Design and Preliminary Immunogenicity Evaluation of Nipah Virus Glycoprotein G Epitope-Based Peptide Vaccine in Mice
Background: The emergence of several paramyxoviruses, including Nipah virus (NiV), makes continued efforts in vaccine development as part of pandemic preparedness efforts necessary. Although NiV is a zoonotic pathogen with high case fatality, there is still no licensed vaccine. Methods: Herein, NiV...
Saved in:
Published in | Vaccines (Basel) Vol. 13; no. 4; p. 428 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
18.04.2025
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2076-393X 2076-393X |
DOI | 10.3390/vaccines13040428 |
Cover
Abstract | Background: The emergence of several paramyxoviruses, including Nipah virus (NiV), makes continued efforts in vaccine development as part of pandemic preparedness efforts necessary. Although NiV is a zoonotic pathogen with high case fatality, there is still no licensed vaccine. Methods: Herein, NiV attachment glycoprotein G (NiV-G), which is crucial to host cell receptor binding, was used to develop Nipah epitope-based peptide vaccines. A total of 39 B- and T-cell epitopes of NiV-G were shortlisted for peptide synthesis and evaluation using in silico analysis. Results: The in vitro antigenicity evaluation of the peptide candidates showed eight synthesized peptides (G7, stalk-domain epitopes) with relatively high binding to NiV-G antibody-positive serum (A450nm: 1.39–3.78). Moreover, nine-mer (9-mer) peptides were found to be less reactive than their longer peptide counterparts (15–30 aa, G7-1, and G7-4), but 9-mer activity was enhanced with cyclization (NPLPFREYK, A450nm: 2.66) and C-terminal amidation modification (NPLPFREYK-NH2, A450nm: 1.39). Subsequently, in vivo validation in immunized mice revealed the immunogenicity potential of the G7-1 peptide vaccine (30 aa, NENVNEKCKFTLPPLKIHECNISCPNPLPF) to elicit a strong antigen-specific antibody response against their homologous peptide antigen (I.V., A450nm: 1.48 ± 0.78; I.M., A450nm: 1.66 ± 0.66). However, antibody binding to recombinant NiV-G protein remained low, suggesting limited recognition to the native antigen. Conclusions: This study focused on the preliminary screening and validation of peptide vaccines using single formulations with minimal modifications in the peptide candidates. Our findings collectively show the immunogenic potential of the NiV-G stalk-based epitope peptide vaccine as a novel therapeutic for NiV and underscores the need for strategic design, delivery, and formulation optimization to enhance its protective efficacy and translational application. |
---|---|
AbstractList | Background: The emergence of several paramyxoviruses, including Nipah virus (NiV), makes continued efforts in vaccine development as part of pandemic preparedness efforts necessary. Although NiV is a zoonotic pathogen with high case fatality, there is still no licensed vaccine. Methods: Herein, NiV attachment glycoprotein G (NiV-G), which is crucial to host cell receptor binding, was used to develop Nipah epitope-based peptide vaccines. A total of 39 B- and T-cell epitopes of NiV-G were shortlisted for peptide synthesis and evaluation using in silico analysis. Results: The in vitro antigenicity evaluation of the peptide candidates showed eight synthesized peptides (G7, stalk-domain epitopes) with relatively high binding to NiV-G antibody-positive serum (A[sub.450nm] : 1.39–3.78). Moreover, nine-mer (9-mer) peptides were found to be less reactive than their longer peptide counterparts (15–30 aa, G7-1, and G7-4), but 9-mer activity was enhanced with cyclization (NPLPFREYK, A[sub.450nm] : 2.66) and C-terminal amidation modification (NPLPFREYK-NH2, A[sub.450nm] : 1.39). Subsequently, in vivo validation in immunized mice revealed the immunogenicity potential of the G7-1 peptide vaccine (30 aa, NENVNEKCKFTLPPLKIHECNISCPNPLPF) to elicit a strong antigen-specific antibody response against their homologous peptide antigen (I.V., A[sub.450nm] : 1.48 ± 0.78; I.M., A[sub.450nm] : 1.66 ± 0.66). However, antibody binding to recombinant NiV-G protein remained low, suggesting limited recognition to the native antigen. Conclusions: This study focused on the preliminary screening and validation of peptide vaccines using single formulations with minimal modifications in the peptide candidates. Our findings collectively show the immunogenic potential of the NiV-G stalk-based epitope peptide vaccine as a novel therapeutic for NiV and underscores the need for strategic design, delivery, and formulation optimization to enhance its protective efficacy and translational application. Background: The emergence of several paramyxoviruses, including Nipah virus (NiV), makes continued efforts in vaccine development as part of pandemic preparedness efforts necessary. Although NiV is a zoonotic pathogen with high case fatality, there is still no licensed vaccine. Methods: Herein, NiV attachment glycoprotein G (NiV-G), which is crucial to host cell receptor binding, was used to develop Nipah epitope-based peptide vaccines. A total of 39 B- and T-cell epitopes of NiV-G were shortlisted for peptide synthesis and evaluation using in silico analysis. Results: The in vitro antigenicity evaluation of the peptide candidates showed eight synthesized peptides (G7, stalk-domain epitopes) with relatively high binding to NiV-G antibody-positive serum (A 450nm : 1.39–3.78). Moreover, nine-mer (9-mer) peptides were found to be less reactive than their longer peptide counterparts (15–30 aa, G7-1, and G7-4), but 9-mer activity was enhanced with cyclization (NPLPFREYK, A 450nm : 2.66) and C-terminal amidation modification (NPLPFREYK-NH2, A 450nm : 1.39). Subsequently, in vivo validation in immunized mice revealed the immunogenicity potential of the G7-1 peptide vaccine (30 aa, NENVNEKCKFTLPPLKIHECNISCPNPLPF) to elicit a strong antigen-specific antibody response against their homologous peptide antigen (I.V., A 450nm : 1.48 ± 0.78; I.M., A 450nm : 1.66 ± 0.66). However, antibody binding to recombinant NiV-G protein remained low, suggesting limited recognition to the native antigen. Conclusions: This study focused on the preliminary screening and validation of peptide vaccines using single formulations with minimal modifications in the peptide candidates. Our findings collectively show the immunogenic potential of the NiV-G stalk-based epitope peptide vaccine as a novel therapeutic for NiV and underscores the need for strategic design, delivery, and formulation optimization to enhance its protective efficacy and translational application. Background: The emergence of several paramyxoviruses, including Nipah virus (NiV), makes continued efforts in vaccine development as part of pandemic preparedness efforts necessary. Although NiV is a zoonotic pathogen with high case fatality, there is still no licensed vaccine. Methods: Herein, NiV attachment glycoprotein G (NiV-G), which is crucial to host cell receptor binding, was used to develop Nipah epitope-based peptide vaccines. A total of 39 B- and T-cell epitopes of NiV-G were shortlisted for peptide synthesis and evaluation using in silico analysis. Results: The in vitro antigenicity evaluation of the peptide candidates showed eight synthesized peptides (G7, stalk-domain epitopes) with relatively high binding to NiV-G antibody-positive serum (A450nm: 1.39–3.78). Moreover, nine-mer (9-mer) peptides were found to be less reactive than their longer peptide counterparts (15–30 aa, G7-1, and G7-4), but 9-mer activity was enhanced with cyclization (NPLPFREYK, A450nm: 2.66) and C-terminal amidation modification (NPLPFREYK-NH2, A450nm: 1.39). Subsequently, in vivo validation in immunized mice revealed the immunogenicity potential of the G7-1 peptide vaccine (30 aa, NENVNEKCKFTLPPLKIHECNISCPNPLPF) to elicit a strong antigen-specific antibody response against their homologous peptide antigen (I.V., A450nm: 1.48 ± 0.78; I.M., A450nm: 1.66 ± 0.66). However, antibody binding to recombinant NiV-G protein remained low, suggesting limited recognition to the native antigen. Conclusions: This study focused on the preliminary screening and validation of peptide vaccines using single formulations with minimal modifications in the peptide candidates. Our findings collectively show the immunogenic potential of the NiV-G stalk-based epitope peptide vaccine as a novel therapeutic for NiV and underscores the need for strategic design, delivery, and formulation optimization to enhance its protective efficacy and translational application. The emergence of several paramyxoviruses, including Nipah virus (NiV), makes continued efforts in vaccine development as part of pandemic preparedness efforts necessary. Although NiV is a zoonotic pathogen with high case fatality, there is still no licensed vaccine. Herein, NiV attachment glycoprotein G (NiV-G), which is crucial to host cell receptor binding, was used to develop Nipah epitope-based peptide vaccines. A total of 39 B- and T-cell epitopes of NiV-G were shortlisted for peptide synthesis and evaluation using in silico analysis. The in vitro antigenicity evaluation of the peptide candidates showed eight synthesized peptides (G7, stalk-domain epitopes) with relatively high binding to NiV-G antibody-positive serum (A : 1.39-3.78). Moreover, nine-mer (9-mer) peptides were found to be less reactive than their longer peptide counterparts (15-30 aa, G7-1, and G7-4), but 9-mer activity was enhanced with cyclization (NPLPFREYK, A : 2.66) and C-terminal amidation modification (NPLPFREYK-NH2, A : 1.39). Subsequently, in vivo validation in immunized mice revealed the immunogenicity potential of the G7-1 peptide vaccine (30 aa, NENVNEKCKFTLPPLKIHECNISCPNPLPF) to elicit a strong antigen-specific antibody response against their homologous peptide antigen (I.V., A : 1.48 ± 0.78; I.M., A : 1.66 ± 0.66). However, antibody binding to recombinant NiV-G protein remained low, suggesting limited recognition to the native antigen. This study focused on the preliminary screening and validation of peptide vaccines using single formulations with minimal modifications in the peptide candidates. Our findings collectively show the immunogenic potential of the NiV-G stalk-based epitope peptide vaccine as a novel therapeutic for NiV and underscores the need for strategic design, delivery, and formulation optimization to enhance its protective efficacy and translational application. Background: The emergence of several paramyxoviruses, including Nipah virus (NiV), makes continued efforts in vaccine development as part of pandemic preparedness efforts necessary. Although NiV is a zoonotic pathogen with high case fatality, there is still no licensed vaccine. Methods: Herein, NiV attachment glycoprotein G (NiV-G), which is crucial to host cell receptor binding, was used to develop Nipah epitope-based peptide vaccines. A total of 39 B- and T-cell epitopes of NiV-G were shortlisted for peptide synthesis and evaluation using in silico analysis. Results: The in vitro antigenicity evaluation of the peptide candidates showed eight synthesized peptides (G7, stalk-domain epitopes) with relatively high binding to NiV-G antibody-positive serum (A450nm: 1.39-3.78). Moreover, nine-mer (9-mer) peptides were found to be less reactive than their longer peptide counterparts (15-30 aa, G7-1, and G7-4), but 9-mer activity was enhanced with cyclization (NPLPFREYK, A450nm: 2.66) and C-terminal amidation modification (NPLPFREYK-NH2, A450nm: 1.39). Subsequently, in vivo validation in immunized mice revealed the immunogenicity potential of the G7-1 peptide vaccine (30 aa, NENVNEKCKFTLPPLKIHECNISCPNPLPF) to elicit a strong antigen-specific antibody response against their homologous peptide antigen (I.V., A450nm: 1.48 ± 0.78; I.M., A450nm: 1.66 ± 0.66). However, antibody binding to recombinant NiV-G protein remained low, suggesting limited recognition to the native antigen. Conclusions: This study focused on the preliminary screening and validation of peptide vaccines using single formulations with minimal modifications in the peptide candidates. Our findings collectively show the immunogenic potential of the NiV-G stalk-based epitope peptide vaccine as a novel therapeutic for NiV and underscores the need for strategic design, delivery, and formulation optimization to enhance its protective efficacy and translational application.Background: The emergence of several paramyxoviruses, including Nipah virus (NiV), makes continued efforts in vaccine development as part of pandemic preparedness efforts necessary. Although NiV is a zoonotic pathogen with high case fatality, there is still no licensed vaccine. Methods: Herein, NiV attachment glycoprotein G (NiV-G), which is crucial to host cell receptor binding, was used to develop Nipah epitope-based peptide vaccines. A total of 39 B- and T-cell epitopes of NiV-G were shortlisted for peptide synthesis and evaluation using in silico analysis. Results: The in vitro antigenicity evaluation of the peptide candidates showed eight synthesized peptides (G7, stalk-domain epitopes) with relatively high binding to NiV-G antibody-positive serum (A450nm: 1.39-3.78). Moreover, nine-mer (9-mer) peptides were found to be less reactive than their longer peptide counterparts (15-30 aa, G7-1, and G7-4), but 9-mer activity was enhanced with cyclization (NPLPFREYK, A450nm: 2.66) and C-terminal amidation modification (NPLPFREYK-NH2, A450nm: 1.39). Subsequently, in vivo validation in immunized mice revealed the immunogenicity potential of the G7-1 peptide vaccine (30 aa, NENVNEKCKFTLPPLKIHECNISCPNPLPF) to elicit a strong antigen-specific antibody response against their homologous peptide antigen (I.V., A450nm: 1.48 ± 0.78; I.M., A450nm: 1.66 ± 0.66). However, antibody binding to recombinant NiV-G protein remained low, suggesting limited recognition to the native antigen. Conclusions: This study focused on the preliminary screening and validation of peptide vaccines using single formulations with minimal modifications in the peptide candidates. Our findings collectively show the immunogenic potential of the NiV-G stalk-based epitope peptide vaccine as a novel therapeutic for NiV and underscores the need for strategic design, delivery, and formulation optimization to enhance its protective efficacy and translational application. |
Audience | Academic |
Author | Kim, Woo H. Lim, Heeji Ouh, In-Ohk Lee, Seung Yun Altanzul, Bujinlkham Kim, Seungyeon Jang, Eun Young Flores, Rochelle A. Lee, Yoo-kyoung Baek, Jiwon Choi, Eun Bee Moon, Seo Young |
AuthorAffiliation | 1 Division of Vaccine Development Coordination, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Osong, Cheongju 28159, Chungcheongbuk-do, Republic of Korea; hatmddus135@korea.kr (S.K.); msy1477@korea.kr (S.Y.M.); jiwonbb@korea.kr (J.B.); dmsql2274@korea.kr (E.B.C.); dalgi0519@korea.kr (H.L.); sky11kk@korea.kr (E.Y.J.); leeykyoung@korea.kr (Y.-k.L.) 2 College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Gyeongsangnam-do, Republic of Korea; floresrochellea@gmail.com (R.A.F.); seungyun0218@gnu.ac.kr (S.Y.L.); bujinlkham_1221@gnu.ac.kr (B.A.) |
AuthorAffiliation_xml | – name: 1 Division of Vaccine Development Coordination, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Osong, Cheongju 28159, Chungcheongbuk-do, Republic of Korea; hatmddus135@korea.kr (S.K.); msy1477@korea.kr (S.Y.M.); jiwonbb@korea.kr (J.B.); dmsql2274@korea.kr (E.B.C.); dalgi0519@korea.kr (H.L.); sky11kk@korea.kr (E.Y.J.); leeykyoung@korea.kr (Y.-k.L.) – name: 2 College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Gyeongsangnam-do, Republic of Korea; floresrochellea@gmail.com (R.A.F.); seungyun0218@gnu.ac.kr (S.Y.L.); bujinlkham_1221@gnu.ac.kr (B.A.) |
Author_xml | – sequence: 1 givenname: Seungyeon surname: Kim fullname: Kim, Seungyeon – sequence: 2 givenname: Rochelle A. orcidid: 0000-0002-8848-6652 surname: Flores fullname: Flores, Rochelle A. – sequence: 3 givenname: Seo Young surname: Moon fullname: Moon, Seo Young – sequence: 4 givenname: Seung Yun surname: Lee fullname: Lee, Seung Yun – sequence: 5 givenname: Bujinlkham surname: Altanzul fullname: Altanzul, Bujinlkham – sequence: 6 givenname: Jiwon surname: Baek fullname: Baek, Jiwon – sequence: 7 givenname: Eun Bee surname: Choi fullname: Choi, Eun Bee – sequence: 8 givenname: Heeji orcidid: 0000-0003-3546-9477 surname: Lim fullname: Lim, Heeji – sequence: 9 givenname: Eun Young surname: Jang fullname: Jang, Eun Young – sequence: 10 givenname: Yoo-kyoung surname: Lee fullname: Lee, Yoo-kyoung – sequence: 11 givenname: In-Ohk surname: Ouh fullname: Ouh, In-Ohk – sequence: 12 givenname: Woo H. orcidid: 0000-0002-6874-6787 surname: Kim fullname: Kim, Woo H. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40333318$$D View this record in MEDLINE/PubMed |
BookMark | eNptks9vFCEUx4mpsXXt3ZMh8eJlKgyzA3Myta7rJvXHQRtvhIHHls0MjDCzyf73sm6t3cbHAfL4vC98X95zdOKDB4ReUnLBWEPebpXWzkOijFSkKsUTdFYSXhesYT9PHpxP0XlKG5KjoUzU_Bk6rQjLQcUZGj9AcmuPlTf4W4TO9c6ruMOrvp98WIN32o07vNiqblKjCx4Hi7-4Qd3iGxenhJfdTochhhGcx0u8GNwYBijeqwRZEYbRGcA3h6_ijHx2Gl6gp1Z1Cc7v9hn68XHx_epTcf11ubq6vC70nLKxYHPbGl1SwmrCFRPCVmIOteat5cbalmsjhOYKGkpLAzb3AaA0pSJKaJsrZmh10DVBbeQQXZ-tyaCc_JMIcS1VHJ3uQBLLtWUmS_C6sqVpoDFiXjOqrK5bLbLWu4PWMLU9GA1-jKo7Ej2-8e5WrsNW0pIwWuXWz9CbO4UYfk2QRtm7pKHrlIcwJclKQlkjKOcZff0I3YQp-twryWhT1bkPovpHrVV24LwN-WG9F5WXgvG6oYLuqYv_UHkZ6J3OI2Vdzh8VvHro9N7i36HJADkAOoaUIth7hBK5H035eDTZb-tU2D8 |
Cites_doi | 10.1016/j.biopha.2022.114117 10.3390/v13102020 10.1021/acsomega.9b00944 10.4049/jimmunol.179.8.5033 10.1038/s41392-022-00904-4 10.3390/vaccines12090999 10.1002/ana.21178 10.1016/j.virol.2007.11.011 10.1021/acs.bioconjchem.6b00502 10.1056/NEJMc2202705 10.3201/eid2204.151747 10.1111/imm.12656 10.3389/fcimb.2019.00344 10.1016/S0140-6736(99)04379-2 10.3390/v13122479 10.1128/JVI.01203-12 10.3389/fmicb.2021.811157 10.1128/JVI.01344-08 10.1126/science.abm5561 10.1038/s41598-020-79645-9 10.3390/v15101980 10.1155/2020/2567957 10.1093/biomethods/bpad030 10.3201/eid2102.141433 10.1586/erv.09.160 10.1093/nar/gkaa379 10.1016/j.vaccine.2007.01.111 10.1016/j.ijregi.2024.100434 10.3389/fimmu.2024.1384417 10.1128/JVI.02277-14 10.1371/journal.pntd.0001432 10.1056/NEJMoa1805376 10.1016/j.drudis.2022.03.004 10.2174/1568026618666181112144745 10.1016/j.virs.2024.09.005 10.1021/acsomega.1c04817 10.1093/nar/gkab314 10.1371/journal.pgph.0003926 10.3201/eid1012.040452 10.1007/s00253-021-11713-0 10.1016/j.vaccine.2021.10.042 10.1126/science.288.5470.1432 10.3390/vaccines2030515 10.1016/j.lanmic.2024.101002 10.1016/j.jcpa.2006.05.001 10.1093/nar/gkx346 10.3389/fimmu.2019.00549 10.1038/s41541-019-0147-z 10.1016/S1473-3099(21)00400-X 10.1016/j.heliyon.2024.e26009 10.1016/j.bpj.2012.11.370 10.3201/eid1301.060791 10.1038/s41598-022-12651-1 10.1155/2024/4066641 10.1038/s41598-021-99227-7 10.1016/j.molliq.2021.116586 10.3389/fimmu.2020.00842 10.1002/ana.10212 10.1080/23744235.2024.2334853 10.3389/fimmu.2021.772864 10.1038/s41591-021-01301-0 10.1038/s41592-022-01488-1 10.3390/v4020280 10.3390/vaccines9050477 10.1128/JCM.01875-17 10.1371/journal.ppat.1000642 10.1053/jcpa.2001.0532 10.1038/s41598-024-56554-9 10.1093/infdis/jis699 10.3201/eid2506.181620 10.1128/JVI.00066-17 10.1016/j.smim.2022.101708 10.1128/mbio.03222-21 10.1128/jvi.00921-22 10.3389/fimmu.2020.618312 10.1016/S2542-5196(24)00119-0 10.1371/journal.pntd.0003302 10.1038/nsmb.1566 10.1016/j.ymthe.2022.01.011 10.1128/JVI.02608-13 10.1086/520818 10.1038/s41541-017-0023-7 10.1039/9781788010153 10.1371/journal.ppat.1002836 10.2210/pdb4jf7/pdb 10.1038/s41573-021-00283-5 10.3390/vaccines11071176 10.1038/s41541-024-00954-5 10.1016/S1473-3099(19)30634-6 10.1021/bi026952u 10.1038/nrd2224 10.1128/JVI.00641-13 10.3389/fmicb.2023.1167085 10.1039/C5SC03892H 10.1021/acschembio.5b00189 10.1038/s41541-019-0109-5 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION NPM 3V. 7T7 7XB 8FD 8FE 8FH 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU COVID DWQXO FR3 GNUQQ GUQSH HCIFZ LK8 M2O M7P MBDVC P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3390/vaccines13040428 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Engineering Research Database ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Biological Science Collection Research Library ProQuest Biological Science Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Research Library Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition Coronavirus Research Database Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 2076-393X |
ExternalDocumentID | oai_doaj_org_article_0f7cf3d304764f2d9e9d85631afc6bc8 PMC12031491 A837691814 40333318 10_3390_vaccines13040428 |
Genre | Journal Article |
GeographicLocations | South Korea Bangladesh Malaysia India |
GeographicLocations_xml | – name: South Korea – name: Malaysia – name: India – name: Bangladesh |
GrantInformation_xml | – fundername: Korea Disease Control and Prevention Agency (KDCA) grantid: grant number 6634-332 – fundername: National Institute of Wildlife Disease Control and Prevention grantid: 'Specialized Graduate School Support Project for Wildlife Disease Specialists' – fundername: Korea Disease Control and Prevention Agency (KDCA) grantid: 6634–332 – fundername: National Institute of Wildlife Disease Control and Prevention |
GroupedDBID | 53G 5VS 8FE 8FH 8G5 AADQD AAHBH AAYXX ABUWG ADBBV AEUYN AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DIK DWQXO GNUQQ GROUPED_DOAJ GUQSH HCIFZ HYE IAO IHR ITC KQ8 LK8 M2O M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO RNS RPM NPM PMFND 3V. 7T7 7XB 8FD 8FK C1K COVID FR3 MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c513t-35fbdc2103607a388f485e6c7bf7dffb7cd88c7ae9112def304ee2d2a0a8cf7a3 |
IEDL.DBID | M48 |
ISSN | 2076-393X |
IngestDate | Wed Aug 27 01:31:17 EDT 2025 Thu Aug 21 18:26:58 EDT 2025 Fri Sep 05 17:14:27 EDT 2025 Fri Jul 18 09:50:31 EDT 2025 Fri May 16 01:11:04 EDT 2025 Tue Jun 10 20:53:45 EDT 2025 Thu May 15 23:20:39 EDT 2025 Wed Sep 10 04:05:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | epitopes vaccine Nipah virus peptide vaccine attachment glycoprotein G |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c513t-35fbdc2103607a388f485e6c7bf7dffb7cd88c7ae9112def304ee2d2a0a8cf7a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0003-3546-9477 0000-0002-8848-6652 0000-0002-6874-6787 |
OpenAccessLink | https://doaj.org/article/0f7cf3d304764f2d9e9d85631afc6bc8 |
PMID | 40333318 |
PQID | 3194648584 |
PQPubID | 2032320 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0f7cf3d304764f2d9e9d85631afc6bc8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12031491 proquest_miscellaneous_3201398177 proquest_journals_3194648584 gale_infotracmisc_A837691814 gale_infotracacademiconefile_A837691814 pubmed_primary_40333318 crossref_primary_10_3390_vaccines13040428 |
PublicationCentury | 2000 |
PublicationDate | 2025-04-18 |
PublicationDateYYYYMMDD | 2025-04-18 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Vaccines (Basel) |
PublicationTitleAlternate | Vaccines (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Middleton (ref_17) 2002; 126 Nandy (ref_73) 2018; 18 ref_91 ref_90 Gfeller (ref_89) 2023; 66 Mathieu (ref_25) 2012; 86 Krammer (ref_95) 2013; 87 Satapathy (ref_60) 2024; 56 Kalita (ref_39) 2022; 27 ref_18 ref_16 Sejvar (ref_11) 2007; 62 Reynisson (ref_56) 2020; 48 Tan (ref_12) 2002; 51 ref_24 ref_21 Akhtar (ref_50) 2021; 335 Madera (ref_61) 2022; 96 Black (ref_42) 2010; 9 Ngambenjawong (ref_83) 2016; 27 ref_27 Nikolay (ref_23) 2019; 380 Chen (ref_81) 2024; 39 Jespersen (ref_55) 2017; 45 Beaty (ref_75) 2017; 215 ref_70 Steffen (ref_26) 2012; 4 Bijker (ref_87) 2007; 179 ref_77 Liu (ref_99) 2015; 89 Alam (ref_48) 2016; 149 Ortega (ref_78) 2022; 13 Wong (ref_10) 2012; 359 McGaughey (ref_85) 2003; 42 Bowden (ref_13) 2008; 82 Wang (ref_41) 2022; 7 ref_82 Chaudhary (ref_31) 2021; 20 ref_88 Sui (ref_98) 2009; 16 Iehle (ref_15) 2007; 13 ref_84 Bossart (ref_29) 2008; 372 Li (ref_71) 2014; 2 Ojha (ref_53) 2019; 4 Ching (ref_6) 2015; 21 Guo (ref_93) 2024; 10 ref_54 Wang (ref_79) 2022; 375 ref_52 AbuBakar (ref_14) 2004; 10 Purcell (ref_38) 2007; 6 ref_59 Matic (ref_37) 2022; 106 Mirdita (ref_58) 2022; 19 Nachbagauer (ref_96) 2019; 4 Tornieporth (ref_33) 2022; 22 Chua (ref_7) 2000; 288 Keshwara (ref_28) 2019; 4 Bliss (ref_97) 2022; 30 ref_69 Eggink (ref_94) 2014; 88 ref_66 Islam (ref_22) 2016; 22 Walpita (ref_65) 2017; 2 ref_64 Skwarczynski (ref_72) 2016; 7 Zhou (ref_80) 2024; 9 ref_63 Mungall (ref_20) 2007; 196 Mire (ref_68) 2019; 25 Playford (ref_34) 2020; 20 ref_36 Brakel (ref_76) 2021; 39 ref_35 Sehnal (ref_57) 2021; 49 ref_32 Marino (ref_86) 2015; 10 Excler (ref_30) 2021; 27 Ploquin (ref_67) 2013; 207 Wang (ref_74) 2017; 91 Aguilar (ref_92) 2007; 25 Sun (ref_3) 2024; 8 Zhang (ref_62) 2022; 387 Khan (ref_1) 2024; 13 Paton (ref_5) 1999; 354 ref_46 ref_45 ref_44 Sami (ref_47) 2021; 6 ref_43 ref_100 ref_40 ref_2 Tanimura (ref_19) 2006; 135 Mohammed (ref_51) 2020; 2020 ref_49 ref_9 ref_8 ref_4 |
References_xml | – ident: ref_43 doi: 10.1016/j.biopha.2022.114117 – ident: ref_59 doi: 10.3390/v13102020 – volume: 4 start-page: 13069 year: 2019 ident: ref_53 article-title: Strategic Development of a Next-Generation Multi-Epitope Vaccine To Prevent Nipah Virus Zoonotic Infection publication-title: ACS Omega doi: 10.1021/acsomega.9b00944 – volume: 179 start-page: 5033 year: 2007 ident: ref_87 article-title: CD8+ CTL priming by exact peptide epitopes in incomplete Freund’s adjuvant induces a vanishing CTL response, whereas long peptides induce sustained CTL reactivity publication-title: J. Immunol. doi: 10.4049/jimmunol.179.8.5033 – volume: 7 start-page: 48 year: 2022 ident: ref_41 article-title: Therapeutic peptides: Current applications and future directions publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-022-00904-4 – ident: ref_54 doi: 10.3390/vaccines12090999 – volume: 62 start-page: 235 year: 2007 ident: ref_11 article-title: Long-term neurological and functional outcome in Nipah virus infection publication-title: Ann. Neurol. doi: 10.1002/ana.21178 – volume: 372 start-page: 357 year: 2008 ident: ref_29 article-title: Functional studies of host-specific ephrin-B ligands as Henipavirus receptors publication-title: Virology doi: 10.1016/j.virol.2007.11.011 – volume: 27 start-page: 2854 year: 2016 ident: ref_83 article-title: Engineering an Affinity-Enhanced Peptide through Optimization of Cyclization Chemistry publication-title: Bioconjugate Chem. doi: 10.1021/acs.bioconjchem.6b00502 – volume: 387 start-page: 470 year: 2022 ident: ref_62 article-title: A Zoonotic Henipavirus in Febrile Patients in China publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2202705 – volume: 22 start-page: 664 year: 2016 ident: ref_22 article-title: Nipah Virus Transmission from Bats to Humans Associated with Drinking Traditional Liquor Made from Date Palm Sap, Bangladesh, 2011–2014 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2204.151747 – volume: 149 start-page: 386 year: 2016 ident: ref_48 article-title: From ZikV genome to vaccine: In silico approach for the epitope-based peptide vaccine against Zika virus envelope glycoprotein publication-title: Immunology doi: 10.1111/imm.12656 – ident: ref_82 doi: 10.3389/fcimb.2019.00344 – ident: ref_4 – volume: 354 start-page: 1253 year: 1999 ident: ref_5 article-title: Outbreak of Nipah-virus infection among abattoir workers in Singapore publication-title: Lancet doi: 10.1016/S0140-6736(99)04379-2 – ident: ref_24 doi: 10.3390/v13122479 – volume: 86 start-page: 10766 year: 2012 ident: ref_25 article-title: Nonstructural Nipah virus C protein regulates both the early host proinflammatory response and viral virulence publication-title: J. Virol. doi: 10.1128/JVI.01203-12 – ident: ref_8 doi: 10.3389/fmicb.2021.811157 – volume: 82 start-page: 11628 year: 2008 ident: ref_13 article-title: Crystal structure and carbohydrate analysis of Nipah virus attachment glycoprotein: A template for antiviral and vaccine design publication-title: J. Virol. doi: 10.1128/JVI.01344-08 – volume: 375 start-page: 1373 year: 2022 ident: ref_79 article-title: Architecture and antigenicity of the Nipah virus attachment glycoprotein publication-title: Science doi: 10.1126/science.abm5561 – ident: ref_44 doi: 10.1038/s41598-020-79645-9 – ident: ref_21 doi: 10.3390/v15101980 – volume: 2020 start-page: 2567957 year: 2020 ident: ref_51 article-title: Epitope-Based Peptide Vaccine against Glycoprotein G of Nipah Henipavirus Using Immunoinformatics Approaches publication-title: J. Immunol. Res. doi: 10.1155/2020/2567957 – ident: ref_36 doi: 10.1093/biomethods/bpad030 – volume: 21 start-page: 328 year: 2015 ident: ref_6 article-title: Outbreak of henipavirus infection, Philippines, 2014 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2102.141433 – volume: 9 start-page: 157 year: 2010 ident: ref_42 article-title: Advances in the design and delivery of peptide subunit vaccines with a focus on toll-like receptor agonists publication-title: Expert Rev. Vaccines doi: 10.1586/erv.09.160 – volume: 48 start-page: W449 year: 2020 ident: ref_56 article-title: NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa379 – volume: 25 start-page: 3752 year: 2007 ident: ref_92 article-title: Vaccine adjuvants revisited publication-title: Vaccine doi: 10.1016/j.vaccine.2007.01.111 – volume: 13 start-page: 100434 year: 2024 ident: ref_1 article-title: Twenty-five years of Nipah outbreaks in Southeast Asia: A persistent threat to global health publication-title: IJID Reg. doi: 10.1016/j.ijregi.2024.100434 – volume: 359 start-page: 95 year: 2012 ident: ref_10 article-title: Clinical and pathological manifestations of human henipavirus infection publication-title: Curr. Top. Microbiol. Immunol. – ident: ref_66 doi: 10.3389/fimmu.2024.1384417 – volume: 89 start-page: 1838 year: 2015 ident: ref_99 article-title: Nipah virus attachment glycoprotein stalk C-terminal region links receptor binding to fusion triggering publication-title: J. Virol. doi: 10.1128/JVI.02277-14 – ident: ref_18 doi: 10.1371/journal.pntd.0001432 – volume: 380 start-page: 1804 year: 2019 ident: ref_23 article-title: Transmission of Nipah Virus-14 Years of Investigations in Bangladesh publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1805376 – volume: 27 start-page: 1367 year: 2022 ident: ref_39 article-title: Methodological advances in the design of peptide-based vaccines publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2022.03.004 – volume: 18 start-page: 2202 year: 2018 ident: ref_73 article-title: Epidemics and Peptide Vaccine Response: A Brief Review publication-title: Curr. Top. Med. Chem. doi: 10.2174/1568026618666181112144745 – volume: 39 start-page: 909 year: 2024 ident: ref_81 article-title: Ferritin nanoparticle-based Nipah virus glycoprotein vaccines elicit potent protective immune responses in mice and hamsters publication-title: Virol. Sin. doi: 10.1016/j.virs.2024.09.005 – volume: 6 start-page: 32043 year: 2021 ident: ref_47 article-title: Designing of a Multi-epitope Vaccine against the Structural Proteins of Marburg Virus Exploiting the Immunoinformatics Approach publication-title: ACS Omega doi: 10.1021/acsomega.1c04817 – volume: 49 start-page: W431 year: 2021 ident: ref_57 article-title: Mol* Viewer: Modern web app for 3D visualization and analysis of large biomolecular structures publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab314 – ident: ref_2 doi: 10.1371/journal.pgph.0003926 – volume: 10 start-page: 2228 year: 2004 ident: ref_14 article-title: Isolation and molecular identification of Nipah virus from pigs publication-title: Emerg. Infect. Dis. doi: 10.3201/eid1012.040452 – volume: 106 start-page: 25 year: 2022 ident: ref_37 article-title: Current view on novel vaccine technologies to combat human infectious diseases publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-021-11713-0 – volume: 39 start-page: 6817 year: 2021 ident: ref_76 article-title: Coexpression of respiratory syncytial virus (RSV) fusion (F) protein and attachment glycoprotein (G) in a vesicular stomatitis virus (VSV) vector system provides synergistic effects against RSV infection in a cotton rat model publication-title: Vaccine doi: 10.1016/j.vaccine.2021.10.042 – volume: 288 start-page: 1432 year: 2000 ident: ref_7 article-title: Nipah virus: A recently emergent deadly paramyxovirus publication-title: Science doi: 10.1126/science.288.5470.1432 – volume: 2 start-page: 515 year: 2014 ident: ref_71 article-title: Peptide Vaccine: Progress and Challenges publication-title: Vaccines doi: 10.3390/vaccines2030515 – ident: ref_32 doi: 10.1016/j.lanmic.2024.101002 – volume: 135 start-page: 74 year: 2006 ident: ref_19 article-title: Distribution of viral antigens and development of lesions in chicken embryos inoculated with nipah virus publication-title: J. Comp. Pathol. doi: 10.1016/j.jcpa.2006.05.001 – volume: 45 start-page: W24 year: 2017 ident: ref_55 article-title: BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx346 – ident: ref_9 doi: 10.3389/fimmu.2019.00549 – volume: 4 start-page: 51 year: 2019 ident: ref_96 article-title: Pandemic influenza virus vaccines boost hemagglutinin stalk-specific antibody responses in primed adult and pediatric cohorts publication-title: NPJ Vaccines doi: 10.1038/s41541-019-0147-z – volume: 22 start-page: e13 year: 2022 ident: ref_33 article-title: Medical countermeasures against henipaviruses: A review and public health perspective publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(21)00400-X – volume: 10 start-page: e26009 year: 2024 ident: ref_93 article-title: Advances in peptide-based drug delivery systems publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e26009 – ident: ref_91 doi: 10.1016/j.bpj.2012.11.370 – volume: 13 start-page: 159 year: 2007 ident: ref_15 article-title: Henipavirus and Tioman virus antibodies in pteropodid bats, Madagascar publication-title: Emerg. Infect. Dis. doi: 10.3201/eid1301.060791 – ident: ref_46 doi: 10.1038/s41598-022-12651-1 – ident: ref_52 doi: 10.1155/2024/4066641 – ident: ref_45 doi: 10.1038/s41598-021-99227-7 – volume: 335 start-page: 116586 year: 2021 ident: ref_50 article-title: Design of a novel and potent multivalent epitope based human cytomegalovirus peptide vaccine: An immunoinformatics approach publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2021.116586 – ident: ref_70 doi: 10.3389/fimmu.2020.00842 – ident: ref_35 – volume: 51 start-page: 703 year: 2002 ident: ref_12 article-title: Relapsed and late-onset Nipah encephalitis publication-title: Ann. Neurol. doi: 10.1002/ana.10212 – volume: 56 start-page: 499 year: 2024 ident: ref_60 article-title: Re-emergence of Nipah virus outbreak in Kerala, India: A global health concern publication-title: Infect. Dis. doi: 10.1080/23744235.2024.2334853 – ident: ref_69 doi: 10.3389/fimmu.2021.772864 – volume: 27 start-page: 591 year: 2021 ident: ref_30 article-title: Vaccine development for emerging infectious diseases publication-title: Nat. Med. doi: 10.1038/s41591-021-01301-0 – volume: 19 start-page: 679 year: 2022 ident: ref_58 article-title: ColabFold: Making protein folding accessible to all publication-title: Nat. Methods doi: 10.1038/s41592-022-01488-1 – volume: 4 start-page: 280 year: 2012 ident: ref_26 article-title: Henipavirus mediated membrane fusion, virus entry and targeted therapeutics publication-title: Viruses doi: 10.3390/v4020280 – ident: ref_40 doi: 10.3390/vaccines9050477 – ident: ref_64 doi: 10.1128/JCM.01875-17 – ident: ref_77 doi: 10.1371/journal.ppat.1000642 – volume: 126 start-page: 124 year: 2002 ident: ref_17 article-title: Experimental Nipah virus infection in pigs and cats publication-title: J. Comp. Pathol. doi: 10.1053/jcpa.2001.0532 – ident: ref_49 doi: 10.1038/s41598-024-56554-9 – volume: 207 start-page: 469 year: 2013 ident: ref_67 article-title: Protection against henipavirus infection by use of recombinant adeno-associated virus-vector vaccines publication-title: J. Infect. Dis. doi: 10.1093/infdis/jis699 – volume: 25 start-page: 1144 year: 2019 ident: ref_68 article-title: Use of Single-Injection Recombinant Vesicular Stomatitis Virus Vaccine to Protect Nonhuman Primates Against Lethal Nipah Virus Disease publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2506.181620 – volume: 91 start-page: e00066-1710.1128/JVI.00066-17 year: 2017 ident: ref_74 article-title: A Single-Dose Recombinant Parainfluenza Virus 5-Vectored Vaccine Expressing Respiratory Syncytial Virus (RSV) F or G Protein Protected Cotton Rats and African Green Monkeys from RSV Challenge publication-title: J. Virol. doi: 10.1128/JVI.00066-17 – volume: 66 start-page: 101708 year: 2023 ident: ref_89 article-title: Contemplating immunopeptidomes to better predict them publication-title: Semin. Immunol. doi: 10.1016/j.smim.2022.101708 – volume: 13 start-page: e03222-21 year: 2022 ident: ref_78 article-title: Novel Roles of the Nipah Virus Attachment Glycoprotein and Its Mobility in Early and Late Membrane Fusion Steps publication-title: Mbio doi: 10.1128/mbio.03222-21 – volume: 96 start-page: e0092122 year: 2022 ident: ref_61 article-title: Discovery and Genomic Characterization of a Novel Henipavirus, Angavokely Virus, from Fruit Bats in Madagascar publication-title: J. Virol. doi: 10.1128/jvi.00921-22 – ident: ref_84 doi: 10.3389/fimmu.2020.618312 – volume: 8 start-page: e463 year: 2024 ident: ref_3 article-title: Mapping the distribution of Nipah virus infections: A geospatial modelling analysis publication-title: Lancet Planet Health doi: 10.1016/S2542-5196(24)00119-0 – ident: ref_16 doi: 10.1371/journal.pntd.0003302 – volume: 16 start-page: 265 year: 2009 ident: ref_98 article-title: Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1566 – volume: 30 start-page: 2024 year: 2022 ident: ref_97 article-title: A single-shot adenoviral vaccine provides hemagglutinin stalk-mediated protection against heterosubtypic influenza challenge in mice publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2022.01.011 – volume: 88 start-page: 699 year: 2014 ident: ref_94 article-title: Guiding the Immune Response against Influenza Virus Hemagglutinin toward the Conserved Stalk Domain by Hyperglycosylation of the Globular Head Domain publication-title: J. Virol. doi: 10.1128/JVI.02608-13 – volume: 215 start-page: 209 year: 2017 ident: ref_75 article-title: Cross-Reactive and Cross-Neutralizing Activity of Human Mumps Antibodies Against a Novel Mumps Virus From Bats publication-title: J. Infect. Dis. – volume: 196 start-page: 812 year: 2007 ident: ref_20 article-title: Vertical transmission and fetal replication of Nipah virus in an experimentally infected cat publication-title: J. Infect. Dis. doi: 10.1086/520818 – volume: 2 start-page: 21 year: 2017 ident: ref_65 article-title: A VLP-based vaccine provides complete protection against Nipah virus challenge following multiple-dose or single-dose vaccination schedules in a hamster model publication-title: NPJ Vaccines doi: 10.1038/s41541-017-0023-7 – ident: ref_90 doi: 10.1039/9781788010153 – ident: ref_63 doi: 10.1371/journal.ppat.1002836 – ident: ref_100 doi: 10.2210/pdb4jf7/pdb – volume: 20 start-page: 817 year: 2021 ident: ref_31 article-title: mRNA vaccines for infectious diseases: Principles, delivery and clinical translation publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-021-00283-5 – ident: ref_88 doi: 10.3390/vaccines11071176 – volume: 9 start-page: 158 year: 2024 ident: ref_80 article-title: An attachment glycoprotein nanoparticle elicits broadly neutralizing antibodies and protects against lethal Nipah virus infection publication-title: NPJ Vaccines doi: 10.1038/s41541-024-00954-5 – volume: 20 start-page: 445 year: 2020 ident: ref_34 article-title: Safety, tolerability, pharmacokinetics, and immunogenicity of a human monoclonal antibody targeting the G glycoprotein of henipaviruses in healthy adults: A first-in-human, randomised, controlled, phase 1 study publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(19)30634-6 – volume: 42 start-page: 3214 year: 2003 ident: ref_85 article-title: HIV-1 vaccine development: Constrained peptide immunogens show improved binding to the anti-HIV-1 gp41 MAb publication-title: Biochemistry doi: 10.1021/bi026952u – volume: 6 start-page: 404 year: 2007 ident: ref_38 article-title: More than one reason to rethink the use of peptides in vaccine design publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd2224 – volume: 87 start-page: 6542 year: 2013 ident: ref_95 article-title: Chimeric Hemagglutinin Influenza Virus Vaccine Constructs Elicit Broadly Protective Stalk-Specific Antibodies publication-title: J. Virol. doi: 10.1128/JVI.00641-13 – ident: ref_27 doi: 10.3389/fmicb.2023.1167085 – volume: 7 start-page: 842 year: 2016 ident: ref_72 article-title: Peptide-based synthetic vaccines publication-title: Chem. Sci. doi: 10.1039/C5SC03892H – volume: 10 start-page: 1754 year: 2015 ident: ref_86 article-title: Protein Termini and Their Modifications Revealed by Positional Proteomics publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.5b00189 – volume: 4 start-page: 15 year: 2019 ident: ref_28 article-title: Rabies-based vaccine induces potent immune responses against Nipah virus publication-title: NPJ Vaccines doi: 10.1038/s41541-019-0109-5 |
SSID | ssj0000913867 |
Score | 2.3001497 |
Snippet | Background: The emergence of several paramyxoviruses, including Nipah virus (NiV), makes continued efforts in vaccine development as part of pandemic... The emergence of several paramyxoviruses, including Nipah virus (NiV), makes continued efforts in vaccine development as part of pandemic preparedness efforts... Background: The emergence of several paramyxoviruses, including Nipah virus (NiV), makes continued efforts in vaccine development as part of pandemic... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 428 |
SubjectTerms | Amino acids Antibodies Antibody response Antigenic determinants Antigenicity Antigens attachment glycoprotein G Binding Carbohydrates Clinical trials Dengue fever Design optimization Epidemics Epitopes Genomes Glycoprotein G Glycoproteins Immunity (Disease) Immunization Immunogenicity Infections Infectious diseases Lymphocytes T Monoclonal antibodies Nipah virus Pandemics Pathogens Peptide synthesis peptide vaccine Peptides Pharmaceutical research Proteins R&D Research & development vaccine Vaccine development Vaccines Viral proteins Viral vaccines Viruses Zoonoses |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp15K390mKSqUlEJMrIcl-Zi0m6SFhD0kITejJzEEe9lHYf99ZuzNZt0eeqmP1thIM6PRDJr5hpAvAZzkJATPch9sJpl2mU26yEypYskdZ7bA2uGLS3V-LX_dFrdbrb4wJ6yHB-4Zd5Qn7ZMIeDukZOKhjGUwhRLMJq-c78p88zLfCqY6G1wyYZTu7yUFxPVHv63Hm-o52GyJccLgHOrg-v82ylun0jBjcusIOn1JXqx9R3rcz_kVeRab1-Rg0oNPrw7p1VMt1fyQHtDJEyz16g1Z_OiSNahtAp3M4n3Xzmu2oj-xQqQFPao9eOR0vIH_pm2il_XU3tGberac07P7lW87XIe6oWd0PAVjMI3ZCZyD8EfMjgmR3vQMoEByATboLbk-HV99P8_WPRcyXzCxyESRXPAQBwqVayuMSdIUUXntkg4pOe2DMV7bCEaSh5iAmzHywG1ujU_wxTuy07RN_ECosA5MWFK2yJ3ktnAQOfkgS-ZzZaXQI_LtUQLVtIfWqCAkQWlVf0prRE5QRBs6BMXuXoCqVGtVqf6lKiPyFQVc4dYFKXq7rkCA6SIIVnUMwboqweWRI7I3oIQt54fDjypSrbf8vAJbJhUwy8Dw580wfolpbE1sl0DD0eM2TMPi3_catVmSzAU8DGZpBro2WPNwpKnvOkBwxrEJQck-_g8u7ZLnHHscI56l2SM7i9ky7oPjtXCfuj32AAcYL2s priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFBZb-7KXsfuydkOD0TGoqS3Jkvw0mi1tN2gIoy19M7IubaDYbi6D_PudYztJvcH8aMlG0rlLR98h5JMDJzlwzqLYOhOJRBWRCSqNdCZ9xgqWmBTvDp-P5dml-HmdXncbbvMurXKtExtF7SqLe-RHwCpCCg328mt9H2HVKDxd7UpoPCa7oII18PnucDSe_NrssiDqpZaqPZ_kEN8f_TYWT6znoLsFxgs9e9TA9v-rnB9Yp37m5ANTdPKMPO18SHrcEv05eeTLF-Rg0oJQrw7pxfZO1fyQHtDJFp569ZIsvjdJG9SUjk5m_q4p6zVb0R94U6QCfppa8MzpaAMDTqtAx9Pa3NKr6Ww5p6d3K1s1-A7Tkp7SUQ1KofbREOwh_BGzZJynV-0CUOhyDrroFbk8GV18O4u62guRTRO-iHgaCmchHuQyVoZrHWDtvbSqCMqFUCjrtLbKeFCWzPkAq-k9c8zERtsAX7wmO2VV-reEclOAKgvSpHEhmEkLiKCsE1liY2kEVwPyZU2BvG4hNnIITZBa-d_UGpAhkmjTD8GxmxfV7CbvZC2Pg7KBOzxQlCIwl_nM6VTyxAQrCws_-YwEzlGEgYrWdDcRYLgIhpUfQ9AuM3B9xIDs93qC6Nl-85pF8k705_mWUQfk46YZv8R0ttJXS-jD0PPWiYLJv2k5ajMlEXN4Ehil7vFab879lnJ62wCDJwyLEWTJu_-Pa488YVjFGBEr9T7ZWcyW_j24VoviQyc_fwADhyfN priority: 102 providerName: ProQuest |
Title | Design and Preliminary Immunogenicity Evaluation of Nipah Virus Glycoprotein G Epitope-Based Peptide Vaccine in Mice |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40333318 https://www.proquest.com/docview/3194648584 https://www.proquest.com/docview/3201398177 https://pubmed.ncbi.nlm.nih.gov/PMC12031491 https://doaj.org/article/0f7cf3d304764f2d9e9d85631afc6bc8 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdge-EF8U1hVEZCQ0gLJLbjOA8IrdBtILWq0Dr1LfInq1QlJW0R-e85J2m7wEQeY8eyfefz_WLf7xB6Y8BJdpSSINRGBixKVCBdEgci5TYlikQy9rHDozG_mLJvs3i2D49uJ3B1K7Tz-aSm5eL975_VJ1jwHz3iBMj-4ZfU_hB6BeaYeQhwFx3CvsQ9FBu1zn5tl9OIijqlLAHwHtCUzppzy1sb6exTNZ3_v0b7xq7VvVF5Y4s6e4Dut74lPm2U4SG6Y_NH6HjSkFNXJ_hyH2u1OsHHeLKnra4eo_WX-jIHlrnBk9Iu6nRfZYW_-giSAvRsrsFjx8MdPTguHB7Pl_IaX83LzQqfLypd1LwP8xyf4-ESjMXSBgPYJ6FFf3vGWHzVTACGKiOwUU_Q9Gx4-fkiaHMyBDqO6DqgsVNGA06kPEwkFcIxEVuuE-US45xKtBFCJ9KCESXGOphNa4khMpRCO_jiKTrIi9w-R5hKBSbOcRmHihEZK0BW2rA00iGXjCY99G4rgWzZUG9kAFm8tLK_pdVDAy-iXT1Pml2_KMofWbsGs9Al2lHjDxo5c8SkNjUi5jSSTnOloZG3XsCZVzaQopZthAJ015NkZacA5nkKLhHroaNOTViSulu8VZFsq9EZ2DrGYbIEFL_eFfsv_TW33BYbqEO8Ry6iBAb_rNGo3ZBYSOGJoJeio2udMXdL8vl1TRgeEZ-kII1e_L_bL9E94rMbeyZLcYQO1uXGvgKXa6366HAwHE--9-tfFv16Xf0BjLIu8A |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZG9wAviDuFAUaCIaRFS2wncR4QWlm3lq1Vhbppb5njC6s0JaUXUP8Uv5Fzkl4WkHhbH2vHsnPu8TnfIeSdASfZcc48XxvliSDOPOXi0JNJZBOWsUCFWDvc60edM_H1IrzYIr9XtTCYVrnSiaWiNoXGb-T7wCoiEhLs5efxDw-7RuHt6qqFRsUWJ3bxC0K26afuIdD3PWNH7eGXjrfsKuDpMOAzj4cuMxoiHR75seJSOljVRjrOXGycy2JtpNSxsqAGmLEO4n1rmWHKV1I7eALWvUO2BVa0Nsh2q90ffFt_1UGUTRnF1X0o54m__1NpvCGfgq0QGJ_U7F_ZJuBfY3DDGtYzNW-YvqMH5P7SZ6UHFZM9JFs2f0R2BxXo9WKPDjc1XNM9uksHGzjsxWMyOyyTRKjKDR1M7HXZRmyyoF2sTCmAf0caIgHaXsOO08LR_misruj5aDKf0uPrhS5KPIlRTo9pewxKaGy9FthfWBGzcoyl59ULoDClB7rvCTm7Fao8JY28yO1zQrnKQHW6SIV-JpgKM4jYtBFJoP1ICR43yccVBdJxBemRQiiE1Er_plaTtJBE63kIxl3-UUy-p0vZTn0Xa8cNXmBGwjGT2MTIMOKBcjrKNCzyAQmcosoAKmq1rHyA7SL4VnogQcsn4GqJJtmpzQRR1_XhFYukS1UzTTeC0SRv18P4JKbP5baYwxyGnr4MYjj8s4qj1kcSPodfALuUNV6rnbk-ko-uSiDygGHzgyR48f99vSF3O8PeaXra7Z-8JPcYdlBGtEy5Qxqzydy-Ardulr1eyhIll7ctvn8AmN9mwg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyFeEHcKA4wEQ0iLmtiO7TwgtNJuK2NVhbZpb8HxhVWaktILqH-NX8dxkrYLSLytj7Xj2j33-JzvIPTGgJPsKCVBqI0KWCSyQDkRBzLhNiEZiVTsa4dPhvzojH2-iC-20O9VLYxPq1zpxFJRm0L7d-QdYBXGmQR72XF1WsSod_Bx8iPwHaT8TeuqnUbFIsd2-QvCt9mHQQ9o_ZaQg_7pp6Og7jAQ6Dii84DGLjMaoh7KQ6GolA5-wXItMieMc5nQRkotlAWVQIx1EPtbSwxRoZLawROw7i20LcAqshba7vaHo6_rNzwecVNyUd2NUpqEnZ9K-9vyGdgN5mOVhi0sWwb8axiuWcZm1uY1M3hwD92t_Ve8XzHcfbRl8wdod1QBYC_38Ommnmu2h3fxaAONvXyI5r0yYQSr3ODR1F6VLcWmSzzwVSoF8PJYQ1SA-2sIclw4PBxP1CU-H08XM3x4tdRFiS0xzvEh7k9AIU1s0AVbDCv6DB1j8Xn1B2CYcgJ68BE6uxGqPEatvMjtU4SpykCNOq7iMGNExRlEb9qwJNIhV4yKNnq_okA6qeA9UgiLPLXSv6nVRl1PovU8D8xdflFMv6e1nKehE9pR4y8zOXPEJDYxMuY0Uk7zTMMi7zyBU68-gIpa1VUQsF0PxJXuS9D4CbhdrI12GjNB7HVzeMUiaa12ZulGSNro9XrYP-lT6XJbLGAO8V6_jAQc_knFUesjsZDCJ4JdygavNc7cHMnHlyUoeUR8I4Qkevb_fb1Ct0Fs0y-D4fFzdIf4ZsoeOFPuoNZ8urAvwMObZy9rUcLo201L7x_cjWru |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+Preliminary+Immunogenicity+Evaluation+of+Nipah+Virus+Glycoprotein+G+Epitope-Based+Peptide+Vaccine+in+Mice&rft.jtitle=Vaccines+%28Basel%29&rft.au=Kim%2C+Seungyeon&rft.au=Flores%2C+Rochelle+A&rft.au=Moon%2C+Seo+Young&rft.au=Lee%2C+Seung+Yun&rft.date=2025-04-18&rft.pub=MDPI+AG&rft.issn=2076-393X&rft.eissn=2076-393X&rft.volume=13&rft.issue=4&rft_id=info:doi/10.3390%2Fvaccines13040428&rft.externalDocID=A837691814 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-393X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-393X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-393X&client=summon |