1599.26
2023041304090785000_34.5.1599.27
2023041304090785000_34.5.1599.28
2023041304090785000_34.5.1599.65
2023041304090785000_34.5.1599.22
2023041304090785000_34.5.1599.66
2023041304090785000_34.5.1599.23
2023041304090785000_34.5.1599.67
2023041304090785000_34.5.1599.24
2023041304090785000_34.5.1599.68
2023041304090785000_34.5.1599.61
2023041304090785000_34.5.1599.62
2023041304090785000_34.5.1599.20
2023041304090785000_34.5.1599.64
Turturici (2023041304090785000_34.5.1599.70) 2011; 2011
2023041304090785000_34.5.1599.9
2023041304090785000_34.5.1599.60
20945529 - FEBS J. 2010 Oct;277(20):4126-39
16051598 - J Biol Chem. 2005 Oct 14;280(41):34908-16
16260738 - Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16801-6
8248201 - Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10989-93
17975117 - Arterioscler Thromb Vasc Biol. 2008 Jan;28(1):105-11
22017869 - Mol Cell. 2011 Oct 21;44(2):203-13
21212626 - Neurodegener Dis. 2011;8(4):155-68
11181838 - J Neurochem. 2001 Feb;76(4):1188-98
8027786 - J Neurosci. 1994 Jul;14(7):4385-92
22129991 - Nat Rev Drug Discov. 2011 Dec;10(12):930-44
12559002 - J Neurochem. 2003 Jan;84(2):397-408
21289184 - J Neurosci. 2011 Feb 2;31(5):1746-51
17213196 - J Biol Chem. 2007 Mar 9;282(10):7077-86
10581028 - Nat Genet. 1999 Dec;23(4):425-8
22179316 - Nat Med. 2012 Jan;18(1):159-65
16751189 - J Biol Chem. 2006 Aug 4;281(31):21745-54
19609719 - Mol Biol Rep. 2010 Apr;37(4):1875-81
23983126 - J Biol Chem. 2013 Oct 4;288(40):28713-26
18757733 - Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13626-31
20834230 - EMBO J. 2010 Oct 20;29(20):3459-69
20525284 - Mol Neurodegener. 2010 Jun 03;5:24
18171934 - J Neurosci. 2008 Jan 2;28(1):163-76
17397914 - Mol Aspects Med. 2008 Jun;29(3):187-200
8626582 - J Biol Chem. 1996 Apr 26;271(17):10194-9
22179319 - Nat Med. 2012 Jan;18(1):153-8
18632670 - J Biol Chem. 2008 Sep 19;283(38):26188-97
11447121 - EMBO J. 2001 Jul 16;20(14):3800-10
19864465 - Mol Biol Cell. 2010 Jan 1;21(1):106-16
21355045 - Hum Mol Genet. 2011 May 15;20(10):1952-65
14668476 - Mol Biol Cell. 2004 Mar;15(3):1254-61
12748967 - Genesis. 2003 May;36(1):48-61
15066213 - Acta Pharmacol Sin. 2004 Apr;25(4):458-61
17216044 - Mol Biosyst. 2006 Dec;2(12):627-39
22347460 - PLoS One. 2012;7(2):e31304
9869631 - Genes Dev. 1998 Dec 15;12(24):3788-96
22354967 - J Biol Chem. 2012 Apr 27;287(18):14749-59
20945528 - FEBS J. 2010 Oct;277(20):4112-25
12032072 - EMBO J. 2002 Jun 3;21(11):2591-601
15034571 - Nat Med. 2004 Apr;10(4):402-5
7532699 - J Neurosci. 1995 Feb;15(2):1172-9
20664076 - Physiol Rev. 2010 Jul;90(3):905-81
16600994 - Hum Mol Genet. 2006 May 1;15(9):1483-96
15537643 - J Biol Chem. 2005 Jan 28;280(4):2818-25
17241518 - Acta Pharmacol Sin. 2007 Feb;28(2):173-9
20166962 - Curr Pharm Biotechnol. 2010 Feb;11(2):188-97
17652588 - J Neurosci. 2007 Jul 25;27(30):7974-86
23864673 - J Neurosci. 2013 Jul 17;33(29):11833-8
17024176 - EMBO J. 2006 Oct 18;25(20):4773-83
18369446 - PLoS Genet. 2008 Mar;4(3):e1000027
12149445 - Proc Natl Acad Sci U S A. 2002 Dec 10;99 Suppl 4:16407-11
9447987 - Mol Cell Biol. 1998 Feb;18(2):906-18
2427013 - Annu Rev Biochem. 1986;55:1151-91
19165329 - PLoS Genet. 2009 Jan;5(1):e1000350
19338268 - Biochemistry. 2009 May 12;48(18):3795-7
8943357 - Mol Cell Biol. 1996 Dec;16(12):7018-30
16950627 - Neurobiol Dis. 2006 Nov;24(2):213-25
15084750 - Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6403-8
20098725 - PLoS Biol. 2010 Jan;8(1):e1000291
22918830 - J Biol Chem. 2012 Oct 12;287(42):35444-53
14622953 - Anal Biochem. 2003 Dec 1;323(1):12-8
15169889 - Mol Cell Biol. 2004 Jun;24(12):5249-56
17766920 - J Biol Chem. 2007 Nov 9;282(45):33210-7
9726424 - J Neurosci Res. 1998 Sep 1;53(5):531-41
12411925 - Nat Med. 2002 Nov;8(11):1185-6
12813038 - J Biol Chem. 2003 Sep 12;278(37):35465-75
17581637 - EMBO J. 2007 Jul 11;26(13):3169-79
19229036 - Science. 2009 Feb 20;323(5917):1063-6
1764242 - Neuron. 1991 Dec;7(6):1053-60
18235501 - Nature. 2008 Jan 31;451(7178):583-6
15183515 - Neuroscience. 2004;126(3):657-63
20855618 - Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17385-90
19116652 - PLoS One. 2008;3(12):e4090
16155577 - Nat Med. 2005 Oct;11(10):1088-95
21403864 - Biochem Res Int. 2011;2011:618127
19861239 - Blood Cells Mol Dis. 2010 Jan 15;44(1):7-15
9815145 - Circ Res. 1998 Nov 16;83(10):980-5
1722411 - Neuron. 1991 Dec;7(6):1043-51
18457423 - Biochemistry. 2008 Jun 3;47(22):6007-15
23360996 - Nat Commun. 2013;4:1405
References_xml – ident: 2023041304090785000_34.5.1599.47
  doi: 10.1146/annurev.bi.55.070186.005443
– ident: 2023041304090785000_34.5.1599.76
  doi: 10.1126/science.1165946
– ident: 2023041304090785000_34.5.1599.67
  doi: 10.1073/pnas.0806319105
– ident: 2023041304090785000_34.5.1599.57
  doi: 10.1073/pnas.0307697101
– ident: 2023041304090785000_34.5.1599.78
  doi: 10.1093/hmg/ddr076
– ident: 2023041304090785000_34.5.1599.71
  doi: 10.1371/journal.pgen.1000027
– ident: 2023041304090785000_34.5.1599.35
  doi: 10.1016/j.molcel.2011.07.038
– ident: 2023041304090785000_34.5.1599.73
  doi: 10.1371/journal.pgen.1000350
– ident: 2023041304090785000_34.5.1599.23
  doi: 10.1073/pnas.1003996107
– ident: 2023041304090785000_34.5.1599.46
  doi: 10.1007/s11033-009-9623-2
– ident: 2023041304090785000_34.5.1599.64
  doi: 10.1016/0896-6273(91)90348-4
– ident: 2023041304090785000_34.5.1599.7
  doi: 10.1074/jbc.M408741200
– ident: 2023041304090785000_34.5.1599.9
  doi: 10.1073/pnas.152330499
– ident: 2023041304090785000_34.5.1599.15
  doi: 10.1073/pnas.90.23.10989
– ident: 2023041304090785000_34.5.1599.25
  doi: 10.1038/emboj.2010.225
– ident: 2023041304090785000_34.5.1599.5
  doi: 10.1523/JNEUROSCI.5831-12.2013
– ident: 2023041304090785000_34.5.1599.51
  doi: 10.1186/1750-1326-5-24
– volume: 16
  start-page: 7018
  year: 1996
  ident: 2023041304090785000_34.5.1599.58
  article-title: Regulation of Drosophila heat shock factor trimerization: Global sequence requirements and independence of nuclear localization
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.16.12.7018
– ident: 2023041304090785000_34.5.1599.50
  doi: 10.1021/bi802255c
– ident: 2023041304090785000_34.5.1599.49
  doi: 10.1021/bi702185u
– ident: 2023041304090785000_34.5.1599.62
  doi: 10.1074/jbc.M602909200
– ident: 2023041304090785000_34.5.1599.36
  doi: 10.1073/pnas.0506249102
– ident: 2023041304090785000_34.5.1599.41
  doi: 10.1016/j.bcmd.2009.10.002
– ident: 2023041304090785000_34.5.1599.69
  doi: 10.1091/mbc.E03-10-0738
– ident: 2023041304090785000_34.5.1599.20
  doi: 10.1091/mbc.E09-07-0639
– ident: 2023041304090785000_34.5.1599.42
  doi: 10.1038/ncomms2417
– ident: 2023041304090785000_34.5.1599.24
  doi: 10.1038/sj.emboj.7601370
– ident: 2023041304090785000_34.5.1599.11
  doi: 10.1111/j.1745-7254.2007.00504.x
– ident: 2023041304090785000_34.5.1599.52
  doi: 10.1161/ATVBAHA.107.155499
– ident: 2023041304090785000_34.5.1599.2
  doi: 10.1038/nm1102-1185
– ident: 2023041304090785000_34.5.1599.59
  doi: 10.1074/jbc.M607556200
– ident: 2023041304090785000_34.5.1599.33
  doi: 10.1038/nm.2558
– ident: 2023041304090785000_34.5.1599.8
  doi: 10.1111/j.1742-4658.2010.07828.x
– ident: 2023041304090785000_34.5.1599.68
  doi: 10.1016/j.mam.2007.02.001
– ident: 2023041304090785000_34.5.1599.32
  doi: 10.1038/nm.2559
– ident: 2023041304090785000_34.5.1599.56
  doi: 10.1038/nrd3453
– volume: 2011
  start-page: 618127
  year: 2011
  ident: 2023041304090785000_34.5.1599.70
  article-title: Hsp70 and its molecular role in nervous system diseases
  publication-title: Biochem Res Int
  doi: 10.1155/2011/618127
– ident: 2023041304090785000_34.5.1599.27
  doi: 10.1093/emboj/20.14.3800
– ident: 2023041304090785000_34.5.1599.29
  doi: 10.1074/jbc.M704471200
– ident: 2023041304090785000_34.5.1599.40
  doi: 10.1038/nature06500
– ident: 2023041304090785000_34.5.1599.60
  doi: 10.1039/b606129j
– ident: 2023041304090785000_34.5.1599.30
  doi: 10.1074/jbc.271.17.10194
– ident: 2023041304090785000_34.5.1599.14
  doi: 10.1016/j.ab.2003.08.007
– ident: 2023041304090785000_34.5.1599.45
  doi: 10.1523/JNEUROSCI.3200-07.2008
– volume: 14
  start-page: 4385
  year: 1994
  ident: 2023041304090785000_34.5.1599.63
  article-title: Macromolecular synthesis inhibitors prevent oxidative stress-induced apoptosis in embryonic cortical neurons by shunting cysteine from protein synthesis to glutathione
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.14-07-04385.1994
– ident: 2023041304090785000_34.5.1599.39
  doi: 10.1074/jbc.M113.488346
– ident: 2023041304090785000_34.5.1599.53
  doi: 10.1101/gad.12.24.3788
– ident: 2023041304090785000_34.5.1599.66
  doi: 10.1016/j.neuroscience.2004.03.023
– ident: 2023041304090785000_34.5.1599.26
  doi: 10.1074/jbc.M304663200
– ident: 2023041304090785000_34.5.1599.44
  doi: 10.1093/hmg/ddl067
– ident: 2023041304090785000_34.5.1599.77
  doi: 10.1046/j.1471-4159.2003.01540.x
– ident: 2023041304090785000_34.5.1599.75
  doi: 10.1038/nm1298
– volume: 18
  start-page: 906
  year: 1998
  ident: 2023041304090785000_34.5.1599.16
  article-title: Intramolecular repression of mouse heat shock factor 1
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.18.2.906
– ident: 2023041304090785000_34.5.1599.6
  doi: 10.1016/j.nbd.2006.06.017
– ident: 2023041304090785000_34.5.1599.79
  doi: 10.1152/physrev.00041.2009
– ident: 2023041304090785000_34.5.1599.18
  doi: 10.1111/j.1742-4658.2010.07827.x
– volume: 15
  start-page: 1172
  year: 1995
  ident: 2023041304090785000_34.5.1599.21
  article-title: Apoptosis in cerebellar granule cells is blocked by high KCl, forskolin, and IGF-1 through distinct mechanisms of action: the involvement of intracellular calcium and RNA synthesis
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.15-02-01172.1995
– ident: 2023041304090785000_34.5.1599.54
  doi: 10.2174/138920110790909650
– ident: 2023041304090785000_34.5.1599.65
  doi: 10.1371/journal.pone.0031304
– ident: 2023041304090785000_34.5.1599.74
  doi: 10.1038/70532
– ident: 2023041304090785000_34.5.1599.17
  doi: 10.1074/jbc.M710521200
– ident: 2023041304090785000_34.5.1599.38
  doi: 10.1038/sj.emboj.7601758
– ident: 2023041304090785000_34.5.1599.61
  doi: 10.1371/journal.pone.0004090
– ident: 2023041304090785000_34.5.1599.4
  doi: 10.1074/jbc.M112.394544
– ident: 2023041304090785000_34.5.1599.72
  doi: 10.1002/gene.10200
– ident: 2023041304090785000_34.5.1599.22
  doi: 10.1128/MCB.24.12.5249-5256.2004
– ident: 2023041304090785000_34.5.1599.3
  doi: 10.1523/JNEUROSCI.5704-10.2011
– ident: 2023041304090785000_34.5.1599.34
  doi: 10.1093/emboj/21.11.2591
– ident: 2023041304090785000_34.5.1599.55
  doi: 10.1371/journal.pbio.1000291
– volume: 25
  start-page: 458
  year: 2004
  ident: 2023041304090785000_34.5.1599.12
  article-title: Thermal preconditioning protected cerebellar granule neurons of rats by modulating HSP70 expression
  publication-title: Acta Pharmacol Sin
– ident: 2023041304090785000_34.5.1599.31
  doi: 10.1161/01.RES.83.10.980
– ident: 2023041304090785000_34.5.1599.1
  doi: 10.1159/000321548
– ident: 2023041304090785000_34.5.1599.37
  doi: 10.1038/nm1021
– ident: 2023041304090785000_34.5.1599.13
  doi: 10.1074/jbc.M111.328336
– ident: 2023041304090785000_34.5.1599.48
  doi: 10.1016/0896-6273(91)90349-5
– ident: 2023041304090785000_34.5.1599.10
  doi: 10.1002/(SICI)1097-4547(19980901)53:5<531::AID-JNR3>3.0.CO;2-A
– ident: 2023041304090785000_34.5.1599.19
  doi: 10.1074/jbc.M506288200
– ident: 2023041304090785000_34.5.1599.28
  doi: 10.1523/JNEUROSCI.0006-07.2007
– ident: 2023041304090785000_34.5.1599.43
  doi: 10.1046/j.1471-4159.2001.00134.x
– reference: 18457423 - Biochemistry. 2008 Jun 3;47(22):6007-15
– reference: 17975117 - Arterioscler Thromb Vasc Biol. 2008 Jan;28(1):105-11
– reference: 21355045 - Hum Mol Genet. 2011 May 15;20(10):1952-65
– reference: 19229036 - Science. 2009 Feb 20;323(5917):1063-6
– reference: 20166962 - Curr Pharm Biotechnol. 2010 Feb;11(2):188-97
– reference: 22918830 - J Biol Chem. 2012 Oct 12;287(42):35444-53
– reference: 17216044 - Mol Biosyst. 2006 Dec;2(12):627-39
– reference: 19609719 - Mol Biol Rep. 2010 Apr;37(4):1875-81
– reference: 14668476 - Mol Biol Cell. 2004 Mar;15(3):1254-61
– reference: 1722411 - Neuron. 1991 Dec;7(6):1043-51
– reference: 16155577 - Nat Med. 2005 Oct;11(10):1088-95
– reference: 12813038 - J Biol Chem. 2003 Sep 12;278(37):35465-75
– reference: 10581028 - Nat Genet. 1999 Dec;23(4):425-8
– reference: 22129991 - Nat Rev Drug Discov. 2011 Dec;10(12):930-44
– reference: 20664076 - Physiol Rev. 2010 Jul;90(3):905-81
– reference: 16751189 - J Biol Chem. 2006 Aug 4;281(31):21745-54
– reference: 15084750 - Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6403-8
– reference: 16260738 - Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16801-6
– reference: 12032072 - EMBO J. 2002 Jun 3;21(11):2591-601
– reference: 20525284 - Mol Neurodegener. 2010 Jun 03;5:24
– reference: 20834230 - EMBO J. 2010 Oct 20;29(20):3459-69
– reference: 9447987 - Mol Cell Biol. 1998 Feb;18(2):906-18
– reference: 20855618 - Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17385-90
– reference: 8027786 - J Neurosci. 1994 Jul;14(7):4385-92
– reference: 11181838 - J Neurochem. 2001 Feb;76(4):1188-98
– reference: 17581637 - EMBO J. 2007 Jul 11;26(13):3169-79
– reference: 22179319 - Nat Med. 2012 Jan;18(1):153-8
– reference: 8626582 - J Biol Chem. 1996 Apr 26;271(17):10194-9
– reference: 9869631 - Genes Dev. 1998 Dec 15;12(24):3788-96
– reference: 22017869 - Mol Cell. 2011 Oct 21;44(2):203-13
– reference: 23864673 - J Neurosci. 2013 Jul 17;33(29):11833-8
– reference: 16051598 - J Biol Chem. 2005 Oct 14;280(41):34908-16
– reference: 15066213 - Acta Pharmacol Sin. 2004 Apr;25(4):458-61
– reference: 19864465 - Mol Biol Cell. 2010 Jan 1;21(1):106-16
– reference: 1764242 - Neuron. 1991 Dec;7(6):1053-60
– reference: 15034571 - Nat Med. 2004 Apr;10(4):402-5
– reference: 18235501 - Nature. 2008 Jan 31;451(7178):583-6
– reference: 18369446 - PLoS Genet. 2008 Mar;4(3):e1000027
– reference: 21212626 - Neurodegener Dis. 2011;8(4):155-68
– reference: 16950627 - Neurobiol Dis. 2006 Nov;24(2):213-25
– reference: 7532699 - J Neurosci. 1995 Feb;15(2):1172-9
– reference: 12559002 - J Neurochem. 2003 Jan;84(2):397-408
– reference: 15183515 - Neuroscience. 2004;126(3):657-63
– reference: 2427013 - Annu Rev Biochem. 1986;55:1151-91
– reference: 17766920 - J Biol Chem. 2007 Nov 9;282(45):33210-7
– reference: 19861239 - Blood Cells Mol Dis. 2010 Jan 15;44(1):7-15
– reference: 12748967 - Genesis. 2003 May;36(1):48-61
– reference: 17024176 - EMBO J. 2006 Oct 18;25(20):4773-83
– reference: 17652588 - J Neurosci. 2007 Jul 25;27(30):7974-86
– reference: 21403864 - Biochem Res Int. 2011;2011:618127
– reference: 18632670 - J Biol Chem. 2008 Sep 19;283(38):26188-97
– reference: 20098725 - PLoS Biol. 2010 Jan;8(1):e1000291
– reference: 12411925 - Nat Med. 2002 Nov;8(11):1185-6
– reference: 21289184 - J Neurosci. 2011 Feb 2;31(5):1746-51
– reference: 19338268 - Biochemistry. 2009 May 12;48(18):3795-7
– reference: 9815145 - Circ Res. 1998 Nov 16;83(10):980-5
– reference: 19116652 - PLoS One. 2008;3(12):e4090
– reference: 15537643 - J Biol Chem. 2005 Jan 28;280(4):2818-25
– reference: 15169889 - Mol Cell Biol. 2004 Jun;24(12):5249-56
– reference: 20945529 - FEBS J. 2010 Oct;277(20):4126-39
– reference: 22179316 - Nat Med. 2012 Jan;18(1):159-65
– reference: 17241518 - Acta Pharmacol Sin. 2007 Feb;28(2):173-9
– reference: 17397914 - Mol Aspects Med. 2008 Jun;29(3):187-200
– reference: 22354967 - J Biol Chem. 2012 Apr 27;287(18):14749-59
– reference: 17213196 - J Biol Chem. 2007 Mar 9;282(10):7077-86
– reference: 23983126 - J Biol Chem. 2013 Oct 4;288(40):28713-26
– reference: 20945528 - FEBS J. 2010 Oct;277(20):4112-25
– reference: 8248201 - Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10989-93
– reference: 22347460 - PLoS One. 2012;7(2):e31304
– reference: 23360996 - Nat Commun. 2013;4:1405
– reference: 19165329 - PLoS Genet. 2009 Jan;5(1):e1000350
– reference: 12149445 - Proc Natl Acad Sci U S A. 2002 Dec 10;99 Suppl 4:16407-11
– reference: 18757733 - Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13626-31
– reference: 11447121 - EMBO J. 2001 Jul 16;20(14):3800-10
– reference: 9726424 - J Neurosci Res. 1998 Sep 1;53(5):531-41
– reference: 8943357 - Mol Cell Biol. 1996 Dec;16(12):7018-30
– reference: 16600994 - Hum Mol Genet. 2006 May 1;15(9):1483-96
– reference: 18171934 - J Neurosci. 2008 Jan 2;28(1):163-76
– reference: 14622953 - Anal Biochem. 2003 Dec 1;323(1):12-8
SSID ssj0007017
Score 2.3484633
Snippet Heat shock factor 1 (HSF1) protects neurons from death caused by the accumulation of misfolded proteins. It is believed that this protective effect is mediated...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1599
SubjectTerms Animals
Animals, Newborn
Apoptosis - drug effects
Apoptosis - genetics
Brain - cytology
Cells, Cultured
Chromatin Immunoprecipitation
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Enzyme Inhibitors - pharmacology
Female
Gene Expression Regulation - drug effects
Gene Expression Regulation - genetics
Heat Shock Transcription Factors
Heat-Shock Proteins - genetics
Heat-Shock Proteins - metabolism
Humans
Male
Mice
Neurons - drug effects
Neurons - metabolism
Neuroprotective Agents - metabolism
Neuroprotective Agents - pharmacology
Niacinamide - pharmacology
Protein Multimerization - drug effects
Protein Structure, Tertiary - drug effects
Protein Structure, Tertiary - genetics
Rats
Rats, Wistar
Signal Transduction - drug effects
Signal Transduction - genetics
Time Factors
Transcription Factors - genetics
Transcription Factors - metabolism
Vitamin B Complex - pharmacology
Title HSF1 Protects Neurons through a Novel Trimerization- and HSP-Independent Mechanism
URI https://www.ncbi.nlm.nih.gov/pubmed/24478344
https://www.proquest.com/docview/1493798115
https://www.proquest.com/docview/1827882925
https://pubmed.ncbi.nlm.nih.gov/PMC3905136
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEF616aWXqm36cF_aSm0vFonZZVk4RlEjx5WjqCRVbmhZLwmVjaOYVEp_fWfWyxqn7vOCLGBB4vs8zDAz3xDyLo6ZlizmQTFgkyAqEh2o1JSBSVDfLR6o0Mo1jY_i4Wk0OhNnq5Ig213SFDv6-8a-kv9BFfYBrtgl-w_I-ovCDvgN-MIWEIbtX2E8zA7CvlNaWPStNGW98KN3VL-efzNYS15hWmbZbxnYbMEwOw4qPwC36c8MNgC3aoJfVwzq-Ksd5UtPhi9o160jeqXOb7yFPy6rduDHSOGIQ0-TsZpO3ez2DOsevR_9nslxmwfKcLDx4sLVMrpPEiGWsQTuu4VxZpTZvE3YtbPuo2XVzWRbowkeVbrRmgurKjE6wqLGbP9wh2PaOuRYkBd1FwAqlzOLMTgrdnLI6u3maw7bQ3fJPQYhhQ2_Dz_5t7YE0-Q6yOG2u5tvitLR7jLrfsxPwcntGtuO03LykDxw6NG9JXUekTumfky292rVzGc39AO19b82sbJNPiObaMsm6thEHZuoopZNdJ1NFNhEb7GJejY9IacHH0_2h4GbuBFoEfImwK7phE1YomJwA7mSoYkiwU3IJomMtEpKwTWPSsyn67BkUZEKpkSqEi61Eoo_JVv1vDbPCY0HkzjRJSwZ8MiIicIOZ6mkKrWJDC96RLTPL9dOjh6nokxzDEsBgtxDkCMEechzhKBHdv26y6Ugyx9XvG3hycF2YkJM1WZ-vYCwF5zzNIGg6DfnJExCFJoyOOfZElJ_35YLPSLXwPYnoHb7-pG6urAa7hx18Xj84pfXfEnur_5ar8hWc3VtXoP_2xRvLHF_AHbfriw
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HSF1+protects+neurons+through+a+novel+trimerization-+and+HSP-independent+mechanism&rft.jtitle=The+Journal+of+neuroscience&rft.au=Verma%2C+Pragya&rft.au=Pfister%2C+Jason+A&rft.au=Mallick%2C+Sathi&rft.au=D%27Mello%2C+Santosh+R&rft.date=2014-01-29&rft.eissn=1529-2401&rft.volume=34&rft.issue=5&rft.spage=1599&rft_id=info:doi/10.1523%2FJNEUROSCI.3039-13.2014&rft_id=info%3Apmid%2F24478344&rft.externalDocID=24478344
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon