How Local Excitation-Inhibition Ratio Impacts the Whole Brain Dynamics

The spontaneous activity of the brain shows different features at different scales. On one hand, neuroimaging studies show that long-range correlations are highly structured in spatiotemporal patterns, known as resting-state networks, on the other hand, neurophysiological reports show that short-ran...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 34; no. 23; pp. 7886 - 7898
Main Authors Deco, G., Ponce-Alvarez, A., Hagmann, P., Romani, G. L., Mantini, D., Corbetta, M.
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 04.06.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The spontaneous activity of the brain shows different features at different scales. On one hand, neuroimaging studies show that long-range correlations are highly structured in spatiotemporal patterns, known as resting-state networks, on the other hand, neurophysiological reports show that short-range correlations between neighboring neurons are low, despite a large amount of shared presynaptic inputs. Different dynamical mechanisms of local decorrelation have been proposed, among which is feedback inhibition. Here, we investigated the effect of locally regulating the feedback inhibition on the global dynamics of a large-scale brain model, in which the long-range connections are given by diffusion imaging data of human subjects. We used simulations and analytical methods to show that locally constraining the feedback inhibition to compensate for the excess of long-range excitatory connectivity, to preserve the asynchronous state, crucially changes the characteristics of the emergent resting and evoked activity. First, it significantly improves the model's prediction of the empirical human functional connectivity. Second, relaxing this constraint leads to an unrealistic network evoked activity, with systematic coactivation of cortical areas which are components of the default-mode network, whereas regulation of feedback inhibition prevents this. Finally, information theoretic analysis shows that regulation of the local feedback inhibition increases both the entropy and the Fisher information of the network evoked responses. Hence, it enhances the information capacity and the discrimination accuracy of the global network. In conclusion, the local excitation-inhibition ratio impacts the structure of the spontaneous activity and the information transmission at the large-scale brain level.
AbstractList The spontaneous activity of the brain shows different features at different scales. On one hand, neuroimaging studies show that long-range correlations are highly structured in spatiotemporal patterns, known as resting-state networks, on the other hand, neurophysiological reports show that short-range correlations between neighboring neurons are low, despite a large amount of shared presynaptic inputs. Different dynamical mechanisms of local decorrelation have been proposed, among which is feedback inhibition. Here, we investigated the effect of locally regulating the feedback inhibition on the global dynamics of a large-scale brain model, in which the long-range connections are given by diffusion imaging data of human subjects. We used simulations and analytical methods to show that locally constraining the feedback inhibition to compensate for the excess of long-range excitatory connectivity, to preserve the asynchronous state, crucially changes the characteristics of the emergent resting and evoked activity. First, it significantly improves the model's prediction of the empirical human functional connectivity. Second, relaxing this constraint leads to an unrealistic network evoked activity, with systematic coactivation of cortical areas which are components of the default-mode network, whereas regulation of feedback inhibition prevents this. Finally, information theoretic analysis shows that regulation of the local feedback inhibition increases both the entropy and the Fisher information of the network evoked responses. Hence, it enhances the information capacity and the discrimination accuracy of the global network. In conclusion, the local excitation-inhibition ratio impacts the structure of the spontaneous activity and the information transmission at the large-scale brain level.The spontaneous activity of the brain shows different features at different scales. On one hand, neuroimaging studies show that long-range correlations are highly structured in spatiotemporal patterns, known as resting-state networks, on the other hand, neurophysiological reports show that short-range correlations between neighboring neurons are low, despite a large amount of shared presynaptic inputs. Different dynamical mechanisms of local decorrelation have been proposed, among which is feedback inhibition. Here, we investigated the effect of locally regulating the feedback inhibition on the global dynamics of a large-scale brain model, in which the long-range connections are given by diffusion imaging data of human subjects. We used simulations and analytical methods to show that locally constraining the feedback inhibition to compensate for the excess of long-range excitatory connectivity, to preserve the asynchronous state, crucially changes the characteristics of the emergent resting and evoked activity. First, it significantly improves the model's prediction of the empirical human functional connectivity. Second, relaxing this constraint leads to an unrealistic network evoked activity, with systematic coactivation of cortical areas which are components of the default-mode network, whereas regulation of feedback inhibition prevents this. Finally, information theoretic analysis shows that regulation of the local feedback inhibition increases both the entropy and the Fisher information of the network evoked responses. Hence, it enhances the information capacity and the discrimination accuracy of the global network. In conclusion, the local excitation-inhibition ratio impacts the structure of the spontaneous activity and the information transmission at the large-scale brain level.
The spontaneous activity of the brain shows different features at different scales. On one hand, neuroimaging studies show that long-range correlations are highly structured in spatiotemporal patterns, known as resting-state networks, on the other hand, neurophysiological reports show that short-range correlations between neighboring neurons are low, despite a large amount of shared presynaptic inputs. Different dynamical mechanisms of local decorrelation have been proposed, among which is feedback inhibition. Here, we investigated the effect of locally regulating the feedback inhibition on the global dynamics of a large-scale brain model, in which the long-range connections are given by diffusion imaging data of human subjects. We used simulations and analytical methods to show that locally constraining the feedback inhibition to compensate for the excess of long-range excitatory connectivity, to preserve the asynchronous state, crucially changes the characteristics of the emergent resting and evoked activity. First, it significantly improves the model's prediction of the empirical human functional connectivity. Second, relaxing this constraint leads to an unrealistic network evoked activity, with systematic coactivation of cortical areas which are components of the default-mode network, whereas regulation of feedback inhibition prevents this. Finally, information theoretic analysis shows that regulation of the local feedback inhibition increases both the entropy and the Fisher information of the network evoked responses. Hence, it enhances the information capacity and the discrimination accuracy of the global network. In conclusion, the local excitation–inhibition ratio impacts the structure of the spontaneous activity and the information transmission at the large-scale brain level.
Author Corbetta, M.
Romani, G. L.
Ponce-Alvarez, A.
Mantini, D.
Deco, G.
Hagmann, P.
Author_xml – sequence: 1
  givenname: G.
  surname: Deco
  fullname: Deco, G.
– sequence: 2
  givenname: A.
  surname: Ponce-Alvarez
  fullname: Ponce-Alvarez, A.
– sequence: 3
  givenname: P.
  surname: Hagmann
  fullname: Hagmann, P.
– sequence: 4
  givenname: G. L.
  surname: Romani
  fullname: Romani, G. L.
– sequence: 5
  givenname: D.
  surname: Mantini
  fullname: Mantini, D.
– sequence: 6
  givenname: M.
  surname: Corbetta
  fullname: Corbetta, M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24899711$$D View this record in MEDLINE/PubMed
BookMark eNqNkV9P2zAUxa0JBIXxFao88pJyr2M7iTQhQVdGUQVSt2qPluM6q6fE7uJ0g2-_RP2jsRd4suV7zvHR_Z2RI-edIWSIMEJOk6uHx8li_vR1PB1xEFmMyYgCsg9k0E3zmDLAIzIAmkIsWMpOyVkIPwEgBUxPyCllWZ6niANyd-__RDOvVRVNnrVtVWu9i6duZQvbX6N5_xJN67XSbYjalYm-r3xlottGWRd9fnGqtjp8JMelqoK52J3nZHE3-Ta-j2dPX6bjm1msOSZtzDjVGnOu06wsKYoiUViawoDAXJglA5pgnkG-1FxrnhWCZ5lQBVWl4lotITkn19vc9aaozVIb1zaqkuvG1qp5kV5Z-Xri7Er-8L8lA8Yoy7uAy11A439tTGhlbYM2VaWc8ZsgkXMUyBnSd0gThkA7Gp10-G-tQ5_9njvBp61ANz6ExpRyv-uupa0kguyxygNW2WOVmMgea2cX_9n3P7xh_As9MKeI
CitedBy_id crossref_primary_10_1209_0295_5075_adb3c9
crossref_primary_10_3389_fnins_2022_959557
crossref_primary_10_1007_s10548_021_00828_2
crossref_primary_10_1016_j_cub_2018_07_083
crossref_primary_10_1016_j_neuroimage_2022_119401
crossref_primary_10_1016_j_neuroimage_2020_116805
crossref_primary_10_1016_j_tics_2023_12_006
crossref_primary_10_1007_s12559_023_10181_0
crossref_primary_10_1162_netn_a_00166
crossref_primary_10_1371_journal_pcbi_1005507
crossref_primary_10_1016_j_conb_2015_12_010
crossref_primary_10_1016_j_neuroimage_2023_119926
crossref_primary_10_7554_eLife_85442
crossref_primary_10_1016_j_bpsc_2021_03_006
crossref_primary_10_1093_ijnp_pyab001
crossref_primary_10_1038_s41398_024_02854_7
crossref_primary_10_1038_nrn3963
crossref_primary_10_1016_j_neuron_2019_01_017
crossref_primary_10_1016_j_neuroimage_2015_11_055
crossref_primary_10_1016_j_dcn_2018_03_012
crossref_primary_10_1038_s41597_019_0129_z
crossref_primary_10_1038_s41583_020_0262_x
crossref_primary_10_1016_j_bpsc_2018_07_004
crossref_primary_10_1016_j_celrep_2023_112491
crossref_primary_10_3389_fnagi_2022_846017
crossref_primary_10_1080_02643294_2024_2420406
crossref_primary_10_1016_j_neuroimage_2023_120236
crossref_primary_10_3389_fncel_2018_00123
crossref_primary_10_1038_s41551_024_01242_2
crossref_primary_10_1016_j_neuroimage_2018_03_002
crossref_primary_10_1093_cercor_bhae496
crossref_primary_10_1002_hbm_25454
crossref_primary_10_1093_cercor_bhad041
crossref_primary_10_1016_j_neuroimage_2018_05_058
crossref_primary_10_3389_fnsys_2020_00020
crossref_primary_10_3389_fnagi_2022_871323
crossref_primary_10_1016_j_ynirp_2022_100103
crossref_primary_10_1162_netn_a_00263
crossref_primary_10_1093_cercor_bhaa339
crossref_primary_10_1002_hbm_25207
crossref_primary_10_1038_s41598_020_74060_6
crossref_primary_10_3389_fnhum_2022_940845
crossref_primary_10_1038_s41467_024_48781_5
crossref_primary_10_3389_fnhum_2022_940842
crossref_primary_10_1093_cercor_bhad297
crossref_primary_10_1016_j_neuroimage_2023_120388
crossref_primary_10_1016_j_neuroimage_2023_120266
crossref_primary_10_1177_1073858415595004
crossref_primary_10_1021_acs_jmedchem_2c01572
crossref_primary_10_1002_brb3_1844
crossref_primary_10_1371_journal_pcbi_1012723
crossref_primary_10_3390_brainsci13081133
crossref_primary_10_1016_j_neuroimage_2017_12_074
crossref_primary_10_1038_s41598_023_44694_3
crossref_primary_10_1093_cercor_bhaa109
crossref_primary_10_1016_j_neuroscience_2019_05_011
crossref_primary_10_3389_fncom_2020_00049
crossref_primary_10_1016_j_nicl_2015_11_015
crossref_primary_10_1073_pnas_2318641121
crossref_primary_10_1093_cercor_bhad101
crossref_primary_10_1523_ENEURO_0083_18_2018
crossref_primary_10_1093_cercor_bhz314
crossref_primary_10_1371_journal_pone_0260295
crossref_primary_10_1002_hbm_24420
crossref_primary_10_3389_fpsyt_2020_580570
crossref_primary_10_1162_netn_a_00403
crossref_primary_10_1038_s41598_023_32649_7
crossref_primary_10_1186_s13195_024_01449_0
crossref_primary_10_1016_j_celrep_2020_108128
crossref_primary_10_1038_s41598_020_65500_4
crossref_primary_10_1103_PhysRevE_99_012113
crossref_primary_10_3389_fncel_2024_1478572
crossref_primary_10_1371_journal_pcbi_1012595
crossref_primary_10_1016_j_neuroimage_2023_120304
crossref_primary_10_1016_j_neuroimage_2016_08_005
crossref_primary_10_3389_fncom_2023_1169288
crossref_primary_10_1152_jn_00013_2019
crossref_primary_10_1016_j_csbj_2022_11_060
crossref_primary_10_1016_j_neuron_2015_09_008
crossref_primary_10_1103_PhysRevE_111_034309
crossref_primary_10_3390_brainsci14060584
crossref_primary_10_1038_s41467_023_38626_y
crossref_primary_10_1016_j_bpsc_2017_01_005
crossref_primary_10_1016_j_neucom_2020_04_161
crossref_primary_10_1371_journal_pone_0172531
crossref_primary_10_1007_s00221_021_06298_z
crossref_primary_10_1038_s41598_024_80196_6
crossref_primary_10_1093_texcom_tgad012
crossref_primary_10_1126_sciadv_aat7854
crossref_primary_10_1016_j_neuropharm_2025_110321
crossref_primary_10_1038_s41386_020_0693_0
crossref_primary_10_1016_j_neuroimage_2016_10_047
crossref_primary_10_1073_pnas_1508436113
crossref_primary_10_1038_s41598_018_33923_9
crossref_primary_10_1016_j_neuron_2014_08_034
crossref_primary_10_1523_JNEUROSCI_0451_17_2017
crossref_primary_10_1016_j_celrep_2023_112844
crossref_primary_10_1109_TNSRE_2023_3276896
crossref_primary_10_1371_journal_pcbi_1005721
crossref_primary_10_1016_j_neubiorev_2021_02_005
crossref_primary_10_3389_fnsys_2014_00220
crossref_primary_10_1016_j_neuroimage_2017_07_065
crossref_primary_10_1038_s41467_021_26704_y
crossref_primary_10_1371_journal_pcbi_1004762
crossref_primary_10_3389_fnhum_2019_00340
crossref_primary_10_1002_ppsc_202200131
crossref_primary_10_1016_j_neuroimage_2015_08_069
crossref_primary_10_34133_icomputing_0055
crossref_primary_10_1002_mds_29187
crossref_primary_10_3390_e27020115
crossref_primary_10_1371_journal_pcbi_1006007
crossref_primary_10_1162_netn_a_00299
crossref_primary_10_1016_j_bbrc_2024_150302
crossref_primary_10_1016_j_tics_2017_04_007
crossref_primary_10_1016_j_nicl_2023_103476
crossref_primary_10_1371_journal_pcbi_1011279
crossref_primary_10_1162_netn_a_00291
crossref_primary_10_1016_j_neuroimage_2021_118104
crossref_primary_10_1111_febs_15855
crossref_primary_10_3389_fams_2018_00046
crossref_primary_10_3390_biology10100945
crossref_primary_10_1016_j_neuron_2018_01_008
crossref_primary_10_1038_s42003_022_03330_y
crossref_primary_10_1016_j_neuroimage_2022_119051
crossref_primary_10_1002_hbm_26006
crossref_primary_10_3389_fninf_2018_00032
crossref_primary_10_1093_cercor_bhx176
crossref_primary_10_1371_journal_pcbi_1008737
crossref_primary_10_1016_j_clinph_2024_04_004
crossref_primary_10_1016_j_buildenv_2018_10_054
crossref_primary_10_1038_s41398_024_03187_1
crossref_primary_10_1093_schbul_sbw174
crossref_primary_10_1097_WCO_0000000000000344
crossref_primary_10_3389_fneur_2023_1279875
crossref_primary_10_1002_hbm_23887
crossref_primary_10_1186_s13229_020_00377_8
crossref_primary_10_1002_advs_202406835
crossref_primary_10_3389_fnagi_2022_868342
crossref_primary_10_1016_j_nbd_2024_106613
crossref_primary_10_1088_1478_3975_aa7c1e
crossref_primary_10_34133_hds_0157
crossref_primary_10_1016_j_bbagen_2016_04_031
crossref_primary_10_1016_j_neuroimage_2016_05_002
crossref_primary_10_3389_fnsys_2021_806544
crossref_primary_10_1007_s12551_025_01295_w
crossref_primary_10_1093_braincomms_fcae237
crossref_primary_10_1038_s41467_022_30892_6
crossref_primary_10_1148_radiol_2017170311
crossref_primary_10_1038_s41598_017_15046_9
crossref_primary_10_1089_brain_2014_0252
crossref_primary_10_1103_PhysRevResearch_4_023057
crossref_primary_10_1126_science_adf2359
crossref_primary_10_1038_s41598_023_47316_0
crossref_primary_10_1016_j_neuroimage_2022_118973
crossref_primary_10_1162_netn_a_00301
crossref_primary_10_1523_ENEURO_0075_21_2022
crossref_primary_10_1016_j_expneurol_2022_114111
crossref_primary_10_1126_sciadv_abf5620
crossref_primary_10_1038_s41586_023_06098_1
crossref_primary_10_1016_j_pneurobio_2023_102468
crossref_primary_10_1098_rsta_2016_0283
crossref_primary_10_1016_j_neubiorev_2017_04_028
crossref_primary_10_1103_PhysRevResearch_2_043097
crossref_primary_10_1371_journal_pbio_3000979
crossref_primary_10_1038_s41398_020_00998_w
crossref_primary_10_1016_j_neuroimage_2018_03_070
crossref_primary_10_7554_eLife_28927
crossref_primary_10_1016_j_neuroimage_2018_09_042
crossref_primary_10_1016_j_neuroimage_2022_119813
crossref_primary_10_3389_fnsys_2018_00068
crossref_primary_10_1016_j_neuroimage_2020_116738
crossref_primary_10_1162_netn_a_00410
crossref_primary_10_1523_ENEURO_0339_17_2018
crossref_primary_10_1016_j_neubiorev_2015_11_010
crossref_primary_10_1038_s41583_023_00752_3
crossref_primary_10_7554_eLife_69320
crossref_primary_10_1016_j_neuroimage_2022_119321
crossref_primary_10_1016_j_ynirp_2025_100241
crossref_primary_10_3389_fncom_2021_641335
crossref_primary_10_1186_s40478_019_0684_8
crossref_primary_10_1103_RevModPhys_90_031001
crossref_primary_10_1162_netn_a_00244
crossref_primary_10_1103_PhysRevE_107_054308
crossref_primary_10_3389_fnsys_2020_604563
crossref_primary_10_1038_s42003_024_06852_9
crossref_primary_10_1126_sciadv_abf4752
crossref_primary_10_1162_netn_a_00120
crossref_primary_10_1186_s13195_023_01349_9
crossref_primary_10_1016_j_nicl_2018_04_017
crossref_primary_10_1073_pnas_1921475117
crossref_primary_10_1016_j_neuroimage_2023_120162
crossref_primary_10_1371_journal_pone_0275819
crossref_primary_10_1016_j_jad_2018_10_112
crossref_primary_10_1016_j_neunet_2023_11_016
crossref_primary_10_1038_s41537_021_00184_x
crossref_primary_10_1038_s41467_021_26131_z
crossref_primary_10_1038_s41398_021_01197_x
crossref_primary_10_3934_era_2022092
crossref_primary_10_1016_j_nicl_2021_102758
crossref_primary_10_1371_journal_pcbi_1004445
crossref_primary_10_3389_fnsys_2017_00015
crossref_primary_10_1016_j_softx_2024_101924
crossref_primary_10_1093_brain_awx021
crossref_primary_10_1038_s41592_020_01004_3
crossref_primary_10_1016_j_arr_2021_101372
crossref_primary_10_1016_j_tics_2024_11_010
crossref_primary_10_1103_PhysRevX_14_031050
crossref_primary_10_1016_j_neuroimage_2020_117491
crossref_primary_10_3233_RNN_211210
crossref_primary_10_1016_j_arr_2023_101867
crossref_primary_10_1016_j_schres_2016_10_021
crossref_primary_10_1016_j_isci_2022_104706
crossref_primary_10_3390_math11122716
crossref_primary_10_1016_j_immuni_2021_10_006
crossref_primary_10_1103_PhysRevE_108_064410
crossref_primary_10_1186_1471_2202_16_S1_P57
crossref_primary_10_3389_fnagi_2023_1204134
crossref_primary_10_1017_S0033291716003469
crossref_primary_10_1038_s41467_018_08186_7
crossref_primary_10_1016_j_tins_2016_01_001
crossref_primary_10_1038_s42003_022_03576_6
crossref_primary_10_1016_j_conb_2019_08_003
crossref_primary_10_3389_fneur_2022_902912
crossref_primary_10_1016_j_chaos_2020_110235
crossref_primary_10_3389_fnsys_2018_00029
crossref_primary_10_1038_s41598_019_54769_9
crossref_primary_10_3390_brainsci10090626
crossref_primary_10_1016_j_bpsc_2017_07_002
crossref_primary_10_1371_journal_pcbi_1011434
crossref_primary_10_1371_journal_pcbi_1007983
crossref_primary_10_1038_srep07870
crossref_primary_10_1016_j_psyneuen_2016_07_212
crossref_primary_10_1016_j_neurobiolaging_2017_04_016
ContentType Journal Article
Copyright Copyright © 2014 the authors 0270-6474/14/347886-13$15.00/0.
Copyright © 2014 the authors 0270-6474/14/347886-13$15.00/0 2014
Copyright_xml – notice: Copyright © 2014 the authors 0270-6474/14/347886-13$15.00/0.
– notice: Copyright © 2014 the authors 0270-6474/14/347886-13$15.00/0 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1523/JNEUROSCI.5068-13.2014
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList MEDLINE - Academic

Neurosciences Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 7898
ExternalDocumentID PMC4044249
24899711
10_1523_JNEUROSCI_5068_13_2014
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: R01 HD061117
– fundername: NICHD NIH HHS
  grantid: R01HD061117
– fundername: NIMH NIH HHS
  grantid: R01MH096482
– fundername: NIMH NIH HHS
  grantid: R01 MH096482
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
53G
5GY
5RE
5VS
AAFWJ
AAJMC
AAYXX
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
ADHGD
AENEX
AETEA
AFCFT
AFOSN
AFSQR
AHWXS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
OK1
P0W
P2P
QZG
R.V
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
XJT
YBU
YHG
YKV
YNH
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
ID FETCH-LOGICAL-c513t-452cc195c78ff216b3a1febe06196ed402319809dc5cc58b65886ab2afa5cad03
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 18:36:58 EDT 2025
Thu Jul 10 22:47:48 EDT 2025
Fri Jul 11 05:59:54 EDT 2025
Mon Jul 21 06:01:20 EDT 2025
Thu Apr 24 23:00:18 EDT 2025
Tue Jul 01 03:47:12 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords anatomical connectivity
resting-state activity
functional connectivity
local feedback inhibition
large-scale brain model
Language English
License Copyright © 2014 the authors 0270-6474/14/347886-13$15.00/0.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c513t-452cc195c78ff216b3a1febe06196ed402319809dc5cc58b65886ab2afa5cad03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: G.D. and A.P.-A. designed research; G.D. and A.P.-A. performed research; G.D., A.P.-A., P.H., G.L.R., D.M., and M.C. analyzed data; G.D. and A.P.-A. wrote the paper.
G.D. and A.P.-A. contributed equally to this work.
OpenAccessLink https://www.jneurosci.org/content/jneuro/34/23/7886.full.pdf
PMID 24899711
PQID 1534102523
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4044249
proquest_miscellaneous_1551615412
proquest_miscellaneous_1534102523
pubmed_primary_24899711
crossref_citationtrail_10_1523_JNEUROSCI_5068_13_2014
crossref_primary_10_1523_JNEUROSCI_5068_13_2014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-04
PublicationDateYYYYMMDD 2014-06-04
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2014
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References 20006716 - Neuroimage. 2010 Mar;50(1):81-98
16090506 - Phys Rev Lett. 2005 Jun 17;94(23):238103
22432423 - Brain Connect. 2011;1(4):339-47
18846206 - PLoS Comput Biol. 2008 Oct;4(10):e1000196
19433790 - Proc Natl Acad Sci U S A. 2009 May 26;106(21):8719-24
18292226 - Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3593-8
21430142 - J Neurosci. 2011 Mar 23;31(12):4407-20
17159150 - Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19518-23
19457398 - Neuroimage. 2009 May 15;46(1):73-86
22579264 - Trends Neurosci. 2012 Jun;35(6):345-55
17670949 - Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):13170-5
22869750 - Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):E2904-13
19528004 - Philos Trans R Soc Lond B Biol Sci. 2009 May 12;364(1521):1235-43
23146964 - Cereb Cortex. 2014 Mar;24(3):663-76
18635164 - Cortex. 2008 Sep;44(8):936-52
22511856 - PLoS Comput Biol. 2012;8(4):e1002461
20110507 - Science. 2010 Jan 29;327(5965):587-90
11486 - Proc R Soc Lond B Biol Sci. 1976 Oct 15;194(1115):211-23
22632732 - Neuron. 2012 May 24;74(4):753-64
23631996 - Neuroimage. 2013 Oct 1;79:172-83
8524021 - Magn Reson Med. 1995 Oct;34(4):537-41
21930901 - Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16783-8
19188601 - Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):2035-40
23133368 - PLoS Comput Biol. 2012 Aug;8(8):e1002596
24651524 - PLoS Comput Biol. 2014 Mar;10(3):e1003530
21209189 - J Neurosci. 2011 Jan 5;31(1):55-63
15784441 - Neuroimage. 2005 Apr 1;25(2):616-24
22399758 - J Neurosci. 2012 Mar 7;32(10):3366-75
8423479 - J Neurosci. 1993 Jan;13(1):334-50
16399673 - J Neurosci. 2006 Jan 4;26(1):63-72
23267317 - Front Neural Circuits. 2012 Dec 21;6:109
23965122 - J Cogn Neurosci. 1997 Fall;9(5):648-63
8171027 - Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):4009-13
18482851 - Neuroimage. 2008 Jul 15;41(4):1493-503
16466935 - Neuroimage. 2006 Jun;31(2):585-99
17548818 - Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10240-5
11584306 - Nat Rev Neurosci. 2001 Oct;2(10):685-94
12948688 - Neuroimage. 2003 Aug;19(4):1273-302
19497858 - Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10302-7
20123024 - Neuroimage. 2010 May 15;51(1):102-11
16436619 - J Neurosci. 2006 Jan 25;26(4):1314-28
12506194 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8
11308514 - Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Feb;63(2 Pt 1):021903
11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82
23825427 - J Neurosci. 2013 Jul 3;33(27):11239-52
23561718 - Trends Neurosci. 2013 May;36(5):268-74
23426655 - J Neurosci. 2013 Feb 20;33(8):3259-75
22569064 - Neuroimage. 2012 Aug 1;62(1):530-41
18714334 - PLoS One. 2008;3(8):e2979
15852468 - Hum Brain Mapp. 2005 Sep;26(1):15-29
21653723 - J Neurophysiol. 2011 Sep;106(3):1125-65
17234951 - Science. 2007 Jan 19;315(5810):393-5
17704812 - Nat Rev Neurosci. 2007 Sep;8(9):700-11
23735260 - Neuroimage. 2013 Nov 15;82:616-33
9950724 - Neural Comput. 1999 Jan 1;11(1):91-101
8939866 - Science. 1996 Dec 6;274(5293):1724-6
22438275 - Hum Brain Mapp. 2013 Sep;34(9):2154-77
20110506 - Science. 2010 Jan 29;327(5965):584-7
21430278 - J Neurophysiol. 2011 Jun;105(6):2753-63
22359550 - PLoS One. 2012;7(2):e30723
22099467 - Neuron. 2011 Nov 17;72(4):665-78
21525275 - J Neurosci. 2011 Apr 27;31(17):6353-61
18597554 - PLoS Biol. 2008 Jul 1;6(7):e159
References_xml – reference: 22569064 - Neuroimage. 2012 Aug 1;62(1):530-41
– reference: 19457398 - Neuroimage. 2009 May 15;46(1):73-86
– reference: 22511856 - PLoS Comput Biol. 2012;8(4):e1002461
– reference: 17670949 - Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):13170-5
– reference: 22399758 - J Neurosci. 2012 Mar 7;32(10):3366-75
– reference: 23825427 - J Neurosci. 2013 Jul 3;33(27):11239-52
– reference: 21653723 - J Neurophysiol. 2011 Sep;106(3):1125-65
– reference: 15852468 - Hum Brain Mapp. 2005 Sep;26(1):15-29
– reference: 23561718 - Trends Neurosci. 2013 May;36(5):268-74
– reference: 20006716 - Neuroimage. 2010 Mar;50(1):81-98
– reference: 22579264 - Trends Neurosci. 2012 Jun;35(6):345-55
– reference: 16399673 - J Neurosci. 2006 Jan 4;26(1):63-72
– reference: 23426655 - J Neurosci. 2013 Feb 20;33(8):3259-75
– reference: 21430278 - J Neurophysiol. 2011 Jun;105(6):2753-63
– reference: 16090506 - Phys Rev Lett. 2005 Jun 17;94(23):238103
– reference: 22632732 - Neuron. 2012 May 24;74(4):753-64
– reference: 18846206 - PLoS Comput Biol. 2008 Oct;4(10):e1000196
– reference: 18714334 - PLoS One. 2008;3(8):e2979
– reference: 11584306 - Nat Rev Neurosci. 2001 Oct;2(10):685-94
– reference: 16436619 - J Neurosci. 2006 Jan 25;26(4):1314-28
– reference: 23965122 - J Cogn Neurosci. 1997 Fall;9(5):648-63
– reference: 23735260 - Neuroimage. 2013 Nov 15;82:616-33
– reference: 18597554 - PLoS Biol. 2008 Jul 1;6(7):e159
– reference: 21525275 - J Neurosci. 2011 Apr 27;31(17):6353-61
– reference: 8939866 - Science. 1996 Dec 6;274(5293):1724-6
– reference: 11486 - Proc R Soc Lond B Biol Sci. 1976 Oct 15;194(1115):211-23
– reference: 22099467 - Neuron. 2011 Nov 17;72(4):665-78
– reference: 21930901 - Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16783-8
– reference: 8423479 - J Neurosci. 1993 Jan;13(1):334-50
– reference: 9950724 - Neural Comput. 1999 Jan 1;11(1):91-101
– reference: 20110507 - Science. 2010 Jan 29;327(5965):587-90
– reference: 19528004 - Philos Trans R Soc Lond B Biol Sci. 2009 May 12;364(1521):1235-43
– reference: 12506194 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8
– reference: 20123024 - Neuroimage. 2010 May 15;51(1):102-11
– reference: 19188601 - Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):2035-40
– reference: 23133368 - PLoS Comput Biol. 2012 Aug;8(8):e1002596
– reference: 22869750 - Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):E2904-13
– reference: 18482851 - Neuroimage. 2008 Jul 15;41(4):1493-503
– reference: 17234951 - Science. 2007 Jan 19;315(5810):393-5
– reference: 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41
– reference: 22432423 - Brain Connect. 2011;1(4):339-47
– reference: 17704812 - Nat Rev Neurosci. 2007 Sep;8(9):700-11
– reference: 20110506 - Science. 2010 Jan 29;327(5965):584-7
– reference: 17548818 - Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10240-5
– reference: 16466935 - Neuroimage. 2006 Jun;31(2):585-99
– reference: 12948688 - Neuroimage. 2003 Aug;19(4):1273-302
– reference: 23146964 - Cereb Cortex. 2014 Mar;24(3):663-76
– reference: 19433790 - Proc Natl Acad Sci U S A. 2009 May 26;106(21):8719-24
– reference: 15784441 - Neuroimage. 2005 Apr 1;25(2):616-24
– reference: 23267317 - Front Neural Circuits. 2012 Dec 21;6:109
– reference: 8171027 - Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):4009-13
– reference: 21430142 - J Neurosci. 2011 Mar 23;31(12):4407-20
– reference: 18292226 - Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3593-8
– reference: 21209189 - J Neurosci. 2011 Jan 5;31(1):55-63
– reference: 23631996 - Neuroimage. 2013 Oct 1;79:172-83
– reference: 24651524 - PLoS Comput Biol. 2014 Mar;10(3):e1003530
– reference: 18635164 - Cortex. 2008 Sep;44(8):936-52
– reference: 22359550 - PLoS One. 2012;7(2):e30723
– reference: 22438275 - Hum Brain Mapp. 2013 Sep;34(9):2154-77
– reference: 11308514 - Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Feb;63(2 Pt 1):021903
– reference: 11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82
– reference: 19497858 - Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10302-7
– reference: 17159150 - Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19518-23
SSID ssj0007017
Score 2.5807867
Snippet The spontaneous activity of the brain shows different features at different scales. On one hand, neuroimaging studies show that long-range correlations are...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 7886
SubjectTerms Action Potentials - physiology
Brain - cytology
Brain - physiology
Computer Simulation
Entropy
Feedback, Physiological - physiology
Humans
Models, Neurological
Nerve Net - physiology
Neural Inhibition - physiology
Neural Pathways - physiology
Neurons - physiology
Nonlinear Dynamics
Title How Local Excitation-Inhibition Ratio Impacts the Whole Brain Dynamics
URI https://www.ncbi.nlm.nih.gov/pubmed/24899711
https://www.proquest.com/docview/1534102523
https://www.proquest.com/docview/1551615412
https://pubmed.ncbi.nlm.nih.gov/PMC4044249
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6F8sILAsoRLi0S4iVymr18PEZpIS2l4mhF36z12m4jNU6VJhXwxH_gr_CL-CXMrNdH2oqjL5Zle-L1zpfZmZ2LkJcKOJklWngs9LWHjiIvUgnYPCILTAhLUKRtlO-ePz6QO4fqsNP52YpaWi6Svvl2ZV7JdbgK14CvmCX7H5ytfxQuwDnwF47AYTj-E4-xH9wuLka9rS_GFduuohfEdnE8SWxAVu8j3sFCwBpDN1DV_IxtcYGxelL0Nsum9GdtPbXJGLO6aqvqZQ2ETTBc7a46pmCdz2oZi3mQ3vDkXM_LzelhOp9YdzwrGnF3NHXNmcsWAY3bZ1r2mOq9QcGzu3SBRG5bgkkbPtXalmzFnO5dHGMp3ngAhqsse_T0Myd-ufX3sLZ8dpudJQ65aElbMN_91sodhGVD60urgrLVKXb2MDjy02i7rwY-mM4CA_tkmwC4ezq1WOES7NDALQOr9bjfvxvJgZRgtt4gNzkYJyhd335oatQHA9vnuf4-l5cOg9i4eghYkNq9b1U7umTyXIzcbalC-3fIbYcLOiwBeZd0suIeWR8WejGbfqWvqI0qtu6adTIGjFKLUdpg9Nf3Hw06qUUndeikgE5q0UktOmmFzvvk4PXW_mjsue4dnlFMLDypuDEsUiYI85wzPxGa5SAyQIGM_CyVWHgwCgdRapQxKkxAFQZxkXCda2V0OhAPyFoxK7JHhPohqNm5j9VEMxmEIolYyv0caFN0o6ddoqpZi6svwQ4rJzGauDDxcT3xMU58zESME98lGzXdaVnc5a8ULyqmxCCH0bmmi2y2PAMi0AfBgODiT88oNLAk413ysGRk_d4KAV0SrLC4fgDrwK_eKSbHth68g-Pja1M-Ibeav_BTsraYL7NnoGsvkucW2r8BpcnRcw
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+Local+Excitation%E2%80%93Inhibition+Ratio+Impacts+the+Whole+Brain+Dynamics&rft.jtitle=The+Journal+of+neuroscience&rft.au=Deco%2C+Gustavo&rft.au=Ponce-Alvarez%2C+Adri%C3%A1n&rft.au=Hagmann%2C+Patric&rft.au=Romani%2C+Gian+Luca&rft.date=2014-06-04&rft.pub=Society+for+Neuroscience&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=34&rft.issue=23&rft.spage=7886&rft.epage=7898&rft_id=info:doi/10.1523%2FJNEUROSCI.5068-13.2014&rft_id=info%3Apmid%2F24899711&rft.externalDocID=PMC4044249
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon