Combining Dynamic Predictions From Joint Models for Longitudinal and Time-to-Event Data Using Bayesian Model Averaging

The joint modeling of longitudinal and time-to-event data is an active area of statistics research that has received a lot of attention in recent years. More recently, a new and attractive application of this type of model has been to obtain individualized predictions of survival probabilities and/o...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 109; no. 508; pp. 1385 - 1397
Main Authors Rizopoulos, Dimitris, Hatfield, Laura A., Carlin, Bradley P., Takkenberg, Johanna J. M.
Format Journal Article
LanguageEnglish
Published Alexandria Taylor & Francis 02.10.2014
Taylor & Francis Group, LLC
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The joint modeling of longitudinal and time-to-event data is an active area of statistics research that has received a lot of attention in recent years. More recently, a new and attractive application of this type of model has been to obtain individualized predictions of survival probabilities and/or of future longitudinal responses. The advantageous feature of these predictions is that they are dynamically updated as extra longitudinal responses are collected for the subjects of interest, providing real time risk assessment using all recorded information. The aim of this article is two-fold. First, to highlight the importance of modeling the association structure between the longitudinal and event time responses that can greatly influence the derived predictions, and second, to illustrate how we can improve the accuracy of the derived predictions by suitably combining joint models with different association structures. The second goal is achieved using Bayesian model averaging, which, in this setting, has the very intriguing feature that the model weights are not fixed but they are rather subject- and time-dependent, implying that at different follow-up times predictions for the same subject may be based on different models. Supplementary materials for this article are available online.
AbstractList The joint modeling of longitudinal and time-to-event data is an active area of statistics research that has received a lot of attention in recent years. More recently, a new and attractive application of this type of model has been to obtain individualized predictions of survival probabilities and/or of future longitudinal responses. The advantageous feature of these predictions is that they are dynamically updated as extra longitudinal responses are collected for the subjects of interest, providing real time risk assessment using all recorded information. The aim of this article is two-fold. First, to highlight the importance of modeling the association structure between the longitudinal and event time responses that can greatly influence the derived predictions, and second, to illustrate how we can improve the accuracy of the derived predictions by suitably combining joint models with different association structures. The second goal is achieved using Bayesian model averaging, which, in this setting, has the very intriguing feature that the model weights are not fixed but they are rather subject- and time-dependent, implying that at different follow-up times predictions for the same subject may be based on different models. Supplementary materials for this article are available online.
Author Rizopoulos, Dimitris
Carlin, Bradley P.
Takkenberg, Johanna J. M.
Hatfield, Laura A.
Author_xml – sequence: 1
  givenname: Dimitris
  surname: Rizopoulos
  fullname: Rizopoulos, Dimitris
– sequence: 2
  givenname: Laura A.
  surname: Hatfield
  fullname: Hatfield, Laura A.
– sequence: 3
  givenname: Bradley P.
  surname: Carlin
  fullname: Carlin, Bradley P.
– sequence: 4
  givenname: Johanna J. M.
  surname: Takkenberg
  fullname: Takkenberg, Johanna J. M.
BookMark eNqFkl1rFDEUhgepYFv9B4oBb3oza75mJvFG6vbDlhUFu-BdOJtkliwzSU2yW_bfN8uoSG-amwTO85xw8uakOvLB26p6S_CMYIE_YtJSwhs5o5jwmWSEsvZFdUwa1tW047-O_ju_qk5S2uCyOiGOq908jCvnnV-ji72H0Wn0I1rjdHbBJ3QVw4hug_MZfQvGDgn1IaJF8GuXt8Z5GBB4g-7caOsc6sudLeQFZEDLdOj5BfY2OfCTjc53NsK6FF5XL3sYkn3zZz-tlleXd_Ov9eL79c38fFHrhrBcU0E7a5qGcdNyQnjfca17yrg2TDYWWt0TSk3PO2YklhbTVdNooaURmKwwZqfV2dT3PobfW5uyGl3SdhjA27BNigjMsKCUdgX98ATdhG0sExaq7aSQDEtSqE8TpWNIKdpeaZfh8Fg5ghsUweoQifobiTpEoqZIisyfyPfRjRD3z2nvJm2Tcoj_HMppmbuTpf55qjtf0hnhIcTBqAz7IcQ-gtcuKfbMDe-nDj0EBetYhOXPArTlm4imTM8eAW1Ftio
CODEN JSTNAL
CitedBy_id crossref_primary_10_1080_07350015_2020_1870479
crossref_primary_10_1186_s12894_024_01522_8
crossref_primary_10_1002_sim_10010
crossref_primary_10_1007_s00180_021_01171_7
crossref_primary_10_1186_s41512_020_00078_z
crossref_primary_10_1002_sim_7967
crossref_primary_10_1038_s41598_022_17905_6
crossref_primary_10_1111_biom_12940
crossref_primary_10_1177_0962280219833089
crossref_primary_10_1186_s12874_022_01775_7
crossref_primary_10_1371_journal_pone_0281782
crossref_primary_10_1111_rssc_12334
crossref_primary_10_1371_journal_pone_0305519
crossref_primary_10_1002_bimj_201600224
crossref_primary_10_1007_s11222_020_09927_9
crossref_primary_10_1158_1078_0432_CCR_23_0251
crossref_primary_10_1016_j_csda_2018_07_015
crossref_primary_10_3389_fpsyg_2021_708361
crossref_primary_10_1111_biom_12814
crossref_primary_10_1177_09622802231181767
crossref_primary_10_1515_ijb_2017_0047
crossref_primary_10_1002_sim_8387
crossref_primary_10_1007_s10985_018_9444_5
crossref_primary_10_1002_bimj_201900112
crossref_primary_10_1177_0962280218802300
crossref_primary_10_1080_00401706_2017_1383310
crossref_primary_10_1177_0962280217722177
crossref_primary_10_3390_cancers15174392
crossref_primary_10_1002_bimj_201600238
crossref_primary_10_1177_0962280218784757
crossref_primary_10_1186_s12874_020_00976_2
crossref_primary_10_1146_annurev_statistics_030718_105048
crossref_primary_10_1007_s40745_023_00486_0
crossref_primary_10_1016_j_ejor_2022_10_022
crossref_primary_10_1109_TPAMI_2017_2742504
crossref_primary_10_1097_MD_0000000000040181
crossref_primary_10_1093_ije_dyab047
crossref_primary_10_1002_sim_9923
crossref_primary_10_1111_biom_12964
crossref_primary_10_1177_0962280219853599
crossref_primary_10_1214_21_BA1276
crossref_primary_10_1016_j_sciaf_2022_e01519
crossref_primary_10_1080_24725854_2019_1630868
crossref_primary_10_1007_s10985_023_09608_5
crossref_primary_10_1214_23_AOAS1733
crossref_primary_10_1002_sim_7385
crossref_primary_10_1111_rssc_12433
crossref_primary_10_1080_10618600_2023_2257257
crossref_primary_10_1186_s12874_016_0212_5
crossref_primary_10_1002_sim_7381
crossref_primary_10_1002_sim_9683
crossref_primary_10_1002_bimj_201500070
crossref_primary_10_1002_sim_10160
crossref_primary_10_1177_0962280218786980
crossref_primary_10_1007_s12561_019_09256_0
crossref_primary_10_1214_17_AOAS1059
crossref_primary_10_1093_biostatistics_kxv031
crossref_primary_10_1002_sim_9619
crossref_primary_10_1186_s12859_021_04052_4
crossref_primary_10_1186_s12874_022_01709_3
crossref_primary_10_1214_23_AOAS1844
crossref_primary_10_1002_sim_6860
crossref_primary_10_1016_j_scitotenv_2023_167637
crossref_primary_10_1111_insr_12322
crossref_primary_10_1002_sim_70028
crossref_primary_10_1002_sim_9897
crossref_primary_10_1200_PO_19_00068
crossref_primary_10_1002_psp4_13290
crossref_primary_10_1177_0962280215588340
crossref_primary_10_1214_17_AOAS1050
Cites_doi 10.1198/0003130042854
10.1200/JCO.1983.1.11.710
10.1201/b11311
10.1111/j.1541-0420.2008.01171.x
10.1111/j.1467-9876.2008.00641.x
10.1007/978-1-4614-6849-3
10.1080/01621459.2012.664517
10.1002/sim.4205
10.1111/j.1541-0420.2006.00726.x
10.1002/9780470770771
10.1111/j.1541-0420.2012.01823.x
10.1007/978-1-4757-3447-8
10.1002/sim.2427
10.1002/(SICI)1097-0258(19960815)15:15<1663::AID-SIM294>3.0.CO;2-1
10.1007/978-1-4757-3462-1
10.1007/s10985-010-9169-6
10.1111/j.1467-9469.2006.00529.x
10.1111/j.1541-0420.2007.00983.x
10.1016/j.ejcts.2010.11.025
10.1002/sim.3701
10.1146/annurev.publhealth.20.1.145
10.1198/016214507000000400
10.1214/ss/1009212519
10.1093/biostatistics/kxp009
10.1093/biostatistics/3.1.33
10.1214/09-AOAS251
10.1111/j.0006-341X.2005.030929.x
10.1201/b10905-12
10.1093/biostatistics/1.4.465
10.2307/2533118
10.1111/j.1541-0420.2010.01546.x
10.1093/biomet/asm087
10.1080/01621459.1986.10478240
10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
ContentType Journal Article
Copyright 2014 American Statistical Association 2014
Copyright © 2014 American Statistical Association
Copyright Taylor & Francis Ltd. Dec 2014
Copyright_xml – notice: 2014 American Statistical Association 2014
– notice: Copyright © 2014 American Statistical Association
– notice: Copyright Taylor & Francis Ltd. Dec 2014
DBID FBQ
AAYXX
CITATION
8BJ
FQK
JBE
K9.
7S9
L.6
DOI 10.1080/01621459.2014.931236
DatabaseName AGRIS
CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList


AGRICOLA
International Bibliography of the Social Sciences (IBSS)
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 1397
ExternalDocumentID 3680336421
10_1080_01621459_2014_931236
24247379
931236
US201600085679
Genre Article
Feature
GroupedDBID -DZ
-~X
.-4
..I
.7F
.GJ
.QJ
07G
0BK
0R~
1OL
29L
2AX
30N
3R3
4.4
5GY
5RE
692
7WY
7X7
85S
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8FL
8G5
8R4
8R5
AAAVZ
AABCJ
AAENE
AAFWJ
AAHBH
AAIKQ
AAJMT
AAKBW
AALDU
AAMIU
AAPUL
AAQRR
AAWIL
ABAWQ
ABBHK
ABCCY
ABEFU
ABEHJ
ABFAN
ABFIM
ABJCF
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABRLO
ABTAI
ABUWG
ABXSQ
ABXUL
ABXYU
ABYWD
ACAGQ
ACGEE
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACUBG
ADBBV
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADULT
ADYSH
AEISY
AENEX
AEOZL
AEPSL
AEUMN
AEUPB
AEYOC
AFFNX
AFKRA
AFQQW
AFRVT
AFSUE
AFVYC
AFXHP
AGCQS
AGDLA
AGLEN
AGLNM
AGMYJ
AGROQ
AHDZW
AHMOU
AI.
AIHAF
AIJEM
AIYEW
AKBVH
AKOOK
ALCKM
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMATQ
AMEWO
AMXXU
AQRUH
AQUVI
AVBZW
AWYRJ
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BLEHA
BPHCQ
BPLKW
BVXVI
C06
CCCUG
CCPQU
CJ0
CRFIH
CS3
D0L
DGEBU
DKSSO
DMQIW
DQDLB
DSRWC
DU5
DWIFK
DWQXO
E.L
EBS
ECEWR
EJD
E~A
E~B
F5P
FBQ
FEDTE
FJW
FRNLG
FVMVE
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GTTXZ
GUQSH
H13
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZ~
H~9
H~P
IPNFZ
IPSME
IVXBP
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K60
K6~
K9-
KQ8
KYCEM
L6V
LJTGL
LU7
M0C
M0R
M0T
M1P
M2O
M2P
M4Z
M7S
MS~
MVM
MW2
NA5
NHB
NUSFT
NY~
O9-
OFU
OK1
P-O
P2P
PADUT
PHGZT
PQBIZ
PQBZA
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RIG
RNANH
RNS
ROSJB
RTWRZ
RWL
RXW
S-T
S0X
SA0
SJN
SNACF
TAE
TAQ
TBQAZ
TDBHL
TEJ
TFL
TFMCV
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UB9
UKHRP
UPT
UQL
UT5
UU3
VH1
VOH
WH7
WHG
WZA
YQT
YXB
YYM
YYP
ZCG
ZGI
ZGOLN
ZUP
ZXP
~S~
ABYAD
ACTWD
GROUPED_ABI_INFORM_COMPLETE
IAO
IEA
IGG
IOF
IPO
JSODD
N95
AAGDL
AAHIA
ADXHL
AMPGV
AMVHM
AAYXX
CITATION
8BJ
FQK
JBE
K9.
TASJS
7S9
L.6
ID FETCH-LOGICAL-c513t-2827ed5534d64114f74ccf234cd395ea6cf122df473d909e02b55c8c9d801b003
ISSN 1537-274X
0162-1459
IngestDate Wed Jul 02 04:38:52 EDT 2025
Wed Aug 13 07:44:35 EDT 2025
Tue Jul 01 02:39:28 EDT 2025
Thu Apr 24 22:59:08 EDT 2025
Fri May 30 11:46:39 EDT 2025
Wed Dec 25 09:05:05 EST 2024
Thu Apr 03 09:45:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 508
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c513t-2827ed5534d64114f74ccf234cd395ea6cf122df473d909e02b55c8c9d801b003
Notes http://dx.doi.org/10.1080/01621459.2014.931236
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1679893091
PQPubID 41715
PageCount 13
ParticipantIDs proquest_journals_1679893091
crossref_citationtrail_10_1080_01621459_2014_931236
crossref_primary_10_1080_01621459_2014_931236
informaworld_taylorfrancis_310_1080_01621459_2014_931236
fao_agris_US201600085679
proquest_miscellaneous_1803082227
jstor_primary_24247379
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-10-02
PublicationDateYYYYMMDD 2014-10-02
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-02
  day: 02
PublicationDecade 2010
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2014
Publisher Taylor & Francis
Taylor & Francis Group, LLC
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group, LLC
– name: Taylor & Francis Ltd
References cit0011
cit0012
cit0034
cit0010
cit0032
cit0030
(cit0023) 2012
cit0019
Tsiatis A.A. (cit0031) 2004; 14
cit0017
cit0018
Steyerberg E.W. (cit0027) 2010
cit0015
cit0037
cit0016
cit0013
cit0035
cit0014
cit0036
cit0022
cit0020
cit0021
Anderson J.R. (cit0001) 1983; 1
cit0008
cit0009
cit0006
cit0028
van Houwelingen H.C. (cit0033) 2011
cit0007
cit0029
cit0004
cit0026
cit0005
cit0002
cit0024
cit0003
cit0025
References_xml – ident: cit0009
  doi: 10.1198/0003130042854
– volume: 1
  start-page: 710
  year: 1983
  ident: cit0001
  publication-title: Journal of Clinical Oncology
  doi: 10.1200/JCO.1983.1.11.710
– volume-title: Dynamic Prediction in Clinical Survival Analysis
  year: 2011
  ident: cit0033
  doi: 10.1201/b11311
– ident: cit0017
  doi: 10.1111/j.1541-0420.2008.01171.x
– ident: cit0020
  doi: 10.1111/j.1467-9876.2008.00641.x
– ident: cit0019
  doi: 10.1007/978-1-4614-6849-3
– ident: cit0012
  doi: 10.1080/01621459.2012.664517
– ident: cit0024
  doi: 10.1002/sim.4205
– ident: cit0037
  doi: 10.1111/j.1541-0420.2006.00726.x
– ident: cit0026
  doi: 10.1002/9780470770771
– ident: cit0029
  doi: 10.1111/j.1541-0420.2012.01823.x
– ident: cit0018
  doi: 10.1007/978-1-4757-3447-8
– ident: cit0002
  doi: 10.1002/sim.2427
– volume-title: Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating
  year: 2010
  ident: cit0027
– ident: cit0006
  doi: 10.1002/(SICI)1097-0258(19960815)15:15<1663::AID-SIM294>3.0.CO;2-1
– ident: cit0010
  doi: 10.1007/978-1-4757-3462-1
– ident: cit0016
  doi: 10.1007/s10985-010-9169-6
– ident: cit0032
  doi: 10.1111/j.1467-9469.2006.00529.x
– ident: cit0035
  doi: 10.1111/j.1541-0420.2007.00983.x
– volume: 14
  start-page: 809
  year: 2004
  ident: cit0031
  publication-title: Statistica Sinica
– ident: cit0003
  doi: 10.1016/j.ejcts.2010.11.025
– ident: cit0028
  doi: 10.1002/sim.3701
– ident: cit0007
  doi: 10.1146/annurev.publhealth.20.1.145
– ident: cit0036
  doi: 10.1198/016214507000000400
– ident: cit0015
  doi: 10.1214/ss/1009212519
– ident: cit0021
  doi: 10.1093/biostatistics/kxp009
– ident: cit0014
  doi: 10.1093/biostatistics/3.1.33
– ident: cit0004
  doi: 10.1214/09-AOAS251
– ident: cit0005
  doi: 10.1111/j.0006-341X.2005.030929.x
– ident: cit0008
  doi: 10.1201/b10905-12
– volume-title: Joint Models for Longitudinal and Time-to-Event Data, With Applications in R
  year: 2012
  ident: cit0023
– ident: cit0013
  doi: 10.1093/biostatistics/1.4.465
– ident: cit0034
  doi: 10.2307/2533118
– ident: cit0022
  doi: 10.1111/j.1541-0420.2010.01546.x
– ident: cit0025
  doi: 10.1093/biomet/asm087
– ident: cit0030
  doi: 10.1080/01621459.1986.10478240
– ident: cit0011
  doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
SSID ssj0000788
Score 2.4359746
Snippet The joint modeling of longitudinal and time-to-event data is an active area of statistics research that has received a lot of attention in recent years. More...
SourceID proquest
crossref
jstor
informaworld
fao
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1385
SubjectTerms Applications and Case Studies
Averaging
Bayesian analysis
Bayesian networks
Biomarkers
Datasets
Heart valves
Induced substructures
Mathematical models
Multilevel models
prediction
Predictive modeling
Probability
Prognostic modeling
Random effects
Real time
Reoperation
Risk assessment
Risk prediction
Simulations
Statistical models
Statistics
Time-dependent covariates
Title Combining Dynamic Predictions From Joint Models for Longitudinal and Time-to-Event Data Using Bayesian Model Averaging
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2014.931236
https://www.jstor.org/stable/24247379
https://www.proquest.com/docview/1679893091
https://www.proquest.com/docview/1803082227
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l5dIL4lU1paBF4hY5snf92mNpE1VRCAcSKbfVem1D1ciOEgeJ_ip-IjPrZ2iAwsXy25a_b2dn1zPzEfJeAayumygr4UpYbirADnLYDKF12AlTzDbFnj_O_JuFO1l6y17vRydqaVdEQ31_MK_kf1CFfYArZsn-A7LNTWEHrAO-sASEYfkojKExR0bgYXBdCstjREV8q8votjFmjkzy26wwimcrU3lhMM1RoWgXGzUsnDXHJBCryK0RRj4CCwo1KOMIPqjviUmxNFcPLuHzGEmj3_iznRwVowpcmBLQBxhgSmbf5-t8typj_K4xyWpzu22tYdEoZ2PetmonXK_UplaY36gYDVqTnzZXd3dtuNok_6qyTA0m1XRvNbHhuCZEju3Z4sCCQfNyz1jbosNK8C4H66HDQ89CT7ZjiHFfp1Ovjz7oMKoIS8fHiu2YuOS4Q8GxJE3bQdZBAbNPcryYTuV8tJwfkScMBiZoWbk9a_v-wCidNq9eJ2tiNfcDz9hzho5Slf9SMLcOkn3gKBjvZ_6MPK1gppclB5-TXpK9ICcNytuX5FtDRlqRkXbISJGM1JCRlmSk8HzaJSMFMtI9MlIkIzVkpDUZy6tpQ8ZXZDEeza9urErUw9KewwsLhvhBEnsed2PfhcF4Grhap4y7OubCS5SvU4exOHUDHgtbJDaLPE-HWsTgS2EfdEqOszxLzgjVLPITz1YChsWuViJKUcPWcyIVhbDC-4TXX1fqquI9Cq-spFMXxq0wkYiJLDHpE6u5al1WfPnL-WcAnFRfoJ3IxWeGJRtxIOMHok_CLpqyMJNwaamYI_mf73pqkG9eAdO4Ao73vKipICtTtJXmX6rg4Pv3ybvmMHQU-PdPZUm-g3NCU5qKseD8Eee8Jidtm7wgx8Vml7wB97uI3hrG_wSQNNJ4
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVoOdAL5avq0gJG4pol8UcSHwvtainbFRJdiZvlOHaFKAnazSLRX98ZO1mgCJDgliixZTvj53E88x4hLwx8ViGcSRw3KhFeAQ5yuC1hdqSOGZYGsuezeT5diNMPcogmXPVhlbiH9pEoImA1Tm78GT2ExL0ENwUJtjHPJBNjxZFBZIvcliov0NR5Ov8OxkWQnsQSCRYZsud-U8tPq9OWN-0NBtMhavEX5A7L0WSXVENHYhTKp_G6q8b26gbH43_19B652zur9Cha131yyzUPyA76p5He-SH5CnhSBY0Jehy17em7JZ79BHOmk2X7mZ62H5uOouja5YpCJ-msRZGkdY2CXBTaRjEPJena5ASDL-mx6QwNoQz0lfnmMMszlqZHMO-CqtIjspicnL-eJr2UQ2JlxrsENnaFq6Xkos4FbMF8Iaz1jAtbcyWdya3PGKu9KHitUuVSVklpS6tqWEERefbIdtM2bp9Qy6rcydQo2AwJa1TlUblUZpWpSrjgI8KHT6htz3OOchuXOhvoUPtB1TioOg7qiCSbUl8iz8df3t8H69DmAqBYL94zJOpD9zUv1IiUP5qM7sKvFx91UjT_c617wbw2TcDknYJjnYeDvekeZFY6nKApDh7fiDzfPAZ4wDMf07h2De-UgZCIseLxvzfrGbkzPT-b6dmb-dsDsoNPQjwjOyTb3XLtnoBf1lVPw8y7Bn7IJMw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZokVAvUB5Vt5RiJK5ZEj-S-FjYrkopq0qwUm-W49gVoiTVNlsJfj0zdrJ9IECCW6LElu2MP4_jme8j5LWBzyqEM4njRiXCK8BBDrclzI7UMcPSQPb8cZYfzsXRqTy9kcWPYZW4h_aRKCJgNU7ui9oPEXFvwEtBfm1MM8nEWHEkEFkj93PMs8QkjnR2jcVFUJ7EEgkWGZLnflPLrcVpzZv2DoHpELT4C3CH1Wj6iJihHzEI5et42VVj--MOxeP_dHSTPOxdVbofbesxueeaJ2QDvdNI7vyUXAGaVEFhgk6isj09WeDJTzBmOl203-hR-6XpKEqunV9S6CM9blEiaVmjHBeFplHMQkm6NjnA0Es6MZ2hIZCBvjXfHeZ4xtJ0H2Zd0FR6RubTg8_vDpNeyCGxMuNdAtu6wtVSclHnAjZgvhDWesaFrbmSzuTWZ4zVXhS8VqlyKauktKVVNayfiDtbZL1pG7dNqGVV7mRqFGyFhDWq8qhbKrPKVCVc8BHhwxfUtmc5R7GNc50NZKj9oGocVB0HdUSSVamLyPLxl_e3wTi0OQMg1vNPDGn60HnNCzUi5U2L0V348eKjSormf651K1jXqgmYulNwrHN3MDfdQ8ylDudnioO_NyKvVo8BHPDExzSuXcI7ZaAjYqzY-fdmvSQPTiZTffx-9uE52cAHIZiR7ZL1brF0L8Ap66q9MO9-ArB9I3A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+Dynamic+Predictions+From+Joint+Models+for+Longitudinal+and+Time-to-Event+Data+Using+Bayesian+Model+Averaging&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Rizopoulos%2C+Dimitris&rft.au=Hatfield%2C+Laura+A&rft.au=Carlin%2C+Bradley+P&rft.au=Takkenberg%2C+Johanna+J+M&rft.date=2014-10-02&rft.issn=1537-274X&rft.volume=109&rft.issue=508+p.1385-1397&rft.spage=1385&rft.epage=1397&rft_id=info:doi/10.1080%2F01621459.2014.931236&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-274X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-274X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-274X&client=summon