Combining Dynamic Predictions From Joint Models for Longitudinal and Time-to-Event Data Using Bayesian Model Averaging
The joint modeling of longitudinal and time-to-event data is an active area of statistics research that has received a lot of attention in recent years. More recently, a new and attractive application of this type of model has been to obtain individualized predictions of survival probabilities and/o...
Saved in:
Published in | Journal of the American Statistical Association Vol. 109; no. 508; pp. 1385 - 1397 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Alexandria
Taylor & Francis
02.10.2014
Taylor & Francis Group, LLC Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The joint modeling of longitudinal and time-to-event data is an active area of statistics research that has received a lot of attention in recent years. More recently, a new and attractive application of this type of model has been to obtain individualized predictions of survival probabilities and/or of future longitudinal responses. The advantageous feature of these predictions is that they are dynamically updated as extra longitudinal responses are collected for the subjects of interest, providing real time risk assessment using all recorded information. The aim of this article is two-fold. First, to highlight the importance of modeling the association structure between the longitudinal and event time responses that can greatly influence the derived predictions, and second, to illustrate how we can improve the accuracy of the derived predictions by suitably combining joint models with different association structures. The second goal is achieved using Bayesian model averaging, which, in this setting, has the very intriguing feature that the model weights are not fixed but they are rather subject- and time-dependent, implying that at different follow-up times predictions for the same subject may be based on different models. Supplementary materials for this article are available online. |
---|---|
AbstractList | The joint modeling of longitudinal and time-to-event data is an active area of statistics research that has received a lot of attention in recent years. More recently, a new and attractive application of this type of model has been to obtain individualized predictions of survival probabilities and/or of future longitudinal responses. The advantageous feature of these predictions is that they are dynamically updated as extra longitudinal responses are collected for the subjects of interest, providing real time risk assessment using all recorded information. The aim of this article is two-fold. First, to highlight the importance of modeling the association structure between the longitudinal and event time responses that can greatly influence the derived predictions, and second, to illustrate how we can improve the accuracy of the derived predictions by suitably combining joint models with different association structures. The second goal is achieved using Bayesian model averaging, which, in this setting, has the very intriguing feature that the model weights are not fixed but they are rather subject- and time-dependent, implying that at different follow-up times predictions for the same subject may be based on different models. Supplementary materials for this article are available online. |
Author | Rizopoulos, Dimitris Carlin, Bradley P. Takkenberg, Johanna J. M. Hatfield, Laura A. |
Author_xml | – sequence: 1 givenname: Dimitris surname: Rizopoulos fullname: Rizopoulos, Dimitris – sequence: 2 givenname: Laura A. surname: Hatfield fullname: Hatfield, Laura A. – sequence: 3 givenname: Bradley P. surname: Carlin fullname: Carlin, Bradley P. – sequence: 4 givenname: Johanna J. M. surname: Takkenberg fullname: Takkenberg, Johanna J. M. |
BookMark | eNqFkl1rFDEUhgepYFv9B4oBb3oza75mJvFG6vbDlhUFu-BdOJtkliwzSU2yW_bfN8uoSG-amwTO85xw8uakOvLB26p6S_CMYIE_YtJSwhs5o5jwmWSEsvZFdUwa1tW047-O_ju_qk5S2uCyOiGOq908jCvnnV-ji72H0Wn0I1rjdHbBJ3QVw4hug_MZfQvGDgn1IaJF8GuXt8Z5GBB4g-7caOsc6sudLeQFZEDLdOj5BfY2OfCTjc53NsK6FF5XL3sYkn3zZz-tlleXd_Ov9eL79c38fFHrhrBcU0E7a5qGcdNyQnjfca17yrg2TDYWWt0TSk3PO2YklhbTVdNooaURmKwwZqfV2dT3PobfW5uyGl3SdhjA27BNigjMsKCUdgX98ATdhG0sExaq7aSQDEtSqE8TpWNIKdpeaZfh8Fg5ghsUweoQifobiTpEoqZIisyfyPfRjRD3z2nvJm2Tcoj_HMppmbuTpf55qjtf0hnhIcTBqAz7IcQ-gtcuKfbMDe-nDj0EBetYhOXPArTlm4imTM8eAW1Ftio |
CODEN | JSTNAL |
CitedBy_id | crossref_primary_10_1080_07350015_2020_1870479 crossref_primary_10_1186_s12894_024_01522_8 crossref_primary_10_1002_sim_10010 crossref_primary_10_1007_s00180_021_01171_7 crossref_primary_10_1186_s41512_020_00078_z crossref_primary_10_1002_sim_7967 crossref_primary_10_1038_s41598_022_17905_6 crossref_primary_10_1111_biom_12940 crossref_primary_10_1177_0962280219833089 crossref_primary_10_1186_s12874_022_01775_7 crossref_primary_10_1371_journal_pone_0281782 crossref_primary_10_1111_rssc_12334 crossref_primary_10_1371_journal_pone_0305519 crossref_primary_10_1002_bimj_201600224 crossref_primary_10_1007_s11222_020_09927_9 crossref_primary_10_1158_1078_0432_CCR_23_0251 crossref_primary_10_1016_j_csda_2018_07_015 crossref_primary_10_3389_fpsyg_2021_708361 crossref_primary_10_1111_biom_12814 crossref_primary_10_1177_09622802231181767 crossref_primary_10_1515_ijb_2017_0047 crossref_primary_10_1002_sim_8387 crossref_primary_10_1007_s10985_018_9444_5 crossref_primary_10_1002_bimj_201900112 crossref_primary_10_1177_0962280218802300 crossref_primary_10_1080_00401706_2017_1383310 crossref_primary_10_1177_0962280217722177 crossref_primary_10_3390_cancers15174392 crossref_primary_10_1002_bimj_201600238 crossref_primary_10_1177_0962280218784757 crossref_primary_10_1186_s12874_020_00976_2 crossref_primary_10_1146_annurev_statistics_030718_105048 crossref_primary_10_1007_s40745_023_00486_0 crossref_primary_10_1016_j_ejor_2022_10_022 crossref_primary_10_1109_TPAMI_2017_2742504 crossref_primary_10_1097_MD_0000000000040181 crossref_primary_10_1093_ije_dyab047 crossref_primary_10_1002_sim_9923 crossref_primary_10_1111_biom_12964 crossref_primary_10_1177_0962280219853599 crossref_primary_10_1214_21_BA1276 crossref_primary_10_1016_j_sciaf_2022_e01519 crossref_primary_10_1080_24725854_2019_1630868 crossref_primary_10_1007_s10985_023_09608_5 crossref_primary_10_1214_23_AOAS1733 crossref_primary_10_1002_sim_7385 crossref_primary_10_1111_rssc_12433 crossref_primary_10_1080_10618600_2023_2257257 crossref_primary_10_1186_s12874_016_0212_5 crossref_primary_10_1002_sim_7381 crossref_primary_10_1002_sim_9683 crossref_primary_10_1002_bimj_201500070 crossref_primary_10_1002_sim_10160 crossref_primary_10_1177_0962280218786980 crossref_primary_10_1007_s12561_019_09256_0 crossref_primary_10_1214_17_AOAS1059 crossref_primary_10_1093_biostatistics_kxv031 crossref_primary_10_1002_sim_9619 crossref_primary_10_1186_s12859_021_04052_4 crossref_primary_10_1186_s12874_022_01709_3 crossref_primary_10_1214_23_AOAS1844 crossref_primary_10_1002_sim_6860 crossref_primary_10_1016_j_scitotenv_2023_167637 crossref_primary_10_1111_insr_12322 crossref_primary_10_1002_sim_70028 crossref_primary_10_1002_sim_9897 crossref_primary_10_1200_PO_19_00068 crossref_primary_10_1002_psp4_13290 crossref_primary_10_1177_0962280215588340 crossref_primary_10_1214_17_AOAS1050 |
Cites_doi | 10.1198/0003130042854 10.1200/JCO.1983.1.11.710 10.1201/b11311 10.1111/j.1541-0420.2008.01171.x 10.1111/j.1467-9876.2008.00641.x 10.1007/978-1-4614-6849-3 10.1080/01621459.2012.664517 10.1002/sim.4205 10.1111/j.1541-0420.2006.00726.x 10.1002/9780470770771 10.1111/j.1541-0420.2012.01823.x 10.1007/978-1-4757-3447-8 10.1002/sim.2427 10.1002/(SICI)1097-0258(19960815)15:15<1663::AID-SIM294>3.0.CO;2-1 10.1007/978-1-4757-3462-1 10.1007/s10985-010-9169-6 10.1111/j.1467-9469.2006.00529.x 10.1111/j.1541-0420.2007.00983.x 10.1016/j.ejcts.2010.11.025 10.1002/sim.3701 10.1146/annurev.publhealth.20.1.145 10.1198/016214507000000400 10.1214/ss/1009212519 10.1093/biostatistics/kxp009 10.1093/biostatistics/3.1.33 10.1214/09-AOAS251 10.1111/j.0006-341X.2005.030929.x 10.1201/b10905-12 10.1093/biostatistics/1.4.465 10.2307/2533118 10.1111/j.1541-0420.2010.01546.x 10.1093/biomet/asm087 10.1080/01621459.1986.10478240 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 |
ContentType | Journal Article |
Copyright | 2014 American Statistical Association 2014 Copyright © 2014 American Statistical Association Copyright Taylor & Francis Ltd. Dec 2014 |
Copyright_xml | – notice: 2014 American Statistical Association 2014 – notice: Copyright © 2014 American Statistical Association – notice: Copyright Taylor & Francis Ltd. Dec 2014 |
DBID | FBQ AAYXX CITATION 8BJ FQK JBE K9. 7S9 L.6 |
DOI | 10.1080/01621459.2014.931236 |
DatabaseName | AGRIS CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA International Bibliography of the Social Sciences (IBSS) |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 1537-274X |
EndPage | 1397 |
ExternalDocumentID | 3680336421 10_1080_01621459_2014_931236 24247379 931236 US201600085679 |
Genre | Article Feature |
GroupedDBID | -DZ -~X .-4 ..I .7F .GJ .QJ 07G 0BK 0R~ 1OL 29L 2AX 30N 3R3 4.4 5GY 5RE 692 7WY 7X7 85S 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8FL 8G5 8R4 8R5 AAAVZ AABCJ AAENE AAFWJ AAHBH AAIKQ AAJMT AAKBW AALDU AAMIU AAPUL AAQRR AAWIL ABAWQ ABBHK ABCCY ABEFU ABEHJ ABFAN ABFIM ABJCF ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABPQH ABRLO ABTAI ABUWG ABXSQ ABXUL ABXYU ABYWD ACAGQ ACGEE ACGFO ACGFS ACGOD ACHJO ACIWK ACMTB ACNCT ACTIO ACTMH ACUBG ADBBV ADCVX ADGTB ADLSF ADMHG ADODI ADULT ADYSH AEISY AENEX AEOZL AEPSL AEUMN AEUPB AEYOC AFFNX AFKRA AFQQW AFRVT AFSUE AFVYC AFXHP AGCQS AGDLA AGLEN AGLNM AGMYJ AGROQ AHDZW AHMOU AI. AIHAF AIJEM AIYEW AKBVH AKOOK ALCKM ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AMATQ AMEWO AMXXU AQRUH AQUVI AVBZW AWYRJ AZQEC BCCOT BENPR BEZIV BGLVJ BKNYI BKOMP BLEHA BPHCQ BPLKW BVXVI C06 CCCUG CCPQU CJ0 CRFIH CS3 D0L DGEBU DKSSO DMQIW DQDLB DSRWC DU5 DWIFK DWQXO E.L EBS ECEWR EJD E~A E~B F5P FBQ FEDTE FJW FRNLG FVMVE FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH GTTXZ GUQSH H13 HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZ~ H~9 H~P IPNFZ IPSME IVXBP J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K60 K6~ K9- KQ8 KYCEM L6V LJTGL LU7 M0C M0R M0T M1P M2O M2P M4Z M7S MS~ MVM MW2 NA5 NHB NUSFT NY~ O9- OFU OK1 P-O P2P PADUT PHGZT PQBIZ PQBZA PQQKQ PRG PROAC PSQYO PTHSS Q2X QCRFL RIG RNANH RNS ROSJB RTWRZ RWL RXW S-T S0X SA0 SJN SNACF TAE TAQ TBQAZ TDBHL TEJ TFL TFMCV TFT TFW TN5 TOXWX TTHFI TUROJ U5U UB9 UKHRP UPT UQL UT5 UU3 VH1 VOH WH7 WHG WZA YQT YXB YYM YYP ZCG ZGI ZGOLN ZUP ZXP ~S~ ABYAD ACTWD GROUPED_ABI_INFORM_COMPLETE IAO IEA IGG IOF IPO JSODD N95 AAGDL AAHIA ADXHL AMPGV AMVHM AAYXX CITATION 8BJ FQK JBE K9. TASJS 7S9 L.6 |
ID | FETCH-LOGICAL-c513t-2827ed5534d64114f74ccf234cd395ea6cf122df473d909e02b55c8c9d801b003 |
ISSN | 1537-274X 0162-1459 |
IngestDate | Wed Jul 02 04:38:52 EDT 2025 Wed Aug 13 07:44:35 EDT 2025 Tue Jul 01 02:39:28 EDT 2025 Thu Apr 24 22:59:08 EDT 2025 Fri May 30 11:46:39 EDT 2025 Wed Dec 25 09:05:05 EST 2024 Thu Apr 03 09:45:43 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 508 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c513t-2827ed5534d64114f74ccf234cd395ea6cf122df473d909e02b55c8c9d801b003 |
Notes | http://dx.doi.org/10.1080/01621459.2014.931236 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1679893091 |
PQPubID | 41715 |
PageCount | 13 |
ParticipantIDs | proquest_journals_1679893091 crossref_citationtrail_10_1080_01621459_2014_931236 crossref_primary_10_1080_01621459_2014_931236 informaworld_taylorfrancis_310_1080_01621459_2014_931236 fao_agris_US201600085679 proquest_miscellaneous_1803082227 jstor_primary_24247379 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-10-02 |
PublicationDateYYYYMMDD | 2014-10-02 |
PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Alexandria |
PublicationPlace_xml | – name: Alexandria |
PublicationTitle | Journal of the American Statistical Association |
PublicationYear | 2014 |
Publisher | Taylor & Francis Taylor & Francis Group, LLC Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group, LLC – name: Taylor & Francis Ltd |
References | cit0011 cit0012 cit0034 cit0010 cit0032 cit0030 (cit0023) 2012 cit0019 Tsiatis A.A. (cit0031) 2004; 14 cit0017 cit0018 Steyerberg E.W. (cit0027) 2010 cit0015 cit0037 cit0016 cit0013 cit0035 cit0014 cit0036 cit0022 cit0020 cit0021 Anderson J.R. (cit0001) 1983; 1 cit0008 cit0009 cit0006 cit0028 van Houwelingen H.C. (cit0033) 2011 cit0007 cit0029 cit0004 cit0026 cit0005 cit0002 cit0024 cit0003 cit0025 |
References_xml | – ident: cit0009 doi: 10.1198/0003130042854 – volume: 1 start-page: 710 year: 1983 ident: cit0001 publication-title: Journal of Clinical Oncology doi: 10.1200/JCO.1983.1.11.710 – volume-title: Dynamic Prediction in Clinical Survival Analysis year: 2011 ident: cit0033 doi: 10.1201/b11311 – ident: cit0017 doi: 10.1111/j.1541-0420.2008.01171.x – ident: cit0020 doi: 10.1111/j.1467-9876.2008.00641.x – ident: cit0019 doi: 10.1007/978-1-4614-6849-3 – ident: cit0012 doi: 10.1080/01621459.2012.664517 – ident: cit0024 doi: 10.1002/sim.4205 – ident: cit0037 doi: 10.1111/j.1541-0420.2006.00726.x – ident: cit0026 doi: 10.1002/9780470770771 – ident: cit0029 doi: 10.1111/j.1541-0420.2012.01823.x – ident: cit0018 doi: 10.1007/978-1-4757-3447-8 – ident: cit0002 doi: 10.1002/sim.2427 – volume-title: Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating year: 2010 ident: cit0027 – ident: cit0006 doi: 10.1002/(SICI)1097-0258(19960815)15:15<1663::AID-SIM294>3.0.CO;2-1 – ident: cit0010 doi: 10.1007/978-1-4757-3462-1 – ident: cit0016 doi: 10.1007/s10985-010-9169-6 – ident: cit0032 doi: 10.1111/j.1467-9469.2006.00529.x – ident: cit0035 doi: 10.1111/j.1541-0420.2007.00983.x – volume: 14 start-page: 809 year: 2004 ident: cit0031 publication-title: Statistica Sinica – ident: cit0003 doi: 10.1016/j.ejcts.2010.11.025 – ident: cit0028 doi: 10.1002/sim.3701 – ident: cit0007 doi: 10.1146/annurev.publhealth.20.1.145 – ident: cit0036 doi: 10.1198/016214507000000400 – ident: cit0015 doi: 10.1214/ss/1009212519 – ident: cit0021 doi: 10.1093/biostatistics/kxp009 – ident: cit0014 doi: 10.1093/biostatistics/3.1.33 – ident: cit0004 doi: 10.1214/09-AOAS251 – ident: cit0005 doi: 10.1111/j.0006-341X.2005.030929.x – ident: cit0008 doi: 10.1201/b10905-12 – volume-title: Joint Models for Longitudinal and Time-to-Event Data, With Applications in R year: 2012 ident: cit0023 – ident: cit0013 doi: 10.1093/biostatistics/1.4.465 – ident: cit0034 doi: 10.2307/2533118 – ident: cit0022 doi: 10.1111/j.1541-0420.2010.01546.x – ident: cit0025 doi: 10.1093/biomet/asm087 – ident: cit0030 doi: 10.1080/01621459.1986.10478240 – ident: cit0011 doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 |
SSID | ssj0000788 |
Score | 2.4359746 |
Snippet | The joint modeling of longitudinal and time-to-event data is an active area of statistics research that has received a lot of attention in recent years. More... |
SourceID | proquest crossref jstor informaworld fao |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1385 |
SubjectTerms | Applications and Case Studies Averaging Bayesian analysis Bayesian networks Biomarkers Datasets Heart valves Induced substructures Mathematical models Multilevel models prediction Predictive modeling Probability Prognostic modeling Random effects Real time Reoperation Risk assessment Risk prediction Simulations Statistical models Statistics Time-dependent covariates |
Title | Combining Dynamic Predictions From Joint Models for Longitudinal and Time-to-Event Data Using Bayesian Model Averaging |
URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2014.931236 https://www.jstor.org/stable/24247379 https://www.proquest.com/docview/1679893091 https://www.proquest.com/docview/1803082227 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l5dIL4lU1paBF4hY5snf92mNpE1VRCAcSKbfVem1D1ciOEgeJ_ip-IjPrZ2iAwsXy25a_b2dn1zPzEfJeAayumygr4UpYbirADnLYDKF12AlTzDbFnj_O_JuFO1l6y17vRydqaVdEQ31_MK_kf1CFfYArZsn-A7LNTWEHrAO-sASEYfkojKExR0bgYXBdCstjREV8q8votjFmjkzy26wwimcrU3lhMM1RoWgXGzUsnDXHJBCryK0RRj4CCwo1KOMIPqjviUmxNFcPLuHzGEmj3_iznRwVowpcmBLQBxhgSmbf5-t8typj_K4xyWpzu22tYdEoZ2PetmonXK_UplaY36gYDVqTnzZXd3dtuNok_6qyTA0m1XRvNbHhuCZEju3Z4sCCQfNyz1jbosNK8C4H66HDQ89CT7ZjiHFfp1Ovjz7oMKoIS8fHiu2YuOS4Q8GxJE3bQdZBAbNPcryYTuV8tJwfkScMBiZoWbk9a_v-wCidNq9eJ2tiNfcDz9hzho5Slf9SMLcOkn3gKBjvZ_6MPK1gppclB5-TXpK9ICcNytuX5FtDRlqRkXbISJGM1JCRlmSk8HzaJSMFMtI9MlIkIzVkpDUZy6tpQ8ZXZDEeza9urErUw9KewwsLhvhBEnsed2PfhcF4Grhap4y7OubCS5SvU4exOHUDHgtbJDaLPE-HWsTgS2EfdEqOszxLzgjVLPITz1YChsWuViJKUcPWcyIVhbDC-4TXX1fqquI9Cq-spFMXxq0wkYiJLDHpE6u5al1WfPnL-WcAnFRfoJ3IxWeGJRtxIOMHok_CLpqyMJNwaamYI_mf73pqkG9eAdO4Ao73vKipICtTtJXmX6rg4Pv3ybvmMHQU-PdPZUm-g3NCU5qKseD8Eee8Jidtm7wgx8Vml7wB97uI3hrG_wSQNNJ4 |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVoOdAL5avq0gJG4pol8UcSHwvtainbFRJdiZvlOHaFKAnazSLRX98ZO1mgCJDgliixZTvj53E88x4hLwx8ViGcSRw3KhFeAQ5yuC1hdqSOGZYGsuezeT5diNMPcogmXPVhlbiH9pEoImA1Tm78GT2ExL0ENwUJtjHPJBNjxZFBZIvcliov0NR5Ov8OxkWQnsQSCRYZsud-U8tPq9OWN-0NBtMhavEX5A7L0WSXVENHYhTKp_G6q8b26gbH43_19B652zur9Cha131yyzUPyA76p5He-SH5CnhSBY0Jehy17em7JZ79BHOmk2X7mZ62H5uOouja5YpCJ-msRZGkdY2CXBTaRjEPJena5ASDL-mx6QwNoQz0lfnmMMszlqZHMO-CqtIjspicnL-eJr2UQ2JlxrsENnaFq6Xkos4FbMF8Iaz1jAtbcyWdya3PGKu9KHitUuVSVklpS6tqWEERefbIdtM2bp9Qy6rcydQo2AwJa1TlUblUZpWpSrjgI8KHT6htz3OOchuXOhvoUPtB1TioOg7qiCSbUl8iz8df3t8H69DmAqBYL94zJOpD9zUv1IiUP5qM7sKvFx91UjT_c617wbw2TcDknYJjnYeDvekeZFY6nKApDh7fiDzfPAZ4wDMf07h2De-UgZCIseLxvzfrGbkzPT-b6dmb-dsDsoNPQjwjOyTb3XLtnoBf1lVPw8y7Bn7IJMw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZokVAvUB5Vt5RiJK5ZEj-S-FjYrkopq0qwUm-W49gVoiTVNlsJfj0zdrJ9IECCW6LElu2MP4_jme8j5LWBzyqEM4njRiXCK8BBDrclzI7UMcPSQPb8cZYfzsXRqTy9kcWPYZW4h_aRKCJgNU7ui9oPEXFvwEtBfm1MM8nEWHEkEFkj93PMs8QkjnR2jcVFUJ7EEgkWGZLnflPLrcVpzZv2DoHpELT4C3CH1Wj6iJihHzEI5et42VVj--MOxeP_dHSTPOxdVbofbesxueeaJ2QDvdNI7vyUXAGaVEFhgk6isj09WeDJTzBmOl203-hR-6XpKEqunV9S6CM9blEiaVmjHBeFplHMQkm6NjnA0Es6MZ2hIZCBvjXfHeZ4xtJ0H2Zd0FR6RubTg8_vDpNeyCGxMuNdAtu6wtVSclHnAjZgvhDWesaFrbmSzuTWZ4zVXhS8VqlyKauktKVVNayfiDtbZL1pG7dNqGVV7mRqFGyFhDWq8qhbKrPKVCVc8BHhwxfUtmc5R7GNc50NZKj9oGocVB0HdUSSVamLyPLxl_e3wTi0OQMg1vNPDGn60HnNCzUi5U2L0V348eKjSormf651K1jXqgmYulNwrHN3MDfdQ8ylDudnioO_NyKvVo8BHPDExzSuXcI7ZaAjYqzY-fdmvSQPTiZTffx-9uE52cAHIZiR7ZL1brF0L8Ap66q9MO9-ArB9I3A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+Dynamic+Predictions+From+Joint+Models+for+Longitudinal+and+Time-to-Event+Data+Using+Bayesian+Model+Averaging&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Rizopoulos%2C+Dimitris&rft.au=Hatfield%2C+Laura+A&rft.au=Carlin%2C+Bradley+P&rft.au=Takkenberg%2C+Johanna+J+M&rft.date=2014-10-02&rft.issn=1537-274X&rft.volume=109&rft.issue=508+p.1385-1397&rft.spage=1385&rft.epage=1397&rft_id=info:doi/10.1080%2F01621459.2014.931236&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-274X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-274X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-274X&client=summon |