HSF1 Protects Neurons through a Novel Trimerization- and HSP-Independent Mechanism
Heat shock factor 1 (HSF1) protects neurons from death caused by the accumulation of misfolded proteins. It is believed that this protective effect is mediated by the transcriptional stimulation of genes encoding heat shock proteins (HSPs), a family of chaperones that refold or degrade misfolded pro...
Saved in:
Published in | The Journal of neuroscience Vol. 34; no. 5; pp. 1599 - 1612 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society for Neuroscience
29.01.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Heat shock factor 1 (HSF1) protects neurons from death caused by the accumulation of misfolded proteins. It is believed that this protective effect is mediated by the transcriptional stimulation of genes encoding heat shock proteins (HSPs), a family of chaperones that refold or degrade misfolded proteins. Whether HSF1 is protective when neuronal death is not caused by protein misfolding has not been studied. Here, we report that HSF1 expression is necessary for the survival of rat neurons and that HSF1 mRNA and protein expression is reduced in neurons primed to die. Knock-down of HSF1 induces death of otherwise healthy neurons, whereas reestablishment of elevated levels of HSF1 protects neurons even when death is not due to accumulation of misfolded proteins. Neuroprotection by HSF1 does not require its trimerization, an event obligatory for the binding of HSF1 to heat shock elements within HSP gene promoters. Moreover, knock-down of HSP70 or blockade of HSP90 signaling does not reduce neuroprotection by HSF1. Although several neuroprotective molecules and signaling pathways, including CaMK, PKA, Casein kinase-II, and the Raf-MEK-ERK and PI-3K-Akt pathways, are not required for HSF1-mediated neuroprotection, protection is abrogated by inhibition of classical histone deacetylases (HDACs). We report that the novel mechanism of neuroprotection by HSF1 involves cooperation with SIRT1, an HDAC with well documented neuroprotective effects. Using a cell culture model of Huntington's disease, we show that HSF1 trimerization is not required for protection against mutant huntingtin-induced neurotoxicity, suggesting that HSF1 can protect neurons against both proteinopathic and nonproteinopathic death through a noncanonical pathway. |
---|---|
AbstractList | Heat shock factor 1 (HSF1) protects neurons from death caused by the accumulation of misfolded proteins. It is believed that this protective effect is mediated by the transcriptional stimulation of genes encoding heat shock proteins (HSPs), a family of chaperones that refold or degrade misfolded proteins. Whether HSF1 is protective when neuronal death is not caused by protein misfolding has not been studied. Here, we report that HSF1 expression is necessary for the survival of rat neurons and that HSF1 mRNA and protein expression is reduced in neurons primed to die. Knock-down of HSF1 induces death of otherwise healthy neurons, whereas reestablishment of elevated levels of HSF1 protects neurons even when death is not due to accumulation of misfolded proteins. Neuroprotection by HSF1 does not require its trimerization, an event obligatory for the binding of HSF1 to heat shock elements within HSP gene promoters. Moreover, knock-down of HSP70 or blockade of HSP90 signaling does not reduce neuroprotection by HSF1. Although several neuroprotective molecules and signaling pathways, including CaMK, PKA, Casein kinase-II, and the Raf-MEK-ERK and PI-3K-Akt pathways, are not required for HSF1-mediated neuroprotection, protection is abrogated by inhibition of classical histone deacetylases (HDACs). We report that the novel mechanism of neuroprotection by HSF1 involves cooperation with SIRT1, an HDAC with well documented neuroprotective effects. Using a cell culture model of Huntington's disease, we show that HSF1 trimerization is not required for protection against mutant huntingtin-induced neurotoxicity, suggesting that HSF1 can protect neurons against both proteinopathic and nonproteinopathic death through a noncanonical pathway. Heat shock factor 1 (HSF1) protects neurons from death caused by the accumulation of misfolded proteins. It is believed that this protective effect is mediated by the transcriptional stimulation of genes encoding heat shock proteins (HSPs), a family of chaperones that refold or degrade misfolded proteins. Whether HSF1 is protective when neuronal death is not caused by protein misfolding has not been studied. Here, we report that HSF1 expression is necessary for the survival of rat neurons and that HSF1 mRNA and protein expression is reduced in neurons primed to die. Knock-down of HSF1 induces death of otherwise healthy neurons, whereas reestablishment of elevated levels of HSF1 protects neurons even when death is not due to accumulation of misfolded proteins. Neuroprotection by HSF1 does not require its trimerization, an event obligatory for the binding of HSF1 to heat shock elements within HSP gene promoters. Moreover, knock-down of HSP70 or blockade of HSP90 signaling does not reduce neuroprotection by HSF1. Although several neuroprotective molecules and signaling pathways, including CaMK, PKA, Casein kinase-II, and the Raf-MEK-ERK and PI-3K-Akt pathways, are not required for HSF1-mediated neuroprotection, protection is abrogated by inhibition of classical histone deacetylases (HDACs). We report that the novel mechanism of neuroprotection by HSF1 involves cooperation with SIRT1, an HDAC with well documented neuroprotective effects. Using a cell culture model of Huntington's disease, we show that HSF1 trimerization is not required for protection against mutant huntingtin-induced neurotoxicity, suggesting that HSF1 can protect neurons against both proteinopathic and nonproteinopathic death through a noncanonical pathway.Heat shock factor 1 (HSF1) protects neurons from death caused by the accumulation of misfolded proteins. It is believed that this protective effect is mediated by the transcriptional stimulation of genes encoding heat shock proteins (HSPs), a family of chaperones that refold or degrade misfolded proteins. Whether HSF1 is protective when neuronal death is not caused by protein misfolding has not been studied. Here, we report that HSF1 expression is necessary for the survival of rat neurons and that HSF1 mRNA and protein expression is reduced in neurons primed to die. Knock-down of HSF1 induces death of otherwise healthy neurons, whereas reestablishment of elevated levels of HSF1 protects neurons even when death is not due to accumulation of misfolded proteins. Neuroprotection by HSF1 does not require its trimerization, an event obligatory for the binding of HSF1 to heat shock elements within HSP gene promoters. Moreover, knock-down of HSP70 or blockade of HSP90 signaling does not reduce neuroprotection by HSF1. Although several neuroprotective molecules and signaling pathways, including CaMK, PKA, Casein kinase-II, and the Raf-MEK-ERK and PI-3K-Akt pathways, are not required for HSF1-mediated neuroprotection, protection is abrogated by inhibition of classical histone deacetylases (HDACs). We report that the novel mechanism of neuroprotection by HSF1 involves cooperation with SIRT1, an HDAC with well documented neuroprotective effects. Using a cell culture model of Huntington's disease, we show that HSF1 trimerization is not required for protection against mutant huntingtin-induced neurotoxicity, suggesting that HSF1 can protect neurons against both proteinopathic and nonproteinopathic death through a noncanonical pathway. |
Author | Pfister, Jason A. Verma, Pragya D'Mello, Santosh R. Mallick, Sathi |
Author_xml | – sequence: 1 givenname: Pragya surname: Verma fullname: Verma, Pragya – sequence: 2 givenname: Jason A. surname: Pfister fullname: Pfister, Jason A. – sequence: 3 givenname: Sathi surname: Mallick fullname: Mallick, Sathi – sequence: 4 givenname: Santosh R. surname: D'Mello fullname: D'Mello, Santosh R. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24478344$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEUhS1URNPCK1Resplg-9qxLSEkFLUkqKRV064t1-NpjCZ2sGcqwdPj0B8Bm258F_ec40_3HKGDmKJH6ISSKRUMPnxdnd5cXaznyykQ0A2FKSOUv0KTutUN44QeoAlhkjQzLvkhOirlOyFEEirfoEPGuVTA-QRdLdZnFF_mNHg3FLzyY06x4GGT03i3wRav0r3v8XUOW5_DLzuEFBtsY4sX68tmGVu_8_WJA_7m3cbGULZv0evO9sW_e5zH6Obs9Hq-aM4vviznn88bJygMjVCMKtYyZWdMA1hJPecCPGWtktxZ1QlwwDsChDvaMX6rBbNCWwXSWWHhGH16yN2Nt1vfugqRbW92FdXmnybZYP7dxLAxd-negCaVYFYD3j8G5PRj9GUw21Cc73sbfRqLqXhSKaaZeFnKNUitKN1LT_7GeuZ5unkVfHwQuJxKyb4zLgx_DlspQ28oMfuKzXPFZl-xoWD2FVf77D_70w8vGH8DNQOqeQ |
CitedBy_id | crossref_primary_10_3892_mmr_2017_8199 crossref_primary_10_1007_s12035_020_01989_0 crossref_primary_10_1074_jbc_M114_597575 crossref_primary_10_3390_cells10071638 crossref_primary_10_1371_journal_pone_0215208 crossref_primary_10_1242_jcs_210724 crossref_primary_10_1007_s00018_018_2836_6 crossref_primary_10_1074_jbc_RA119_010524 crossref_primary_10_1242_bio_061605 crossref_primary_10_1371_journal_pone_0129329 crossref_primary_10_1007_s12033_022_00467_3 crossref_primary_10_1007_s12192_016_0709_1 crossref_primary_10_1016_j_biocel_2017_01_006 crossref_primary_10_1021_acschembio_5b00740 crossref_primary_10_3389_fncel_2023_1131683 crossref_primary_10_1177_1535370214551688 crossref_primary_10_1093_hmg_ddv445 crossref_primary_10_1016_j_devcel_2017_12_020 crossref_primary_10_1016_j_pep_2020_105722 crossref_primary_10_55697_tnd_2024_110 crossref_primary_10_1016_j_brainres_2015_07_034 crossref_primary_10_1186_s12868_019_0546_0 crossref_primary_10_1007_s12035_023_03471_z crossref_primary_10_1097_WNR_0000000000002022 crossref_primary_10_1186_s40035_017_0077_5 crossref_primary_10_1016_j_jtherbio_2022_103393 crossref_primary_10_1016_j_jmb_2015_02_010 crossref_primary_10_1007_s10522_023_10063_w crossref_primary_10_1016_j_preteyeres_2016_03_001 crossref_primary_10_1074_jbc_M116_723015 crossref_primary_10_18632_oncotarget_10847 crossref_primary_10_1038_s41598_018_35610_1 crossref_primary_10_3349_ymj_2018_59_9_1041 crossref_primary_10_1016_j_exger_2019_02_011 crossref_primary_10_1186_s12974_021_02271_3 crossref_primary_10_1111_febs_13764 crossref_primary_10_3892_mmr_2017_6869 crossref_primary_10_1007_s12035_015_9452_3 crossref_primary_10_1177_1535370218761149 crossref_primary_10_3390_ijms19082329 crossref_primary_10_1016_j_nbd_2015_06_001 crossref_primary_10_1248_bpb_b16_00641 crossref_primary_10_1007_s00221_024_06858_z crossref_primary_10_1093_hmg_ddx329 crossref_primary_10_1158_1541_7786_MCR_15_0135 crossref_primary_10_1016_j_ejphar_2018_01_005 crossref_primary_10_1038_pr_2016_185 crossref_primary_10_1007_s11356_023_29880_0 crossref_primary_10_3389_fnmol_2023_1230436 |
Cites_doi | 10.1146/annurev.bi.55.070186.005443 10.1126/science.1165946 10.1073/pnas.0806319105 10.1073/pnas.0307697101 10.1093/hmg/ddr076 10.1371/journal.pgen.1000027 10.1016/j.molcel.2011.07.038 10.1371/journal.pgen.1000350 10.1073/pnas.1003996107 10.1007/s11033-009-9623-2 10.1016/0896-6273(91)90348-4 10.1074/jbc.M408741200 10.1073/pnas.152330499 10.1073/pnas.90.23.10989 10.1038/emboj.2010.225 10.1523/JNEUROSCI.5831-12.2013 10.1186/1750-1326-5-24 10.1128/MCB.16.12.7018 10.1021/bi802255c 10.1021/bi702185u 10.1074/jbc.M602909200 10.1073/pnas.0506249102 10.1016/j.bcmd.2009.10.002 10.1091/mbc.E03-10-0738 10.1091/mbc.E09-07-0639 10.1038/ncomms2417 10.1038/sj.emboj.7601370 10.1111/j.1745-7254.2007.00504.x 10.1161/ATVBAHA.107.155499 10.1038/nm1102-1185 10.1074/jbc.M607556200 10.1038/nm.2558 10.1111/j.1742-4658.2010.07828.x 10.1016/j.mam.2007.02.001 10.1038/nm.2559 10.1038/nrd3453 10.1155/2011/618127 10.1093/emboj/20.14.3800 10.1074/jbc.M704471200 10.1038/nature06500 10.1039/b606129j 10.1074/jbc.271.17.10194 10.1016/j.ab.2003.08.007 10.1523/JNEUROSCI.3200-07.2008 10.1523/JNEUROSCI.14-07-04385.1994 10.1074/jbc.M113.488346 10.1101/gad.12.24.3788 10.1016/j.neuroscience.2004.03.023 10.1074/jbc.M304663200 10.1093/hmg/ddl067 10.1046/j.1471-4159.2003.01540.x 10.1038/nm1298 10.1128/MCB.18.2.906 10.1016/j.nbd.2006.06.017 10.1152/physrev.00041.2009 10.1111/j.1742-4658.2010.07827.x 10.1523/JNEUROSCI.15-02-01172.1995 10.2174/138920110790909650 10.1371/journal.pone.0031304 10.1038/70532 10.1074/jbc.M710521200 10.1038/sj.emboj.7601758 10.1371/journal.pone.0004090 10.1074/jbc.M112.394544 10.1002/gene.10200 10.1128/MCB.24.12.5249-5256.2004 10.1523/JNEUROSCI.5704-10.2011 10.1093/emboj/21.11.2591 10.1371/journal.pbio.1000291 10.1161/01.RES.83.10.980 10.1159/000321548 10.1038/nm1021 10.1074/jbc.M111.328336 10.1016/0896-6273(91)90349-5 10.1002/(SICI)1097-4547(19980901)53:5<531::AID-JNR3>3.0.CO;2-A 10.1074/jbc.M506288200 10.1523/JNEUROSCI.0006-07.2007 10.1046/j.1471-4159.2001.00134.x |
ContentType | Journal Article |
Copyright | Copyright © 2014 the authors 0270-6474/14/341599-14$15.00/0 2014 |
Copyright_xml | – notice: Copyright © 2014 the authors 0270-6474/14/341599-14$15.00/0 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.1523/JNEUROSCI.3039-13.2014 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | Neurosciences Abstracts CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 1612 |
ExternalDocumentID | PMC3905136 24478344 10_1523_JNEUROSCI_3039_13_2014 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS040408 – fundername: NINDS NIH HHS grantid: NS40408 |
GroupedDBID | --- -DZ -~X .55 18M 2WC 34G 39C 53G 5GY 5RE 5VS AAFWJ AAJMC AAYXX ABBAR ABIVO ACGUR ACNCT ADBBV ADCOW ADHGD AENEX AETEA AFCFT AFOSN AFSQR AHWXS ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 HYE H~9 KQ8 L7B OK1 P0W P2P QZG R.V RHI RPM TFN TR2 W8F WH7 WOQ X7M XJT YBU YHG YKV YNH YSK CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c513t-582182d28a62933a71e4453e12d874ca8f53c34f0304c1f24b952a59a837ca5a3 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 18:01:53 EDT 2025 Sun Aug 24 04:13:18 EDT 2025 Thu Jul 10 22:18:04 EDT 2025 Mon Jul 21 06:05:33 EDT 2025 Tue Jul 01 03:47:08 EDT 2025 Thu Apr 24 23:09:00 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c513t-582182d28a62933a71e4453e12d874ca8f53c34f0304c1f24b952a59a837ca5a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: P.V. and S.R.D., designed research; P.V., J.A.P., and S.M. performed research; P.V. analyzed data; J.A.P. and S.R.D., wrote the paper. |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/34/5/1599.full.pdf |
PMID | 24478344 |
PQID | 1493798115 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3905136 proquest_miscellaneous_1827882925 proquest_miscellaneous_1493798115 pubmed_primary_24478344 crossref_citationtrail_10_1523_JNEUROSCI_3039_13_2014 crossref_primary_10_1523_JNEUROSCI_3039_13_2014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-01-29 |
PublicationDateYYYYMMDD | 2014-01-29 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2014 |
Publisher | Society for Neuroscience |
Publisher_xml | – name: Society for Neuroscience |
References | 2023041304090785000_34.5.1599.18 2023041304090785000_34.5.1599.19 2023041304090785000_34.5.1599.14 2023041304090785000_34.5.1599.15 2023041304090785000_34.5.1599.59 2023041304090785000_34.5.1599.17 2023041304090785000_34.5.1599.10 2023041304090785000_34.5.1599.54 2023041304090785000_34.5.1599.11 2023041304090785000_34.5.1599.55 2023041304090785000_34.5.1599.56 2023041304090785000_34.5.1599.13 2023041304090785000_34.5.1599.57 2023041304090785000_34.5.1599.50 2023041304090785000_34.5.1599.51 2023041304090785000_34.5.1599.52 2023041304090785000_34.5.1599.53 Chen (2023041304090785000_34.5.1599.12) 2004; 25 Orosz (2023041304090785000_34.5.1599.58) 1996; 16 2023041304090785000_34.5.1599.47 2023041304090785000_34.5.1599.48 2023041304090785000_34.5.1599.49 2023041304090785000_34.5.1599.43 2023041304090785000_34.5.1599.44 2023041304090785000_34.5.1599.45 2023041304090785000_34.5.1599.46 Ratan (2023041304090785000_34.5.1599.63) 1994; 14 2023041304090785000_34.5.1599.40 2023041304090785000_34.5.1599.41 2023041304090785000_34.5.1599.42 Galli (2023041304090785000_34.5.1599.21) 1995; 15 2023041304090785000_34.5.1599.36 2023041304090785000_34.5.1599.37 2023041304090785000_34.5.1599.38 2023041304090785000_34.5.1599.39 2023041304090785000_34.5.1599.32 2023041304090785000_34.5.1599.76 2023041304090785000_34.5.1599.33 2023041304090785000_34.5.1599.77 2023041304090785000_34.5.1599.34 2023041304090785000_34.5.1599.78 2023041304090785000_34.5.1599.35 2023041304090785000_34.5.1599.79 2023041304090785000_34.5.1599.72 2023041304090785000_34.5.1599.73 2023041304090785000_34.5.1599.30 2023041304090785000_34.5.1599.74 2023041304090785000_34.5.1599.31 2023041304090785000_34.5.1599.75 2023041304090785000_34.5.1599.71 2023041304090785000_34.5.1599.6 2023041304090785000_34.5.1599.5 2023041304090785000_34.5.1599.8 2023041304090785000_34.5.1599.7 2023041304090785000_34.5.1599.2 2023041304090785000_34.5.1599.1 2023041304090785000_34.5.1599.4 2023041304090785000_34.5.1599.3 2023041304090785000_34.5.1599.29 Farkas (2023041304090785000_34.5.1599.16) 1998; 18 2023041304090785000_34.5.1599.25 2023041304090785000_34.5.1599.69 2023041304090785000_34.5.1599.26 2023041304090785000_34.5.1599.27 2023041304090785000_34.5.1599.28 2023041304090785000_34.5.1599.65 2023041304090785000_34.5.1599.22 2023041304090785000_34.5.1599.66 2023041304090785000_34.5.1599.23 2023041304090785000_34.5.1599.67 2023041304090785000_34.5.1599.24 2023041304090785000_34.5.1599.68 2023041304090785000_34.5.1599.61 2023041304090785000_34.5.1599.62 2023041304090785000_34.5.1599.20 2023041304090785000_34.5.1599.64 Turturici (2023041304090785000_34.5.1599.70) 2011; 2011 2023041304090785000_34.5.1599.9 2023041304090785000_34.5.1599.60 20945529 - FEBS J. 2010 Oct;277(20):4126-39 16051598 - J Biol Chem. 2005 Oct 14;280(41):34908-16 16260738 - Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16801-6 8248201 - Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10989-93 17975117 - Arterioscler Thromb Vasc Biol. 2008 Jan;28(1):105-11 22017869 - Mol Cell. 2011 Oct 21;44(2):203-13 21212626 - Neurodegener Dis. 2011;8(4):155-68 11181838 - J Neurochem. 2001 Feb;76(4):1188-98 8027786 - J Neurosci. 1994 Jul;14(7):4385-92 22129991 - Nat Rev Drug Discov. 2011 Dec;10(12):930-44 12559002 - J Neurochem. 2003 Jan;84(2):397-408 21289184 - J Neurosci. 2011 Feb 2;31(5):1746-51 17213196 - J Biol Chem. 2007 Mar 9;282(10):7077-86 10581028 - Nat Genet. 1999 Dec;23(4):425-8 22179316 - Nat Med. 2012 Jan;18(1):159-65 16751189 - J Biol Chem. 2006 Aug 4;281(31):21745-54 19609719 - Mol Biol Rep. 2010 Apr;37(4):1875-81 23983126 - J Biol Chem. 2013 Oct 4;288(40):28713-26 18757733 - Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13626-31 20834230 - EMBO J. 2010 Oct 20;29(20):3459-69 20525284 - Mol Neurodegener. 2010 Jun 03;5:24 18171934 - J Neurosci. 2008 Jan 2;28(1):163-76 17397914 - Mol Aspects Med. 2008 Jun;29(3):187-200 8626582 - J Biol Chem. 1996 Apr 26;271(17):10194-9 22179319 - Nat Med. 2012 Jan;18(1):153-8 18632670 - J Biol Chem. 2008 Sep 19;283(38):26188-97 11447121 - EMBO J. 2001 Jul 16;20(14):3800-10 19864465 - Mol Biol Cell. 2010 Jan 1;21(1):106-16 21355045 - Hum Mol Genet. 2011 May 15;20(10):1952-65 14668476 - Mol Biol Cell. 2004 Mar;15(3):1254-61 12748967 - Genesis. 2003 May;36(1):48-61 15066213 - Acta Pharmacol Sin. 2004 Apr;25(4):458-61 17216044 - Mol Biosyst. 2006 Dec;2(12):627-39 22347460 - PLoS One. 2012;7(2):e31304 9869631 - Genes Dev. 1998 Dec 15;12(24):3788-96 22354967 - J Biol Chem. 2012 Apr 27;287(18):14749-59 20945528 - FEBS J. 2010 Oct;277(20):4112-25 12032072 - EMBO J. 2002 Jun 3;21(11):2591-601 15034571 - Nat Med. 2004 Apr;10(4):402-5 7532699 - J Neurosci. 1995 Feb;15(2):1172-9 20664076 - Physiol Rev. 2010 Jul;90(3):905-81 16600994 - Hum Mol Genet. 2006 May 1;15(9):1483-96 15537643 - J Biol Chem. 2005 Jan 28;280(4):2818-25 17241518 - Acta Pharmacol Sin. 2007 Feb;28(2):173-9 20166962 - Curr Pharm Biotechnol. 2010 Feb;11(2):188-97 17652588 - J Neurosci. 2007 Jul 25;27(30):7974-86 23864673 - J Neurosci. 2013 Jul 17;33(29):11833-8 17024176 - EMBO J. 2006 Oct 18;25(20):4773-83 18369446 - PLoS Genet. 2008 Mar;4(3):e1000027 12149445 - Proc Natl Acad Sci U S A. 2002 Dec 10;99 Suppl 4:16407-11 9447987 - Mol Cell Biol. 1998 Feb;18(2):906-18 2427013 - Annu Rev Biochem. 1986;55:1151-91 19165329 - PLoS Genet. 2009 Jan;5(1):e1000350 19338268 - Biochemistry. 2009 May 12;48(18):3795-7 8943357 - Mol Cell Biol. 1996 Dec;16(12):7018-30 16950627 - Neurobiol Dis. 2006 Nov;24(2):213-25 15084750 - Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6403-8 20098725 - PLoS Biol. 2010 Jan;8(1):e1000291 22918830 - J Biol Chem. 2012 Oct 12;287(42):35444-53 14622953 - Anal Biochem. 2003 Dec 1;323(1):12-8 15169889 - Mol Cell Biol. 2004 Jun;24(12):5249-56 17766920 - J Biol Chem. 2007 Nov 9;282(45):33210-7 9726424 - J Neurosci Res. 1998 Sep 1;53(5):531-41 12411925 - Nat Med. 2002 Nov;8(11):1185-6 12813038 - J Biol Chem. 2003 Sep 12;278(37):35465-75 17581637 - EMBO J. 2007 Jul 11;26(13):3169-79 19229036 - Science. 2009 Feb 20;323(5917):1063-6 1764242 - Neuron. 1991 Dec;7(6):1053-60 18235501 - Nature. 2008 Jan 31;451(7178):583-6 15183515 - Neuroscience. 2004;126(3):657-63 20855618 - Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17385-90 19116652 - PLoS One. 2008;3(12):e4090 16155577 - Nat Med. 2005 Oct;11(10):1088-95 21403864 - Biochem Res Int. 2011;2011:618127 19861239 - Blood Cells Mol Dis. 2010 Jan 15;44(1):7-15 9815145 - Circ Res. 1998 Nov 16;83(10):980-5 1722411 - Neuron. 1991 Dec;7(6):1043-51 18457423 - Biochemistry. 2008 Jun 3;47(22):6007-15 23360996 - Nat Commun. 2013;4:1405 |
References_xml | – ident: 2023041304090785000_34.5.1599.47 doi: 10.1146/annurev.bi.55.070186.005443 – ident: 2023041304090785000_34.5.1599.76 doi: 10.1126/science.1165946 – ident: 2023041304090785000_34.5.1599.67 doi: 10.1073/pnas.0806319105 – ident: 2023041304090785000_34.5.1599.57 doi: 10.1073/pnas.0307697101 – ident: 2023041304090785000_34.5.1599.78 doi: 10.1093/hmg/ddr076 – ident: 2023041304090785000_34.5.1599.71 doi: 10.1371/journal.pgen.1000027 – ident: 2023041304090785000_34.5.1599.35 doi: 10.1016/j.molcel.2011.07.038 – ident: 2023041304090785000_34.5.1599.73 doi: 10.1371/journal.pgen.1000350 – ident: 2023041304090785000_34.5.1599.23 doi: 10.1073/pnas.1003996107 – ident: 2023041304090785000_34.5.1599.46 doi: 10.1007/s11033-009-9623-2 – ident: 2023041304090785000_34.5.1599.64 doi: 10.1016/0896-6273(91)90348-4 – ident: 2023041304090785000_34.5.1599.7 doi: 10.1074/jbc.M408741200 – ident: 2023041304090785000_34.5.1599.9 doi: 10.1073/pnas.152330499 – ident: 2023041304090785000_34.5.1599.15 doi: 10.1073/pnas.90.23.10989 – ident: 2023041304090785000_34.5.1599.25 doi: 10.1038/emboj.2010.225 – ident: 2023041304090785000_34.5.1599.5 doi: 10.1523/JNEUROSCI.5831-12.2013 – ident: 2023041304090785000_34.5.1599.51 doi: 10.1186/1750-1326-5-24 – volume: 16 start-page: 7018 year: 1996 ident: 2023041304090785000_34.5.1599.58 article-title: Regulation of Drosophila heat shock factor trimerization: Global sequence requirements and independence of nuclear localization publication-title: Mol Cell Biol doi: 10.1128/MCB.16.12.7018 – ident: 2023041304090785000_34.5.1599.50 doi: 10.1021/bi802255c – ident: 2023041304090785000_34.5.1599.49 doi: 10.1021/bi702185u – ident: 2023041304090785000_34.5.1599.62 doi: 10.1074/jbc.M602909200 – ident: 2023041304090785000_34.5.1599.36 doi: 10.1073/pnas.0506249102 – ident: 2023041304090785000_34.5.1599.41 doi: 10.1016/j.bcmd.2009.10.002 – ident: 2023041304090785000_34.5.1599.69 doi: 10.1091/mbc.E03-10-0738 – ident: 2023041304090785000_34.5.1599.20 doi: 10.1091/mbc.E09-07-0639 – ident: 2023041304090785000_34.5.1599.42 doi: 10.1038/ncomms2417 – ident: 2023041304090785000_34.5.1599.24 doi: 10.1038/sj.emboj.7601370 – ident: 2023041304090785000_34.5.1599.11 doi: 10.1111/j.1745-7254.2007.00504.x – ident: 2023041304090785000_34.5.1599.52 doi: 10.1161/ATVBAHA.107.155499 – ident: 2023041304090785000_34.5.1599.2 doi: 10.1038/nm1102-1185 – ident: 2023041304090785000_34.5.1599.59 doi: 10.1074/jbc.M607556200 – ident: 2023041304090785000_34.5.1599.33 doi: 10.1038/nm.2558 – ident: 2023041304090785000_34.5.1599.8 doi: 10.1111/j.1742-4658.2010.07828.x – ident: 2023041304090785000_34.5.1599.68 doi: 10.1016/j.mam.2007.02.001 – ident: 2023041304090785000_34.5.1599.32 doi: 10.1038/nm.2559 – ident: 2023041304090785000_34.5.1599.56 doi: 10.1038/nrd3453 – volume: 2011 start-page: 618127 year: 2011 ident: 2023041304090785000_34.5.1599.70 article-title: Hsp70 and its molecular role in nervous system diseases publication-title: Biochem Res Int doi: 10.1155/2011/618127 – ident: 2023041304090785000_34.5.1599.27 doi: 10.1093/emboj/20.14.3800 – ident: 2023041304090785000_34.5.1599.29 doi: 10.1074/jbc.M704471200 – ident: 2023041304090785000_34.5.1599.40 doi: 10.1038/nature06500 – ident: 2023041304090785000_34.5.1599.60 doi: 10.1039/b606129j – ident: 2023041304090785000_34.5.1599.30 doi: 10.1074/jbc.271.17.10194 – ident: 2023041304090785000_34.5.1599.14 doi: 10.1016/j.ab.2003.08.007 – ident: 2023041304090785000_34.5.1599.45 doi: 10.1523/JNEUROSCI.3200-07.2008 – volume: 14 start-page: 4385 year: 1994 ident: 2023041304090785000_34.5.1599.63 article-title: Macromolecular synthesis inhibitors prevent oxidative stress-induced apoptosis in embryonic cortical neurons by shunting cysteine from protein synthesis to glutathione publication-title: J Neurosci doi: 10.1523/JNEUROSCI.14-07-04385.1994 – ident: 2023041304090785000_34.5.1599.39 doi: 10.1074/jbc.M113.488346 – ident: 2023041304090785000_34.5.1599.53 doi: 10.1101/gad.12.24.3788 – ident: 2023041304090785000_34.5.1599.66 doi: 10.1016/j.neuroscience.2004.03.023 – ident: 2023041304090785000_34.5.1599.26 doi: 10.1074/jbc.M304663200 – ident: 2023041304090785000_34.5.1599.44 doi: 10.1093/hmg/ddl067 – ident: 2023041304090785000_34.5.1599.77 doi: 10.1046/j.1471-4159.2003.01540.x – ident: 2023041304090785000_34.5.1599.75 doi: 10.1038/nm1298 – volume: 18 start-page: 906 year: 1998 ident: 2023041304090785000_34.5.1599.16 article-title: Intramolecular repression of mouse heat shock factor 1 publication-title: Mol Cell Biol doi: 10.1128/MCB.18.2.906 – ident: 2023041304090785000_34.5.1599.6 doi: 10.1016/j.nbd.2006.06.017 – ident: 2023041304090785000_34.5.1599.79 doi: 10.1152/physrev.00041.2009 – ident: 2023041304090785000_34.5.1599.18 doi: 10.1111/j.1742-4658.2010.07827.x – volume: 15 start-page: 1172 year: 1995 ident: 2023041304090785000_34.5.1599.21 article-title: Apoptosis in cerebellar granule cells is blocked by high KCl, forskolin, and IGF-1 through distinct mechanisms of action: the involvement of intracellular calcium and RNA synthesis publication-title: J Neurosci doi: 10.1523/JNEUROSCI.15-02-01172.1995 – ident: 2023041304090785000_34.5.1599.54 doi: 10.2174/138920110790909650 – ident: 2023041304090785000_34.5.1599.65 doi: 10.1371/journal.pone.0031304 – ident: 2023041304090785000_34.5.1599.74 doi: 10.1038/70532 – ident: 2023041304090785000_34.5.1599.17 doi: 10.1074/jbc.M710521200 – ident: 2023041304090785000_34.5.1599.38 doi: 10.1038/sj.emboj.7601758 – ident: 2023041304090785000_34.5.1599.61 doi: 10.1371/journal.pone.0004090 – ident: 2023041304090785000_34.5.1599.4 doi: 10.1074/jbc.M112.394544 – ident: 2023041304090785000_34.5.1599.72 doi: 10.1002/gene.10200 – ident: 2023041304090785000_34.5.1599.22 doi: 10.1128/MCB.24.12.5249-5256.2004 – ident: 2023041304090785000_34.5.1599.3 doi: 10.1523/JNEUROSCI.5704-10.2011 – ident: 2023041304090785000_34.5.1599.34 doi: 10.1093/emboj/21.11.2591 – ident: 2023041304090785000_34.5.1599.55 doi: 10.1371/journal.pbio.1000291 – volume: 25 start-page: 458 year: 2004 ident: 2023041304090785000_34.5.1599.12 article-title: Thermal preconditioning protected cerebellar granule neurons of rats by modulating HSP70 expression publication-title: Acta Pharmacol Sin – ident: 2023041304090785000_34.5.1599.31 doi: 10.1161/01.RES.83.10.980 – ident: 2023041304090785000_34.5.1599.1 doi: 10.1159/000321548 – ident: 2023041304090785000_34.5.1599.37 doi: 10.1038/nm1021 – ident: 2023041304090785000_34.5.1599.13 doi: 10.1074/jbc.M111.328336 – ident: 2023041304090785000_34.5.1599.48 doi: 10.1016/0896-6273(91)90349-5 – ident: 2023041304090785000_34.5.1599.10 doi: 10.1002/(SICI)1097-4547(19980901)53:5<531::AID-JNR3>3.0.CO;2-A – ident: 2023041304090785000_34.5.1599.19 doi: 10.1074/jbc.M506288200 – ident: 2023041304090785000_34.5.1599.28 doi: 10.1523/JNEUROSCI.0006-07.2007 – ident: 2023041304090785000_34.5.1599.43 doi: 10.1046/j.1471-4159.2001.00134.x – reference: 18457423 - Biochemistry. 2008 Jun 3;47(22):6007-15 – reference: 17975117 - Arterioscler Thromb Vasc Biol. 2008 Jan;28(1):105-11 – reference: 21355045 - Hum Mol Genet. 2011 May 15;20(10):1952-65 – reference: 19229036 - Science. 2009 Feb 20;323(5917):1063-6 – reference: 20166962 - Curr Pharm Biotechnol. 2010 Feb;11(2):188-97 – reference: 22918830 - J Biol Chem. 2012 Oct 12;287(42):35444-53 – reference: 17216044 - Mol Biosyst. 2006 Dec;2(12):627-39 – reference: 19609719 - Mol Biol Rep. 2010 Apr;37(4):1875-81 – reference: 14668476 - Mol Biol Cell. 2004 Mar;15(3):1254-61 – reference: 1722411 - Neuron. 1991 Dec;7(6):1043-51 – reference: 16155577 - Nat Med. 2005 Oct;11(10):1088-95 – reference: 12813038 - J Biol Chem. 2003 Sep 12;278(37):35465-75 – reference: 10581028 - Nat Genet. 1999 Dec;23(4):425-8 – reference: 22129991 - Nat Rev Drug Discov. 2011 Dec;10(12):930-44 – reference: 20664076 - Physiol Rev. 2010 Jul;90(3):905-81 – reference: 16751189 - J Biol Chem. 2006 Aug 4;281(31):21745-54 – reference: 15084750 - Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6403-8 – reference: 16260738 - Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16801-6 – reference: 12032072 - EMBO J. 2002 Jun 3;21(11):2591-601 – reference: 20525284 - Mol Neurodegener. 2010 Jun 03;5:24 – reference: 20834230 - EMBO J. 2010 Oct 20;29(20):3459-69 – reference: 9447987 - Mol Cell Biol. 1998 Feb;18(2):906-18 – reference: 20855618 - Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17385-90 – reference: 8027786 - J Neurosci. 1994 Jul;14(7):4385-92 – reference: 11181838 - J Neurochem. 2001 Feb;76(4):1188-98 – reference: 17581637 - EMBO J. 2007 Jul 11;26(13):3169-79 – reference: 22179319 - Nat Med. 2012 Jan;18(1):153-8 – reference: 8626582 - J Biol Chem. 1996 Apr 26;271(17):10194-9 – reference: 9869631 - Genes Dev. 1998 Dec 15;12(24):3788-96 – reference: 22017869 - Mol Cell. 2011 Oct 21;44(2):203-13 – reference: 23864673 - J Neurosci. 2013 Jul 17;33(29):11833-8 – reference: 16051598 - J Biol Chem. 2005 Oct 14;280(41):34908-16 – reference: 15066213 - Acta Pharmacol Sin. 2004 Apr;25(4):458-61 – reference: 19864465 - Mol Biol Cell. 2010 Jan 1;21(1):106-16 – reference: 1764242 - Neuron. 1991 Dec;7(6):1053-60 – reference: 15034571 - Nat Med. 2004 Apr;10(4):402-5 – reference: 18235501 - Nature. 2008 Jan 31;451(7178):583-6 – reference: 18369446 - PLoS Genet. 2008 Mar;4(3):e1000027 – reference: 21212626 - Neurodegener Dis. 2011;8(4):155-68 – reference: 16950627 - Neurobiol Dis. 2006 Nov;24(2):213-25 – reference: 7532699 - J Neurosci. 1995 Feb;15(2):1172-9 – reference: 12559002 - J Neurochem. 2003 Jan;84(2):397-408 – reference: 15183515 - Neuroscience. 2004;126(3):657-63 – reference: 2427013 - Annu Rev Biochem. 1986;55:1151-91 – reference: 17766920 - J Biol Chem. 2007 Nov 9;282(45):33210-7 – reference: 19861239 - Blood Cells Mol Dis. 2010 Jan 15;44(1):7-15 – reference: 12748967 - Genesis. 2003 May;36(1):48-61 – reference: 17024176 - EMBO J. 2006 Oct 18;25(20):4773-83 – reference: 17652588 - J Neurosci. 2007 Jul 25;27(30):7974-86 – reference: 21403864 - Biochem Res Int. 2011;2011:618127 – reference: 18632670 - J Biol Chem. 2008 Sep 19;283(38):26188-97 – reference: 20098725 - PLoS Biol. 2010 Jan;8(1):e1000291 – reference: 12411925 - Nat Med. 2002 Nov;8(11):1185-6 – reference: 21289184 - J Neurosci. 2011 Feb 2;31(5):1746-51 – reference: 19338268 - Biochemistry. 2009 May 12;48(18):3795-7 – reference: 9815145 - Circ Res. 1998 Nov 16;83(10):980-5 – reference: 19116652 - PLoS One. 2008;3(12):e4090 – reference: 15537643 - J Biol Chem. 2005 Jan 28;280(4):2818-25 – reference: 15169889 - Mol Cell Biol. 2004 Jun;24(12):5249-56 – reference: 20945529 - FEBS J. 2010 Oct;277(20):4126-39 – reference: 22179316 - Nat Med. 2012 Jan;18(1):159-65 – reference: 17241518 - Acta Pharmacol Sin. 2007 Feb;28(2):173-9 – reference: 17397914 - Mol Aspects Med. 2008 Jun;29(3):187-200 – reference: 22354967 - J Biol Chem. 2012 Apr 27;287(18):14749-59 – reference: 17213196 - J Biol Chem. 2007 Mar 9;282(10):7077-86 – reference: 23983126 - J Biol Chem. 2013 Oct 4;288(40):28713-26 – reference: 20945528 - FEBS J. 2010 Oct;277(20):4112-25 – reference: 8248201 - Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10989-93 – reference: 22347460 - PLoS One. 2012;7(2):e31304 – reference: 23360996 - Nat Commun. 2013;4:1405 – reference: 19165329 - PLoS Genet. 2009 Jan;5(1):e1000350 – reference: 12149445 - Proc Natl Acad Sci U S A. 2002 Dec 10;99 Suppl 4:16407-11 – reference: 18757733 - Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13626-31 – reference: 11447121 - EMBO J. 2001 Jul 16;20(14):3800-10 – reference: 9726424 - J Neurosci Res. 1998 Sep 1;53(5):531-41 – reference: 8943357 - Mol Cell Biol. 1996 Dec;16(12):7018-30 – reference: 16600994 - Hum Mol Genet. 2006 May 1;15(9):1483-96 – reference: 18171934 - J Neurosci. 2008 Jan 2;28(1):163-76 – reference: 14622953 - Anal Biochem. 2003 Dec 1;323(1):12-8 |
SSID | ssj0007017 |
Score | 2.3484633 |
Snippet | Heat shock factor 1 (HSF1) protects neurons from death caused by the accumulation of misfolded proteins. It is believed that this protective effect is mediated... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1599 |
SubjectTerms | Animals Animals, Newborn Apoptosis - drug effects Apoptosis - genetics Brain - cytology Cells, Cultured Chromatin Immunoprecipitation DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Enzyme Inhibitors - pharmacology Female Gene Expression Regulation - drug effects Gene Expression Regulation - genetics Heat Shock Transcription Factors Heat-Shock Proteins - genetics Heat-Shock Proteins - metabolism Humans Male Mice Neurons - drug effects Neurons - metabolism Neuroprotective Agents - metabolism Neuroprotective Agents - pharmacology Niacinamide - pharmacology Protein Multimerization - drug effects Protein Structure, Tertiary - drug effects Protein Structure, Tertiary - genetics Rats Rats, Wistar Signal Transduction - drug effects Signal Transduction - genetics Time Factors Transcription Factors - genetics Transcription Factors - metabolism Vitamin B Complex - pharmacology |
Title | HSF1 Protects Neurons through a Novel Trimerization- and HSP-Independent Mechanism |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24478344 https://www.proquest.com/docview/1493798115 https://www.proquest.com/docview/1827882925 https://pubmed.ncbi.nlm.nih.gov/PMC3905136 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEF616aWXqm36cF_aSm0vFonZZVk4RlEjx5WjqCRVbmhZLwmVjaOYVEp_fWfWyxqn7vOCLGBB4vs8zDAz3xDyLo6ZlizmQTFgkyAqEh2o1JSBSVDfLR6o0Mo1jY_i4Wk0OhNnq5Ig213SFDv6-8a-kv9BFfYBrtgl-w_I-ovCDvgN-MIWEIbtX2E8zA7CvlNaWPStNGW98KN3VL-efzNYS15hWmbZbxnYbMEwOw4qPwC36c8MNgC3aoJfVwzq-Ksd5UtPhi9o160jeqXOb7yFPy6rduDHSOGIQ0-TsZpO3ez2DOsevR_9nslxmwfKcLDx4sLVMrpPEiGWsQTuu4VxZpTZvE3YtbPuo2XVzWRbowkeVbrRmgurKjE6wqLGbP9wh2PaOuRYkBd1FwAqlzOLMTgrdnLI6u3maw7bQ3fJPQYhhQ2_Dz_5t7YE0-Q6yOG2u5tvitLR7jLrfsxPwcntGtuO03LykDxw6NG9JXUekTumfky292rVzGc39AO19b82sbJNPiObaMsm6thEHZuoopZNdJ1NFNhEb7GJejY9IacHH0_2h4GbuBFoEfImwK7phE1YomJwA7mSoYkiwU3IJomMtEpKwTWPSsyn67BkUZEKpkSqEi61Eoo_JVv1vDbPCY0HkzjRJSwZ8MiIicIOZ6mkKrWJDC96RLTPL9dOjh6nokxzDEsBgtxDkCMEechzhKBHdv26y6Ugyx9XvG3hycF2YkJM1WZ-vYCwF5zzNIGg6DfnJExCFJoyOOfZElJ_35YLPSLXwPYnoHb7-pG6urAa7hx18Xj84pfXfEnur_5ar8hWc3VtXoP_2xRvLHF_AHbfriw |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HSF1+protects+neurons+through+a+novel+trimerization-+and+HSP-independent+mechanism&rft.jtitle=The+Journal+of+neuroscience&rft.au=Verma%2C+Pragya&rft.au=Pfister%2C+Jason+A&rft.au=Mallick%2C+Sathi&rft.au=D%27Mello%2C+Santosh+R&rft.date=2014-01-29&rft.eissn=1529-2401&rft.volume=34&rft.issue=5&rft.spage=1599&rft_id=info:doi/10.1523%2FJNEUROSCI.3039-13.2014&rft_id=info%3Apmid%2F24478344&rft.externalDocID=24478344 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |