TMS-EEG Signatures of GABAergic Neurotransmission in the Human Cortex

Combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG) constitutes a powerful tool to directly assess human cortical excitability and connectivity. TMS of the primary motor cortex elicits a sequence of TMS-evoked EEG potentials (TEPs). It is thought that inhibitory neurot...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 34; no. 16; pp. 5603 - 5612
Main Authors Premoli, Isabella, Castellanos, Nazareth, Rivolta, Davide, Belardinelli, Paolo, Bajo, Ricardo, Zipser, Carl, Espenhahn, Svenja, Heidegger, Tonio, Müller-Dahlhaus, Florian, Ziemann, Ulf
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 16.04.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG) constitutes a powerful tool to directly assess human cortical excitability and connectivity. TMS of the primary motor cortex elicits a sequence of TMS-evoked EEG potentials (TEPs). It is thought that inhibitory neurotransmission through GABA-A receptors (GABAAR) modulates early TEPs (<50 ms after TMS), whereas GABA-B receptors (GABABR) play a role for later TEPs (at ∼100 ms after TMS). However, the physiological underpinnings of TEPs have not been clearly elucidated yet. Here, we studied the role of GABAA/B-ergic neurotransmission for TEPs in healthy subjects using a pharmaco-TMS-EEG approach. In Experiment 1, we tested the effects of a single oral dose of alprazolam (a classical benzodiazepine acting as allosteric-positive modulator at α1, α2, α3, and α5 subunit-containing GABAARs) and zolpidem (a positive modulator mainly at the α1 GABAAR) in a double-blind, placebo-controlled, crossover study. In Experiment 2, we tested the influence of baclofen (a GABABR agonist) and diazepam (a classical benzodiazepine) versus placebo on TEPs. Alprazolam and diazepam increased the amplitude of the negative potential at 45 ms after stimulation (N45) and decreased the negative component at 100 ms (N100), whereas zolpidem increased the N45 only. In contrast, baclofen specifically increased the N100 amplitude. These results provide strong evidence that the N45 represents activity of α1-subunit-containing GABAARs, whereas the N100 represents activity of GABABRs. Findings open a novel window of opportunity to study alteration of GABAA-/GABAB-related inhibition in disorders, such as epilepsy or schizophrenia.
AbstractList Combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG) constitutes a powerful tool to directly assess human cortical excitability and connectivity. TMS of the primary motor cortex elicits a sequence of TMS-evoked EEG potentials (TEPs). It is thought that inhibitory neurotransmission through GABA-A receptors (GABAAR) modulates early TEPs (<50 ms after TMS), whereas GABA-B receptors (GABABR) play a role for later TEPs (at ∼100 ms after TMS). However, the physiological underpinnings of TEPs have not been clearly elucidated yet. Here, we studied the role of GABAA/B-ergic neurotransmission for TEPs in healthy subjects using a pharmaco-TMS-EEG approach. In Experiment 1, we tested the effects of a single oral dose of alprazolam (a classical benzodiazepine acting as allosteric-positive modulator at α1, α2, α3, and α5 subunit-containing GABAARs) and zolpidem (a positive modulator mainly at the α1 GABAAR) in a double-blind, placebo-controlled, crossover study. In Experiment 2, we tested the influence of baclofen (a GABABR agonist) and diazepam (a classical benzodiazepine) versus placebo on TEPs. Alprazolam and diazepam increased the amplitude of the negative potential at 45 ms after stimulation (N45) and decreased the negative component at 100 ms (N100), whereas zolpidem increased the N45 only. In contrast, baclofen specifically increased the N100 amplitude. These results provide strong evidence that the N45 represents activity of α1-subunit-containing GABAARs, whereas the N100 represents activity of GABABRs. Findings open a novel window of opportunity to study alteration of GABAA-/GABAB-related inhibition in disorders, such as epilepsy or schizophrenia.
Combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG) constitutes a powerful tool to directly assess human cortical excitability and connectivity. TMS of the primary motor cortex elicits a sequence of TMS-evoked EEG potentials (TEPs). It is thought that inhibitory neurotransmission through GABA-A receptors (GABAAR) modulates early TEPs (<50 ms after TMS), whereas GABA-B receptors (GABABR) play a role for later TEPs (at ∼100 ms after TMS). However, the physiological underpinnings of TEPs have not been clearly elucidated yet. Here, we studied the role of GABAA/B-ergic neurotransmission for TEPs in healthy subjects using a pharmaco-TMS-EEG approach. In Experiment 1, we tested the effects of a single oral dose of alprazolam (a classical benzodiazepine acting as allosteric-positive modulator at α1, α2, α3, and α5 subunit-containing GABAARs) and zolpidem (a positive modulator mainly at the α1 GABAAR) in a double-blind, placebo-controlled, crossover study. In Experiment 2, we tested the influence of baclofen (a GABABR agonist) and diazepam (a classical benzodiazepine) versus placebo on TEPs. Alprazolam and diazepam increased the amplitude of the negative potential at 45 ms after stimulation (N45) and decreased the negative component at 100 ms (N100), whereas zolpidem increased the N45 only. In contrast, baclofen specifically increased the N100 amplitude. These results provide strong evidence that the N45 represents activity of α1-subunit-containing GABAARs, whereas the N100 represents activity of GABABRs. Findings open a novel window of opportunity to study alteration of GABAA-/GABAB-related inhibition in disorders, such as epilepsy or schizophrenia.Combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG) constitutes a powerful tool to directly assess human cortical excitability and connectivity. TMS of the primary motor cortex elicits a sequence of TMS-evoked EEG potentials (TEPs). It is thought that inhibitory neurotransmission through GABA-A receptors (GABAAR) modulates early TEPs (<50 ms after TMS), whereas GABA-B receptors (GABABR) play a role for later TEPs (at ∼100 ms after TMS). However, the physiological underpinnings of TEPs have not been clearly elucidated yet. Here, we studied the role of GABAA/B-ergic neurotransmission for TEPs in healthy subjects using a pharmaco-TMS-EEG approach. In Experiment 1, we tested the effects of a single oral dose of alprazolam (a classical benzodiazepine acting as allosteric-positive modulator at α1, α2, α3, and α5 subunit-containing GABAARs) and zolpidem (a positive modulator mainly at the α1 GABAAR) in a double-blind, placebo-controlled, crossover study. In Experiment 2, we tested the influence of baclofen (a GABABR agonist) and diazepam (a classical benzodiazepine) versus placebo on TEPs. Alprazolam and diazepam increased the amplitude of the negative potential at 45 ms after stimulation (N45) and decreased the negative component at 100 ms (N100), whereas zolpidem increased the N45 only. In contrast, baclofen specifically increased the N100 amplitude. These results provide strong evidence that the N45 represents activity of α1-subunit-containing GABAARs, whereas the N100 represents activity of GABABRs. Findings open a novel window of opportunity to study alteration of GABAA-/GABAB-related inhibition in disorders, such as epilepsy or schizophrenia.
Combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG) constitutes a powerful tool to directly assess human cortical excitability and connectivity. TMS of the primary motor cortex elicits a sequence of TMS-evoked EEG potentials (TEPs). It is thought that inhibitory neurotransmission through GABA-A receptors (GABAAR) modulates early TEPs (<50 ms after TMS), whereas GABA-B receptors (GABABR) play a role for later TEPs (at ~100 ms after TMS). However, the physiological underpinnings of TEPs have not been clearly elucidated yet. Here, we studied the role of GABAA/B-ergic neurotransmission for TEPs in healthy subjects using a pharmaco-TMS-EEG approach. In Experiment 1, we tested the effects of a single oral dose of alprazolam (a classical benzodiazepine acting as allosteric-positive modulator at alpha 1, alpha 2, alpha 3, and alpha 5 subunit-containing GABAARs) and zolpidem (a positive modulator mainly at the alpha 1 GABAAR) in a double-blind, placebo-controlled, crossover study. In Experiment 2, we tested the influence of baclofen (a GABABR agonist) and diazepam (a classical benzodiazepine) versus placebo on TEPs. Alprazolam and diazepam increased the amplitude of the negative potential at 45 ms after stimulation (N45) and decreased the negative component at 100 ms (N100), whereas zolpidem increased the N45 only. In contrast, baclofen specifically increased the N100 amplitude. These results provide strong evidence that the N45 represents activity of alpha 1-subunit-containing GABAARs, whereas the N100 represents activity of GABABRs. Findings open a novel window of opportunity to study alteration of GABAA-/GABAB-related inhibition in disorders, such as epilepsy or schizophrenia.
Author Rivolta, Davide
Heidegger, Tonio
Castellanos, Nazareth
Bajo, Ricardo
Espenhahn, Svenja
Müller-Dahlhaus, Florian
Belardinelli, Paolo
Zipser, Carl
Premoli, Isabella
Ziemann, Ulf
Author_xml – sequence: 1
  givenname: Isabella
  surname: Premoli
  fullname: Premoli, Isabella
– sequence: 2
  givenname: Nazareth
  surname: Castellanos
  fullname: Castellanos, Nazareth
– sequence: 3
  givenname: Davide
  surname: Rivolta
  fullname: Rivolta, Davide
– sequence: 4
  givenname: Paolo
  surname: Belardinelli
  fullname: Belardinelli, Paolo
– sequence: 5
  givenname: Ricardo
  surname: Bajo
  fullname: Bajo, Ricardo
– sequence: 6
  givenname: Carl
  surname: Zipser
  fullname: Zipser, Carl
– sequence: 7
  givenname: Svenja
  surname: Espenhahn
  fullname: Espenhahn, Svenja
– sequence: 8
  givenname: Tonio
  surname: Heidegger
  fullname: Heidegger, Tonio
– sequence: 9
  givenname: Florian
  surname: Müller-Dahlhaus
  fullname: Müller-Dahlhaus, Florian
– sequence: 10
  givenname: Ulf
  surname: Ziemann
  fullname: Ziemann, Ulf
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24741050$$D View this record in MEDLINE/PubMed
BookMark eNqFkV9v0zAUxS00xLrBV5jyyEvK9Z_EjoSQShW6TWOT6PZsOe5NZ5Taw04QfHtcbVSDlz1Z8v2do3PvOSFHPngk5IzCnFaMf7i8bu--3ayXF_MKVFNSPmdAxSsyy9OmZALoEZkBk1DWQopjcpLSdwCQQOUbcszyH4UKZqS9_bou23ZVrN3Wm3GKmIrQF6vF5wXGrbPFNU4xjNH4tHMpueAL54vxHovzaWd8sQxxxF9vyeveDAnfPb2n5O5Le7s8L69uVhfLxVVpK8rHUjSsqjrgplF9h7jh1nSGbcym7rigzDQ9Q24t7YViHXIlKe9qxRAEAIre8lPy6dH3Yep2uLHoc7JBP0S3M_G3Dsbpfyfe3ett-KnrGhRjkA3ePxnE8GPCNOq8lcVhMB7DlDRVTKqGcSlfRisqlaybSmT07HmsQ56_Z85A_QjYGFKK2B8QCnrfpz70qfd9asr1vs8s_Pif0LrRjLmGvJ4bXpL_AcaopwM
CitedBy_id crossref_primary_10_1002_acn3_50896
crossref_primary_10_1016_j_biopsych_2023_12_018
crossref_primary_10_1016_j_neuroimage_2024_120874
crossref_primary_10_1016_j_neubiorev_2021_11_025
crossref_primary_10_3389_fnins_2020_00554
crossref_primary_10_1016_j_brs_2018_10_008
crossref_primary_10_1016_j_neuroimage_2021_118708
crossref_primary_10_1016_j_biopsych_2023_04_011
crossref_primary_10_1016_j_neuropsychologia_2022_108447
crossref_primary_10_1152_jn_00320_2024
crossref_primary_10_1016_j_brs_2017_12_013
crossref_primary_10_1016_j_neuropsychologia_2017_04_016
crossref_primary_10_1038_s41598_023_49250_7
crossref_primary_10_1016_j_clinph_2019_06_234
crossref_primary_10_1007_s00221_016_4865_4
crossref_primary_10_1016_j_brs_2025_02_018
crossref_primary_10_1016_j_clinph_2020_06_015
crossref_primary_10_1038_s41598_019_53565_9
crossref_primary_10_3390_s22051762
crossref_primary_10_1089_neu_2018_6353
crossref_primary_10_1016_j_jadr_2023_100612
crossref_primary_10_1016_j_clinph_2022_06_012
crossref_primary_10_1016_j_neuroimage_2021_118272
crossref_primary_10_18632_aging_101178
crossref_primary_10_1016_j_brs_2023_02_010
crossref_primary_10_1016_j_ijchp_2024_100495
crossref_primary_10_2478_jtim_2023_0145
crossref_primary_10_1016_j_brs_2023_02_009
crossref_primary_10_1016_j_jneumeth_2021_109430
crossref_primary_10_1109_TNSRE_2024_3486759
crossref_primary_10_1097_j_pain_0000000000003488
crossref_primary_10_3389_fnagi_2019_00248
crossref_primary_10_1038_srep36191
crossref_primary_10_1002_hbm_24448
crossref_primary_10_1016_j_clinph_2021_12_018
crossref_primary_10_1523_ENEURO_0450_24_2024
crossref_primary_10_1016_j_clinph_2019_06_006
crossref_primary_10_1016_j_clinph_2017_06_003
crossref_primary_10_1177_1073858419896751
crossref_primary_10_1016_j_brs_2019_07_009
crossref_primary_10_1016_j_neucli_2017_11_004
crossref_primary_10_1016_j_neuroimage_2016_08_060
crossref_primary_10_1016_j_neuroimage_2019_116139
crossref_primary_10_1371_journal_pone_0184910
crossref_primary_10_1523_JNEUROSCI_1833_15_2015
crossref_primary_10_1016_j_bspc_2023_104650
crossref_primary_10_1016_j_parkreldis_2024_107217
crossref_primary_10_1016_j_brs_2020_12_002
crossref_primary_10_1016_j_neurom_2021_11_004
crossref_primary_10_1016_j_cortex_2023_04_009
crossref_primary_10_1016_j_ijchp_2022_100343
crossref_primary_10_1038_s41386_020_0633_z
crossref_primary_10_1016_j_neuroimage_2017_09_023
crossref_primary_10_1016_j_yebeh_2021_108364
crossref_primary_10_1152_jn_00628_2018
crossref_primary_10_3389_fnins_2017_00585
crossref_primary_10_1016_j_jadr_2022_100439
crossref_primary_10_1080_14737175_2022_2170784
crossref_primary_10_1038_s41598_024_72875_1
crossref_primary_10_1089_brain_2020_0844
crossref_primary_10_1016_j_schres_2021_06_025
crossref_primary_10_1016_j_brs_2018_05_002
crossref_primary_10_1152_jn_00260_2016
crossref_primary_10_1038_s41598_022_05179_x
crossref_primary_10_3389_fpsyt_2022_902089
crossref_primary_10_3390_brainsci14040332
crossref_primary_10_1016_j_neuroscience_2017_06_014
crossref_primary_10_1515_mr_2024_0010
crossref_primary_10_1016_j_neuroimage_2022_119419
crossref_primary_10_1111_epi_17578
crossref_primary_10_1002_hbm_23938
crossref_primary_10_3389_fneur_2024_1505154
crossref_primary_10_1038_s41598_018_32781_9
crossref_primary_10_1016_j_jneumeth_2022_109631
crossref_primary_10_1038_nrneurol_2014_162
crossref_primary_10_1016_j_medidd_2021_100083
crossref_primary_10_1371_journal_pone_0141284
crossref_primary_10_1371_journal_pone_0208747
crossref_primary_10_1016_j_pnpbp_2024_111167
crossref_primary_10_1126_scitranslmed_aal3236
crossref_primary_10_1016_j_clinph_2017_09_007
crossref_primary_10_1016_j_brs_2018_01_002
crossref_primary_10_1016_j_neuroimage_2020_117305
crossref_primary_10_1523_JNEUROSCI_1689_16_2016
crossref_primary_10_1016_j_neuroimage_2018_10_052
crossref_primary_10_3233_JAD_200426
crossref_primary_10_1007_s00406_024_01859_z
crossref_primary_10_1038_s41598_023_45107_1
crossref_primary_10_1016_j_clinph_2021_11_073
crossref_primary_10_1093_cercor_bhab292
crossref_primary_10_1007_s10548_022_00917_w
crossref_primary_10_1016_j_neuroscience_2019_11_022
crossref_primary_10_1111_ejn_14114
crossref_primary_10_3389_fnins_2023_1004763
crossref_primary_10_1177_1545968317712470
crossref_primary_10_1016_j_jneumeth_2022_109651
crossref_primary_10_1038_s41386_019_0468_7
crossref_primary_10_3390_jpm11010054
crossref_primary_10_1016_j_ebcr_2018_03_004
crossref_primary_10_1093_psyrad_kkab007
crossref_primary_10_3389_fnins_2018_00400
crossref_primary_10_1002_hbm_24525
crossref_primary_10_1016_j_jad_2024_07_131
crossref_primary_10_3389_fncir_2016_00073
crossref_primary_10_3390_pharmaceutics12100946
crossref_primary_10_1016_j_neuroimage_2014_09_028
crossref_primary_10_1007_s00406_020_01160_9
crossref_primary_10_1016_j_brs_2021_12_002
crossref_primary_10_1111_pcn_12936
crossref_primary_10_1523_ENEURO_0309_23_2024
crossref_primary_10_1016_j_pnpbp_2024_111184
crossref_primary_10_1016_j_biopsych_2018_09_032
crossref_primary_10_1016_j_nicl_2023_103463
crossref_primary_10_1038_s41598_020_59911_6
crossref_primary_10_1093_brain_awae317
crossref_primary_10_3389_fnmol_2024_1503070
crossref_primary_10_1109_TNSRE_2023_3282659
crossref_primary_10_1038_s41598_018_21457_z
crossref_primary_10_1016_j_neubiorev_2016_03_006
crossref_primary_10_1016_j_brs_2018_06_004
crossref_primary_10_3389_fnins_2021_594536
crossref_primary_10_1007_s00406_021_01287_3
crossref_primary_10_3390_brainsci11030405
crossref_primary_10_1016_j_neurol_2015_11_004
crossref_primary_10_17650_2222_8721_2020_10_1_64_74
crossref_primary_10_1016_j_clinph_2015_02_001
crossref_primary_10_1016_j_clinthera_2020_05_016
crossref_primary_10_1016_j_cortex_2014_10_003
crossref_primary_10_1016_j_biopsych_2024_05_024
crossref_primary_10_1002_cpt_1541
crossref_primary_10_1016_j_transm_2024_100084
crossref_primary_10_3389_fnhum_2023_1247104
crossref_primary_10_1097_WNP_0000000000000662
crossref_primary_10_1016_j_neurot_2024_e00451
crossref_primary_10_1016_j_brainresbull_2024_110972
crossref_primary_10_1016_j_brs_2019_10_007
crossref_primary_10_1016_j_brs_2018_04_015
crossref_primary_10_1016_j_jstrokecerebrovasdis_2019_104452
crossref_primary_10_1523_ENEURO_0209_19_2020
crossref_primary_10_1016_j_neuroimage_2016_02_012
crossref_primary_10_1016_j_neubiorev_2018_05_027
crossref_primary_10_1152_japplphysiol_00288_2021
crossref_primary_10_1007_s10548_020_00773_6
crossref_primary_10_1523_JNEUROSCI_0443_24_2024
crossref_primary_10_1093_brain_awu360
crossref_primary_10_1007_s10548_023_00943_2
crossref_primary_10_1038_s41598_020_61590_2
crossref_primary_10_1016_j_clinph_2017_08_007
crossref_primary_10_1016_j_biopsych_2023_06_016
crossref_primary_10_1093_cercor_bhab493
crossref_primary_10_1111_sms_12350
crossref_primary_10_1016_j_brainresbull_2018_03_018
crossref_primary_10_1515_nf_2016_A103
crossref_primary_10_1186_s12984_023_01223_7
crossref_primary_10_1016_j_neuropharm_2021_108574
crossref_primary_10_1016_j_jneumeth_2022_109693
crossref_primary_10_1111_adb_12486
crossref_primary_10_7554_eLife_88567
crossref_primary_10_1113_JP278638
crossref_primary_10_1177_1073858417734530
crossref_primary_10_1515_nf_2016_1103
crossref_primary_10_3389_fnins_2021_616667
crossref_primary_10_1155_2024_2758522
crossref_primary_10_1162_imag_a_00349
crossref_primary_10_1016_j_jad_2021_11_043
crossref_primary_10_1113_JP280966
crossref_primary_10_1002_hbm_26260
crossref_primary_10_1016_j_brs_2016_08_004
crossref_primary_10_1016_j_clinph_2023_03_010
crossref_primary_10_1016_j_brs_2019_02_021
crossref_primary_10_1038_npp_2016_133
crossref_primary_10_1002_hbm_23545
crossref_primary_10_7554_eLife_88567_3
crossref_primary_10_1016_j_clinph_2022_04_022
crossref_primary_10_1038_s41598_023_45730_y
crossref_primary_10_1016_j_clinph_2017_04_005
crossref_primary_10_26599_SAB_2022_9060016
crossref_primary_10_1088_1741_2552_ac9432
crossref_primary_10_5507_bp_2015_023
crossref_primary_10_1016_j_clinph_2018_10_005
crossref_primary_10_3389_fnhum_2016_00504
crossref_primary_10_1016_j_clinph_2019_01_001
crossref_primary_10_1016_j_neuroscience_2017_12_008
crossref_primary_10_3389_fnins_2019_00612
crossref_primary_10_1007_s00221_016_4773_7
crossref_primary_10_1016_j_brs_2022_09_013
crossref_primary_10_1007_s00221_020_05958_w
crossref_primary_10_1002_hbm_70048
crossref_primary_10_1038_s41598_022_05397_3
crossref_primary_10_1016_j_neuroimage_2020_117394
crossref_primary_10_1177_2470547019861417
crossref_primary_10_1016_j_brs_2015_07_029
crossref_primary_10_1002_ana_24343
crossref_primary_10_1002_da_23100
crossref_primary_10_1111_bcp_15232
crossref_primary_10_1016_j_neurot_2024_e00496
crossref_primary_10_1016_j_brs_2018_03_008
crossref_primary_10_1038_npp_2015_151
crossref_primary_10_1016_j_neuroimage_2014_07_037
crossref_primary_10_1016_j_clinph_2022_07_495
crossref_primary_10_1016_j_jneumeth_2022_109482
crossref_primary_10_1038_s41598_024_59468_8
crossref_primary_10_1038_srep33661
crossref_primary_10_1111_epi_16634
crossref_primary_10_3390_brainsci11091114
crossref_primary_10_1016_j_bandc_2018_01_004
crossref_primary_10_1016_j_neuropsychologia_2019_01_003
crossref_primary_10_3233_JAD_210401
crossref_primary_10_3389_fnagi_2021_804384
crossref_primary_10_1523_JNEUROSCI_0636_21_2021
crossref_primary_10_1167_19_2_9
crossref_primary_10_1001_jamanetworkopen_2019_5578
crossref_primary_10_1007_s10548_018_0662_7
crossref_primary_10_1016_j_brs_2019_05_007
crossref_primary_10_1097_MD_0000000000031774
crossref_primary_10_3390_brainsci10100751
crossref_primary_10_1111_epi_13599
crossref_primary_10_1007_s11357_024_01075_6
crossref_primary_10_1113_JP283986
crossref_primary_10_1016_j_clinph_2016_06_025
crossref_primary_10_1016_j_clinph_2017_08_034
crossref_primary_10_1016_j_clinph_2021_09_013
crossref_primary_10_3389_fnhum_2022_940759
crossref_primary_10_1016_j_biopsych_2023_11_016
crossref_primary_10_1093_brain_awaa127
crossref_primary_10_1080_23279095_2023_2286493
crossref_primary_10_1093_cercor_bhaa004
crossref_primary_10_1038_s41398_021_01451_2
crossref_primary_10_1038_s41598_021_87533_z
crossref_primary_10_1097_WCO_0000000000001345
crossref_primary_10_7554_eLife_83232
crossref_primary_10_1093_cercor_bhad515
crossref_primary_10_1038_s44172_023_00143_7
crossref_primary_10_1113_JP284727
crossref_primary_10_1016_j_cortex_2018_11_022
crossref_primary_10_1016_j_schres_2021_07_019
crossref_primary_10_1016_j_brs_2018_08_003
crossref_primary_10_1016_j_nicl_2020_102206
crossref_primary_10_3389_fnhum_2015_00307
crossref_primary_10_1016_j_ijpsycho_2021_08_008
crossref_primary_10_1038_s41467_024_50504_9
crossref_primary_10_3389_fnagi_2017_00119
crossref_primary_10_1002_mds_27285
crossref_primary_10_1007_s12311_019_01093_7
crossref_primary_10_1016_j_clinph_2014_08_028
crossref_primary_10_3389_fnins_2018_00393
crossref_primary_10_2139_ssrn_4173661
crossref_primary_10_1016_j_neurom_2022_10_055
crossref_primary_10_1002_hbm_24398
crossref_primary_10_1016_j_physbeh_2023_114073
crossref_primary_10_1002_da_23217
crossref_primary_10_1007_s10072_020_04527_x
crossref_primary_10_1016_j_clinph_2016_06_003
crossref_primary_10_3390_brainsci12101358
crossref_primary_10_3389_fnins_2023_1269474
crossref_primary_10_1016_j_clinph_2021_05_008
crossref_primary_10_3390_neurolint16060106
crossref_primary_10_1155_2018_9875326
Cites_doi 10.1523/JNEUROSCI.1777-13.2013
10.1093/brain/aws071
10.1016/j.neuroimage.2013.06.059
10.1007/s00221-006-0402-1
10.1371/journal.pone.0010281
10.1046/j.1460-9568.2003.02858.x
10.1016/0028-3932(71)90067-4
10.1097/00001756-199711100-00024
10.1002/hbm.20608
10.1016/j.neuron.2012.09.004
10.1371/journal.pone.0057069
10.1093/cercor/8.1.40
10.1007/BF00228633
10.1177/0269881108092595
10.1002/(SICI)1097-4598(199809)21:9<1209::AID-MUS15>3.0.CO;2-M
10.1002/ana.20220
10.1007/s00221-006-0365-2
10.1016/j.neuron.2007.06.026
10.1113/jphysiol.1988.sp017390
10.1046/j.1365-2125.2002.t01-10-01714.x
10.1111/j.1472-8206.1990.tb00045.x
10.1016/j.clinph.2012.01.010
10.1016/S0306-4522(99)00021-4
10.1038/ng885
10.1073/pnas.0913008107
10.1111/j.1460-9568.2009.06864.x
10.1016/j.brs.2008.07.004
10.1016/j.jneumeth.2007.03.024
10.1126/science.1091032
10.1016/j.cub.2011.10.017
10.1016/j.clinph.2007.07.005
10.1523/JNEUROSCI.17-16-06133.1997
10.1016/j.cub.2011.05.049
10.1007/BF00229631
10.1016/j.neuroscience.2008.01.043
10.1002/hbm.22016
10.1038/nrn1648
10.2165/00003088-199324060-00003
10.1093/brain/awr340
10.1016/j.neuroimage.2010.07.056
10.1002/ana.20521
10.1113/jphysiol.2006.114694
10.1152/jn.2001.86.4.1983
10.1177/0269881109106898
10.1111/j.1460-9568.2007.05553.x
10.1155/2011/156869
10.1126/science.1117256
10.1016/S0028-3908(99)00136-7
10.1016/j.clinph.2006.05.006
10.1113/jphysiol.2007.142059
10.1016/j.clinph.2009.08.016
10.1152/jn.1999.82.3.1218
10.1016/S1471-4892(02)00015-2
10.1124/jpet.300.1.2
10.2165/00003088-199529030-00002
10.1016/j.tins.2007.05.007
10.1212/WNL.53.9.2069
ContentType Journal Article
Copyright Copyright © 2014 the authors 0270-6474/14/345603-10$15.00/0 2014
Copyright_xml – notice: Copyright © 2014 the authors 0270-6474/14/345603-10$15.00/0 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1523/JNEUROSCI.5089-13.2014
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList MEDLINE

CrossRef
MEDLINE - Academic
Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 5612
ExternalDocumentID PMC6608220
24741050
10_1523_JNEUROSCI_5089_13_2014
Genre Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
53G
5GY
5RE
5VS
AAFWJ
AAJMC
AAYXX
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
ADHGD
AENEX
AETEA
AFCFT
AFOSN
AFSQR
AHWXS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
OK1
P0W
P2P
QZG
R.V
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
XJT
YBU
YHG
YKV
YNH
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
ID FETCH-LOGICAL-c513t-49255b03a98fbeed3caba2dad6b3412a9f2e3cc1f482be38713b682e0400e4fc3
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 14:13:30 EDT 2025
Fri Jul 11 04:33:16 EDT 2025
Thu Jul 10 18:52:19 EDT 2025
Thu Apr 03 07:09:58 EDT 2025
Tue Jul 01 03:47:11 EDT 2025
Thu Apr 24 22:50:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords GABA
electroencephalography
pharmaco-TMS-EEG
inhibition
human cortex
transcranial magnetic stimulation
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c513t-49255b03a98fbeed3caba2dad6b3412a9f2e3cc1f482be38713b682e0400e4fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
Author contributions: I.P., F.M.-D., and U.Z. designed research; I.P., C.Z., S.E., T.H., and F.M.-D. performed research; I.P., N.C., D.R., P.B., R.B., C.Z., S.E., and U.Z. analyzed data; I.P., F.M.-D., and U.Z. wrote the paper.
OpenAccessLink https://www.jneurosci.org/content/jneuro/34/16/5603.full.pdf
PMID 24741050
PQID 1517876954
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6608220
proquest_miscellaneous_1827892377
proquest_miscellaneous_1517876954
pubmed_primary_24741050
crossref_primary_10_1523_JNEUROSCI_5089_13_2014
crossref_citationtrail_10_1523_JNEUROSCI_5089_13_2014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-16
PublicationDateYYYYMMDD 2014-04-16
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2014
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References 2023041304102404000_34.16.5603.5
2023041304102404000_34.16.5603.6
2023041304102404000_34.16.5603.8
2023041304102404000_34.16.5603.1
2023041304102404000_34.16.5603.2
2023041304102404000_34.16.5603.3
2023041304102404000_34.16.5603.4
2023041304102404000_34.16.5603.37
2023041304102404000_34.16.5603.36
2023041304102404000_34.16.5603.39
2023041304102404000_34.16.5603.38
2023041304102404000_34.16.5603.9
2023041304102404000_34.16.5603.32
2023041304102404000_34.16.5603.35
2023041304102404000_34.16.5603.34
2023041304102404000_34.16.5603.31
Inghilleri (2023041304102404000_34.16.5603.26) 1996; 109
Paus (2023041304102404000_34.16.5603.43) 2001; 86
Connors (2023041304102404000_34.16.5603.7) 1988; 406
Lenz (2023041304102404000_34.16.5603.30) 1997; 17
Ziemann (2023041304102404000_34.16.5603.58) 1996; 109
2023041304102404000_34.16.5603.29
2023041304102404000_34.16.5603.25
2023041304102404000_34.16.5603.28
2023041304102404000_34.16.5603.27
2023041304102404000_34.16.5603.22
2023041304102404000_34.16.5603.21
2023041304102404000_34.16.5603.24
2023041304102404000_34.16.5603.23
2023041304102404000_34.16.5603.20
2023041304102404000_34.16.5603.19
Lopantsev (2023041304102404000_34.16.5603.33) 1999; 82
2023041304102404000_34.16.5603.18
2023041304102404000_34.16.5603.15
Shader (2023041304102404000_34.16.5603.49) 1984; 45
2023041304102404000_34.16.5603.14
2023041304102404000_34.16.5603.17
2023041304102404000_34.16.5603.16
2023041304102404000_34.16.5603.11
2023041304102404000_34.16.5603.56
2023041304102404000_34.16.5603.10
2023041304102404000_34.16.5603.57
2023041304102404000_34.16.5603.13
2023041304102404000_34.16.5603.54
2023041304102404000_34.16.5603.12
2023041304102404000_34.16.5603.55
2023041304102404000_34.16.5603.52
2023041304102404000_34.16.5603.53
2023041304102404000_34.16.5603.50
2023041304102404000_34.16.5603.51
2023041304102404000_34.16.5603.47
2023041304102404000_34.16.5603.48
2023041304102404000_34.16.5603.45
2023041304102404000_34.16.5603.46
2023041304102404000_34.16.5603.44
2023041304102404000_34.16.5603.41
2023041304102404000_34.16.5603.42
2023041304102404000_34.16.5603.40
References_xml – ident: 2023041304102404000_34.16.5603.57
  doi: 10.1523/JNEUROSCI.1777-13.2013
– ident: 2023041304102404000_34.16.5603.5
  doi: 10.1093/brain/aws071
– ident: 2023041304102404000_34.16.5603.17
  doi: 10.1016/j.neuroimage.2013.06.059
– ident: 2023041304102404000_34.16.5603.29
  doi: 10.1007/s00221-006-0402-1
– ident: 2023041304102404000_34.16.5603.6
  doi: 10.1371/journal.pone.0010281
– ident: 2023041304102404000_34.16.5603.39
  doi: 10.1046/j.1460-9568.2003.02858.x
– ident: 2023041304102404000_34.16.5603.41
  doi: 10.1016/0028-3932(71)90067-4
– ident: 2023041304102404000_34.16.5603.25
  doi: 10.1097/00001756-199711100-00024
– ident: 2023041304102404000_34.16.5603.32
  doi: 10.1002/hbm.20608
– ident: 2023041304102404000_34.16.5603.55
  doi: 10.1016/j.neuron.2012.09.004
– ident: 2023041304102404000_34.16.5603.44
  doi: 10.1371/journal.pone.0057069
– ident: 2023041304102404000_34.16.5603.34
  doi: 10.1093/cercor/8.1.40
– volume: 109
  start-page: 127
  year: 1996
  ident: 2023041304102404000_34.16.5603.58
  article-title: The effect of lorazepam on the motor cortical excitability in man
  publication-title: Exp Brain Res
  doi: 10.1007/BF00228633
– ident: 2023041304102404000_34.16.5603.9
  doi: 10.1177/0269881108092595
– ident: 2023041304102404000_34.16.5603.50
  doi: 10.1002/(SICI)1097-4598(199809)21:9<1209::AID-MUS15>3.0.CO;2-M
– ident: 2023041304102404000_34.16.5603.56
  doi: 10.1002/ana.20220
– ident: 2023041304102404000_34.16.5603.37
  doi: 10.1007/s00221-006-0365-2
– ident: 2023041304102404000_34.16.5603.23
  doi: 10.1016/j.neuron.2007.06.026
– volume: 406
  start-page: 443
  year: 1988
  ident: 2023041304102404000_34.16.5603.7
  article-title: Two inhibitory postsynaptic potentials, and GABAA and GABAB receptor-mediated responses in neocortex of rat and cat
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1988.sp017390
– ident: 2023041304102404000_34.16.5603.12
  doi: 10.1046/j.1365-2125.2002.t01-10-01714.x
– ident: 2023041304102404000_34.16.5603.2
  doi: 10.1111/j.1472-8206.1990.tb00045.x
– ident: 2023041304102404000_34.16.5603.22
  doi: 10.1016/j.clinph.2012.01.010
– ident: 2023041304102404000_34.16.5603.53
  doi: 10.1016/S0306-4522(99)00021-4
– ident: 2023041304102404000_34.16.5603.8
  doi: 10.1038/ng885
– ident: 2023041304102404000_34.16.5603.18
  doi: 10.1073/pnas.0913008107
– ident: 2023041304102404000_34.16.5603.4
  doi: 10.1111/j.1460-9568.2009.06864.x
– ident: 2023041304102404000_34.16.5603.15
  doi: 10.1016/j.brs.2008.07.004
– ident: 2023041304102404000_34.16.5603.35
  doi: 10.1016/j.jneumeth.2007.03.024
– ident: 2023041304102404000_34.16.5603.16
  doi: 10.1126/science.1091032
– ident: 2023041304102404000_34.16.5603.52
  doi: 10.1016/j.cub.2011.10.017
– ident: 2023041304102404000_34.16.5603.14
  doi: 10.1016/j.clinph.2007.07.005
– volume: 17
  start-page: 6133
  year: 1997
  ident: 2023041304102404000_34.16.5603.30
  article-title: High intracellular Cl− concentrations depress G-protein-modulated ionic conductances
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.17-16-06133.1997
– ident: 2023041304102404000_34.16.5603.54
  doi: 10.1016/j.cub.2011.05.049
– volume: 109
  start-page: 467
  year: 1996
  ident: 2023041304102404000_34.16.5603.26
  article-title: Effects of diazepam, baclofen and thiopental on the silent period evoked by transcranial magnetic stimulation in humans
  publication-title: Exp Brain Res
  doi: 10.1007/BF00229631
– ident: 2023041304102404000_34.16.5603.28
  doi: 10.1016/j.neuroscience.2008.01.043
– ident: 2023041304102404000_34.16.5603.45
  doi: 10.1002/hbm.22016
– ident: 2023041304102404000_34.16.5603.31
  doi: 10.1038/nrn1648
– ident: 2023041304102404000_34.16.5603.21
  doi: 10.2165/00003088-199324060-00003
– ident: 2023041304102404000_34.16.5603.46
  doi: 10.1093/brain/awr340
– ident: 2023041304102404000_34.16.5603.19
  doi: 10.1016/j.neuroimage.2010.07.056
– ident: 2023041304102404000_34.16.5603.1
  doi: 10.1002/ana.20521
– ident: 2023041304102404000_34.16.5603.13
  doi: 10.1113/jphysiol.2006.114694
– volume: 86
  start-page: 1983
  year: 2001
  ident: 2023041304102404000_34.16.5603.43
  article-title: Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study
  publication-title: J Neurophysiol
  doi: 10.1152/jn.2001.86.4.1983
– ident: 2023041304102404000_34.16.5603.10
  doi: 10.1177/0269881109106898
– ident: 2023041304102404000_34.16.5603.40
  doi: 10.1111/j.1460-9568.2007.05553.x
– ident: 2023041304102404000_34.16.5603.42
  doi: 10.1155/2011/156869
– volume: 45
  start-page: 411
  year: 1984
  ident: 2023041304102404000_34.16.5603.49
  article-title: Plasma concentrations and clinical effects after single oral doses of prazepam, clorazepate, and diazepam
  publication-title: J Clin Psychiatry
– ident: 2023041304102404000_34.16.5603.36
  doi: 10.1126/science.1117256
– ident: 2023041304102404000_34.16.5603.11
  doi: 10.1016/S0028-3908(99)00136-7
– ident: 2023041304102404000_34.16.5603.3
  doi: 10.1016/j.clinph.2006.05.006
– ident: 2023041304102404000_34.16.5603.20
  doi: 10.1113/jphysiol.2007.142059
– ident: 2023041304102404000_34.16.5603.47
  doi: 10.1016/j.clinph.2009.08.016
– volume: 82
  start-page: 1218
  year: 1999
  ident: 2023041304102404000_34.16.5603.33
  article-title: GABAA-dependent chloride influx modulates GABAB-mediated IPSPs in hippocampal pyramidal cells
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1999.82.3.1218
– ident: 2023041304102404000_34.16.5603.27
  doi: 10.1016/S1471-4892(02)00015-2
– ident: 2023041304102404000_34.16.5603.38
  doi: 10.1124/jpet.300.1.2
– ident: 2023041304102404000_34.16.5603.48
  doi: 10.2165/00003088-199529030-00002
– ident: 2023041304102404000_34.16.5603.24
  doi: 10.1016/j.tins.2007.05.007
– ident: 2023041304102404000_34.16.5603.51
  doi: 10.1212/WNL.53.9.2069
SSID ssj0007017
Score 2.5705025
Snippet Combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG) constitutes a powerful tool to directly assess human cortical excitability...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5603
SubjectTerms Adult
Brain Mapping
Cross-Over Studies
Dose-Response Relationship, Drug
Double-Blind Method
Electroencephalography
Electromyography
Evoked Potentials - drug effects
Evoked Potentials - physiology
GABA Agents - pharmacology
gamma-Aminobutyric Acid - metabolism
Humans
Male
Motor Cortex - drug effects
Motor Cortex - physiology
Synaptic Transmission - drug effects
Synaptic Transmission - physiology
Time Factors
Transcranial Magnetic Stimulation
Young Adult
Title TMS-EEG Signatures of GABAergic Neurotransmission in the Human Cortex
URI https://www.ncbi.nlm.nih.gov/pubmed/24741050
https://www.proquest.com/docview/1517876954
https://www.proquest.com/docview/1827892377
https://pubmed.ncbi.nlm.nih.gov/PMC6608220
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFAeNSBshIiJcpXWMnafNYqrILWgV0k_YW2a49Im0J6kUa-yX8XM6xUyfdqsF4iao0dpt8J8ef7e-cQ8gHBaDyNNbBlIUmiISZBpIpFXBkI9wkqbThYsfj5OA0OjqLz1qt3w3V0nIhO-p6Y1zJ_6AK5wBXjJK9B7K-UzgBnwFfOALCcPw3jI8nwWi0vzvJz12CTqvL2B98GugZeLRdm3ljgaMRoDlvqBrd0v0QhbZXTXpaB4pZitpIdunx_zrTl6WLqT6cC9y2qLU-Yo4xKaKS7o3FNZbQ9evN33NwhY6sWiV9vZ-vL9BOUXCTO1YLHrm5HBFaFYuLlqy8FuvBfDRypXc6uvKqzG7jhE23W61hVubVdKJAwnhjQMb6nRudfWyTThyNUfM4GR52gGumQchRrxfVw9tqS__GqOe1iDgLgp4y30-G_WQhz7CfB-QhgwkI1sb48q3OQ9_r2lrO_mar2HPoZ2_z_1mnPbfmMjcluQ2Oc_KEPK6QpwNnaU9JSxfPyPYAbKu8_EU_UisXtvsw22RUGR-tjY-Whnrjo7eMj-YFBeOj1vioM77n5PTz6GR4EFQ1OQIVh3wRYC7LWHa5SPtGAr_iSkjBpmKaSOBDTKSGaa5UaKI-k5rDdJzLpM80jhU6Moq_IFtFWehXhBqjpVQyBsKeRgamT4Jz3jXAaUUq-lK1Sbx6ZJmqEtZj3ZSL7G7I2mTPt_vpUrb8tcX7FSIZPBJlXxVdLufQKIQRLUnju67pYzQ5471em7x0KPrfZWAbMIPptklvDV9_AWZ3X_-myH_YLO9JgsUYuq_vfTc75FH9Yr4hW4vZUr8F5ryQ76wR_wFya8Ao
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TMS-EEG+Signatures+of+GABAergic+Neurotransmission+in+the+Human+Cortex&rft.jtitle=The+Journal+of+neuroscience&rft.au=Premoli%2C+Isabella&rft.au=Castellanos%2C+Nazareth&rft.au=Rivolta%2C+Davide&rft.au=Belardinelli%2C+Paolo&rft.date=2014-04-16&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=34&rft.issue=16&rft.spage=5603&rft.epage=5612&rft_id=info:doi/10.1523%2FJNEUROSCI.5089-13.2014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1523_JNEUROSCI_5089_13_2014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon