Early and Late Loss of the Cytoskeletal Scaffolding Protein, Ankyrin G Reveals Its Role in Maturation and Maintenance of Nodes of Ranvier in Myelinated Axons

The mechanisms that govern node of Ranvier organization, stability, and long-term maintenance remain to be fully elucidated. One of the molecular components of the node is the cytoskeletal scaffolding protein, ankyrin G (AnkG), which interacts with multiple members of the nodal complex. The role of...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 37; no. 10; pp. 2524 - 2538
Main Authors Saifetiarova, Julia, Taylor, Anna M, Bhat, Manzoor A
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 08.03.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The mechanisms that govern node of Ranvier organization, stability, and long-term maintenance remain to be fully elucidated. One of the molecular components of the node is the cytoskeletal scaffolding protein, ankyrin G (AnkG), which interacts with multiple members of the nodal complex. The role of AnkG in nodal organization and maintenance is still not clearly defined as to whether AnkG functions as an initial nodal organizer or whether it functions as a nodal stabilizer after the nodal complex has been assembled. Using a mouse model system, we report here that perinatal and juvenile neuronal ablation of AnkG has differential consequences on nodal stability. Early loss of AnkG creates immature nodes with abnormal morphology, which undergo accelerated destabilization within a month, resulting in rapid voltage-gated sodium (Na ) channel and βIV spectrin loss with reduced effects on neurofascin 186. On the other hand, late ablation of AnkG from established nodal complexes leads to slow but progressive nodal destabilization over 10 months, primarily affecting βIV spectrin, followed by Na channels, with modest impact on neurofascin 186. We also show that ankyrin R and βI spectrin are not sufficient to prevent nodal disorganization after AnkG ablation. Additionally, nodal disorganization in both early and late AnkG mutants is accompanied by axonal pathology and neurological dysfunction. Together, our results suggest that AnkG plays an indispensable role in the maturation and long-term stabilization of the newly assembled nodal complex, and that loss of AnkG after nodal stabilization does not lead to rapid nodal disassembly but to loss of specific nodal components in a time-dependent manner. Nodes of Ranvier are the myelin-free gaps along myelinated axons that allow fast communication between neurons and their target cells by propagating action potentials in a saltatory manner. The cytoskeletal scaffolding protein ankyrin G (AnkG) has been thought to play an important role in node formation; however, its precise role in nodal assembly, stability, and maintenance is still not clear. By using spatiotemporal ablation of AnkG, we report its differential role in nodal maturation and stabilization. We show that early AnkG-deficient nodes fail to mature and undergo rapid destabilization. In contrast, nodes that assemble with AnkG are much more stable and undergo gradual disintegration with sequential loss of nodal components in the absence of AnkG.
AbstractList The mechanisms that govern node of Ranvier organization, stability, and long-term maintenance remain to be fully elucidated. One of the molecular components of the node is the cytoskeletal scaffolding protein, ankyrin G (AnkG), which interacts with multiple members of the nodal complex. The role of AnkG in nodal organization and maintenance is still not clearly defined as to whether AnkG functions as an initial nodal organizer or whether it functions as a nodal stabilizer after the nodal complex has been assembled. Using a mouse model system, we report here that perinatal and juvenile neuronal ablation of AnkG has differential consequences on nodal stability. Early loss of AnkG creates immature nodes with abnormal morphology, which undergo accelerated destabilization within a month, resulting in rapid voltage-gated sodium (Na V ) channel and βIV spectrin loss with reduced effects on neurofascin 186. On the other hand, late ablation of AnkG from established nodal complexes leads to slow but progressive nodal destabilization over 10 months, primarily affecting βIV spectrin, followed by Na V channels, with modest impact on neurofascin 186. We also show that ankyrin R and βI spectrin are not sufficient to prevent nodal disorganization after AnkG ablation. Additionally, nodal disorganization in both early and late AnkG mutants is accompanied by axonal pathology and neurological dysfunction. Together, our results suggest that AnkG plays an indispensable role in the maturation and long-term stabilization of the newly assembled nodal complex, and that loss of AnkG after nodal stabilization does not lead to rapid nodal disassembly but to loss of specific nodal components in a time-dependent manner. SIGNIFICANCE STATEMENT Nodes of Ranvier are the myelin-free gaps along myelinated axons that allow fast communication between neurons and their target cells by propagating action potentials in a saltatory manner. The cytoskeletal scaffolding protein ankyrin G (AnkG) has been thought to play an important role in node formation; however, its precise role in nodal assembly, stability, and maintenance is still not clear. By using spatiotemporal ablation of AnkG, we report its differential role in nodal maturation and stabilization. We show that early AnkG-deficient nodes fail to mature and undergo rapid destabilization. In contrast, nodes that assemble with AnkG are much more stable and undergo gradual disintegration with sequential loss of nodal components in the absence of AnkG.
The mechanisms that govern node of Ranvier organization, stability, and long-term maintenance remain to be fully elucidated. One of the molecular components of the node is the cytoskeletal scaffolding protein, ankyrin G (AnkG), which interacts with multiple members of the nodal complex. The role of AnkG in nodal organization and maintenance is still not clearly defined as to whether AnkG functions as an initial nodal organizer or whether it functions as a nodal stabilizer after the nodal complex has been assembled. Using a mouse model system, we report here that perinatal and juvenile neuronal ablation of AnkG has differential consequences on nodal stability. Early loss of AnkG creates immature nodes with abnormal morphology, which undergo accelerated destabilization within a month, resulting in rapid voltage-gated sodium (Na ) channel and βIV spectrin loss with reduced effects on neurofascin 186. On the other hand, late ablation of AnkG from established nodal complexes leads to slow but progressive nodal destabilization over 10 months, primarily affecting βIV spectrin, followed by Na channels, with modest impact on neurofascin 186. We also show that ankyrin R and βI spectrin are not sufficient to prevent nodal disorganization after AnkG ablation. Additionally, nodal disorganization in both early and late AnkG mutants is accompanied by axonal pathology and neurological dysfunction. Together, our results suggest that AnkG plays an indispensable role in the maturation and long-term stabilization of the newly assembled nodal complex, and that loss of AnkG after nodal stabilization does not lead to rapid nodal disassembly but to loss of specific nodal components in a time-dependent manner. Nodes of Ranvier are the myelin-free gaps along myelinated axons that allow fast communication between neurons and their target cells by propagating action potentials in a saltatory manner. The cytoskeletal scaffolding protein ankyrin G (AnkG) has been thought to play an important role in node formation; however, its precise role in nodal assembly, stability, and maintenance is still not clear. By using spatiotemporal ablation of AnkG, we report its differential role in nodal maturation and stabilization. We show that early AnkG-deficient nodes fail to mature and undergo rapid destabilization. In contrast, nodes that assemble with AnkG are much more stable and undergo gradual disintegration with sequential loss of nodal components in the absence of AnkG.
The mechanisms that govern node of Ranvier organization, stability, and long-term maintenance remain to be fully elucidated. One of the molecular components of the node is the cytoskeletal scaffolding protein, ankyrin G (AnkG), which interacts with multiple members of the nodal complex. The role of AnkG in nodal organization and maintenance is still not clearly defined as to whether AnkG functions as an initial nodal organizer or whether it functions as a nodal stabilizer after the nodal complex has been assembled. Using a mouse model system, we report here that perinatal and juvenile neuronal ablation of AnkG has differential consequences on nodal stability. Early loss of AnkG creates immature nodes with abnormal morphology, which undergo accelerated destabilization within a month, resulting in rapid voltage-gated sodium (Na sub(V)) channel and beta IV spectrin loss with reduced effects on neurofascin 186. On the other hand, late ablation of AnkG from established nodal complexes leads to slow but progressive nodal destabilization over 10 months, primarily affecting beta IV spectrin, followed by Na sub(V) channels, with modest impact on neurofascin 186. We also show that ankyrin R and beta I spectrin are not sufficient to prevent nodal disorganization after AnkG ablation. Additionally, nodal disorganization in both early and late AnkG mutants is accompanied by axonal pathology and neurological dysfunction. Together, our results suggest that AnkG plays an indispensable role in the maturation and long-term stabilization of the newly assembled nodal complex, and that loss of AnkG after nodal stabilization does not lead to rapid nodal disassembly but to loss of specific nodal components in a time-dependent manner.
The mechanisms that govern node of Ranvier organization, stability, and long-term maintenance remain to be fully elucidated. One of the molecular components of the node is the cytoskeletal scaffolding protein, ankyrin G (AnkG), which interacts with multiple members of the nodal complex. The role of AnkG in nodal organization and maintenance is still not clearly defined as to whether AnkG functions as an initial nodal organizer or whether it functions as a nodal stabilizer after the nodal complex has been assembled. Using a mouse model system, we report here that perinatal and juvenile neuronal ablation of AnkG has differential consequences on nodal stability. Early loss of AnkG creates immature nodes with abnormal morphology, which undergo accelerated destabilization within a month, resulting in rapid voltage-gated sodium (NaV) channel and βIV spectrin loss with reduced effects on neurofascin 186. On the other hand, late ablation of AnkG from established nodal complexes leads to slow but progressive nodal destabilization over 10 months, primarily affecting βIV spectrin, followed by NaV channels, with modest impact on neurofascin 186. We also show that ankyrin R and βI spectrin are not sufficient to prevent nodal disorganization after AnkG ablation. Additionally, nodal disorganization in both early and late AnkG mutants is accompanied by axonal pathology and neurological dysfunction. Together, our results suggest that AnkG plays an indispensable role in the maturation and long-term stabilization of the newly assembled nodal complex, and that loss of AnkG after nodal stabilization does not lead to rapid nodal disassembly but to loss of specific nodal components in a time-dependent manner.SIGNIFICANCE STATEMENT Nodes of Ranvier are the myelin-free gaps along myelinated axons that allow fast communication between neurons and their target cells by propagating action potentials in a saltatory manner. The cytoskeletal scaffolding protein ankyrin G (AnkG) has been thought to play an important role in node formation; however, its precise role in nodal assembly, stability, and maintenance is still not clear. By using spatiotemporal ablation of AnkG, we report its differential role in nodal maturation and stabilization. We show that early AnkG-deficient nodes fail to mature and undergo rapid destabilization. In contrast, nodes that assemble with AnkG are much more stable and undergo gradual disintegration with sequential loss of nodal components in the absence of AnkG.
Author Bhat, Manzoor A
Taylor, Anna M
Saifetiarova, Julia
Author_xml – sequence: 1
  givenname: Julia
  orcidid: 0000-0001-6870-6649
  surname: Saifetiarova
  fullname: Saifetiarova, Julia
  organization: Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, School of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229-3900
– sequence: 2
  givenname: Anna M
  surname: Taylor
  fullname: Taylor, Anna M
  organization: Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, School of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229-3900
– sequence: 3
  givenname: Manzoor A
  orcidid: 0000-0003-0989-1498
  surname: Bhat
  fullname: Bhat, Manzoor A
  email: bhatm@uthscsa.edu
  organization: Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, School of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229-3900 bhatm@uthscsa.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28148727$$D View this record in MEDLINE/PubMed
BookMark eNqNks1uEzEUhS1URNPCK1ResmCCf2bsmQ1SFIUSlLYopWvL47nTunXsYjsR8zC8K5O0VLBjZcn3nO9e-54TdOSDB4TOKJnSivGP9x62MSRjp0wIWlAxZYTKV2gyVpuClYQeoQlhkhSilOUxOknpnhAiR9EbdMxqWtaSyQn6tdDRDVj7Dq90BrwKKeHQ43wHeD7kkB7AQdYOXxvd98F11t_ibzFksP4DnvmHIVqPz_EadqBdwsuc8Do4wOPthc7bqLMN_sC_0NZn8Nob2He4DB0cWq2131mIB8cAzvpxjg7Pfgaf3qLX_UiFd8_nKbr5vPg-_1Ksrs6X89mqMBXluShb00Dd9NzUrRA1Z5LSWsqWiwpqCX3TUdJqUZu27HjTAzFtL6k2ZUOZLsfvPEWfnriP23YDnQGfo3bqMdqNjoMK2qp_K97eqduwUxWvSk7LEfD-GRDDjy2krDY2GXBOewjbpGhdUyka1jT_IRVVxTmrxCgVT1IzrjpF6F8mokTtY6C-Xi5u1lfX86Xax0BRofYxGI1nf7_nxfZn7_w3R4a0YQ
CitedBy_id crossref_primary_10_1083_jcb_201907048
crossref_primary_10_1186_s42494_019_0004_8
crossref_primary_10_1523_ENEURO_0138_18_2018
crossref_primary_10_1523_JNEUROSCI_1261_22_2022
crossref_primary_10_1002_jnr_24052
crossref_primary_10_1007_s12038_020_00117_3
crossref_primary_10_3389_fphar_2018_01172
crossref_primary_10_1002_jnr_24352
crossref_primary_10_3389_fphys_2017_00852
crossref_primary_10_1038_s41583_020_00406_8
crossref_primary_10_1038_s41598_018_19314_0
crossref_primary_10_1002_cm_21602
crossref_primary_10_1083_jcb_201702150
crossref_primary_10_1038_s41467_019_13658_5
crossref_primary_10_1016_j_nicl_2020_102384
crossref_primary_10_1021_acs_chemrestox_0c00216
crossref_primary_10_1016_j_celrep_2023_113274
crossref_primary_10_1093_brain_awac078
crossref_primary_10_1111_jnc_14553
crossref_primary_10_1016_j_conb_2018_08_007
crossref_primary_10_1111_nyas_13718
crossref_primary_10_3389_fncel_2018_00201
Cites_doi 10.1074/jbc.270.5.2352
10.1038/nn.3858
10.1523/JNEUROSCI.17-18-07025.1997
10.1093/gerona/glu208
10.3181/0709-MR-243
10.1016/j.neuron.2010.12.016
10.1016/j.neulet.2010.07.076
10.1007/BF00685303
10.1016/bs.ctm.2015.10.001
10.1016/j.ydbio.2005.05.028
10.1016/j.expneurol.2015.03.009
10.1016/S0896-6273(01)00266-5
10.1016/j.neuron.2011.05.029
10.1016/S0896-6273(01)00294-X
10.1083/jcb.200109026
10.1016/j.neuron.2005.10.019
10.1002/jnr.23197
10.1093/brain/awl284
10.1017/S0317167100048162
10.1038/ng1095
10.1002/glia.20750
10.1038/nn.2118
10.1016/j.devcel.2013.11.023
10.1083/jcb.200612012
10.1073/pnas.0914191107
10.1093/cercor/bhr214
10.1186/1471-2202-14-96
10.1073/pnas.0402765101
10.1016/j.devcel.2010.02.013
10.1016/j.expneurol.2011.11.039
10.1016/S0896-6273(01)00265-3
10.1083/jcb.135.5.1355
10.1083/jcb.200408007
10.1016/j.neuron.2005.06.026
10.1038/nn.3859
10.1073/pnas.042601799
10.1111/j.1471-4159.2009.05873.x
10.1073/pnas.1416544112
10.1002/jnr.22015
10.1523/JNEUROSCI.5951-09.2010
10.1016/j.neuron.2010.02.004
10.1083/jcb.200110003
10.1083/jcb.143.5.1295
10.1016/j.neuron.2013.03.005
10.1073/pnas.0601082103
10.1113/jphysiol.2005.083089
ContentType Journal Article
Copyright Copyright © 2017 the authors 0270-6474/17/372524-15$15.00/0.
Copyright © 2017 the authors 0270-6474/17/372524-15$15.00/0 2017
Copyright_xml – notice: Copyright © 2017 the authors 0270-6474/17/372524-15$15.00/0.
– notice: Copyright © 2017 the authors 0270-6474/17/372524-15$15.00/0 2017
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7TK
5PM
DOI 10.1523/jneurosci.2661-16.2017
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList CrossRef
MEDLINE
Neurosciences Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 2538
ExternalDocumentID 10_1523_JNEUROSCI_2661_16_2017
28148727
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM063074
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
53G
5GY
5RE
5VS
AAFWJ
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
AENEX
AFCFT
AFHIN
AFOSN
AHWXS
AIZTS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
NPM
OK1
P0W
P2P
QZG
R.V
RHF
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
YBU
YHG
YKV
YNH
YSK
AAYXX
CITATION
7X8
7TK
5PM
ID FETCH-LOGICAL-c513t-4bc9e89f3c8b66832711877b365e87ef9d10ba68cb4d39fe0cbf71ac4912a4523
IEDL.DBID RPM
ISSN 0270-6474
IngestDate Tue Sep 17 21:25:23 EDT 2024
Fri Oct 25 00:46:29 EDT 2024
Fri Oct 25 21:01:17 EDT 2024
Fri Dec 06 04:00:21 EST 2024
Sat Sep 28 08:46:59 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords myelin
nodes of Ranvier
neurofascin
nerve conduction
ankyrin G
axonal domains
Language English
License Copyright © 2017 the authors 0270-6474/17/372524-15$15.00/0.
https://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c513t-4bc9e89f3c8b66832711877b365e87ef9d10ba68cb4d39fe0cbf71ac4912a4523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: J.S., A.M.T., and M.A.B. designed research; J.S. and A.M.T. performed research; J.S., A.M.T., and M.A.B. analyzed data; J.S. and M.A.B. wrote the paper.
ORCID 0000-0003-0989-1498
0000-0001-6870-6649
OpenAccessLink https://www.jneurosci.org/content/jneuro/37/10/2524.full.pdf
PMID 28148727
PQID 1865533256
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5354314
proquest_miscellaneous_1881769299
proquest_miscellaneous_1865533256
crossref_primary_10_1523_JNEUROSCI_2661_16_2017
pubmed_primary_28148727
PublicationCentury 2000
PublicationDate 2017-03-08
PublicationDateYYYYMMDD 2017-03-08
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-08
  day: 08
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2017
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References 15760941 - J Physiol. 2005 May 1;564(Pt 3):803-15
16551741 - Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5137-42
9832557 - J Cell Biol. 1998 Nov 30;143(5):1295-304
11724816 - J Cell Biol. 2001 Nov 26;155(5):739-46
18454144 - Nat Neurosci. 2008 Jun;11(6):721-8
9278538 - J Neurosci. 1997 Sep 15;17(18):7025-36
21262464 - Neuron. 2011 Jan 27;69(2):244-57
20691755 - Neurosci Lett. 2010 Oct 11;483(2):127-31
7836469 - J Biol Chem. 1995 Feb 3;270(5):2352-9
8313241 - Can J Neurol Sci. 1993 Nov;20(4):263-70
19141078 - J Neurochem. 2009 Mar;108(5):1266-76
25792482 - Exp Neurol. 2015 May;267:209-18
17052987 - Brain. 2007 Feb;130(Pt 2):394-403
25362473 - Nat Neurosci. 2014 Dec;17(12):1664-72
5363944 - Acta Neuropathol. 1969;14(3):237-49
11807096 - J Cell Biol. 2002 Jan 21;156(2):337-48
15381686 - J Cell Biol. 2004 Sep 27;166(7):983-90
8947556 - J Cell Biol. 1996 Dec;135(5):1355-67
19185024 - J Neurosci Res. 2009 Jun;87(8):1773-93
11395000 - Neuron. 2001 May;30(2):369-83
23664614 - Neuron. 2013 May 8;78(3):469-82
24011083 - BMC Neurosci. 2013 Sep 06;14:96
18803321 - Glia. 2008 Nov 1;56(14):1532-40
20412769 - Dev Cell. 2010 Apr 20;18(4):533-43
25362471 - Nat Neurosci. 2014 Dec;17(12):1673-81
22178332 - Exp Neurol. 2012 Jan;233(1):534-42
16039564 - Neuron. 2005 Jul 21;47(2):215-29
16337912 - Neuron. 2005 Dec 8;48(5):737-42
20188654 - Neuron. 2010 Feb 25;65(4):490-502
16566914 - Dev Biol. 2006 May 1;293(1):1-12
26781832 - Curr Top Membr. 2016;77:143-84
24412576 - Dev Cell. 2014 Jan 27;28(2):117-31
21745638 - Neuron. 2011 Jul 14;71(1):61-75
15148385 - Proc Natl Acad Sci U S A. 2004 May 25;101(21):8168-73
11343648 - Neuron. 2001 Apr;30(1):105-19
25552556 - Proc Natl Acad Sci U S A. 2015 Jan 27;112(4):957-64
20371806 - J Neurosci. 2010 Apr 7;30(14):4868-76
21880656 - Cereb Cortex. 2012 Jul;22(7):1473-86
12590258 - Nat Genet. 2003 Mar;33(3):366-74
23404451 - J Neurosci Res. 2013 May;91(5):603-22
11343647 - Neuron. 2001 Apr;30(1):91-104
17548513 - J Cell Biol. 2007 Jun 4;177(5):857-70
25477428 - J Gerontol A Biol Sci Med Sci. 2015 Nov;70(11):1312-9
11842202 - Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):2303-8
20538976 - Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12564-9
18367627 - Exp Biol Med (Maywood). 2008 Apr;233(4):394-400
2023041803240514000_37.10.2524.29
2023041803240514000_37.10.2524.28
2023041803240514000_37.10.2524.25
2023041803240514000_37.10.2524.24
2023041803240514000_37.10.2524.46
2023041803240514000_37.10.2524.27
2023041803240514000_37.10.2524.26
2023041803240514000_37.10.2524.10
Lambert (2023041803240514000_37.10.2524.30) 1997; 17
2023041803240514000_37.10.2524.32
2023041803240514000_37.10.2524.31
2023041803240514000_37.10.2524.1
2023041803240514000_37.10.2524.12
2023041803240514000_37.10.2524.34
2023041803240514000_37.10.2524.11
2023041803240514000_37.10.2524.33
2023041803240514000_37.10.2524.3
2023041803240514000_37.10.2524.2
2023041803240514000_37.10.2524.5
2023041803240514000_37.10.2524.4
2023041803240514000_37.10.2524.7
2023041803240514000_37.10.2524.6
2023041803240514000_37.10.2524.9
2023041803240514000_37.10.2524.8
2023041803240514000_37.10.2524.18
2023041803240514000_37.10.2524.17
2023041803240514000_37.10.2524.39
2023041803240514000_37.10.2524.19
2023041803240514000_37.10.2524.14
2023041803240514000_37.10.2524.36
2023041803240514000_37.10.2524.13
2023041803240514000_37.10.2524.35
2023041803240514000_37.10.2524.16
2023041803240514000_37.10.2524.38
2023041803240514000_37.10.2524.15
2023041803240514000_37.10.2524.37
2023041803240514000_37.10.2524.21
2023041803240514000_37.10.2524.43
2023041803240514000_37.10.2524.20
2023041803240514000_37.10.2524.42
2023041803240514000_37.10.2524.23
2023041803240514000_37.10.2524.45
2023041803240514000_37.10.2524.22
2023041803240514000_37.10.2524.44
2023041803240514000_37.10.2524.41
2023041803240514000_37.10.2524.40
References_xml – ident: 2023041803240514000_37.10.2524.27
  doi: 10.1074/jbc.270.5.2352
– ident: 2023041803240514000_37.10.2524.10
  doi: 10.1038/nn.3858
– volume: 17
  start-page: 7025
  year: 1997
  ident: 2023041803240514000_37.10.2524.30
  article-title: Morphogenesis of the node of Ranvier: co-clusters of ankyrin and ankyrin-binding integral proteins define early developmental intermediates
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.17-18-07025.1997
  contributor:
    fullname: Lambert
– ident: 2023041803240514000_37.10.2524.44
  doi: 10.1093/gerona/glu208
– ident: 2023041803240514000_37.10.2524.39
  doi: 10.3181/0709-MR-243
– ident: 2023041803240514000_37.10.2524.43
  doi: 10.1016/j.neuron.2010.12.016
– ident: 2023041803240514000_37.10.2524.33
  doi: 10.1016/j.neulet.2010.07.076
– ident: 2023041803240514000_37.10.2524.2
  doi: 10.1007/BF00685303
– ident: 2023041803240514000_37.10.2524.5
  doi: 10.1016/bs.ctm.2015.10.001
– ident: 2023041803240514000_37.10.2524.28
  doi: 10.1016/j.ydbio.2005.05.028
– ident: 2023041803240514000_37.10.2524.32
  doi: 10.1016/j.expneurol.2015.03.009
– ident: 2023041803240514000_37.10.2524.24
  doi: 10.1016/S0896-6273(01)00266-5
– ident: 2023041803240514000_37.10.2524.34
  doi: 10.1016/j.neuron.2011.05.029
– ident: 2023041803240514000_37.10.2524.6
  doi: 10.1016/S0896-6273(01)00294-X
– ident: 2023041803240514000_37.10.2524.22
  doi: 10.1083/jcb.200109026
– ident: 2023041803240514000_37.10.2524.38
  doi: 10.1016/j.neuron.2005.10.019
– ident: 2023041803240514000_37.10.2524.9
  doi: 10.1002/jnr.23197
– ident: 2023041803240514000_37.10.2524.15
  doi: 10.1093/brain/awl284
– ident: 2023041803240514000_37.10.2524.25
  doi: 10.1017/S0317167100048162
– ident: 2023041803240514000_37.10.2524.31
  doi: 10.1038/ng1095
– ident: 2023041803240514000_37.10.2524.37
  doi: 10.1002/glia.20750
– ident: 2023041803240514000_37.10.2524.45
  doi: 10.1038/nn.2118
– ident: 2023041803240514000_37.10.2524.3
  doi: 10.1016/j.devcel.2013.11.023
– ident: 2023041803240514000_37.10.2524.13
  doi: 10.1083/jcb.200612012
– ident: 2023041803240514000_37.10.2524.8
  doi: 10.1073/pnas.0914191107
– ident: 2023041803240514000_37.10.2524.1
  doi: 10.1093/cercor/bhr214
– ident: 2023041803240514000_37.10.2524.19
  doi: 10.1186/1471-2202-14-96
– ident: 2023041803240514000_37.10.2524.11
  doi: 10.1073/pnas.0402765101
– ident: 2023041803240514000_37.10.2524.18
  doi: 10.1016/j.devcel.2010.02.013
– ident: 2023041803240514000_37.10.2524.40
  doi: 10.1016/j.expneurol.2011.11.039
– ident: 2023041803240514000_37.10.2524.7
  doi: 10.1016/S0896-6273(01)00265-3
– ident: 2023041803240514000_37.10.2524.12
  doi: 10.1083/jcb.135.5.1355
– ident: 2023041803240514000_37.10.2524.29
  doi: 10.1083/jcb.200408007
– ident: 2023041803240514000_37.10.2524.14
  doi: 10.1016/j.neuron.2005.06.026
– ident: 2023041803240514000_37.10.2524.20
  doi: 10.1038/nn.3859
– ident: 2023041803240514000_37.10.2524.23
  doi: 10.1073/pnas.042601799
– ident: 2023041803240514000_37.10.2524.4
  doi: 10.1111/j.1471-4159.2009.05873.x
– ident: 2023041803240514000_37.10.2524.21
  doi: 10.1073/pnas.1416544112
– ident: 2023041803240514000_37.10.2524.35
  doi: 10.1002/jnr.22015
– ident: 2023041803240514000_37.10.2524.42
  doi: 10.1523/JNEUROSCI.5951-09.2010
– ident: 2023041803240514000_37.10.2524.16
  doi: 10.1016/j.neuron.2010.02.004
– ident: 2023041803240514000_37.10.2524.26
  doi: 10.1083/jcb.200110003
– ident: 2023041803240514000_37.10.2524.46
  doi: 10.1083/jcb.143.5.1295
– ident: 2023041803240514000_37.10.2524.41
  doi: 10.1016/j.neuron.2013.03.005
– ident: 2023041803240514000_37.10.2524.17
  doi: 10.1073/pnas.0601082103
– ident: 2023041803240514000_37.10.2524.36
  doi: 10.1113/jphysiol.2005.083089
SSID ssj0007017
Score 2.4111025
Snippet The mechanisms that govern node of Ranvier organization, stability, and long-term maintenance remain to be fully elucidated. One of the molecular components of...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 2524
SubjectTerms Animals
Ankyrins - metabolism
Axons - physiology
Axons - ultrastructure
Cell Enlargement
Cells, Cultured
Cytoskeletal Proteins - metabolism
Cytoskeleton - physiology
Cytoskeleton - ultrastructure
Female
Male
Mice
Mice, Knockout
Mice, Transgenic
Nerve Fibers, Myelinated - physiology
Nerve Fibers, Myelinated - ultrastructure
Neural Conduction - physiology
Ranvier's Nodes - physiology
Ranvier's Nodes - ultrastructure
Title Early and Late Loss of the Cytoskeletal Scaffolding Protein, Ankyrin G Reveals Its Role in Maturation and Maintenance of Nodes of Ranvier in Myelinated Axons
URI https://www.ncbi.nlm.nih.gov/pubmed/28148727
https://search.proquest.com/docview/1865533256
https://search.proquest.com/docview/1881769299
https://pubmed.ncbi.nlm.nih.gov/PMC5354314
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF01PXFBQPkIH9UiIU449tpr7_oYRZS2NFFJqdSbtbveVaM266pxEfkx_FdmNnbUgsSBq7_W0Rt73sRv3hDyIamZZmVdRqlMeMR1KqISaHakktRoyy0ULkEgOysOz_nxRX6xQ_K-FyaI9o1ejPz1cuQXl0FbebM0ca8Ti0-nkzzDDm4eD8gA0m9fonevX5GEMbtQbkFdxAXv2oKh4IqPZyiPO5scjTAtRQwlCgzH8KUSqgKBk2XuJ6e_GOefwsl7mejgCXncUUg63tzqU7Jj_TOyN_ZQPi_X9CMNos7wb_ke-RUMjKnyNT0BVklPYFnaOAq0j07WbbO6grQD_JueGeXc5ksUPUXvhoX_RMf-an278PQLndsfwChX9Khd0XlzbSlsnaInaAA2XH-q0HoC_TssrjBrahuWmiuPuTecscbud7iPmo5_Qrg_J-cHn79PDqNuIkNkcpa1gKUprSxdZqQuCngZCJxWLnRW5FYK68qaJVoV0mheZ6WzidFOMGV4yVLFAYIXZNc33r4i1Fj0BTJacKWBNMJuKVyWuNzUTkgrhyTuoahuNsYbFRYscJFqi2OFOFasqBDHIXnfI1bBM4IfPpS3zd2qYth9m2XA7v51jGSiALJYDsnLDcrbdfvwGBLxAP_tAejR_XAPhG7w6u5C9fV_n_mGPMIfF2Rv8i3ZbW_v7DvgQa3eJ4Ov3-R-iP7fMMAIxA
link.rule.ids 230,314,727,780,784,885,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXGeIAXBIyP8mkkxBNp48SJnceqYrSjraZuk_YW2Y4tqq3OtGaI_hj-K_e6SbWBxAOvSRwnOk7uucm55xLyMa6YZkVVRImMecR1IqICaHak4sRoyy0kLkEgO8_HZ_zoPDvfI1lXCxNE-0Yv-_5y1ffL70FbebUyg04nNjiejbIUK7j54B65n6WiYF2S3r6ARRwa7ULCBZkRF7wtDIaUa3A0R4HcyWjSx8AUMRQpMGzEl0jICwT2lrkdnv7inH9KJ2_FosPH5FFLIulwe7FPyJ71T8nB0EMCvdrQTzTIOsP38gPyK1gYU-UrOgVeSacwLa0dBeJHR5umXl9A4AEGTk-Mcm77L4oeo3vD0n-mQ3-xuV56-pUu7A_glGs6adZ0UV9aCltn6AoaoA3nnyk0n0AHD4szzOvKhqkWymP0DSM2WP8O11HR4U9Y8M_I2eGX09E4ansyRCZjaQNomsLKwqVG6jyH14HAfuVCp3lmpbCuqFisVS6N5lVaOBsb7QRThhcsURwgeE72fe3tS0KNRWcgowVXGmgj7JbCpbHLTOWEtLJHBh0U5dXWeqPElAVOUu5wLBHHkuUl4tgjHzrESnhK8NeH8ra-WZcM62_TFPjdv46RTORAF4seebFFeTdvtzx6RNzBf3cAunTf3QOLN7h1t4v11X-PfE8ejE9n03I6mX97TR7ijQYRnHxD9pvrG_sWWFGj34Vn4DcA4Ask
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVgSIgXNBiw8mkkxBNp4sSJnceqUNbRVlXHpL1FsWOLaqtTrdlEfwz_lXvdtOpA4oHXJI4TnZvcc5Pjcwn5EFVMsbzKg1hGPOAqFkEONDsoo1grww0ULl4gO8lOzvnpRXqx1-rLi_a1mnfd1aLr5j-8tnK50OFWJxZOx_00wRXcPFxWNrxPHqQJBNm2UG9fwiLyzXah6ILqiAveLg6Gsis8naBI7qw_7GJyChgKFRg244sl1AYC-8vsp6i_eOef8sm9fDQ4JI9bIkl7mwt-Qu4Z95Qc9RwU0Ys1_Ui9tNN_Mz8iv7yNMS1dRUfALekIpqW1pUD-aH_d1KtLSD7AwumZLq3d_I-iU3RwmLtPtOcu19dzR7_SmbkFXrmiw2ZFZ_WVobB1jM6gHl5__nGJBhTo4mFwhkldGT_VrHSYgf2INa6Bh-uoaO8nBP0zcj748r1_ErR9GQKdsqQBRHVuZG4TLVWWwStBYM9yoZIsNVIYm1csUmUmteJVklsTaWUFKzXPWVxygOA5OXC1M8eEaoPuQFoJXiqgjrBbCptENtWVFdLIDgm3UBTLjf1GgWULnKTY4VggjgXLCsSxQ95vESvgScHfH6Uz9c2qYLgGN0mA4_3rGMlEBpQx75AXG5R3827Do0PEHfx3B6BT9909EMDesbsN2Jf_PfIdeTj9PChGw8m3V-QR3qfXwcnX5KC5vjFvgBg16q1_BH4D0w0MNw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+and+Late+Loss+of+the+Cytoskeletal+Scaffolding+Protein%2C+Ankyrin+G+Reveals+Its+Role+in+Maturation+and+Maintenance+of+Nodes+of+Ranvier+in+Myelinated+Axons&rft.jtitle=The+Journal+of+neuroscience&rft.au=Saifetiarova%2C+Julia&rft.au=Taylor%2C+Anna+M&rft.au=Bhat%2C+Manzoor+A&rft.date=2017-03-08&rft.eissn=1529-2401&rft.volume=37&rft.issue=10&rft.spage=2524&rft.epage=2538&rft_id=info:doi/10.1523%2FJNEUROSCI.2661-16.2017&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon