How Local Excitation-Inhibition Ratio Impacts the Whole Brain Dynamics
The spontaneous activity of the brain shows different features at different scales. On one hand, neuroimaging studies show that long-range correlations are highly structured in spatiotemporal patterns, known as resting-state networks, on the other hand, neurophysiological reports show that short-ran...
Saved in:
Published in | The Journal of neuroscience Vol. 34; no. 23; pp. 7886 - 7898 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society for Neuroscience
04.06.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The spontaneous activity of the brain shows different features at different scales. On one hand, neuroimaging studies show that long-range correlations are highly structured in spatiotemporal patterns, known as resting-state networks, on the other hand, neurophysiological reports show that short-range correlations between neighboring neurons are low, despite a large amount of shared presynaptic inputs. Different dynamical mechanisms of local decorrelation have been proposed, among which is feedback inhibition. Here, we investigated the effect of locally regulating the feedback inhibition on the global dynamics of a large-scale brain model, in which the long-range connections are given by diffusion imaging data of human subjects. We used simulations and analytical methods to show that locally constraining the feedback inhibition to compensate for the excess of long-range excitatory connectivity, to preserve the asynchronous state, crucially changes the characteristics of the emergent resting and evoked activity. First, it significantly improves the model's prediction of the empirical human functional connectivity. Second, relaxing this constraint leads to an unrealistic network evoked activity, with systematic coactivation of cortical areas which are components of the default-mode network, whereas regulation of feedback inhibition prevents this. Finally, information theoretic analysis shows that regulation of the local feedback inhibition increases both the entropy and the Fisher information of the network evoked responses. Hence, it enhances the information capacity and the discrimination accuracy of the global network. In conclusion, the local excitation-inhibition ratio impacts the structure of the spontaneous activity and the information transmission at the large-scale brain level. |
---|---|
AbstractList | The spontaneous activity of the brain shows different features at different scales. On one hand, neuroimaging studies show that long-range correlations are highly structured in spatiotemporal patterns, known as resting-state networks, on the other hand, neurophysiological reports show that short-range correlations between neighboring neurons are low, despite a large amount of shared presynaptic inputs. Different dynamical mechanisms of local decorrelation have been proposed, among which is feedback inhibition. Here, we investigated the effect of locally regulating the feedback inhibition on the global dynamics of a large-scale brain model, in which the long-range connections are given by diffusion imaging data of human subjects. We used simulations and analytical methods to show that locally constraining the feedback inhibition to compensate for the excess of long-range excitatory connectivity, to preserve the asynchronous state, crucially changes the characteristics of the emergent resting and evoked activity. First, it significantly improves the model's prediction of the empirical human functional connectivity. Second, relaxing this constraint leads to an unrealistic network evoked activity, with systematic coactivation of cortical areas which are components of the default-mode network, whereas regulation of feedback inhibition prevents this. Finally, information theoretic analysis shows that regulation of the local feedback inhibition increases both the entropy and the Fisher information of the network evoked responses. Hence, it enhances the information capacity and the discrimination accuracy of the global network. In conclusion, the local excitation-inhibition ratio impacts the structure of the spontaneous activity and the information transmission at the large-scale brain level.The spontaneous activity of the brain shows different features at different scales. On one hand, neuroimaging studies show that long-range correlations are highly structured in spatiotemporal patterns, known as resting-state networks, on the other hand, neurophysiological reports show that short-range correlations between neighboring neurons are low, despite a large amount of shared presynaptic inputs. Different dynamical mechanisms of local decorrelation have been proposed, among which is feedback inhibition. Here, we investigated the effect of locally regulating the feedback inhibition on the global dynamics of a large-scale brain model, in which the long-range connections are given by diffusion imaging data of human subjects. We used simulations and analytical methods to show that locally constraining the feedback inhibition to compensate for the excess of long-range excitatory connectivity, to preserve the asynchronous state, crucially changes the characteristics of the emergent resting and evoked activity. First, it significantly improves the model's prediction of the empirical human functional connectivity. Second, relaxing this constraint leads to an unrealistic network evoked activity, with systematic coactivation of cortical areas which are components of the default-mode network, whereas regulation of feedback inhibition prevents this. Finally, information theoretic analysis shows that regulation of the local feedback inhibition increases both the entropy and the Fisher information of the network evoked responses. Hence, it enhances the information capacity and the discrimination accuracy of the global network. In conclusion, the local excitation-inhibition ratio impacts the structure of the spontaneous activity and the information transmission at the large-scale brain level. The spontaneous activity of the brain shows different features at different scales. On one hand, neuroimaging studies show that long-range correlations are highly structured in spatiotemporal patterns, known as resting-state networks, on the other hand, neurophysiological reports show that short-range correlations between neighboring neurons are low, despite a large amount of shared presynaptic inputs. Different dynamical mechanisms of local decorrelation have been proposed, among which is feedback inhibition. Here, we investigated the effect of locally regulating the feedback inhibition on the global dynamics of a large-scale brain model, in which the long-range connections are given by diffusion imaging data of human subjects. We used simulations and analytical methods to show that locally constraining the feedback inhibition to compensate for the excess of long-range excitatory connectivity, to preserve the asynchronous state, crucially changes the characteristics of the emergent resting and evoked activity. First, it significantly improves the model's prediction of the empirical human functional connectivity. Second, relaxing this constraint leads to an unrealistic network evoked activity, with systematic coactivation of cortical areas which are components of the default-mode network, whereas regulation of feedback inhibition prevents this. Finally, information theoretic analysis shows that regulation of the local feedback inhibition increases both the entropy and the Fisher information of the network evoked responses. Hence, it enhances the information capacity and the discrimination accuracy of the global network. In conclusion, the local excitation–inhibition ratio impacts the structure of the spontaneous activity and the information transmission at the large-scale brain level. |
Author | Corbetta, M. Romani, G. L. Ponce-Alvarez, A. Mantini, D. Deco, G. Hagmann, P. |
Author_xml | – sequence: 1 givenname: G. surname: Deco fullname: Deco, G. – sequence: 2 givenname: A. surname: Ponce-Alvarez fullname: Ponce-Alvarez, A. – sequence: 3 givenname: P. surname: Hagmann fullname: Hagmann, P. – sequence: 4 givenname: G. L. surname: Romani fullname: Romani, G. L. – sequence: 5 givenname: D. surname: Mantini fullname: Mantini, D. – sequence: 6 givenname: M. surname: Corbetta fullname: Corbetta, M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24899711$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV9P2zAUxa0JBIXxFao88pJyr2M7iTQhQVdGUQVSt2qPluM6q6fE7uJ0g2-_RP2jsRd4suV7zvHR_Z2RI-edIWSIMEJOk6uHx8li_vR1PB1xEFmMyYgCsg9k0E3zmDLAIzIAmkIsWMpOyVkIPwEgBUxPyCllWZ6niANyd-__RDOvVRVNnrVtVWu9i6duZQvbX6N5_xJN67XSbYjalYm-r3xlottGWRd9fnGqtjp8JMelqoK52J3nZHE3-Ta-j2dPX6bjm1msOSZtzDjVGnOu06wsKYoiUViawoDAXJglA5pgnkG-1FxrnhWCZ5lQBVWl4lotITkn19vc9aaozVIb1zaqkuvG1qp5kV5Z-Xri7Er-8L8lA8Yoy7uAy11A439tTGhlbYM2VaWc8ZsgkXMUyBnSd0gThkA7Gp10-G-tQ5_9njvBp61ANz6ExpRyv-uupa0kguyxygNW2WOVmMgea2cX_9n3P7xh_As9MKeI |
CitedBy_id | crossref_primary_10_1209_0295_5075_adb3c9 crossref_primary_10_3389_fnins_2022_959557 crossref_primary_10_1007_s10548_021_00828_2 crossref_primary_10_1016_j_cub_2018_07_083 crossref_primary_10_1016_j_neuroimage_2022_119401 crossref_primary_10_1016_j_neuroimage_2020_116805 crossref_primary_10_1016_j_tics_2023_12_006 crossref_primary_10_1007_s12559_023_10181_0 crossref_primary_10_1162_netn_a_00166 crossref_primary_10_1371_journal_pcbi_1005507 crossref_primary_10_1016_j_conb_2015_12_010 crossref_primary_10_1016_j_neuroimage_2023_119926 crossref_primary_10_7554_eLife_85442 crossref_primary_10_1016_j_bpsc_2021_03_006 crossref_primary_10_1093_ijnp_pyab001 crossref_primary_10_1038_s41398_024_02854_7 crossref_primary_10_1038_nrn3963 crossref_primary_10_1016_j_neuron_2019_01_017 crossref_primary_10_1016_j_neuroimage_2015_11_055 crossref_primary_10_1016_j_dcn_2018_03_012 crossref_primary_10_1038_s41597_019_0129_z crossref_primary_10_1038_s41583_020_0262_x crossref_primary_10_1016_j_bpsc_2018_07_004 crossref_primary_10_1016_j_celrep_2023_112491 crossref_primary_10_3389_fnagi_2022_846017 crossref_primary_10_1080_02643294_2024_2420406 crossref_primary_10_1016_j_neuroimage_2023_120236 crossref_primary_10_3389_fncel_2018_00123 crossref_primary_10_1038_s41551_024_01242_2 crossref_primary_10_1016_j_neuroimage_2018_03_002 crossref_primary_10_1093_cercor_bhae496 crossref_primary_10_1002_hbm_25454 crossref_primary_10_1093_cercor_bhad041 crossref_primary_10_1016_j_neuroimage_2018_05_058 crossref_primary_10_3389_fnsys_2020_00020 crossref_primary_10_3389_fnagi_2022_871323 crossref_primary_10_1016_j_ynirp_2022_100103 crossref_primary_10_1162_netn_a_00263 crossref_primary_10_1093_cercor_bhaa339 crossref_primary_10_1002_hbm_25207 crossref_primary_10_1038_s41598_020_74060_6 crossref_primary_10_3389_fnhum_2022_940845 crossref_primary_10_1038_s41467_024_48781_5 crossref_primary_10_3389_fnhum_2022_940842 crossref_primary_10_1093_cercor_bhad297 crossref_primary_10_1016_j_neuroimage_2023_120388 crossref_primary_10_1016_j_neuroimage_2023_120266 crossref_primary_10_1177_1073858415595004 crossref_primary_10_1021_acs_jmedchem_2c01572 crossref_primary_10_1002_brb3_1844 crossref_primary_10_1371_journal_pcbi_1012723 crossref_primary_10_3390_brainsci13081133 crossref_primary_10_1016_j_neuroimage_2017_12_074 crossref_primary_10_1038_s41598_023_44694_3 crossref_primary_10_1093_cercor_bhaa109 crossref_primary_10_1016_j_neuroscience_2019_05_011 crossref_primary_10_3389_fncom_2020_00049 crossref_primary_10_1016_j_nicl_2015_11_015 crossref_primary_10_1073_pnas_2318641121 crossref_primary_10_1093_cercor_bhad101 crossref_primary_10_1523_ENEURO_0083_18_2018 crossref_primary_10_1093_cercor_bhz314 crossref_primary_10_1371_journal_pone_0260295 crossref_primary_10_1002_hbm_24420 crossref_primary_10_3389_fpsyt_2020_580570 crossref_primary_10_1162_netn_a_00403 crossref_primary_10_1038_s41598_023_32649_7 crossref_primary_10_1186_s13195_024_01449_0 crossref_primary_10_1016_j_celrep_2020_108128 crossref_primary_10_1038_s41598_020_65500_4 crossref_primary_10_1103_PhysRevE_99_012113 crossref_primary_10_3389_fncel_2024_1478572 crossref_primary_10_1371_journal_pcbi_1012595 crossref_primary_10_1016_j_neuroimage_2023_120304 crossref_primary_10_1016_j_neuroimage_2016_08_005 crossref_primary_10_3389_fncom_2023_1169288 crossref_primary_10_1152_jn_00013_2019 crossref_primary_10_1016_j_csbj_2022_11_060 crossref_primary_10_1016_j_neuron_2015_09_008 crossref_primary_10_1103_PhysRevE_111_034309 crossref_primary_10_3390_brainsci14060584 crossref_primary_10_1038_s41467_023_38626_y crossref_primary_10_1016_j_bpsc_2017_01_005 crossref_primary_10_1016_j_neucom_2020_04_161 crossref_primary_10_1371_journal_pone_0172531 crossref_primary_10_1007_s00221_021_06298_z crossref_primary_10_1038_s41598_024_80196_6 crossref_primary_10_1093_texcom_tgad012 crossref_primary_10_1126_sciadv_aat7854 crossref_primary_10_1016_j_neuropharm_2025_110321 crossref_primary_10_1038_s41386_020_0693_0 crossref_primary_10_1016_j_neuroimage_2016_10_047 crossref_primary_10_1073_pnas_1508436113 crossref_primary_10_1038_s41598_018_33923_9 crossref_primary_10_1016_j_neuron_2014_08_034 crossref_primary_10_1523_JNEUROSCI_0451_17_2017 crossref_primary_10_1016_j_celrep_2023_112844 crossref_primary_10_1109_TNSRE_2023_3276896 crossref_primary_10_1371_journal_pcbi_1005721 crossref_primary_10_1016_j_neubiorev_2021_02_005 crossref_primary_10_3389_fnsys_2014_00220 crossref_primary_10_1016_j_neuroimage_2017_07_065 crossref_primary_10_1038_s41467_021_26704_y crossref_primary_10_1371_journal_pcbi_1004762 crossref_primary_10_3389_fnhum_2019_00340 crossref_primary_10_1002_ppsc_202200131 crossref_primary_10_1016_j_neuroimage_2015_08_069 crossref_primary_10_34133_icomputing_0055 crossref_primary_10_1002_mds_29187 crossref_primary_10_3390_e27020115 crossref_primary_10_1371_journal_pcbi_1006007 crossref_primary_10_1162_netn_a_00299 crossref_primary_10_1016_j_bbrc_2024_150302 crossref_primary_10_1016_j_tics_2017_04_007 crossref_primary_10_1016_j_nicl_2023_103476 crossref_primary_10_1371_journal_pcbi_1011279 crossref_primary_10_1162_netn_a_00291 crossref_primary_10_1016_j_neuroimage_2021_118104 crossref_primary_10_1111_febs_15855 crossref_primary_10_3389_fams_2018_00046 crossref_primary_10_3390_biology10100945 crossref_primary_10_1016_j_neuron_2018_01_008 crossref_primary_10_1038_s42003_022_03330_y crossref_primary_10_1016_j_neuroimage_2022_119051 crossref_primary_10_1002_hbm_26006 crossref_primary_10_3389_fninf_2018_00032 crossref_primary_10_1093_cercor_bhx176 crossref_primary_10_1371_journal_pcbi_1008737 crossref_primary_10_1016_j_clinph_2024_04_004 crossref_primary_10_1016_j_buildenv_2018_10_054 crossref_primary_10_1038_s41398_024_03187_1 crossref_primary_10_1093_schbul_sbw174 crossref_primary_10_1097_WCO_0000000000000344 crossref_primary_10_3389_fneur_2023_1279875 crossref_primary_10_1002_hbm_23887 crossref_primary_10_1186_s13229_020_00377_8 crossref_primary_10_1002_advs_202406835 crossref_primary_10_3389_fnagi_2022_868342 crossref_primary_10_1016_j_nbd_2024_106613 crossref_primary_10_1088_1478_3975_aa7c1e crossref_primary_10_34133_hds_0157 crossref_primary_10_1016_j_bbagen_2016_04_031 crossref_primary_10_1016_j_neuroimage_2016_05_002 crossref_primary_10_3389_fnsys_2021_806544 crossref_primary_10_1007_s12551_025_01295_w crossref_primary_10_1093_braincomms_fcae237 crossref_primary_10_1038_s41467_022_30892_6 crossref_primary_10_1148_radiol_2017170311 crossref_primary_10_1038_s41598_017_15046_9 crossref_primary_10_1089_brain_2014_0252 crossref_primary_10_1103_PhysRevResearch_4_023057 crossref_primary_10_1126_science_adf2359 crossref_primary_10_1038_s41598_023_47316_0 crossref_primary_10_1016_j_neuroimage_2022_118973 crossref_primary_10_1162_netn_a_00301 crossref_primary_10_1523_ENEURO_0075_21_2022 crossref_primary_10_1016_j_expneurol_2022_114111 crossref_primary_10_1126_sciadv_abf5620 crossref_primary_10_1038_s41586_023_06098_1 crossref_primary_10_1016_j_pneurobio_2023_102468 crossref_primary_10_1098_rsta_2016_0283 crossref_primary_10_1016_j_neubiorev_2017_04_028 crossref_primary_10_1103_PhysRevResearch_2_043097 crossref_primary_10_1371_journal_pbio_3000979 crossref_primary_10_1038_s41398_020_00998_w crossref_primary_10_1016_j_neuroimage_2018_03_070 crossref_primary_10_7554_eLife_28927 crossref_primary_10_1016_j_neuroimage_2018_09_042 crossref_primary_10_1016_j_neuroimage_2022_119813 crossref_primary_10_3389_fnsys_2018_00068 crossref_primary_10_1016_j_neuroimage_2020_116738 crossref_primary_10_1162_netn_a_00410 crossref_primary_10_1523_ENEURO_0339_17_2018 crossref_primary_10_1016_j_neubiorev_2015_11_010 crossref_primary_10_1038_s41583_023_00752_3 crossref_primary_10_7554_eLife_69320 crossref_primary_10_1016_j_neuroimage_2022_119321 crossref_primary_10_1016_j_ynirp_2025_100241 crossref_primary_10_3389_fncom_2021_641335 crossref_primary_10_1186_s40478_019_0684_8 crossref_primary_10_1103_RevModPhys_90_031001 crossref_primary_10_1162_netn_a_00244 crossref_primary_10_1103_PhysRevE_107_054308 crossref_primary_10_3389_fnsys_2020_604563 crossref_primary_10_1038_s42003_024_06852_9 crossref_primary_10_1126_sciadv_abf4752 crossref_primary_10_1162_netn_a_00120 crossref_primary_10_1186_s13195_023_01349_9 crossref_primary_10_1016_j_nicl_2018_04_017 crossref_primary_10_1073_pnas_1921475117 crossref_primary_10_1016_j_neuroimage_2023_120162 crossref_primary_10_1371_journal_pone_0275819 crossref_primary_10_1016_j_jad_2018_10_112 crossref_primary_10_1016_j_neunet_2023_11_016 crossref_primary_10_1038_s41537_021_00184_x crossref_primary_10_1038_s41467_021_26131_z crossref_primary_10_1038_s41398_021_01197_x crossref_primary_10_3934_era_2022092 crossref_primary_10_1016_j_nicl_2021_102758 crossref_primary_10_1371_journal_pcbi_1004445 crossref_primary_10_3389_fnsys_2017_00015 crossref_primary_10_1016_j_softx_2024_101924 crossref_primary_10_1093_brain_awx021 crossref_primary_10_1038_s41592_020_01004_3 crossref_primary_10_1016_j_arr_2021_101372 crossref_primary_10_1016_j_tics_2024_11_010 crossref_primary_10_1103_PhysRevX_14_031050 crossref_primary_10_1016_j_neuroimage_2020_117491 crossref_primary_10_3233_RNN_211210 crossref_primary_10_1016_j_arr_2023_101867 crossref_primary_10_1016_j_schres_2016_10_021 crossref_primary_10_1016_j_isci_2022_104706 crossref_primary_10_3390_math11122716 crossref_primary_10_1016_j_immuni_2021_10_006 crossref_primary_10_1103_PhysRevE_108_064410 crossref_primary_10_1186_1471_2202_16_S1_P57 crossref_primary_10_3389_fnagi_2023_1204134 crossref_primary_10_1017_S0033291716003469 crossref_primary_10_1038_s41467_018_08186_7 crossref_primary_10_1016_j_tins_2016_01_001 crossref_primary_10_1038_s42003_022_03576_6 crossref_primary_10_1016_j_conb_2019_08_003 crossref_primary_10_3389_fneur_2022_902912 crossref_primary_10_1016_j_chaos_2020_110235 crossref_primary_10_3389_fnsys_2018_00029 crossref_primary_10_1038_s41598_019_54769_9 crossref_primary_10_3390_brainsci10090626 crossref_primary_10_1016_j_bpsc_2017_07_002 crossref_primary_10_1371_journal_pcbi_1011434 crossref_primary_10_1371_journal_pcbi_1007983 crossref_primary_10_1038_srep07870 crossref_primary_10_1016_j_psyneuen_2016_07_212 crossref_primary_10_1016_j_neurobiolaging_2017_04_016 |
ContentType | Journal Article |
Copyright | Copyright © 2014 the authors 0270-6474/14/347886-13$15.00/0. Copyright © 2014 the authors 0270-6474/14/347886-13$15.00/0 2014 |
Copyright_xml | – notice: Copyright © 2014 the authors 0270-6474/14/347886-13$15.00/0. – notice: Copyright © 2014 the authors 0270-6474/14/347886-13$15.00/0 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.1523/JNEUROSCI.5068-13.2014 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | MEDLINE - Academic Neurosciences Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 7898 |
ExternalDocumentID | PMC4044249 24899711 10_1523_JNEUROSCI_5068_13_2014 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NICHD NIH HHS grantid: R01 HD061117 – fundername: NICHD NIH HHS grantid: R01HD061117 – fundername: NIMH NIH HHS grantid: R01MH096482 – fundername: NIMH NIH HHS grantid: R01 MH096482 |
GroupedDBID | --- -DZ -~X .55 18M 2WC 34G 39C 53G 5GY 5RE 5VS AAFWJ AAJMC AAYXX ABBAR ABIVO ACGUR ACNCT ADBBV ADCOW ADHGD AENEX AETEA AFCFT AFOSN AFSQR AHWXS ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 HYE H~9 KQ8 L7B OK1 P0W P2P QZG R.V RHI RPM TFN TR2 W8F WH7 WOQ X7M XJT YBU YHG YKV YNH YSK CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c513t-452cc195c78ff216b3a1febe06196ed402319809dc5cc58b65886ab2afa5cad03 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 18:36:58 EDT 2025 Thu Jul 10 22:47:48 EDT 2025 Fri Jul 11 05:59:54 EDT 2025 Mon Jul 21 06:01:20 EDT 2025 Thu Apr 24 23:00:18 EDT 2025 Tue Jul 01 03:47:12 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | anatomical connectivity resting-state activity functional connectivity local feedback inhibition large-scale brain model |
Language | English |
License | Copyright © 2014 the authors 0270-6474/14/347886-13$15.00/0. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c513t-452cc195c78ff216b3a1febe06196ed402319809dc5cc58b65886ab2afa5cad03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: G.D. and A.P.-A. designed research; G.D. and A.P.-A. performed research; G.D., A.P.-A., P.H., G.L.R., D.M., and M.C. analyzed data; G.D. and A.P.-A. wrote the paper. G.D. and A.P.-A. contributed equally to this work. |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/34/23/7886.full.pdf |
PMID | 24899711 |
PQID | 1534102523 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4044249 proquest_miscellaneous_1551615412 proquest_miscellaneous_1534102523 pubmed_primary_24899711 crossref_citationtrail_10_1523_JNEUROSCI_5068_13_2014 crossref_primary_10_1523_JNEUROSCI_5068_13_2014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-06-04 |
PublicationDateYYYYMMDD | 2014-06-04 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2014 |
Publisher | Society for Neuroscience |
Publisher_xml | – name: Society for Neuroscience |
References | 20006716 - Neuroimage. 2010 Mar;50(1):81-98 16090506 - Phys Rev Lett. 2005 Jun 17;94(23):238103 22432423 - Brain Connect. 2011;1(4):339-47 18846206 - PLoS Comput Biol. 2008 Oct;4(10):e1000196 19433790 - Proc Natl Acad Sci U S A. 2009 May 26;106(21):8719-24 18292226 - Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3593-8 21430142 - J Neurosci. 2011 Mar 23;31(12):4407-20 17159150 - Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19518-23 19457398 - Neuroimage. 2009 May 15;46(1):73-86 22579264 - Trends Neurosci. 2012 Jun;35(6):345-55 17670949 - Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):13170-5 22869750 - Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):E2904-13 19528004 - Philos Trans R Soc Lond B Biol Sci. 2009 May 12;364(1521):1235-43 23146964 - Cereb Cortex. 2014 Mar;24(3):663-76 18635164 - Cortex. 2008 Sep;44(8):936-52 22511856 - PLoS Comput Biol. 2012;8(4):e1002461 20110507 - Science. 2010 Jan 29;327(5965):587-90 11486 - Proc R Soc Lond B Biol Sci. 1976 Oct 15;194(1115):211-23 22632732 - Neuron. 2012 May 24;74(4):753-64 23631996 - Neuroimage. 2013 Oct 1;79:172-83 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41 21930901 - Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16783-8 19188601 - Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):2035-40 23133368 - PLoS Comput Biol. 2012 Aug;8(8):e1002596 24651524 - PLoS Comput Biol. 2014 Mar;10(3):e1003530 21209189 - J Neurosci. 2011 Jan 5;31(1):55-63 15784441 - Neuroimage. 2005 Apr 1;25(2):616-24 22399758 - J Neurosci. 2012 Mar 7;32(10):3366-75 8423479 - J Neurosci. 1993 Jan;13(1):334-50 16399673 - J Neurosci. 2006 Jan 4;26(1):63-72 23267317 - Front Neural Circuits. 2012 Dec 21;6:109 23965122 - J Cogn Neurosci. 1997 Fall;9(5):648-63 8171027 - Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):4009-13 18482851 - Neuroimage. 2008 Jul 15;41(4):1493-503 16466935 - Neuroimage. 2006 Jun;31(2):585-99 17548818 - Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10240-5 11584306 - Nat Rev Neurosci. 2001 Oct;2(10):685-94 12948688 - Neuroimage. 2003 Aug;19(4):1273-302 19497858 - Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10302-7 20123024 - Neuroimage. 2010 May 15;51(1):102-11 16436619 - J Neurosci. 2006 Jan 25;26(4):1314-28 12506194 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8 11308514 - Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Feb;63(2 Pt 1):021903 11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82 23825427 - J Neurosci. 2013 Jul 3;33(27):11239-52 23561718 - Trends Neurosci. 2013 May;36(5):268-74 23426655 - J Neurosci. 2013 Feb 20;33(8):3259-75 22569064 - Neuroimage. 2012 Aug 1;62(1):530-41 18714334 - PLoS One. 2008;3(8):e2979 15852468 - Hum Brain Mapp. 2005 Sep;26(1):15-29 21653723 - J Neurophysiol. 2011 Sep;106(3):1125-65 17234951 - Science. 2007 Jan 19;315(5810):393-5 17704812 - Nat Rev Neurosci. 2007 Sep;8(9):700-11 23735260 - Neuroimage. 2013 Nov 15;82:616-33 9950724 - Neural Comput. 1999 Jan 1;11(1):91-101 8939866 - Science. 1996 Dec 6;274(5293):1724-6 22438275 - Hum Brain Mapp. 2013 Sep;34(9):2154-77 20110506 - Science. 2010 Jan 29;327(5965):584-7 21430278 - J Neurophysiol. 2011 Jun;105(6):2753-63 22359550 - PLoS One. 2012;7(2):e30723 22099467 - Neuron. 2011 Nov 17;72(4):665-78 21525275 - J Neurosci. 2011 Apr 27;31(17):6353-61 18597554 - PLoS Biol. 2008 Jul 1;6(7):e159 |
References_xml | – reference: 22569064 - Neuroimage. 2012 Aug 1;62(1):530-41 – reference: 19457398 - Neuroimage. 2009 May 15;46(1):73-86 – reference: 22511856 - PLoS Comput Biol. 2012;8(4):e1002461 – reference: 17670949 - Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):13170-5 – reference: 22399758 - J Neurosci. 2012 Mar 7;32(10):3366-75 – reference: 23825427 - J Neurosci. 2013 Jul 3;33(27):11239-52 – reference: 21653723 - J Neurophysiol. 2011 Sep;106(3):1125-65 – reference: 15852468 - Hum Brain Mapp. 2005 Sep;26(1):15-29 – reference: 23561718 - Trends Neurosci. 2013 May;36(5):268-74 – reference: 20006716 - Neuroimage. 2010 Mar;50(1):81-98 – reference: 22579264 - Trends Neurosci. 2012 Jun;35(6):345-55 – reference: 16399673 - J Neurosci. 2006 Jan 4;26(1):63-72 – reference: 23426655 - J Neurosci. 2013 Feb 20;33(8):3259-75 – reference: 21430278 - J Neurophysiol. 2011 Jun;105(6):2753-63 – reference: 16090506 - Phys Rev Lett. 2005 Jun 17;94(23):238103 – reference: 22632732 - Neuron. 2012 May 24;74(4):753-64 – reference: 18846206 - PLoS Comput Biol. 2008 Oct;4(10):e1000196 – reference: 18714334 - PLoS One. 2008;3(8):e2979 – reference: 11584306 - Nat Rev Neurosci. 2001 Oct;2(10):685-94 – reference: 16436619 - J Neurosci. 2006 Jan 25;26(4):1314-28 – reference: 23965122 - J Cogn Neurosci. 1997 Fall;9(5):648-63 – reference: 23735260 - Neuroimage. 2013 Nov 15;82:616-33 – reference: 18597554 - PLoS Biol. 2008 Jul 1;6(7):e159 – reference: 21525275 - J Neurosci. 2011 Apr 27;31(17):6353-61 – reference: 8939866 - Science. 1996 Dec 6;274(5293):1724-6 – reference: 11486 - Proc R Soc Lond B Biol Sci. 1976 Oct 15;194(1115):211-23 – reference: 22099467 - Neuron. 2011 Nov 17;72(4):665-78 – reference: 21930901 - Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16783-8 – reference: 8423479 - J Neurosci. 1993 Jan;13(1):334-50 – reference: 9950724 - Neural Comput. 1999 Jan 1;11(1):91-101 – reference: 20110507 - Science. 2010 Jan 29;327(5965):587-90 – reference: 19528004 - Philos Trans R Soc Lond B Biol Sci. 2009 May 12;364(1521):1235-43 – reference: 12506194 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8 – reference: 20123024 - Neuroimage. 2010 May 15;51(1):102-11 – reference: 19188601 - Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):2035-40 – reference: 23133368 - PLoS Comput Biol. 2012 Aug;8(8):e1002596 – reference: 22869750 - Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):E2904-13 – reference: 18482851 - Neuroimage. 2008 Jul 15;41(4):1493-503 – reference: 17234951 - Science. 2007 Jan 19;315(5810):393-5 – reference: 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41 – reference: 22432423 - Brain Connect. 2011;1(4):339-47 – reference: 17704812 - Nat Rev Neurosci. 2007 Sep;8(9):700-11 – reference: 20110506 - Science. 2010 Jan 29;327(5965):584-7 – reference: 17548818 - Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10240-5 – reference: 16466935 - Neuroimage. 2006 Jun;31(2):585-99 – reference: 12948688 - Neuroimage. 2003 Aug;19(4):1273-302 – reference: 23146964 - Cereb Cortex. 2014 Mar;24(3):663-76 – reference: 19433790 - Proc Natl Acad Sci U S A. 2009 May 26;106(21):8719-24 – reference: 15784441 - Neuroimage. 2005 Apr 1;25(2):616-24 – reference: 23267317 - Front Neural Circuits. 2012 Dec 21;6:109 – reference: 8171027 - Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):4009-13 – reference: 21430142 - J Neurosci. 2011 Mar 23;31(12):4407-20 – reference: 18292226 - Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3593-8 – reference: 21209189 - J Neurosci. 2011 Jan 5;31(1):55-63 – reference: 23631996 - Neuroimage. 2013 Oct 1;79:172-83 – reference: 24651524 - PLoS Comput Biol. 2014 Mar;10(3):e1003530 – reference: 18635164 - Cortex. 2008 Sep;44(8):936-52 – reference: 22359550 - PLoS One. 2012;7(2):e30723 – reference: 22438275 - Hum Brain Mapp. 2013 Sep;34(9):2154-77 – reference: 11308514 - Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Feb;63(2 Pt 1):021903 – reference: 11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82 – reference: 19497858 - Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10302-7 – reference: 17159150 - Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19518-23 |
SSID | ssj0007017 |
Score | 2.5807867 |
Snippet | The spontaneous activity of the brain shows different features at different scales. On one hand, neuroimaging studies show that long-range correlations are... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 7886 |
SubjectTerms | Action Potentials - physiology Brain - cytology Brain - physiology Computer Simulation Entropy Feedback, Physiological - physiology Humans Models, Neurological Nerve Net - physiology Neural Inhibition - physiology Neural Pathways - physiology Neurons - physiology Nonlinear Dynamics |
Title | How Local Excitation-Inhibition Ratio Impacts the Whole Brain Dynamics |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24899711 https://www.proquest.com/docview/1534102523 https://www.proquest.com/docview/1551615412 https://pubmed.ncbi.nlm.nih.gov/PMC4044249 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6F8sILAsoRLi0S4iVymr18PEZpIS2l4mhF36z12m4jNU6VJhXwxH_gr_CL-CXMrNdH2oqjL5Zle-L1zpfZmZ2LkJcKOJklWngs9LWHjiIvUgnYPCILTAhLUKRtlO-ePz6QO4fqsNP52YpaWi6Svvl2ZV7JdbgK14CvmCX7H5ytfxQuwDnwF47AYTj-E4-xH9wuLka9rS_GFduuohfEdnE8SWxAVu8j3sFCwBpDN1DV_IxtcYGxelL0Nsum9GdtPbXJGLO6aqvqZQ2ETTBc7a46pmCdz2oZi3mQ3vDkXM_LzelhOp9YdzwrGnF3NHXNmcsWAY3bZ1r2mOq9QcGzu3SBRG5bgkkbPtXalmzFnO5dHGMp3ngAhqsse_T0Myd-ufX3sLZ8dpudJQ65aElbMN_91sodhGVD60urgrLVKXb2MDjy02i7rwY-mM4CA_tkmwC4ezq1WOES7NDALQOr9bjfvxvJgZRgtt4gNzkYJyhd335oatQHA9vnuf4-l5cOg9i4eghYkNq9b1U7umTyXIzcbalC-3fIbYcLOiwBeZd0suIeWR8WejGbfqWvqI0qtu6adTIGjFKLUdpg9Nf3Hw06qUUndeikgE5q0UktOmmFzvvk4PXW_mjsue4dnlFMLDypuDEsUiYI85wzPxGa5SAyQIGM_CyVWHgwCgdRapQxKkxAFQZxkXCda2V0OhAPyFoxK7JHhPohqNm5j9VEMxmEIolYyv0caFN0o6ddoqpZi6svwQ4rJzGauDDxcT3xMU58zESME98lGzXdaVnc5a8ULyqmxCCH0bmmi2y2PAMi0AfBgODiT88oNLAk413ysGRk_d4KAV0SrLC4fgDrwK_eKSbHth68g-Pja1M-Ibeav_BTsraYL7NnoGsvkucW2r8BpcnRcw |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+Local+Excitation%E2%80%93Inhibition+Ratio+Impacts+the+Whole+Brain+Dynamics&rft.jtitle=The+Journal+of+neuroscience&rft.au=Deco%2C+Gustavo&rft.au=Ponce-Alvarez%2C+Adri%C3%A1n&rft.au=Hagmann%2C+Patric&rft.au=Romani%2C+Gian+Luca&rft.date=2014-06-04&rft.pub=Society+for+Neuroscience&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=34&rft.issue=23&rft.spage=7886&rft.epage=7898&rft_id=info:doi/10.1523%2FJNEUROSCI.5068-13.2014&rft_id=info%3Apmid%2F24899711&rft.externalDocID=PMC4044249 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |