TMS-EEG Signatures of GABAergic Neurotransmission in the Human Cortex
Combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG) constitutes a powerful tool to directly assess human cortical excitability and connectivity. TMS of the primary motor cortex elicits a sequence of TMS-evoked EEG potentials (TEPs). It is thought that inhibitory neurot...
Saved in:
Published in | The Journal of neuroscience Vol. 34; no. 16; pp. 5603 - 5612 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society for Neuroscience
16.04.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG) constitutes a powerful tool to directly assess human cortical excitability and connectivity. TMS of the primary motor cortex elicits a sequence of TMS-evoked EEG potentials (TEPs). It is thought that inhibitory neurotransmission through GABA-A receptors (GABAAR) modulates early TEPs (<50 ms after TMS), whereas GABA-B receptors (GABABR) play a role for later TEPs (at ∼100 ms after TMS). However, the physiological underpinnings of TEPs have not been clearly elucidated yet. Here, we studied the role of GABAA/B-ergic neurotransmission for TEPs in healthy subjects using a pharmaco-TMS-EEG approach. In Experiment 1, we tested the effects of a single oral dose of alprazolam (a classical benzodiazepine acting as allosteric-positive modulator at α1, α2, α3, and α5 subunit-containing GABAARs) and zolpidem (a positive modulator mainly at the α1 GABAAR) in a double-blind, placebo-controlled, crossover study. In Experiment 2, we tested the influence of baclofen (a GABABR agonist) and diazepam (a classical benzodiazepine) versus placebo on TEPs. Alprazolam and diazepam increased the amplitude of the negative potential at 45 ms after stimulation (N45) and decreased the negative component at 100 ms (N100), whereas zolpidem increased the N45 only. In contrast, baclofen specifically increased the N100 amplitude. These results provide strong evidence that the N45 represents activity of α1-subunit-containing GABAARs, whereas the N100 represents activity of GABABRs. Findings open a novel window of opportunity to study alteration of GABAA-/GABAB-related inhibition in disorders, such as epilepsy or schizophrenia. |
---|---|
AbstractList | Combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG) constitutes a powerful tool to directly assess human cortical excitability and connectivity. TMS of the primary motor cortex elicits a sequence of TMS-evoked EEG potentials (TEPs). It is thought that inhibitory neurotransmission through GABA-A receptors (GABAAR) modulates early TEPs (<50 ms after TMS), whereas GABA-B receptors (GABABR) play a role for later TEPs (at ∼100 ms after TMS). However, the physiological underpinnings of TEPs have not been clearly elucidated yet. Here, we studied the role of GABAA/B-ergic neurotransmission for TEPs in healthy subjects using a pharmaco-TMS-EEG approach. In Experiment 1, we tested the effects of a single oral dose of alprazolam (a classical benzodiazepine acting as allosteric-positive modulator at α1, α2, α3, and α5 subunit-containing GABAARs) and zolpidem (a positive modulator mainly at the α1 GABAAR) in a double-blind, placebo-controlled, crossover study. In Experiment 2, we tested the influence of baclofen (a GABABR agonist) and diazepam (a classical benzodiazepine) versus placebo on TEPs. Alprazolam and diazepam increased the amplitude of the negative potential at 45 ms after stimulation (N45) and decreased the negative component at 100 ms (N100), whereas zolpidem increased the N45 only. In contrast, baclofen specifically increased the N100 amplitude. These results provide strong evidence that the N45 represents activity of α1-subunit-containing GABAARs, whereas the N100 represents activity of GABABRs. Findings open a novel window of opportunity to study alteration of GABAA-/GABAB-related inhibition in disorders, such as epilepsy or schizophrenia. Combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG) constitutes a powerful tool to directly assess human cortical excitability and connectivity. TMS of the primary motor cortex elicits a sequence of TMS-evoked EEG potentials (TEPs). It is thought that inhibitory neurotransmission through GABA-A receptors (GABAAR) modulates early TEPs (<50 ms after TMS), whereas GABA-B receptors (GABABR) play a role for later TEPs (at ∼100 ms after TMS). However, the physiological underpinnings of TEPs have not been clearly elucidated yet. Here, we studied the role of GABAA/B-ergic neurotransmission for TEPs in healthy subjects using a pharmaco-TMS-EEG approach. In Experiment 1, we tested the effects of a single oral dose of alprazolam (a classical benzodiazepine acting as allosteric-positive modulator at α1, α2, α3, and α5 subunit-containing GABAARs) and zolpidem (a positive modulator mainly at the α1 GABAAR) in a double-blind, placebo-controlled, crossover study. In Experiment 2, we tested the influence of baclofen (a GABABR agonist) and diazepam (a classical benzodiazepine) versus placebo on TEPs. Alprazolam and diazepam increased the amplitude of the negative potential at 45 ms after stimulation (N45) and decreased the negative component at 100 ms (N100), whereas zolpidem increased the N45 only. In contrast, baclofen specifically increased the N100 amplitude. These results provide strong evidence that the N45 represents activity of α1-subunit-containing GABAARs, whereas the N100 represents activity of GABABRs. Findings open a novel window of opportunity to study alteration of GABAA-/GABAB-related inhibition in disorders, such as epilepsy or schizophrenia.Combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG) constitutes a powerful tool to directly assess human cortical excitability and connectivity. TMS of the primary motor cortex elicits a sequence of TMS-evoked EEG potentials (TEPs). It is thought that inhibitory neurotransmission through GABA-A receptors (GABAAR) modulates early TEPs (<50 ms after TMS), whereas GABA-B receptors (GABABR) play a role for later TEPs (at ∼100 ms after TMS). However, the physiological underpinnings of TEPs have not been clearly elucidated yet. Here, we studied the role of GABAA/B-ergic neurotransmission for TEPs in healthy subjects using a pharmaco-TMS-EEG approach. In Experiment 1, we tested the effects of a single oral dose of alprazolam (a classical benzodiazepine acting as allosteric-positive modulator at α1, α2, α3, and α5 subunit-containing GABAARs) and zolpidem (a positive modulator mainly at the α1 GABAAR) in a double-blind, placebo-controlled, crossover study. In Experiment 2, we tested the influence of baclofen (a GABABR agonist) and diazepam (a classical benzodiazepine) versus placebo on TEPs. Alprazolam and diazepam increased the amplitude of the negative potential at 45 ms after stimulation (N45) and decreased the negative component at 100 ms (N100), whereas zolpidem increased the N45 only. In contrast, baclofen specifically increased the N100 amplitude. These results provide strong evidence that the N45 represents activity of α1-subunit-containing GABAARs, whereas the N100 represents activity of GABABRs. Findings open a novel window of opportunity to study alteration of GABAA-/GABAB-related inhibition in disorders, such as epilepsy or schizophrenia. Combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG) constitutes a powerful tool to directly assess human cortical excitability and connectivity. TMS of the primary motor cortex elicits a sequence of TMS-evoked EEG potentials (TEPs). It is thought that inhibitory neurotransmission through GABA-A receptors (GABAAR) modulates early TEPs (<50 ms after TMS), whereas GABA-B receptors (GABABR) play a role for later TEPs (at ~100 ms after TMS). However, the physiological underpinnings of TEPs have not been clearly elucidated yet. Here, we studied the role of GABAA/B-ergic neurotransmission for TEPs in healthy subjects using a pharmaco-TMS-EEG approach. In Experiment 1, we tested the effects of a single oral dose of alprazolam (a classical benzodiazepine acting as allosteric-positive modulator at alpha 1, alpha 2, alpha 3, and alpha 5 subunit-containing GABAARs) and zolpidem (a positive modulator mainly at the alpha 1 GABAAR) in a double-blind, placebo-controlled, crossover study. In Experiment 2, we tested the influence of baclofen (a GABABR agonist) and diazepam (a classical benzodiazepine) versus placebo on TEPs. Alprazolam and diazepam increased the amplitude of the negative potential at 45 ms after stimulation (N45) and decreased the negative component at 100 ms (N100), whereas zolpidem increased the N45 only. In contrast, baclofen specifically increased the N100 amplitude. These results provide strong evidence that the N45 represents activity of alpha 1-subunit-containing GABAARs, whereas the N100 represents activity of GABABRs. Findings open a novel window of opportunity to study alteration of GABAA-/GABAB-related inhibition in disorders, such as epilepsy or schizophrenia. |
Author | Rivolta, Davide Heidegger, Tonio Castellanos, Nazareth Bajo, Ricardo Espenhahn, Svenja Müller-Dahlhaus, Florian Belardinelli, Paolo Zipser, Carl Premoli, Isabella Ziemann, Ulf |
Author_xml | – sequence: 1 givenname: Isabella surname: Premoli fullname: Premoli, Isabella – sequence: 2 givenname: Nazareth surname: Castellanos fullname: Castellanos, Nazareth – sequence: 3 givenname: Davide surname: Rivolta fullname: Rivolta, Davide – sequence: 4 givenname: Paolo surname: Belardinelli fullname: Belardinelli, Paolo – sequence: 5 givenname: Ricardo surname: Bajo fullname: Bajo, Ricardo – sequence: 6 givenname: Carl surname: Zipser fullname: Zipser, Carl – sequence: 7 givenname: Svenja surname: Espenhahn fullname: Espenhahn, Svenja – sequence: 8 givenname: Tonio surname: Heidegger fullname: Heidegger, Tonio – sequence: 9 givenname: Florian surname: Müller-Dahlhaus fullname: Müller-Dahlhaus, Florian – sequence: 10 givenname: Ulf surname: Ziemann fullname: Ziemann, Ulf |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24741050$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV9v0zAUxS00xLrBV5jyyEvK9Z_EjoSQShW6TWOT6PZsOe5NZ5Taw04QfHtcbVSDlz1Z8v2do3PvOSFHPngk5IzCnFaMf7i8bu--3ayXF_MKVFNSPmdAxSsyy9OmZALoEZkBk1DWQopjcpLSdwCQQOUbcszyH4UKZqS9_bou23ZVrN3Wm3GKmIrQF6vF5wXGrbPFNU4xjNH4tHMpueAL54vxHovzaWd8sQxxxF9vyeveDAnfPb2n5O5Le7s8L69uVhfLxVVpK8rHUjSsqjrgplF9h7jh1nSGbcym7rigzDQ9Q24t7YViHXIlKe9qxRAEAIre8lPy6dH3Yep2uLHoc7JBP0S3M_G3Dsbpfyfe3ett-KnrGhRjkA3ePxnE8GPCNOq8lcVhMB7DlDRVTKqGcSlfRisqlaybSmT07HmsQ56_Z85A_QjYGFKK2B8QCnrfpz70qfd9asr1vs8s_Pif0LrRjLmGvJ4bXpL_AcaopwM |
CitedBy_id | crossref_primary_10_1002_acn3_50896 crossref_primary_10_1016_j_biopsych_2023_12_018 crossref_primary_10_1016_j_neuroimage_2024_120874 crossref_primary_10_1016_j_neubiorev_2021_11_025 crossref_primary_10_3389_fnins_2020_00554 crossref_primary_10_1016_j_brs_2018_10_008 crossref_primary_10_1016_j_neuroimage_2021_118708 crossref_primary_10_1016_j_biopsych_2023_04_011 crossref_primary_10_1016_j_neuropsychologia_2022_108447 crossref_primary_10_1152_jn_00320_2024 crossref_primary_10_1016_j_brs_2017_12_013 crossref_primary_10_1016_j_neuropsychologia_2017_04_016 crossref_primary_10_1038_s41598_023_49250_7 crossref_primary_10_1016_j_clinph_2019_06_234 crossref_primary_10_1007_s00221_016_4865_4 crossref_primary_10_1016_j_brs_2025_02_018 crossref_primary_10_1016_j_clinph_2020_06_015 crossref_primary_10_1038_s41598_019_53565_9 crossref_primary_10_3390_s22051762 crossref_primary_10_1089_neu_2018_6353 crossref_primary_10_1016_j_jadr_2023_100612 crossref_primary_10_1016_j_clinph_2022_06_012 crossref_primary_10_1016_j_neuroimage_2021_118272 crossref_primary_10_18632_aging_101178 crossref_primary_10_1016_j_brs_2023_02_010 crossref_primary_10_1016_j_ijchp_2024_100495 crossref_primary_10_2478_jtim_2023_0145 crossref_primary_10_1016_j_brs_2023_02_009 crossref_primary_10_1016_j_jneumeth_2021_109430 crossref_primary_10_1109_TNSRE_2024_3486759 crossref_primary_10_1097_j_pain_0000000000003488 crossref_primary_10_3389_fnagi_2019_00248 crossref_primary_10_1038_srep36191 crossref_primary_10_1002_hbm_24448 crossref_primary_10_1016_j_clinph_2021_12_018 crossref_primary_10_1523_ENEURO_0450_24_2024 crossref_primary_10_1016_j_clinph_2019_06_006 crossref_primary_10_1016_j_clinph_2017_06_003 crossref_primary_10_1177_1073858419896751 crossref_primary_10_1016_j_brs_2019_07_009 crossref_primary_10_1016_j_neucli_2017_11_004 crossref_primary_10_1016_j_neuroimage_2016_08_060 crossref_primary_10_1016_j_neuroimage_2019_116139 crossref_primary_10_1371_journal_pone_0184910 crossref_primary_10_1523_JNEUROSCI_1833_15_2015 crossref_primary_10_1016_j_bspc_2023_104650 crossref_primary_10_1016_j_parkreldis_2024_107217 crossref_primary_10_1016_j_brs_2020_12_002 crossref_primary_10_1016_j_neurom_2021_11_004 crossref_primary_10_1016_j_cortex_2023_04_009 crossref_primary_10_1016_j_ijchp_2022_100343 crossref_primary_10_1038_s41386_020_0633_z crossref_primary_10_1016_j_neuroimage_2017_09_023 crossref_primary_10_1016_j_yebeh_2021_108364 crossref_primary_10_1152_jn_00628_2018 crossref_primary_10_3389_fnins_2017_00585 crossref_primary_10_1016_j_jadr_2022_100439 crossref_primary_10_1080_14737175_2022_2170784 crossref_primary_10_1038_s41598_024_72875_1 crossref_primary_10_1089_brain_2020_0844 crossref_primary_10_1016_j_schres_2021_06_025 crossref_primary_10_1016_j_brs_2018_05_002 crossref_primary_10_1152_jn_00260_2016 crossref_primary_10_1038_s41598_022_05179_x crossref_primary_10_3389_fpsyt_2022_902089 crossref_primary_10_3390_brainsci14040332 crossref_primary_10_1016_j_neuroscience_2017_06_014 crossref_primary_10_1515_mr_2024_0010 crossref_primary_10_1016_j_neuroimage_2022_119419 crossref_primary_10_1111_epi_17578 crossref_primary_10_1002_hbm_23938 crossref_primary_10_3389_fneur_2024_1505154 crossref_primary_10_1038_s41598_018_32781_9 crossref_primary_10_1016_j_jneumeth_2022_109631 crossref_primary_10_1038_nrneurol_2014_162 crossref_primary_10_1016_j_medidd_2021_100083 crossref_primary_10_1371_journal_pone_0141284 crossref_primary_10_1371_journal_pone_0208747 crossref_primary_10_1016_j_pnpbp_2024_111167 crossref_primary_10_1126_scitranslmed_aal3236 crossref_primary_10_1016_j_clinph_2017_09_007 crossref_primary_10_1016_j_brs_2018_01_002 crossref_primary_10_1016_j_neuroimage_2020_117305 crossref_primary_10_1523_JNEUROSCI_1689_16_2016 crossref_primary_10_1016_j_neuroimage_2018_10_052 crossref_primary_10_3233_JAD_200426 crossref_primary_10_1007_s00406_024_01859_z crossref_primary_10_1038_s41598_023_45107_1 crossref_primary_10_1016_j_clinph_2021_11_073 crossref_primary_10_1093_cercor_bhab292 crossref_primary_10_1007_s10548_022_00917_w crossref_primary_10_1016_j_neuroscience_2019_11_022 crossref_primary_10_1111_ejn_14114 crossref_primary_10_3389_fnins_2023_1004763 crossref_primary_10_1177_1545968317712470 crossref_primary_10_1016_j_jneumeth_2022_109651 crossref_primary_10_1038_s41386_019_0468_7 crossref_primary_10_3390_jpm11010054 crossref_primary_10_1016_j_ebcr_2018_03_004 crossref_primary_10_1093_psyrad_kkab007 crossref_primary_10_3389_fnins_2018_00400 crossref_primary_10_1002_hbm_24525 crossref_primary_10_1016_j_jad_2024_07_131 crossref_primary_10_3389_fncir_2016_00073 crossref_primary_10_3390_pharmaceutics12100946 crossref_primary_10_1016_j_neuroimage_2014_09_028 crossref_primary_10_1007_s00406_020_01160_9 crossref_primary_10_1016_j_brs_2021_12_002 crossref_primary_10_1111_pcn_12936 crossref_primary_10_1523_ENEURO_0309_23_2024 crossref_primary_10_1016_j_pnpbp_2024_111184 crossref_primary_10_1016_j_biopsych_2018_09_032 crossref_primary_10_1016_j_nicl_2023_103463 crossref_primary_10_1038_s41598_020_59911_6 crossref_primary_10_1093_brain_awae317 crossref_primary_10_3389_fnmol_2024_1503070 crossref_primary_10_1109_TNSRE_2023_3282659 crossref_primary_10_1038_s41598_018_21457_z crossref_primary_10_1016_j_neubiorev_2016_03_006 crossref_primary_10_1016_j_brs_2018_06_004 crossref_primary_10_3389_fnins_2021_594536 crossref_primary_10_1007_s00406_021_01287_3 crossref_primary_10_3390_brainsci11030405 crossref_primary_10_1016_j_neurol_2015_11_004 crossref_primary_10_17650_2222_8721_2020_10_1_64_74 crossref_primary_10_1016_j_clinph_2015_02_001 crossref_primary_10_1016_j_clinthera_2020_05_016 crossref_primary_10_1016_j_cortex_2014_10_003 crossref_primary_10_1016_j_biopsych_2024_05_024 crossref_primary_10_1002_cpt_1541 crossref_primary_10_1016_j_transm_2024_100084 crossref_primary_10_3389_fnhum_2023_1247104 crossref_primary_10_1097_WNP_0000000000000662 crossref_primary_10_1016_j_neurot_2024_e00451 crossref_primary_10_1016_j_brainresbull_2024_110972 crossref_primary_10_1016_j_brs_2019_10_007 crossref_primary_10_1016_j_brs_2018_04_015 crossref_primary_10_1016_j_jstrokecerebrovasdis_2019_104452 crossref_primary_10_1523_ENEURO_0209_19_2020 crossref_primary_10_1016_j_neuroimage_2016_02_012 crossref_primary_10_1016_j_neubiorev_2018_05_027 crossref_primary_10_1152_japplphysiol_00288_2021 crossref_primary_10_1007_s10548_020_00773_6 crossref_primary_10_1523_JNEUROSCI_0443_24_2024 crossref_primary_10_1093_brain_awu360 crossref_primary_10_1007_s10548_023_00943_2 crossref_primary_10_1038_s41598_020_61590_2 crossref_primary_10_1016_j_clinph_2017_08_007 crossref_primary_10_1016_j_biopsych_2023_06_016 crossref_primary_10_1093_cercor_bhab493 crossref_primary_10_1111_sms_12350 crossref_primary_10_1016_j_brainresbull_2018_03_018 crossref_primary_10_1515_nf_2016_A103 crossref_primary_10_1186_s12984_023_01223_7 crossref_primary_10_1016_j_neuropharm_2021_108574 crossref_primary_10_1016_j_jneumeth_2022_109693 crossref_primary_10_1111_adb_12486 crossref_primary_10_7554_eLife_88567 crossref_primary_10_1113_JP278638 crossref_primary_10_1177_1073858417734530 crossref_primary_10_1515_nf_2016_1103 crossref_primary_10_3389_fnins_2021_616667 crossref_primary_10_1155_2024_2758522 crossref_primary_10_1162_imag_a_00349 crossref_primary_10_1016_j_jad_2021_11_043 crossref_primary_10_1113_JP280966 crossref_primary_10_1002_hbm_26260 crossref_primary_10_1016_j_brs_2016_08_004 crossref_primary_10_1016_j_clinph_2023_03_010 crossref_primary_10_1016_j_brs_2019_02_021 crossref_primary_10_1038_npp_2016_133 crossref_primary_10_1002_hbm_23545 crossref_primary_10_7554_eLife_88567_3 crossref_primary_10_1016_j_clinph_2022_04_022 crossref_primary_10_1038_s41598_023_45730_y crossref_primary_10_1016_j_clinph_2017_04_005 crossref_primary_10_26599_SAB_2022_9060016 crossref_primary_10_1088_1741_2552_ac9432 crossref_primary_10_5507_bp_2015_023 crossref_primary_10_1016_j_clinph_2018_10_005 crossref_primary_10_3389_fnhum_2016_00504 crossref_primary_10_1016_j_clinph_2019_01_001 crossref_primary_10_1016_j_neuroscience_2017_12_008 crossref_primary_10_3389_fnins_2019_00612 crossref_primary_10_1007_s00221_016_4773_7 crossref_primary_10_1016_j_brs_2022_09_013 crossref_primary_10_1007_s00221_020_05958_w crossref_primary_10_1002_hbm_70048 crossref_primary_10_1038_s41598_022_05397_3 crossref_primary_10_1016_j_neuroimage_2020_117394 crossref_primary_10_1177_2470547019861417 crossref_primary_10_1016_j_brs_2015_07_029 crossref_primary_10_1002_ana_24343 crossref_primary_10_1002_da_23100 crossref_primary_10_1111_bcp_15232 crossref_primary_10_1016_j_neurot_2024_e00496 crossref_primary_10_1016_j_brs_2018_03_008 crossref_primary_10_1038_npp_2015_151 crossref_primary_10_1016_j_neuroimage_2014_07_037 crossref_primary_10_1016_j_clinph_2022_07_495 crossref_primary_10_1016_j_jneumeth_2022_109482 crossref_primary_10_1038_s41598_024_59468_8 crossref_primary_10_1038_srep33661 crossref_primary_10_1111_epi_16634 crossref_primary_10_3390_brainsci11091114 crossref_primary_10_1016_j_bandc_2018_01_004 crossref_primary_10_1016_j_neuropsychologia_2019_01_003 crossref_primary_10_3233_JAD_210401 crossref_primary_10_3389_fnagi_2021_804384 crossref_primary_10_1523_JNEUROSCI_0636_21_2021 crossref_primary_10_1167_19_2_9 crossref_primary_10_1001_jamanetworkopen_2019_5578 crossref_primary_10_1007_s10548_018_0662_7 crossref_primary_10_1016_j_brs_2019_05_007 crossref_primary_10_1097_MD_0000000000031774 crossref_primary_10_3390_brainsci10100751 crossref_primary_10_1111_epi_13599 crossref_primary_10_1007_s11357_024_01075_6 crossref_primary_10_1113_JP283986 crossref_primary_10_1016_j_clinph_2016_06_025 crossref_primary_10_1016_j_clinph_2017_08_034 crossref_primary_10_1016_j_clinph_2021_09_013 crossref_primary_10_3389_fnhum_2022_940759 crossref_primary_10_1016_j_biopsych_2023_11_016 crossref_primary_10_1093_brain_awaa127 crossref_primary_10_1080_23279095_2023_2286493 crossref_primary_10_1093_cercor_bhaa004 crossref_primary_10_1038_s41398_021_01451_2 crossref_primary_10_1038_s41598_021_87533_z crossref_primary_10_1097_WCO_0000000000001345 crossref_primary_10_7554_eLife_83232 crossref_primary_10_1093_cercor_bhad515 crossref_primary_10_1038_s44172_023_00143_7 crossref_primary_10_1113_JP284727 crossref_primary_10_1016_j_cortex_2018_11_022 crossref_primary_10_1016_j_schres_2021_07_019 crossref_primary_10_1016_j_brs_2018_08_003 crossref_primary_10_1016_j_nicl_2020_102206 crossref_primary_10_3389_fnhum_2015_00307 crossref_primary_10_1016_j_ijpsycho_2021_08_008 crossref_primary_10_1038_s41467_024_50504_9 crossref_primary_10_3389_fnagi_2017_00119 crossref_primary_10_1002_mds_27285 crossref_primary_10_1007_s12311_019_01093_7 crossref_primary_10_1016_j_clinph_2014_08_028 crossref_primary_10_3389_fnins_2018_00393 crossref_primary_10_2139_ssrn_4173661 crossref_primary_10_1016_j_neurom_2022_10_055 crossref_primary_10_1002_hbm_24398 crossref_primary_10_1016_j_physbeh_2023_114073 crossref_primary_10_1002_da_23217 crossref_primary_10_1007_s10072_020_04527_x crossref_primary_10_1016_j_clinph_2016_06_003 crossref_primary_10_3390_brainsci12101358 crossref_primary_10_3389_fnins_2023_1269474 crossref_primary_10_1016_j_clinph_2021_05_008 crossref_primary_10_3390_neurolint16060106 crossref_primary_10_1155_2018_9875326 |
Cites_doi | 10.1523/JNEUROSCI.1777-13.2013 10.1093/brain/aws071 10.1016/j.neuroimage.2013.06.059 10.1007/s00221-006-0402-1 10.1371/journal.pone.0010281 10.1046/j.1460-9568.2003.02858.x 10.1016/0028-3932(71)90067-4 10.1097/00001756-199711100-00024 10.1002/hbm.20608 10.1016/j.neuron.2012.09.004 10.1371/journal.pone.0057069 10.1093/cercor/8.1.40 10.1007/BF00228633 10.1177/0269881108092595 10.1002/(SICI)1097-4598(199809)21:9<1209::AID-MUS15>3.0.CO;2-M 10.1002/ana.20220 10.1007/s00221-006-0365-2 10.1016/j.neuron.2007.06.026 10.1113/jphysiol.1988.sp017390 10.1046/j.1365-2125.2002.t01-10-01714.x 10.1111/j.1472-8206.1990.tb00045.x 10.1016/j.clinph.2012.01.010 10.1016/S0306-4522(99)00021-4 10.1038/ng885 10.1073/pnas.0913008107 10.1111/j.1460-9568.2009.06864.x 10.1016/j.brs.2008.07.004 10.1016/j.jneumeth.2007.03.024 10.1126/science.1091032 10.1016/j.cub.2011.10.017 10.1016/j.clinph.2007.07.005 10.1523/JNEUROSCI.17-16-06133.1997 10.1016/j.cub.2011.05.049 10.1007/BF00229631 10.1016/j.neuroscience.2008.01.043 10.1002/hbm.22016 10.1038/nrn1648 10.2165/00003088-199324060-00003 10.1093/brain/awr340 10.1016/j.neuroimage.2010.07.056 10.1002/ana.20521 10.1113/jphysiol.2006.114694 10.1152/jn.2001.86.4.1983 10.1177/0269881109106898 10.1111/j.1460-9568.2007.05553.x 10.1155/2011/156869 10.1126/science.1117256 10.1016/S0028-3908(99)00136-7 10.1016/j.clinph.2006.05.006 10.1113/jphysiol.2007.142059 10.1016/j.clinph.2009.08.016 10.1152/jn.1999.82.3.1218 10.1016/S1471-4892(02)00015-2 10.1124/jpet.300.1.2 10.2165/00003088-199529030-00002 10.1016/j.tins.2007.05.007 10.1212/WNL.53.9.2069 |
ContentType | Journal Article |
Copyright | Copyright © 2014 the authors 0270-6474/14/345603-10$15.00/0 2014 |
Copyright_xml | – notice: Copyright © 2014 the authors 0270-6474/14/345603-10$15.00/0 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.1523/JNEUROSCI.5089-13.2014 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 5612 |
ExternalDocumentID | PMC6608220 24741050 10_1523_JNEUROSCI_5089_13_2014 |
Genre | Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .55 18M 2WC 34G 39C 53G 5GY 5RE 5VS AAFWJ AAJMC AAYXX ABBAR ABIVO ACGUR ACNCT ADBBV ADCOW ADHGD AENEX AETEA AFCFT AFOSN AFSQR AHWXS ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 HYE H~9 KQ8 L7B OK1 P0W P2P QZG R.V RHI RPM TFN TR2 W8F WH7 WOQ X7M XJT YBU YHG YKV YNH YSK CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c513t-49255b03a98fbeed3caba2dad6b3412a9f2e3cc1f482be38713b682e0400e4fc3 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 14:13:30 EDT 2025 Fri Jul 11 04:33:16 EDT 2025 Thu Jul 10 18:52:19 EDT 2025 Thu Apr 03 07:09:58 EDT 2025 Tue Jul 01 03:47:11 EDT 2025 Thu Apr 24 22:50:54 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | GABA electroencephalography pharmaco-TMS-EEG inhibition human cortex transcranial magnetic stimulation |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c513t-49255b03a98fbeed3caba2dad6b3412a9f2e3cc1f482be38713b682e0400e4fc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 Author contributions: I.P., F.M.-D., and U.Z. designed research; I.P., C.Z., S.E., T.H., and F.M.-D. performed research; I.P., N.C., D.R., P.B., R.B., C.Z., S.E., and U.Z. analyzed data; I.P., F.M.-D., and U.Z. wrote the paper. |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/34/16/5603.full.pdf |
PMID | 24741050 |
PQID | 1517876954 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6608220 proquest_miscellaneous_1827892377 proquest_miscellaneous_1517876954 pubmed_primary_24741050 crossref_primary_10_1523_JNEUROSCI_5089_13_2014 crossref_citationtrail_10_1523_JNEUROSCI_5089_13_2014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-04-16 |
PublicationDateYYYYMMDD | 2014-04-16 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2014 |
Publisher | Society for Neuroscience |
Publisher_xml | – name: Society for Neuroscience |
References | 2023041304102404000_34.16.5603.5 2023041304102404000_34.16.5603.6 2023041304102404000_34.16.5603.8 2023041304102404000_34.16.5603.1 2023041304102404000_34.16.5603.2 2023041304102404000_34.16.5603.3 2023041304102404000_34.16.5603.4 2023041304102404000_34.16.5603.37 2023041304102404000_34.16.5603.36 2023041304102404000_34.16.5603.39 2023041304102404000_34.16.5603.38 2023041304102404000_34.16.5603.9 2023041304102404000_34.16.5603.32 2023041304102404000_34.16.5603.35 2023041304102404000_34.16.5603.34 2023041304102404000_34.16.5603.31 Inghilleri (2023041304102404000_34.16.5603.26) 1996; 109 Paus (2023041304102404000_34.16.5603.43) 2001; 86 Connors (2023041304102404000_34.16.5603.7) 1988; 406 Lenz (2023041304102404000_34.16.5603.30) 1997; 17 Ziemann (2023041304102404000_34.16.5603.58) 1996; 109 2023041304102404000_34.16.5603.29 2023041304102404000_34.16.5603.25 2023041304102404000_34.16.5603.28 2023041304102404000_34.16.5603.27 2023041304102404000_34.16.5603.22 2023041304102404000_34.16.5603.21 2023041304102404000_34.16.5603.24 2023041304102404000_34.16.5603.23 2023041304102404000_34.16.5603.20 2023041304102404000_34.16.5603.19 Lopantsev (2023041304102404000_34.16.5603.33) 1999; 82 2023041304102404000_34.16.5603.18 2023041304102404000_34.16.5603.15 Shader (2023041304102404000_34.16.5603.49) 1984; 45 2023041304102404000_34.16.5603.14 2023041304102404000_34.16.5603.17 2023041304102404000_34.16.5603.16 2023041304102404000_34.16.5603.11 2023041304102404000_34.16.5603.56 2023041304102404000_34.16.5603.10 2023041304102404000_34.16.5603.57 2023041304102404000_34.16.5603.13 2023041304102404000_34.16.5603.54 2023041304102404000_34.16.5603.12 2023041304102404000_34.16.5603.55 2023041304102404000_34.16.5603.52 2023041304102404000_34.16.5603.53 2023041304102404000_34.16.5603.50 2023041304102404000_34.16.5603.51 2023041304102404000_34.16.5603.47 2023041304102404000_34.16.5603.48 2023041304102404000_34.16.5603.45 2023041304102404000_34.16.5603.46 2023041304102404000_34.16.5603.44 2023041304102404000_34.16.5603.41 2023041304102404000_34.16.5603.42 2023041304102404000_34.16.5603.40 |
References_xml | – ident: 2023041304102404000_34.16.5603.57 doi: 10.1523/JNEUROSCI.1777-13.2013 – ident: 2023041304102404000_34.16.5603.5 doi: 10.1093/brain/aws071 – ident: 2023041304102404000_34.16.5603.17 doi: 10.1016/j.neuroimage.2013.06.059 – ident: 2023041304102404000_34.16.5603.29 doi: 10.1007/s00221-006-0402-1 – ident: 2023041304102404000_34.16.5603.6 doi: 10.1371/journal.pone.0010281 – ident: 2023041304102404000_34.16.5603.39 doi: 10.1046/j.1460-9568.2003.02858.x – ident: 2023041304102404000_34.16.5603.41 doi: 10.1016/0028-3932(71)90067-4 – ident: 2023041304102404000_34.16.5603.25 doi: 10.1097/00001756-199711100-00024 – ident: 2023041304102404000_34.16.5603.32 doi: 10.1002/hbm.20608 – ident: 2023041304102404000_34.16.5603.55 doi: 10.1016/j.neuron.2012.09.004 – ident: 2023041304102404000_34.16.5603.44 doi: 10.1371/journal.pone.0057069 – ident: 2023041304102404000_34.16.5603.34 doi: 10.1093/cercor/8.1.40 – volume: 109 start-page: 127 year: 1996 ident: 2023041304102404000_34.16.5603.58 article-title: The effect of lorazepam on the motor cortical excitability in man publication-title: Exp Brain Res doi: 10.1007/BF00228633 – ident: 2023041304102404000_34.16.5603.9 doi: 10.1177/0269881108092595 – ident: 2023041304102404000_34.16.5603.50 doi: 10.1002/(SICI)1097-4598(199809)21:9<1209::AID-MUS15>3.0.CO;2-M – ident: 2023041304102404000_34.16.5603.56 doi: 10.1002/ana.20220 – ident: 2023041304102404000_34.16.5603.37 doi: 10.1007/s00221-006-0365-2 – ident: 2023041304102404000_34.16.5603.23 doi: 10.1016/j.neuron.2007.06.026 – volume: 406 start-page: 443 year: 1988 ident: 2023041304102404000_34.16.5603.7 article-title: Two inhibitory postsynaptic potentials, and GABAA and GABAB receptor-mediated responses in neocortex of rat and cat publication-title: J Physiol doi: 10.1113/jphysiol.1988.sp017390 – ident: 2023041304102404000_34.16.5603.12 doi: 10.1046/j.1365-2125.2002.t01-10-01714.x – ident: 2023041304102404000_34.16.5603.2 doi: 10.1111/j.1472-8206.1990.tb00045.x – ident: 2023041304102404000_34.16.5603.22 doi: 10.1016/j.clinph.2012.01.010 – ident: 2023041304102404000_34.16.5603.53 doi: 10.1016/S0306-4522(99)00021-4 – ident: 2023041304102404000_34.16.5603.8 doi: 10.1038/ng885 – ident: 2023041304102404000_34.16.5603.18 doi: 10.1073/pnas.0913008107 – ident: 2023041304102404000_34.16.5603.4 doi: 10.1111/j.1460-9568.2009.06864.x – ident: 2023041304102404000_34.16.5603.15 doi: 10.1016/j.brs.2008.07.004 – ident: 2023041304102404000_34.16.5603.35 doi: 10.1016/j.jneumeth.2007.03.024 – ident: 2023041304102404000_34.16.5603.16 doi: 10.1126/science.1091032 – ident: 2023041304102404000_34.16.5603.52 doi: 10.1016/j.cub.2011.10.017 – ident: 2023041304102404000_34.16.5603.14 doi: 10.1016/j.clinph.2007.07.005 – volume: 17 start-page: 6133 year: 1997 ident: 2023041304102404000_34.16.5603.30 article-title: High intracellular Cl− concentrations depress G-protein-modulated ionic conductances publication-title: J Neurosci doi: 10.1523/JNEUROSCI.17-16-06133.1997 – ident: 2023041304102404000_34.16.5603.54 doi: 10.1016/j.cub.2011.05.049 – volume: 109 start-page: 467 year: 1996 ident: 2023041304102404000_34.16.5603.26 article-title: Effects of diazepam, baclofen and thiopental on the silent period evoked by transcranial magnetic stimulation in humans publication-title: Exp Brain Res doi: 10.1007/BF00229631 – ident: 2023041304102404000_34.16.5603.28 doi: 10.1016/j.neuroscience.2008.01.043 – ident: 2023041304102404000_34.16.5603.45 doi: 10.1002/hbm.22016 – ident: 2023041304102404000_34.16.5603.31 doi: 10.1038/nrn1648 – ident: 2023041304102404000_34.16.5603.21 doi: 10.2165/00003088-199324060-00003 – ident: 2023041304102404000_34.16.5603.46 doi: 10.1093/brain/awr340 – ident: 2023041304102404000_34.16.5603.19 doi: 10.1016/j.neuroimage.2010.07.056 – ident: 2023041304102404000_34.16.5603.1 doi: 10.1002/ana.20521 – ident: 2023041304102404000_34.16.5603.13 doi: 10.1113/jphysiol.2006.114694 – volume: 86 start-page: 1983 year: 2001 ident: 2023041304102404000_34.16.5603.43 article-title: Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study publication-title: J Neurophysiol doi: 10.1152/jn.2001.86.4.1983 – ident: 2023041304102404000_34.16.5603.10 doi: 10.1177/0269881109106898 – ident: 2023041304102404000_34.16.5603.40 doi: 10.1111/j.1460-9568.2007.05553.x – ident: 2023041304102404000_34.16.5603.42 doi: 10.1155/2011/156869 – volume: 45 start-page: 411 year: 1984 ident: 2023041304102404000_34.16.5603.49 article-title: Plasma concentrations and clinical effects after single oral doses of prazepam, clorazepate, and diazepam publication-title: J Clin Psychiatry – ident: 2023041304102404000_34.16.5603.36 doi: 10.1126/science.1117256 – ident: 2023041304102404000_34.16.5603.11 doi: 10.1016/S0028-3908(99)00136-7 – ident: 2023041304102404000_34.16.5603.3 doi: 10.1016/j.clinph.2006.05.006 – ident: 2023041304102404000_34.16.5603.20 doi: 10.1113/jphysiol.2007.142059 – ident: 2023041304102404000_34.16.5603.47 doi: 10.1016/j.clinph.2009.08.016 – volume: 82 start-page: 1218 year: 1999 ident: 2023041304102404000_34.16.5603.33 article-title: GABAA-dependent chloride influx modulates GABAB-mediated IPSPs in hippocampal pyramidal cells publication-title: J Neurophysiol doi: 10.1152/jn.1999.82.3.1218 – ident: 2023041304102404000_34.16.5603.27 doi: 10.1016/S1471-4892(02)00015-2 – ident: 2023041304102404000_34.16.5603.38 doi: 10.1124/jpet.300.1.2 – ident: 2023041304102404000_34.16.5603.48 doi: 10.2165/00003088-199529030-00002 – ident: 2023041304102404000_34.16.5603.24 doi: 10.1016/j.tins.2007.05.007 – ident: 2023041304102404000_34.16.5603.51 doi: 10.1212/WNL.53.9.2069 |
SSID | ssj0007017 |
Score | 2.5705025 |
Snippet | Combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG) constitutes a powerful tool to directly assess human cortical excitability... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 5603 |
SubjectTerms | Adult Brain Mapping Cross-Over Studies Dose-Response Relationship, Drug Double-Blind Method Electroencephalography Electromyography Evoked Potentials - drug effects Evoked Potentials - physiology GABA Agents - pharmacology gamma-Aminobutyric Acid - metabolism Humans Male Motor Cortex - drug effects Motor Cortex - physiology Synaptic Transmission - drug effects Synaptic Transmission - physiology Time Factors Transcranial Magnetic Stimulation Young Adult |
Title | TMS-EEG Signatures of GABAergic Neurotransmission in the Human Cortex |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24741050 https://www.proquest.com/docview/1517876954 https://www.proquest.com/docview/1827892377 https://pubmed.ncbi.nlm.nih.gov/PMC6608220 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFAeNSBshIiJcpXWMnafNYqrILWgV0k_YW2a49Im0J6kUa-yX8XM6xUyfdqsF4iao0dpt8J8ef7e-cQ8gHBaDyNNbBlIUmiISZBpIpFXBkI9wkqbThYsfj5OA0OjqLz1qt3w3V0nIhO-p6Y1zJ_6AK5wBXjJK9B7K-UzgBnwFfOALCcPw3jI8nwWi0vzvJz12CTqvL2B98GugZeLRdm3ljgaMRoDlvqBrd0v0QhbZXTXpaB4pZitpIdunx_zrTl6WLqT6cC9y2qLU-Yo4xKaKS7o3FNZbQ9evN33NwhY6sWiV9vZ-vL9BOUXCTO1YLHrm5HBFaFYuLlqy8FuvBfDRypXc6uvKqzG7jhE23W61hVubVdKJAwnhjQMb6nRudfWyTThyNUfM4GR52gGumQchRrxfVw9tqS__GqOe1iDgLgp4y30-G_WQhz7CfB-QhgwkI1sb48q3OQ9_r2lrO_mar2HPoZ2_z_1mnPbfmMjcluQ2Oc_KEPK6QpwNnaU9JSxfPyPYAbKu8_EU_UisXtvsw22RUGR-tjY-Whnrjo7eMj-YFBeOj1vioM77n5PTz6GR4EFQ1OQIVh3wRYC7LWHa5SPtGAr_iSkjBpmKaSOBDTKSGaa5UaKI-k5rDdJzLpM80jhU6Moq_IFtFWehXhBqjpVQyBsKeRgamT4Jz3jXAaUUq-lK1Sbx6ZJmqEtZj3ZSL7G7I2mTPt_vpUrb8tcX7FSIZPBJlXxVdLufQKIQRLUnju67pYzQ5471em7x0KPrfZWAbMIPptklvDV9_AWZ3X_-myH_YLO9JgsUYuq_vfTc75FH9Yr4hW4vZUr8F5ryQ76wR_wFya8Ao |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TMS-EEG+Signatures+of+GABAergic+Neurotransmission+in+the+Human+Cortex&rft.jtitle=The+Journal+of+neuroscience&rft.au=Premoli%2C+Isabella&rft.au=Castellanos%2C+Nazareth&rft.au=Rivolta%2C+Davide&rft.au=Belardinelli%2C+Paolo&rft.date=2014-04-16&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=34&rft.issue=16&rft.spage=5603&rft.epage=5612&rft_id=info:doi/10.1523%2FJNEUROSCI.5089-13.2014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1523_JNEUROSCI_5089_13_2014 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |