Design and Preliminary Immunogenicity Evaluation of Nipah Virus Glycoprotein G Epitope-Based Peptide Vaccine in Mice

Background: The emergence of several paramyxoviruses, including Nipah virus (NiV), makes continued efforts in vaccine development as part of pandemic preparedness efforts necessary. Although NiV is a zoonotic pathogen with high case fatality, there is still no licensed vaccine. Methods: Herein, NiV...

Full description

Saved in:
Bibliographic Details
Published inVaccines (Basel) Vol. 13; no. 4; p. 428
Main Authors Kim, Seungyeon, Flores, Rochelle A., Moon, Seo Young, Lee, Seung Yun, Altanzul, Bujinlkham, Baek, Jiwon, Choi, Eun Bee, Lim, Heeji, Jang, Eun Young, Lee, Yoo-kyoung, Ouh, In-Ohk, Kim, Woo H.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 18.04.2025
MDPI
Subjects
Online AccessGet full text
ISSN2076-393X
2076-393X
DOI10.3390/vaccines13040428

Cover

Abstract Background: The emergence of several paramyxoviruses, including Nipah virus (NiV), makes continued efforts in vaccine development as part of pandemic preparedness efforts necessary. Although NiV is a zoonotic pathogen with high case fatality, there is still no licensed vaccine. Methods: Herein, NiV attachment glycoprotein G (NiV-G), which is crucial to host cell receptor binding, was used to develop Nipah epitope-based peptide vaccines. A total of 39 B- and T-cell epitopes of NiV-G were shortlisted for peptide synthesis and evaluation using in silico analysis. Results: The in vitro antigenicity evaluation of the peptide candidates showed eight synthesized peptides (G7, stalk-domain epitopes) with relatively high binding to NiV-G antibody-positive serum (A450nm: 1.39–3.78). Moreover, nine-mer (9-mer) peptides were found to be less reactive than their longer peptide counterparts (15–30 aa, G7-1, and G7-4), but 9-mer activity was enhanced with cyclization (NPLPFREYK, A450nm: 2.66) and C-terminal amidation modification (NPLPFREYK-NH2, A450nm: 1.39). Subsequently, in vivo validation in immunized mice revealed the immunogenicity potential of the G7-1 peptide vaccine (30 aa, NENVNEKCKFTLPPLKIHECNISCPNPLPF) to elicit a strong antigen-specific antibody response against their homologous peptide antigen (I.V., A450nm: 1.48 ± 0.78; I.M., A450nm: 1.66 ± 0.66). However, antibody binding to recombinant NiV-G protein remained low, suggesting limited recognition to the native antigen. Conclusions: This study focused on the preliminary screening and validation of peptide vaccines using single formulations with minimal modifications in the peptide candidates. Our findings collectively show the immunogenic potential of the NiV-G stalk-based epitope peptide vaccine as a novel therapeutic for NiV and underscores the need for strategic design, delivery, and formulation optimization to enhance its protective efficacy and translational application.
AbstractList Background: The emergence of several paramyxoviruses, including Nipah virus (NiV), makes continued efforts in vaccine development as part of pandemic preparedness efforts necessary. Although NiV is a zoonotic pathogen with high case fatality, there is still no licensed vaccine. Methods: Herein, NiV attachment glycoprotein G (NiV-G), which is crucial to host cell receptor binding, was used to develop Nipah epitope-based peptide vaccines. A total of 39 B- and T-cell epitopes of NiV-G were shortlisted for peptide synthesis and evaluation using in silico analysis. Results: The in vitro antigenicity evaluation of the peptide candidates showed eight synthesized peptides (G7, stalk-domain epitopes) with relatively high binding to NiV-G antibody-positive serum (A[sub.450nm] : 1.39–3.78). Moreover, nine-mer (9-mer) peptides were found to be less reactive than their longer peptide counterparts (15–30 aa, G7-1, and G7-4), but 9-mer activity was enhanced with cyclization (NPLPFREYK, A[sub.450nm] : 2.66) and C-terminal amidation modification (NPLPFREYK-NH2, A[sub.450nm] : 1.39). Subsequently, in vivo validation in immunized mice revealed the immunogenicity potential of the G7-1 peptide vaccine (30 aa, NENVNEKCKFTLPPLKIHECNISCPNPLPF) to elicit a strong antigen-specific antibody response against their homologous peptide antigen (I.V., A[sub.450nm] : 1.48 ± 0.78; I.M., A[sub.450nm] : 1.66 ± 0.66). However, antibody binding to recombinant NiV-G protein remained low, suggesting limited recognition to the native antigen. Conclusions: This study focused on the preliminary screening and validation of peptide vaccines using single formulations with minimal modifications in the peptide candidates. Our findings collectively show the immunogenic potential of the NiV-G stalk-based epitope peptide vaccine as a novel therapeutic for NiV and underscores the need for strategic design, delivery, and formulation optimization to enhance its protective efficacy and translational application.
Background: The emergence of several paramyxoviruses, including Nipah virus (NiV), makes continued efforts in vaccine development as part of pandemic preparedness efforts necessary. Although NiV is a zoonotic pathogen with high case fatality, there is still no licensed vaccine. Methods: Herein, NiV attachment glycoprotein G (NiV-G), which is crucial to host cell receptor binding, was used to develop Nipah epitope-based peptide vaccines. A total of 39 B- and T-cell epitopes of NiV-G were shortlisted for peptide synthesis and evaluation using in silico analysis. Results: The in vitro antigenicity evaluation of the peptide candidates showed eight synthesized peptides (G7, stalk-domain epitopes) with relatively high binding to NiV-G antibody-positive serum (A 450nm : 1.39–3.78). Moreover, nine-mer (9-mer) peptides were found to be less reactive than their longer peptide counterparts (15–30 aa, G7-1, and G7-4), but 9-mer activity was enhanced with cyclization (NPLPFREYK, A 450nm : 2.66) and C-terminal amidation modification (NPLPFREYK-NH2, A 450nm : 1.39). Subsequently, in vivo validation in immunized mice revealed the immunogenicity potential of the G7-1 peptide vaccine (30 aa, NENVNEKCKFTLPPLKIHECNISCPNPLPF) to elicit a strong antigen-specific antibody response against their homologous peptide antigen (I.V., A 450nm : 1.48 ± 0.78; I.M., A 450nm : 1.66 ± 0.66). However, antibody binding to recombinant NiV-G protein remained low, suggesting limited recognition to the native antigen. Conclusions: This study focused on the preliminary screening and validation of peptide vaccines using single formulations with minimal modifications in the peptide candidates. Our findings collectively show the immunogenic potential of the NiV-G stalk-based epitope peptide vaccine as a novel therapeutic for NiV and underscores the need for strategic design, delivery, and formulation optimization to enhance its protective efficacy and translational application.
Background: The emergence of several paramyxoviruses, including Nipah virus (NiV), makes continued efforts in vaccine development as part of pandemic preparedness efforts necessary. Although NiV is a zoonotic pathogen with high case fatality, there is still no licensed vaccine. Methods: Herein, NiV attachment glycoprotein G (NiV-G), which is crucial to host cell receptor binding, was used to develop Nipah epitope-based peptide vaccines. A total of 39 B- and T-cell epitopes of NiV-G were shortlisted for peptide synthesis and evaluation using in silico analysis. Results: The in vitro antigenicity evaluation of the peptide candidates showed eight synthesized peptides (G7, stalk-domain epitopes) with relatively high binding to NiV-G antibody-positive serum (A450nm: 1.39–3.78). Moreover, nine-mer (9-mer) peptides were found to be less reactive than their longer peptide counterparts (15–30 aa, G7-1, and G7-4), but 9-mer activity was enhanced with cyclization (NPLPFREYK, A450nm: 2.66) and C-terminal amidation modification (NPLPFREYK-NH2, A450nm: 1.39). Subsequently, in vivo validation in immunized mice revealed the immunogenicity potential of the G7-1 peptide vaccine (30 aa, NENVNEKCKFTLPPLKIHECNISCPNPLPF) to elicit a strong antigen-specific antibody response against their homologous peptide antigen (I.V., A450nm: 1.48 ± 0.78; I.M., A450nm: 1.66 ± 0.66). However, antibody binding to recombinant NiV-G protein remained low, suggesting limited recognition to the native antigen. Conclusions: This study focused on the preliminary screening and validation of peptide vaccines using single formulations with minimal modifications in the peptide candidates. Our findings collectively show the immunogenic potential of the NiV-G stalk-based epitope peptide vaccine as a novel therapeutic for NiV and underscores the need for strategic design, delivery, and formulation optimization to enhance its protective efficacy and translational application.
The emergence of several paramyxoviruses, including Nipah virus (NiV), makes continued efforts in vaccine development as part of pandemic preparedness efforts necessary. Although NiV is a zoonotic pathogen with high case fatality, there is still no licensed vaccine. Herein, NiV attachment glycoprotein G (NiV-G), which is crucial to host cell receptor binding, was used to develop Nipah epitope-based peptide vaccines. A total of 39 B- and T-cell epitopes of NiV-G were shortlisted for peptide synthesis and evaluation using in silico analysis. The in vitro antigenicity evaluation of the peptide candidates showed eight synthesized peptides (G7, stalk-domain epitopes) with relatively high binding to NiV-G antibody-positive serum (A : 1.39-3.78). Moreover, nine-mer (9-mer) peptides were found to be less reactive than their longer peptide counterparts (15-30 aa, G7-1, and G7-4), but 9-mer activity was enhanced with cyclization (NPLPFREYK, A : 2.66) and C-terminal amidation modification (NPLPFREYK-NH2, A : 1.39). Subsequently, in vivo validation in immunized mice revealed the immunogenicity potential of the G7-1 peptide vaccine (30 aa, NENVNEKCKFTLPPLKIHECNISCPNPLPF) to elicit a strong antigen-specific antibody response against their homologous peptide antigen (I.V., A : 1.48 ± 0.78; I.M., A : 1.66 ± 0.66). However, antibody binding to recombinant NiV-G protein remained low, suggesting limited recognition to the native antigen. This study focused on the preliminary screening and validation of peptide vaccines using single formulations with minimal modifications in the peptide candidates. Our findings collectively show the immunogenic potential of the NiV-G stalk-based epitope peptide vaccine as a novel therapeutic for NiV and underscores the need for strategic design, delivery, and formulation optimization to enhance its protective efficacy and translational application.
Background: The emergence of several paramyxoviruses, including Nipah virus (NiV), makes continued efforts in vaccine development as part of pandemic preparedness efforts necessary. Although NiV is a zoonotic pathogen with high case fatality, there is still no licensed vaccine. Methods: Herein, NiV attachment glycoprotein G (NiV-G), which is crucial to host cell receptor binding, was used to develop Nipah epitope-based peptide vaccines. A total of 39 B- and T-cell epitopes of NiV-G were shortlisted for peptide synthesis and evaluation using in silico analysis. Results: The in vitro antigenicity evaluation of the peptide candidates showed eight synthesized peptides (G7, stalk-domain epitopes) with relatively high binding to NiV-G antibody-positive serum (A450nm: 1.39-3.78). Moreover, nine-mer (9-mer) peptides were found to be less reactive than their longer peptide counterparts (15-30 aa, G7-1, and G7-4), but 9-mer activity was enhanced with cyclization (NPLPFREYK, A450nm: 2.66) and C-terminal amidation modification (NPLPFREYK-NH2, A450nm: 1.39). Subsequently, in vivo validation in immunized mice revealed the immunogenicity potential of the G7-1 peptide vaccine (30 aa, NENVNEKCKFTLPPLKIHECNISCPNPLPF) to elicit a strong antigen-specific antibody response against their homologous peptide antigen (I.V., A450nm: 1.48 ± 0.78; I.M., A450nm: 1.66 ± 0.66). However, antibody binding to recombinant NiV-G protein remained low, suggesting limited recognition to the native antigen. Conclusions: This study focused on the preliminary screening and validation of peptide vaccines using single formulations with minimal modifications in the peptide candidates. Our findings collectively show the immunogenic potential of the NiV-G stalk-based epitope peptide vaccine as a novel therapeutic for NiV and underscores the need for strategic design, delivery, and formulation optimization to enhance its protective efficacy and translational application.Background: The emergence of several paramyxoviruses, including Nipah virus (NiV), makes continued efforts in vaccine development as part of pandemic preparedness efforts necessary. Although NiV is a zoonotic pathogen with high case fatality, there is still no licensed vaccine. Methods: Herein, NiV attachment glycoprotein G (NiV-G), which is crucial to host cell receptor binding, was used to develop Nipah epitope-based peptide vaccines. A total of 39 B- and T-cell epitopes of NiV-G were shortlisted for peptide synthesis and evaluation using in silico analysis. Results: The in vitro antigenicity evaluation of the peptide candidates showed eight synthesized peptides (G7, stalk-domain epitopes) with relatively high binding to NiV-G antibody-positive serum (A450nm: 1.39-3.78). Moreover, nine-mer (9-mer) peptides were found to be less reactive than their longer peptide counterparts (15-30 aa, G7-1, and G7-4), but 9-mer activity was enhanced with cyclization (NPLPFREYK, A450nm: 2.66) and C-terminal amidation modification (NPLPFREYK-NH2, A450nm: 1.39). Subsequently, in vivo validation in immunized mice revealed the immunogenicity potential of the G7-1 peptide vaccine (30 aa, NENVNEKCKFTLPPLKIHECNISCPNPLPF) to elicit a strong antigen-specific antibody response against their homologous peptide antigen (I.V., A450nm: 1.48 ± 0.78; I.M., A450nm: 1.66 ± 0.66). However, antibody binding to recombinant NiV-G protein remained low, suggesting limited recognition to the native antigen. Conclusions: This study focused on the preliminary screening and validation of peptide vaccines using single formulations with minimal modifications in the peptide candidates. Our findings collectively show the immunogenic potential of the NiV-G stalk-based epitope peptide vaccine as a novel therapeutic for NiV and underscores the need for strategic design, delivery, and formulation optimization to enhance its protective efficacy and translational application.
Audience Academic
Author Kim, Woo H.
Lim, Heeji
Ouh, In-Ohk
Lee, Seung Yun
Altanzul, Bujinlkham
Kim, Seungyeon
Jang, Eun Young
Flores, Rochelle A.
Lee, Yoo-kyoung
Baek, Jiwon
Choi, Eun Bee
Moon, Seo Young
AuthorAffiliation 1 Division of Vaccine Development Coordination, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Osong, Cheongju 28159, Chungcheongbuk-do, Republic of Korea; hatmddus135@korea.kr (S.K.); msy1477@korea.kr (S.Y.M.); jiwonbb@korea.kr (J.B.); dmsql2274@korea.kr (E.B.C.); dalgi0519@korea.kr (H.L.); sky11kk@korea.kr (E.Y.J.); leeykyoung@korea.kr (Y.-k.L.)
2 College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Gyeongsangnam-do, Republic of Korea; floresrochellea@gmail.com (R.A.F.); seungyun0218@gnu.ac.kr (S.Y.L.); bujinlkham_1221@gnu.ac.kr (B.A.)
AuthorAffiliation_xml – name: 1 Division of Vaccine Development Coordination, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Osong, Cheongju 28159, Chungcheongbuk-do, Republic of Korea; hatmddus135@korea.kr (S.K.); msy1477@korea.kr (S.Y.M.); jiwonbb@korea.kr (J.B.); dmsql2274@korea.kr (E.B.C.); dalgi0519@korea.kr (H.L.); sky11kk@korea.kr (E.Y.J.); leeykyoung@korea.kr (Y.-k.L.)
– name: 2 College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Gyeongsangnam-do, Republic of Korea; floresrochellea@gmail.com (R.A.F.); seungyun0218@gnu.ac.kr (S.Y.L.); bujinlkham_1221@gnu.ac.kr (B.A.)
Author_xml – sequence: 1
  givenname: Seungyeon
  surname: Kim
  fullname: Kim, Seungyeon
– sequence: 2
  givenname: Rochelle A.
  orcidid: 0000-0002-8848-6652
  surname: Flores
  fullname: Flores, Rochelle A.
– sequence: 3
  givenname: Seo Young
  surname: Moon
  fullname: Moon, Seo Young
– sequence: 4
  givenname: Seung Yun
  surname: Lee
  fullname: Lee, Seung Yun
– sequence: 5
  givenname: Bujinlkham
  surname: Altanzul
  fullname: Altanzul, Bujinlkham
– sequence: 6
  givenname: Jiwon
  surname: Baek
  fullname: Baek, Jiwon
– sequence: 7
  givenname: Eun Bee
  surname: Choi
  fullname: Choi, Eun Bee
– sequence: 8
  givenname: Heeji
  orcidid: 0000-0003-3546-9477
  surname: Lim
  fullname: Lim, Heeji
– sequence: 9
  givenname: Eun Young
  surname: Jang
  fullname: Jang, Eun Young
– sequence: 10
  givenname: Yoo-kyoung
  surname: Lee
  fullname: Lee, Yoo-kyoung
– sequence: 11
  givenname: In-Ohk
  surname: Ouh
  fullname: Ouh, In-Ohk
– sequence: 12
  givenname: Woo H.
  orcidid: 0000-0002-6874-6787
  surname: Kim
  fullname: Kim, Woo H.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40333318$$D View this record in MEDLINE/PubMed
BookMark eNptks9vFCEUx4mpsXXt3ZMh8eJlKgyzA3Myta7rJvXHQRtvhIHHls0MjDCzyf73sm6t3cbHAfL4vC98X95zdOKDB4ReUnLBWEPebpXWzkOijFSkKsUTdFYSXhesYT9PHpxP0XlKG5KjoUzU_Bk6rQjLQcUZGj9AcmuPlTf4W4TO9c6ruMOrvp98WIN32o07vNiqblKjCx4Hi7-4Qd3iGxenhJfdTochhhGcx0u8GNwYBijeqwRZEYbRGcA3h6_ijHx2Gl6gp1Z1Cc7v9hn68XHx_epTcf11ubq6vC70nLKxYHPbGl1SwmrCFRPCVmIOteat5cbalmsjhOYKGkpLAzb3AaA0pSJKaJsrZmh10DVBbeQQXZ-tyaCc_JMIcS1VHJ3uQBLLtWUmS_C6sqVpoDFiXjOqrK5bLbLWu4PWMLU9GA1-jKo7Ej2-8e5WrsNW0pIwWuXWz9CbO4UYfk2QRtm7pKHrlIcwJclKQlkjKOcZff0I3YQp-twryWhT1bkPovpHrVV24LwN-WG9F5WXgvG6oYLuqYv_UHkZ6J3OI2Vdzh8VvHro9N7i36HJADkAOoaUIth7hBK5H035eDTZb-tU2D8
Cites_doi 10.1016/j.biopha.2022.114117
10.3390/v13102020
10.1021/acsomega.9b00944
10.4049/jimmunol.179.8.5033
10.1038/s41392-022-00904-4
10.3390/vaccines12090999
10.1002/ana.21178
10.1016/j.virol.2007.11.011
10.1021/acs.bioconjchem.6b00502
10.1056/NEJMc2202705
10.3201/eid2204.151747
10.1111/imm.12656
10.3389/fcimb.2019.00344
10.1016/S0140-6736(99)04379-2
10.3390/v13122479
10.1128/JVI.01203-12
10.3389/fmicb.2021.811157
10.1128/JVI.01344-08
10.1126/science.abm5561
10.1038/s41598-020-79645-9
10.3390/v15101980
10.1155/2020/2567957
10.1093/biomethods/bpad030
10.3201/eid2102.141433
10.1586/erv.09.160
10.1093/nar/gkaa379
10.1016/j.vaccine.2007.01.111
10.1016/j.ijregi.2024.100434
10.3389/fimmu.2024.1384417
10.1128/JVI.02277-14
10.1371/journal.pntd.0001432
10.1056/NEJMoa1805376
10.1016/j.drudis.2022.03.004
10.2174/1568026618666181112144745
10.1016/j.virs.2024.09.005
10.1021/acsomega.1c04817
10.1093/nar/gkab314
10.1371/journal.pgph.0003926
10.3201/eid1012.040452
10.1007/s00253-021-11713-0
10.1016/j.vaccine.2021.10.042
10.1126/science.288.5470.1432
10.3390/vaccines2030515
10.1016/j.lanmic.2024.101002
10.1016/j.jcpa.2006.05.001
10.1093/nar/gkx346
10.3389/fimmu.2019.00549
10.1038/s41541-019-0147-z
10.1016/S1473-3099(21)00400-X
10.1016/j.heliyon.2024.e26009
10.1016/j.bpj.2012.11.370
10.3201/eid1301.060791
10.1038/s41598-022-12651-1
10.1155/2024/4066641
10.1038/s41598-021-99227-7
10.1016/j.molliq.2021.116586
10.3389/fimmu.2020.00842
10.1002/ana.10212
10.1080/23744235.2024.2334853
10.3389/fimmu.2021.772864
10.1038/s41591-021-01301-0
10.1038/s41592-022-01488-1
10.3390/v4020280
10.3390/vaccines9050477
10.1128/JCM.01875-17
10.1371/journal.ppat.1000642
10.1053/jcpa.2001.0532
10.1038/s41598-024-56554-9
10.1093/infdis/jis699
10.3201/eid2506.181620
10.1128/JVI.00066-17
10.1016/j.smim.2022.101708
10.1128/mbio.03222-21
10.1128/jvi.00921-22
10.3389/fimmu.2020.618312
10.1016/S2542-5196(24)00119-0
10.1371/journal.pntd.0003302
10.1038/nsmb.1566
10.1016/j.ymthe.2022.01.011
10.1128/JVI.02608-13
10.1086/520818
10.1038/s41541-017-0023-7
10.1039/9781788010153
10.1371/journal.ppat.1002836
10.2210/pdb4jf7/pdb
10.1038/s41573-021-00283-5
10.3390/vaccines11071176
10.1038/s41541-024-00954-5
10.1016/S1473-3099(19)30634-6
10.1021/bi026952u
10.1038/nrd2224
10.1128/JVI.00641-13
10.3389/fmicb.2023.1167085
10.1039/C5SC03892H
10.1021/acschembio.5b00189
10.1038/s41541-019-0109-5
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7T7
7XB
8FD
8FE
8FH
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
COVID
DWQXO
FR3
GNUQQ
GUQSH
HCIFZ
LK8
M2O
M7P
MBDVC
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3390/vaccines13040428
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Biological Science Collection
Research Library
ProQuest Biological Science
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Research Library
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Coronavirus Research Database
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
PubMed
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 2076-393X
ExternalDocumentID oai_doaj_org_article_0f7cf3d304764f2d9e9d85631afc6bc8
PMC12031491
A837691814
40333318
10_3390_vaccines13040428
Genre Journal Article
GeographicLocations South Korea
Bangladesh
Malaysia
India
GeographicLocations_xml – name: South Korea
– name: Malaysia
– name: India
– name: Bangladesh
GrantInformation_xml – fundername: Korea Disease Control and Prevention Agency (KDCA)
  grantid: grant number 6634-332
– fundername: National Institute of Wildlife Disease Control and Prevention
  grantid: 'Specialized Graduate School Support Project for Wildlife Disease Specialists'
– fundername: Korea Disease Control and Prevention Agency (KDCA)
  grantid: 6634–332
– fundername: National Institute of Wildlife Disease Control and Prevention
GroupedDBID 53G
5VS
8FE
8FH
8G5
AADQD
AAHBH
AAYXX
ABUWG
ADBBV
AEUYN
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DIK
DWQXO
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M2O
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
RNS
RPM
NPM
PMFND
3V.
7T7
7XB
8FD
8FK
C1K
COVID
FR3
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c513t-35fbdc2103607a388f485e6c7bf7dffb7cd88c7ae9112def304ee2d2a0a8cf7a3
IEDL.DBID M48
ISSN 2076-393X
IngestDate Wed Aug 27 01:31:17 EDT 2025
Thu Aug 21 18:26:58 EDT 2025
Fri Sep 05 17:14:27 EDT 2025
Fri Jul 18 09:50:31 EDT 2025
Fri May 16 01:11:04 EDT 2025
Tue Jun 10 20:53:45 EDT 2025
Thu May 15 23:20:39 EDT 2025
Wed Sep 10 04:05:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords epitopes
vaccine
Nipah virus
peptide vaccine
attachment glycoprotein G
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c513t-35fbdc2103607a388f485e6c7bf7dffb7cd88c7ae9112def304ee2d2a0a8cf7a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0003-3546-9477
0000-0002-8848-6652
0000-0002-6874-6787
OpenAccessLink https://doaj.org/article/0f7cf3d304764f2d9e9d85631afc6bc8
PMID 40333318
PQID 3194648584
PQPubID 2032320
ParticipantIDs doaj_primary_oai_doaj_org_article_0f7cf3d304764f2d9e9d85631afc6bc8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12031491
proquest_miscellaneous_3201398177
proquest_journals_3194648584
gale_infotracmisc_A837691814
gale_infotracacademiconefile_A837691814
pubmed_primary_40333318
crossref_primary_10_3390_vaccines13040428
PublicationCentury 2000
PublicationDate 2025-04-18
PublicationDateYYYYMMDD 2025-04-18
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-18
  day: 18
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Vaccines (Basel)
PublicationTitleAlternate Vaccines (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Middleton (ref_17) 2002; 126
Nandy (ref_73) 2018; 18
ref_91
ref_90
Gfeller (ref_89) 2023; 66
Mathieu (ref_25) 2012; 86
Krammer (ref_95) 2013; 87
Satapathy (ref_60) 2024; 56
Kalita (ref_39) 2022; 27
ref_18
ref_16
Sejvar (ref_11) 2007; 62
Reynisson (ref_56) 2020; 48
Tan (ref_12) 2002; 51
ref_24
ref_21
Akhtar (ref_50) 2021; 335
Madera (ref_61) 2022; 96
Black (ref_42) 2010; 9
Ngambenjawong (ref_83) 2016; 27
ref_27
Nikolay (ref_23) 2019; 380
Chen (ref_81) 2024; 39
Jespersen (ref_55) 2017; 45
Beaty (ref_75) 2017; 215
ref_70
Steffen (ref_26) 2012; 4
Bijker (ref_87) 2007; 179
ref_77
Liu (ref_99) 2015; 89
Alam (ref_48) 2016; 149
Ortega (ref_78) 2022; 13
Wong (ref_10) 2012; 359
McGaughey (ref_85) 2003; 42
Bowden (ref_13) 2008; 82
Wang (ref_41) 2022; 7
ref_82
Chaudhary (ref_31) 2021; 20
ref_88
Sui (ref_98) 2009; 16
Iehle (ref_15) 2007; 13
ref_84
Bossart (ref_29) 2008; 372
Li (ref_71) 2014; 2
Ojha (ref_53) 2019; 4
Ching (ref_6) 2015; 21
Guo (ref_93) 2024; 10
ref_54
Wang (ref_79) 2022; 375
ref_52
AbuBakar (ref_14) 2004; 10
Purcell (ref_38) 2007; 6
ref_59
Matic (ref_37) 2022; 106
Mirdita (ref_58) 2022; 19
Nachbagauer (ref_96) 2019; 4
Tornieporth (ref_33) 2022; 22
Chua (ref_7) 2000; 288
Keshwara (ref_28) 2019; 4
Bliss (ref_97) 2022; 30
ref_69
Eggink (ref_94) 2014; 88
ref_66
Islam (ref_22) 2016; 22
Walpita (ref_65) 2017; 2
ref_64
Skwarczynski (ref_72) 2016; 7
Zhou (ref_80) 2024; 9
ref_63
Mungall (ref_20) 2007; 196
Mire (ref_68) 2019; 25
Playford (ref_34) 2020; 20
ref_36
Brakel (ref_76) 2021; 39
ref_35
Sehnal (ref_57) 2021; 49
ref_32
Marino (ref_86) 2015; 10
Excler (ref_30) 2021; 27
Ploquin (ref_67) 2013; 207
Wang (ref_74) 2017; 91
Aguilar (ref_92) 2007; 25
Sun (ref_3) 2024; 8
Zhang (ref_62) 2022; 387
Khan (ref_1) 2024; 13
Paton (ref_5) 1999; 354
ref_46
ref_45
ref_44
Sami (ref_47) 2021; 6
ref_43
ref_100
ref_40
ref_2
Tanimura (ref_19) 2006; 135
Mohammed (ref_51) 2020; 2020
ref_49
ref_9
ref_8
ref_4
References_xml – ident: ref_43
  doi: 10.1016/j.biopha.2022.114117
– ident: ref_59
  doi: 10.3390/v13102020
– volume: 4
  start-page: 13069
  year: 2019
  ident: ref_53
  article-title: Strategic Development of a Next-Generation Multi-Epitope Vaccine To Prevent Nipah Virus Zoonotic Infection
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b00944
– volume: 179
  start-page: 5033
  year: 2007
  ident: ref_87
  article-title: CD8+ CTL priming by exact peptide epitopes in incomplete Freund’s adjuvant induces a vanishing CTL response, whereas long peptides induce sustained CTL reactivity
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.179.8.5033
– volume: 7
  start-page: 48
  year: 2022
  ident: ref_41
  article-title: Therapeutic peptides: Current applications and future directions
  publication-title: Signal Transduct. Target. Ther.
  doi: 10.1038/s41392-022-00904-4
– ident: ref_54
  doi: 10.3390/vaccines12090999
– volume: 62
  start-page: 235
  year: 2007
  ident: ref_11
  article-title: Long-term neurological and functional outcome in Nipah virus infection
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.21178
– volume: 372
  start-page: 357
  year: 2008
  ident: ref_29
  article-title: Functional studies of host-specific ephrin-B ligands as Henipavirus receptors
  publication-title: Virology
  doi: 10.1016/j.virol.2007.11.011
– volume: 27
  start-page: 2854
  year: 2016
  ident: ref_83
  article-title: Engineering an Affinity-Enhanced Peptide through Optimization of Cyclization Chemistry
  publication-title: Bioconjugate Chem.
  doi: 10.1021/acs.bioconjchem.6b00502
– volume: 387
  start-page: 470
  year: 2022
  ident: ref_62
  article-title: A Zoonotic Henipavirus in Febrile Patients in China
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2202705
– volume: 22
  start-page: 664
  year: 2016
  ident: ref_22
  article-title: Nipah Virus Transmission from Bats to Humans Associated with Drinking Traditional Liquor Made from Date Palm Sap, Bangladesh, 2011–2014
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2204.151747
– volume: 149
  start-page: 386
  year: 2016
  ident: ref_48
  article-title: From ZikV genome to vaccine: In silico approach for the epitope-based peptide vaccine against Zika virus envelope glycoprotein
  publication-title: Immunology
  doi: 10.1111/imm.12656
– ident: ref_82
  doi: 10.3389/fcimb.2019.00344
– ident: ref_4
– volume: 354
  start-page: 1253
  year: 1999
  ident: ref_5
  article-title: Outbreak of Nipah-virus infection among abattoir workers in Singapore
  publication-title: Lancet
  doi: 10.1016/S0140-6736(99)04379-2
– ident: ref_24
  doi: 10.3390/v13122479
– volume: 86
  start-page: 10766
  year: 2012
  ident: ref_25
  article-title: Nonstructural Nipah virus C protein regulates both the early host proinflammatory response and viral virulence
  publication-title: J. Virol.
  doi: 10.1128/JVI.01203-12
– ident: ref_8
  doi: 10.3389/fmicb.2021.811157
– volume: 82
  start-page: 11628
  year: 2008
  ident: ref_13
  article-title: Crystal structure and carbohydrate analysis of Nipah virus attachment glycoprotein: A template for antiviral and vaccine design
  publication-title: J. Virol.
  doi: 10.1128/JVI.01344-08
– volume: 375
  start-page: 1373
  year: 2022
  ident: ref_79
  article-title: Architecture and antigenicity of the Nipah virus attachment glycoprotein
  publication-title: Science
  doi: 10.1126/science.abm5561
– ident: ref_44
  doi: 10.1038/s41598-020-79645-9
– ident: ref_21
  doi: 10.3390/v15101980
– volume: 2020
  start-page: 2567957
  year: 2020
  ident: ref_51
  article-title: Epitope-Based Peptide Vaccine against Glycoprotein G of Nipah Henipavirus Using Immunoinformatics Approaches
  publication-title: J. Immunol. Res.
  doi: 10.1155/2020/2567957
– ident: ref_36
  doi: 10.1093/biomethods/bpad030
– volume: 21
  start-page: 328
  year: 2015
  ident: ref_6
  article-title: Outbreak of henipavirus infection, Philippines, 2014
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2102.141433
– volume: 9
  start-page: 157
  year: 2010
  ident: ref_42
  article-title: Advances in the design and delivery of peptide subunit vaccines with a focus on toll-like receptor agonists
  publication-title: Expert Rev. Vaccines
  doi: 10.1586/erv.09.160
– volume: 48
  start-page: W449
  year: 2020
  ident: ref_56
  article-title: NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa379
– volume: 25
  start-page: 3752
  year: 2007
  ident: ref_92
  article-title: Vaccine adjuvants revisited
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2007.01.111
– volume: 13
  start-page: 100434
  year: 2024
  ident: ref_1
  article-title: Twenty-five years of Nipah outbreaks in Southeast Asia: A persistent threat to global health
  publication-title: IJID Reg.
  doi: 10.1016/j.ijregi.2024.100434
– volume: 359
  start-page: 95
  year: 2012
  ident: ref_10
  article-title: Clinical and pathological manifestations of human henipavirus infection
  publication-title: Curr. Top. Microbiol. Immunol.
– ident: ref_66
  doi: 10.3389/fimmu.2024.1384417
– volume: 89
  start-page: 1838
  year: 2015
  ident: ref_99
  article-title: Nipah virus attachment glycoprotein stalk C-terminal region links receptor binding to fusion triggering
  publication-title: J. Virol.
  doi: 10.1128/JVI.02277-14
– ident: ref_18
  doi: 10.1371/journal.pntd.0001432
– volume: 380
  start-page: 1804
  year: 2019
  ident: ref_23
  article-title: Transmission of Nipah Virus-14 Years of Investigations in Bangladesh
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1805376
– volume: 27
  start-page: 1367
  year: 2022
  ident: ref_39
  article-title: Methodological advances in the design of peptide-based vaccines
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2022.03.004
– volume: 18
  start-page: 2202
  year: 2018
  ident: ref_73
  article-title: Epidemics and Peptide Vaccine Response: A Brief Review
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/1568026618666181112144745
– volume: 39
  start-page: 909
  year: 2024
  ident: ref_81
  article-title: Ferritin nanoparticle-based Nipah virus glycoprotein vaccines elicit potent protective immune responses in mice and hamsters
  publication-title: Virol. Sin.
  doi: 10.1016/j.virs.2024.09.005
– volume: 6
  start-page: 32043
  year: 2021
  ident: ref_47
  article-title: Designing of a Multi-epitope Vaccine against the Structural Proteins of Marburg Virus Exploiting the Immunoinformatics Approach
  publication-title: ACS Omega
  doi: 10.1021/acsomega.1c04817
– volume: 49
  start-page: W431
  year: 2021
  ident: ref_57
  article-title: Mol* Viewer: Modern web app for 3D visualization and analysis of large biomolecular structures
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab314
– ident: ref_2
  doi: 10.1371/journal.pgph.0003926
– volume: 10
  start-page: 2228
  year: 2004
  ident: ref_14
  article-title: Isolation and molecular identification of Nipah virus from pigs
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid1012.040452
– volume: 106
  start-page: 25
  year: 2022
  ident: ref_37
  article-title: Current view on novel vaccine technologies to combat human infectious diseases
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-021-11713-0
– volume: 39
  start-page: 6817
  year: 2021
  ident: ref_76
  article-title: Coexpression of respiratory syncytial virus (RSV) fusion (F) protein and attachment glycoprotein (G) in a vesicular stomatitis virus (VSV) vector system provides synergistic effects against RSV infection in a cotton rat model
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2021.10.042
– volume: 288
  start-page: 1432
  year: 2000
  ident: ref_7
  article-title: Nipah virus: A recently emergent deadly paramyxovirus
  publication-title: Science
  doi: 10.1126/science.288.5470.1432
– volume: 2
  start-page: 515
  year: 2014
  ident: ref_71
  article-title: Peptide Vaccine: Progress and Challenges
  publication-title: Vaccines
  doi: 10.3390/vaccines2030515
– ident: ref_32
  doi: 10.1016/j.lanmic.2024.101002
– volume: 135
  start-page: 74
  year: 2006
  ident: ref_19
  article-title: Distribution of viral antigens and development of lesions in chicken embryos inoculated with nipah virus
  publication-title: J. Comp. Pathol.
  doi: 10.1016/j.jcpa.2006.05.001
– volume: 45
  start-page: W24
  year: 2017
  ident: ref_55
  article-title: BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx346
– ident: ref_9
  doi: 10.3389/fimmu.2019.00549
– volume: 4
  start-page: 51
  year: 2019
  ident: ref_96
  article-title: Pandemic influenza virus vaccines boost hemagglutinin stalk-specific antibody responses in primed adult and pediatric cohorts
  publication-title: NPJ Vaccines
  doi: 10.1038/s41541-019-0147-z
– volume: 22
  start-page: e13
  year: 2022
  ident: ref_33
  article-title: Medical countermeasures against henipaviruses: A review and public health perspective
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(21)00400-X
– volume: 10
  start-page: e26009
  year: 2024
  ident: ref_93
  article-title: Advances in peptide-based drug delivery systems
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e26009
– ident: ref_91
  doi: 10.1016/j.bpj.2012.11.370
– volume: 13
  start-page: 159
  year: 2007
  ident: ref_15
  article-title: Henipavirus and Tioman virus antibodies in pteropodid bats, Madagascar
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid1301.060791
– ident: ref_46
  doi: 10.1038/s41598-022-12651-1
– ident: ref_52
  doi: 10.1155/2024/4066641
– ident: ref_45
  doi: 10.1038/s41598-021-99227-7
– volume: 335
  start-page: 116586
  year: 2021
  ident: ref_50
  article-title: Design of a novel and potent multivalent epitope based human cytomegalovirus peptide vaccine: An immunoinformatics approach
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2021.116586
– ident: ref_70
  doi: 10.3389/fimmu.2020.00842
– ident: ref_35
– volume: 51
  start-page: 703
  year: 2002
  ident: ref_12
  article-title: Relapsed and late-onset Nipah encephalitis
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.10212
– volume: 56
  start-page: 499
  year: 2024
  ident: ref_60
  article-title: Re-emergence of Nipah virus outbreak in Kerala, India: A global health concern
  publication-title: Infect. Dis.
  doi: 10.1080/23744235.2024.2334853
– ident: ref_69
  doi: 10.3389/fimmu.2021.772864
– volume: 27
  start-page: 591
  year: 2021
  ident: ref_30
  article-title: Vaccine development for emerging infectious diseases
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01301-0
– volume: 19
  start-page: 679
  year: 2022
  ident: ref_58
  article-title: ColabFold: Making protein folding accessible to all
  publication-title: Nat. Methods
  doi: 10.1038/s41592-022-01488-1
– volume: 4
  start-page: 280
  year: 2012
  ident: ref_26
  article-title: Henipavirus mediated membrane fusion, virus entry and targeted therapeutics
  publication-title: Viruses
  doi: 10.3390/v4020280
– ident: ref_40
  doi: 10.3390/vaccines9050477
– ident: ref_64
  doi: 10.1128/JCM.01875-17
– ident: ref_77
  doi: 10.1371/journal.ppat.1000642
– volume: 126
  start-page: 124
  year: 2002
  ident: ref_17
  article-title: Experimental Nipah virus infection in pigs and cats
  publication-title: J. Comp. Pathol.
  doi: 10.1053/jcpa.2001.0532
– ident: ref_49
  doi: 10.1038/s41598-024-56554-9
– volume: 207
  start-page: 469
  year: 2013
  ident: ref_67
  article-title: Protection against henipavirus infection by use of recombinant adeno-associated virus-vector vaccines
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jis699
– volume: 25
  start-page: 1144
  year: 2019
  ident: ref_68
  article-title: Use of Single-Injection Recombinant Vesicular Stomatitis Virus Vaccine to Protect Nonhuman Primates Against Lethal Nipah Virus Disease
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2506.181620
– volume: 91
  start-page: e00066-1710.1128/JVI.00066-17
  year: 2017
  ident: ref_74
  article-title: A Single-Dose Recombinant Parainfluenza Virus 5-Vectored Vaccine Expressing Respiratory Syncytial Virus (RSV) F or G Protein Protected Cotton Rats and African Green Monkeys from RSV Challenge
  publication-title: J. Virol.
  doi: 10.1128/JVI.00066-17
– volume: 66
  start-page: 101708
  year: 2023
  ident: ref_89
  article-title: Contemplating immunopeptidomes to better predict them
  publication-title: Semin. Immunol.
  doi: 10.1016/j.smim.2022.101708
– volume: 13
  start-page: e03222-21
  year: 2022
  ident: ref_78
  article-title: Novel Roles of the Nipah Virus Attachment Glycoprotein and Its Mobility in Early and Late Membrane Fusion Steps
  publication-title: Mbio
  doi: 10.1128/mbio.03222-21
– volume: 96
  start-page: e0092122
  year: 2022
  ident: ref_61
  article-title: Discovery and Genomic Characterization of a Novel Henipavirus, Angavokely Virus, from Fruit Bats in Madagascar
  publication-title: J. Virol.
  doi: 10.1128/jvi.00921-22
– ident: ref_84
  doi: 10.3389/fimmu.2020.618312
– volume: 8
  start-page: e463
  year: 2024
  ident: ref_3
  article-title: Mapping the distribution of Nipah virus infections: A geospatial modelling analysis
  publication-title: Lancet Planet Health
  doi: 10.1016/S2542-5196(24)00119-0
– ident: ref_16
  doi: 10.1371/journal.pntd.0003302
– volume: 16
  start-page: 265
  year: 2009
  ident: ref_98
  article-title: Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1566
– volume: 30
  start-page: 2024
  year: 2022
  ident: ref_97
  article-title: A single-shot adenoviral vaccine provides hemagglutinin stalk-mediated protection against heterosubtypic influenza challenge in mice
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2022.01.011
– volume: 88
  start-page: 699
  year: 2014
  ident: ref_94
  article-title: Guiding the Immune Response against Influenza Virus Hemagglutinin toward the Conserved Stalk Domain by Hyperglycosylation of the Globular Head Domain
  publication-title: J. Virol.
  doi: 10.1128/JVI.02608-13
– volume: 215
  start-page: 209
  year: 2017
  ident: ref_75
  article-title: Cross-Reactive and Cross-Neutralizing Activity of Human Mumps Antibodies Against a Novel Mumps Virus From Bats
  publication-title: J. Infect. Dis.
– volume: 196
  start-page: 812
  year: 2007
  ident: ref_20
  article-title: Vertical transmission and fetal replication of Nipah virus in an experimentally infected cat
  publication-title: J. Infect. Dis.
  doi: 10.1086/520818
– volume: 2
  start-page: 21
  year: 2017
  ident: ref_65
  article-title: A VLP-based vaccine provides complete protection against Nipah virus challenge following multiple-dose or single-dose vaccination schedules in a hamster model
  publication-title: NPJ Vaccines
  doi: 10.1038/s41541-017-0023-7
– ident: ref_90
  doi: 10.1039/9781788010153
– ident: ref_63
  doi: 10.1371/journal.ppat.1002836
– ident: ref_100
  doi: 10.2210/pdb4jf7/pdb
– volume: 20
  start-page: 817
  year: 2021
  ident: ref_31
  article-title: mRNA vaccines for infectious diseases: Principles, delivery and clinical translation
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/s41573-021-00283-5
– ident: ref_88
  doi: 10.3390/vaccines11071176
– volume: 9
  start-page: 158
  year: 2024
  ident: ref_80
  article-title: An attachment glycoprotein nanoparticle elicits broadly neutralizing antibodies and protects against lethal Nipah virus infection
  publication-title: NPJ Vaccines
  doi: 10.1038/s41541-024-00954-5
– volume: 20
  start-page: 445
  year: 2020
  ident: ref_34
  article-title: Safety, tolerability, pharmacokinetics, and immunogenicity of a human monoclonal antibody targeting the G glycoprotein of henipaviruses in healthy adults: A first-in-human, randomised, controlled, phase 1 study
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(19)30634-6
– volume: 42
  start-page: 3214
  year: 2003
  ident: ref_85
  article-title: HIV-1 vaccine development: Constrained peptide immunogens show improved binding to the anti-HIV-1 gp41 MAb
  publication-title: Biochemistry
  doi: 10.1021/bi026952u
– volume: 6
  start-page: 404
  year: 2007
  ident: ref_38
  article-title: More than one reason to rethink the use of peptides in vaccine design
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd2224
– volume: 87
  start-page: 6542
  year: 2013
  ident: ref_95
  article-title: Chimeric Hemagglutinin Influenza Virus Vaccine Constructs Elicit Broadly Protective Stalk-Specific Antibodies
  publication-title: J. Virol.
  doi: 10.1128/JVI.00641-13
– ident: ref_27
  doi: 10.3389/fmicb.2023.1167085
– volume: 7
  start-page: 842
  year: 2016
  ident: ref_72
  article-title: Peptide-based synthetic vaccines
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC03892H
– volume: 10
  start-page: 1754
  year: 2015
  ident: ref_86
  article-title: Protein Termini and Their Modifications Revealed by Positional Proteomics
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.5b00189
– volume: 4
  start-page: 15
  year: 2019
  ident: ref_28
  article-title: Rabies-based vaccine induces potent immune responses against Nipah virus
  publication-title: NPJ Vaccines
  doi: 10.1038/s41541-019-0109-5
SSID ssj0000913867
Score 2.3001497
Snippet Background: The emergence of several paramyxoviruses, including Nipah virus (NiV), makes continued efforts in vaccine development as part of pandemic...
The emergence of several paramyxoviruses, including Nipah virus (NiV), makes continued efforts in vaccine development as part of pandemic preparedness efforts...
Background: The emergence of several paramyxoviruses, including Nipah virus (NiV), makes continued efforts in vaccine development as part of pandemic...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 428
SubjectTerms Amino acids
Antibodies
Antibody response
Antigenic determinants
Antigenicity
Antigens
attachment glycoprotein G
Binding
Carbohydrates
Clinical trials
Dengue fever
Design optimization
Epidemics
Epitopes
Genomes
Glycoprotein G
Glycoproteins
Immunity (Disease)
Immunization
Immunogenicity
Infections
Infectious diseases
Lymphocytes T
Monoclonal antibodies
Nipah virus
Pandemics
Pathogens
Peptide synthesis
peptide vaccine
Peptides
Pharmaceutical research
Proteins
R&D
Research & development
vaccine
Vaccine development
Vaccines
Viral proteins
Viral vaccines
Viruses
Zoonoses
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp15K390mKSqUlEJMrIcl-Zi0m6SFhD0kITejJzEEe9lHYf99ZuzNZt0eeqmP1thIM6PRDJr5hpAvAZzkJATPch9sJpl2mU26yEypYskdZ7bA2uGLS3V-LX_dFrdbrb4wJ6yHB-4Zd5Qn7ZMIeDukZOKhjGUwhRLMJq-c78p88zLfCqY6G1wyYZTu7yUFxPVHv63Hm-o52GyJccLgHOrg-v82ylun0jBjcusIOn1JXqx9R3rcz_kVeRab1-Rg0oNPrw7p1VMt1fyQHtDJEyz16g1Z_OiSNahtAp3M4n3Xzmu2oj-xQqQFPao9eOR0vIH_pm2il_XU3tGberac07P7lW87XIe6oWd0PAVjMI3ZCZyD8EfMjgmR3vQMoEByATboLbk-HV99P8_WPRcyXzCxyESRXPAQBwqVayuMSdIUUXntkg4pOe2DMV7bCEaSh5iAmzHywG1ujU_wxTuy07RN_ECosA5MWFK2yJ3ktnAQOfkgS-ZzZaXQI_LtUQLVtIfWqCAkQWlVf0prRE5QRBs6BMXuXoCqVGtVqf6lKiPyFQVc4dYFKXq7rkCA6SIIVnUMwboqweWRI7I3oIQt54fDjypSrbf8vAJbJhUwy8Dw580wfolpbE1sl0DD0eM2TMPi3_catVmSzAU8DGZpBro2WPNwpKnvOkBwxrEJQck-_g8u7ZLnHHscI56l2SM7i9ky7oPjtXCfuj32AAcYL2s
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFBZb-7KXsfuydkOD0TGoqS3Jkvw0mi1tN2gIoy19M7IubaDYbi6D_PudYztJvcH8aMlG0rlLR98h5JMDJzlwzqLYOhOJRBWRCSqNdCZ9xgqWmBTvDp-P5dml-HmdXncbbvMurXKtExtF7SqLe-RHwCpCCg328mt9H2HVKDxd7UpoPCa7oII18PnucDSe_NrssiDqpZaqPZ_kEN8f_TYWT6znoLsFxgs9e9TA9v-rnB9Yp37m5ANTdPKMPO18SHrcEv05eeTLF-Rg0oJQrw7pxfZO1fyQHtDJFp569ZIsvjdJG9SUjk5m_q4p6zVb0R94U6QCfppa8MzpaAMDTqtAx9Pa3NKr6Ww5p6d3K1s1-A7Tkp7SUQ1KofbREOwh_BGzZJynV-0CUOhyDrroFbk8GV18O4u62guRTRO-iHgaCmchHuQyVoZrHWDtvbSqCMqFUCjrtLbKeFCWzPkAq-k9c8zERtsAX7wmO2VV-reEclOAKgvSpHEhmEkLiKCsE1liY2kEVwPyZU2BvG4hNnIITZBa-d_UGpAhkmjTD8GxmxfV7CbvZC2Pg7KBOzxQlCIwl_nM6VTyxAQrCws_-YwEzlGEgYrWdDcRYLgIhpUfQ9AuM3B9xIDs93qC6Nl-85pF8k705_mWUQfk46YZv8R0ttJXS-jD0PPWiYLJv2k5ajMlEXN4Ehil7vFab879lnJ62wCDJwyLEWTJu_-Pa488YVjFGBEr9T7ZWcyW_j24VoviQyc_fwADhyfN
  priority: 102
  providerName: ProQuest
Title Design and Preliminary Immunogenicity Evaluation of Nipah Virus Glycoprotein G Epitope-Based Peptide Vaccine in Mice
URI https://www.ncbi.nlm.nih.gov/pubmed/40333318
https://www.proquest.com/docview/3194648584
https://www.proquest.com/docview/3201398177
https://pubmed.ncbi.nlm.nih.gov/PMC12031491
https://doaj.org/article/0f7cf3d304764f2d9e9d85631afc6bc8
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdge-EF8U1hVEZCQ0gLJLbjOA8IrdBtILWq0Dr1LfInq1QlJW0R-e85J2m7wEQeY8eyfefz_WLf7xB6Y8BJdpSSINRGBixKVCBdEgci5TYlikQy9rHDozG_mLJvs3i2D49uJ3B1K7Tz-aSm5eL975_VJ1jwHz3iBMj-4ZfU_hB6BeaYeQhwFx3CvsQ9FBu1zn5tl9OIijqlLAHwHtCUzppzy1sb6exTNZ3_v0b7xq7VvVF5Y4s6e4Dut74lPm2U4SG6Y_NH6HjSkFNXJ_hyH2u1OsHHeLKnra4eo_WX-jIHlrnBk9Iu6nRfZYW_-giSAvRsrsFjx8MdPTguHB7Pl_IaX83LzQqfLypd1LwP8xyf4-ESjMXSBgPYJ6FFf3vGWHzVTACGKiOwUU_Q9Gx4-fkiaHMyBDqO6DqgsVNGA06kPEwkFcIxEVuuE-US45xKtBFCJ9KCESXGOphNa4khMpRCO_jiKTrIi9w-R5hKBSbOcRmHihEZK0BW2rA00iGXjCY99G4rgWzZUG9kAFm8tLK_pdVDAy-iXT1Pml2_KMofWbsGs9Al2lHjDxo5c8SkNjUi5jSSTnOloZG3XsCZVzaQopZthAJ015NkZacA5nkKLhHroaNOTViSulu8VZFsq9EZ2DrGYbIEFL_eFfsv_TW33BYbqEO8Ry6iBAb_rNGo3ZBYSOGJoJeio2udMXdL8vl1TRgeEZ-kII1e_L_bL9E94rMbeyZLcYQO1uXGvgKXa6366HAwHE--9-tfFv16Xf0BjLIu8A
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZG9wAviDuFAUaCIaRFS2wncR4QWlm3lq1Vhbppb5njC6s0JaUXUP8Uv5Fzkl4WkHhbH2vHsnPu8TnfIeSdASfZcc48XxvliSDOPOXi0JNJZBOWsUCFWDvc60edM_H1IrzYIr9XtTCYVrnSiaWiNoXGb-T7wCoiEhLs5efxDw-7RuHt6qqFRsUWJ3bxC0K26afuIdD3PWNH7eGXjrfsKuDpMOAzj4cuMxoiHR75seJSOljVRjrOXGycy2JtpNSxsqAGmLEO4n1rmWHKV1I7eALWvUO2BVa0Nsh2q90ffFt_1UGUTRnF1X0o54m__1NpvCGfgq0QGJ_U7F_ZJuBfY3DDGtYzNW-YvqMH5P7SZ6UHFZM9JFs2f0R2BxXo9WKPDjc1XNM9uksHGzjsxWMyOyyTRKjKDR1M7HXZRmyyoF2sTCmAf0caIgHaXsOO08LR_misruj5aDKf0uPrhS5KPIlRTo9pewxKaGy9FthfWBGzcoyl59ULoDClB7rvCTm7Fao8JY28yO1zQrnKQHW6SIV-JpgKM4jYtBFJoP1ICR43yccVBdJxBemRQiiE1Er_plaTtJBE63kIxl3-UUy-p0vZTn0Xa8cNXmBGwjGT2MTIMOKBcjrKNCzyAQmcosoAKmq1rHyA7SL4VnogQcsn4GqJJtmpzQRR1_XhFYukS1UzTTeC0SRv18P4JKbP5baYwxyGnr4MYjj8s4qj1kcSPodfALuUNV6rnbk-ko-uSiDygGHzgyR48f99vSF3O8PeaXra7Z-8JPcYdlBGtEy5Qxqzydy-Ardulr1eyhIll7ctvn8AmN9mwg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyFeEHcKA4wEQ0iLmtiO7TwgtNJuK2NVhbZpb8HxhVWaktILqH-NX8dxkrYLSLytj7Xj2j33-JzvIPTGgJPsKCVBqI0KWCSyQDkRBzLhNiEZiVTsa4dPhvzojH2-iC-20O9VLYxPq1zpxFJRm0L7d-QdYBXGmQR72XF1WsSod_Bx8iPwHaT8TeuqnUbFIsd2-QvCt9mHQQ9o_ZaQg_7pp6Og7jAQ6Dii84DGLjMaoh7KQ6GolA5-wXItMieMc5nQRkotlAWVQIx1EPtbSwxRoZLawROw7i20LcAqshba7vaHo6_rNzwecVNyUd2NUpqEnZ9K-9vyGdgN5mOVhi0sWwb8axiuWcZm1uY1M3hwD92t_Ve8XzHcfbRl8wdod1QBYC_38Ommnmu2h3fxaAONvXyI5r0yYQSr3ODR1F6VLcWmSzzwVSoF8PJYQ1SA-2sIclw4PBxP1CU-H08XM3x4tdRFiS0xzvEh7k9AIU1s0AVbDCv6DB1j8Xn1B2CYcgJ68BE6uxGqPEatvMjtU4SpykCNOq7iMGNExRlEb9qwJNIhV4yKNnq_okA6qeA9UgiLPLXSv6nVRl1PovU8D8xdflFMv6e1nKehE9pR4y8zOXPEJDYxMuY0Uk7zTMMi7zyBU68-gIpa1VUQsF0PxJXuS9D4CbhdrI12GjNB7HVzeMUiaa12ZulGSNro9XrYP-lT6XJbLGAO8V6_jAQc_knFUesjsZDCJ4JdygavNc7cHMnHlyUoeUR8I4Qkevb_fb1Ct0Fs0y-D4fFzdIf4ZsoeOFPuoNZ8urAvwMObZy9rUcLo201L7x_cjWru
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+Preliminary+Immunogenicity+Evaluation+of+Nipah+Virus+Glycoprotein+G+Epitope-Based+Peptide+Vaccine+in+Mice&rft.jtitle=Vaccines+%28Basel%29&rft.au=Kim%2C+Seungyeon&rft.au=Flores%2C+Rochelle+A&rft.au=Moon%2C+Seo+Young&rft.au=Lee%2C+Seung+Yun&rft.date=2025-04-18&rft.pub=MDPI+AG&rft.issn=2076-393X&rft.eissn=2076-393X&rft.volume=13&rft.issue=4&rft_id=info:doi/10.3390%2Fvaccines13040428&rft.externalDocID=A837691814
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-393X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-393X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-393X&client=summon