Canopy Openness Enhances Diversity of Ant–Plant Interactions in the Brazilian Amazon Rain Forest
In closed‐canopy tropical forest understory, light availability is a significant determinant of habitat diversity because canopy structure is highly variable in most tropical forests. Consequently, variation in canopy cover affects the composition and distribution of plant species via creating varia...
Saved in:
Published in | Biotropica Vol. 46; no. 6; pp. 712 - 719 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Association for Tropical Biology
01.11.2014
Blackwell Publishing Ltd Wiley Periodicals Inc Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In closed‐canopy tropical forest understory, light availability is a significant determinant of habitat diversity because canopy structure is highly variable in most tropical forests. Consequently, variation in canopy cover affects the composition and distribution of plant species via creating variable light environments. Nevertheless, little is known about how variation in canopy openness structures patterns of plant–animal interactions. Because of the great diversity and dominance of ants in tropical environments, we used ant–plant interactions as a focal network to evaluate how variation in canopy cover influences patterns of plant–insect interactions in the Brazilian Amazon rain forest. We observed that small increases in canopy openness are associated with increased diversity of ant–plant interactions in our study area, and this change is independent of plant or ant species richness. Additionally, we found smaller niche overlap for both ants and plants associated with greater canopy openness. We hypothesize that enhanced light availability increases the breadth of ant foraging sources because variation in light availability gives rise to plant resources of different quality and amounts. Moreover, greater light availability promotes vegetative growth in plants, creating ant foraging ‘bridges’ between plants. In sum, our results highlight the importance of environmental heterogeneity as a determinant of ant–plant interaction diversity in tropical environments. |
---|---|
AbstractList | In closed-canopy tropical forest understory, light availability is a significant determinant of habitat diversity because canopy structure is highly variable in most tropical forests. Consequently, variation in canopy cover affects the composition and distribution of plant species via creating variable light environments. Nevertheless, little is known about how variation in canopy openness structures patterns of plant-animal interactions. Because of the great diversity and dominance of ants in tropical environments, we used ant-plant interactions as a focal network to evaluate how variation in canopy cover influences patterns of plant-insect interactions in the Brazilian Amazon rain forest. We observed that small increases in canopy openness are associated with increased diversity of ant-plant interactions in our study area, and this change is independent of plant or ant species richness. Additionally, we found smaller niche overlap for both ants and plants associated with greater canopy openness. We hypothesize that enhanced light availability increases the breadth of ant foraging sources because variation in light availability gives rise to plant resources of different quality and amounts. Moreover, greater light availability promotes vegetative growth in plants, creating ant foraging 'bridges' between plants. In sum, our results highlight the importance of environmental heterogeneity as a determinant of ant-plant interaction diversity in tropical environments. In closed‐canopy tropical forest understory, light availability is a significant determinant of habitat diversity because canopy structure is highly variable in most tropical forests. Consequently, variation in canopy cover affects the composition and distribution of plant species via creating variable light environments. Nevertheless, little is known about how variation in canopy openness structures patterns of plant–animal interactions. Because of the great diversity and dominance of ants in tropical environments, we used ant–plant interactions as a focal network to evaluate how variation in canopy cover influences patterns of plant–insect interactions in the Brazilian Amazon rain forest. We observed that small increases in canopy openness are associated with increased diversity of ant–plant interactions in our study area, and this change is independent of plant or ant species richness. Additionally, we found smaller niche overlap for both ants and plants associated with greater canopy openness. We hypothesize that enhanced light availability increases the breadth of ant foraging sources because variation in light availability gives rise to plant resources of different quality and amounts. Moreover, greater light availability promotes vegetative growth in plants, creating ant foraging ‘bridges’ between plants. In sum, our results highlight the importance of environmental heterogeneity as a determinant of ant–plant interaction diversity in tropical environments. Resumo No interior do sub–bosque de densas florestas tropicais, a disponibilidade de luz é um fator que determina a diversidade de habitats, principalmente porque a estrutura do dossel é altamente variável na maioria das florestas tropicais. Consequentemente, a variação na cobertura do dossel afeta a composição e distribuição das espécies de plantas, criando ambientes com diferentes níveis de luz. No entanto, pouco é o conhecimento de como a variação na abertura do dossel estrutura os padrões de interações planta–animal. Devido a grande diversidade e dominância de formigas nos ambientes tropicais, nós usamos como modelo de estudo as interações formiga–planta em uma floresta tropical na Amazônia brasileira. Nós observamos que pequenas mudanças na abertura do dossel está associada com o aumento da diversidade das interações formiga–planta na nossa área de estudo, e essa mudança é independente da riqueza de formigas ou de plantas. Adicionalmente, nós encontramos baixa sobreposição de nicho tanto para formigas quanto de plantas em ambientes com maior abertura do dossel. Nós hipotetizamos que a disponibilidade de luz aumenta a possibilidade de forrageamento das formigas, uma vez que, a variação na disponibilidade de luz fornece diferentes quantidades e qualidades de recurso disponível nas plantas. Além disso, a maior disponibilidade de luz promove o crescimento vegetativo das plantas, criando “pontes” entre as plantas para o forrageamento das formigas. Em resumo, nossos resultados destacam a importância da heterogeneidade ambiental como um fator que determina a diversidade das interações formiga–planta em ambientes tropicais. In closed‐canopy tropical forest understory, light availability is a significant determinant of habitat diversity because canopy structure is highly variable in most tropical forests. Consequently, variation in canopy cover affects the composition and distribution of plant species via creating variable light environments. Nevertheless, little is known about how variation in canopy openness structures patterns of plant–animal interactions. Because of the great diversity and dominance of ants in tropical environments, we used ant–plant interactions as a focal network to evaluate how variation in canopy cover influences patterns of plant–insect interactions in the Brazilian Amazon rain forest. We observed that small increases in canopy openness are associated with increased diversity of ant–plant interactions in our study area, and this change is independent of plant or ant species richness. Additionally, we found smaller niche overlap for both ants and plants associated with greater canopy openness. We hypothesize that enhanced light availability increases the breadth of ant foraging sources because variation in light availability gives rise to plant resources of different quality and amounts. Moreover, greater light availability promotes vegetative growth in plants, creating ant foraging ‘bridges’ between plants. In sum, our results highlight the importance of environmental heterogeneity as a determinant of ant–plant interaction diversity in tropical environments. No interior do sub–bosque de densas florestas tropicais, a disponibilidade de luz é um fator que determina a diversidade de habitats, principalmente porque a estrutura do dossel é altamente variável na maioria das florestas tropicais. Consequentemente, a variação na cobertura do dossel afeta a composição e distribuição das espécies de plantas, criando ambientes com diferentes níveis de luz. No entanto, pouco é o conhecimento de como a variação na abertura do dossel estrutura os padrões de interações planta–animal. Devido a grande diversidade e dominância de formigas nos ambientes tropicais, nós usamos como modelo de estudo as interações formiga–planta em uma floresta tropical na Amazônia brasileira. Nós observamos que pequenas mudanças na abertura do dossel está associada com o aumento da diversidade das interações formiga–planta na nossa área de estudo, e essa mudança é independente da riqueza de formigas ou de plantas. Adicionalmente, nós encontramos baixa sobreposição de nicho tanto para formigas quanto de plantas em ambientes com maior abertura do dossel. Nós hipotetizamos que a disponibilidade de luz aumenta a possibilidade de forrageamento das formigas, uma vez que, a variação na disponibilidade de luz fornece diferentes quantidades e qualidades de recurso disponível nas plantas. Além disso, a maior disponibilidade de luz promove o crescimento vegetativo das plantas, criando “pontes” entre as plantas para o forrageamento das formigas. Em resumo, nossos resultados destacam a importância da heterogeneidade ambiental como um fator que determina a diversidade das interações formiga–planta em ambientes tropicais. In closed-canopy tropical forest understory, light availability is a significant determinant of habitat diversity because canopy structure is highly variable in most tropical forests. Consequently, variation in canopy cover affects the composition and distribution of plant species via creating variable light environments. Nevertheless, little is known about how variation in canopy openness structures patterns of plant-animal interactions. Because of the great diversity and dominance of ants in tropical environments, we used ant-plant interactions as a focal network to evaluate how variation in canopy cover influences patterns of plant-insect interactions in the Brazilian Amazon rain forest. We observed that small increases in canopy openness are associated with increased diversity of ant-plant interactions in our study area, and this change is independent of plant or ant species richness. Additionally, we found smaller niche overlap for both ants and plants associated with greater canopy openness. We hypothesize that enhanced light availability increases the breadth of ant foraging sources because variation in light availability gives rise to plant resources of different quality and amounts. Moreover, greater light availability promotes vegetative growth in plants, creating ant foraging 'bridges' between plants. In sum, our results highlight the importance of environmental heterogeneity as a determinant of ant-plant interaction diversity in tropical environments. Resumo No interior do sub-bosque de densas florestas tropicais, a disponibilidade de luz é um fator que determina a diversidade de habitats, principalmente porque a estrutura do dossel é altamente variável na maioria das florestas tropicais. Consequentemente, a variação na cobertura do dossel afeta a composição e distribuição das espécies de plantas, criando ambientes com diferentes níveis de luz. No entanto, pouco é o conhecimento de como a variação na abertura do dossel estrutura os padrões de interações planta-animal. Devido a grande diversidade e dominância de formigas nos ambientes tropicais, nós usamos como modelo de estudo as interações formiga-planta em uma floresta tropical na Amazônia brasileira. Nós observamos que pequenas mudanças na abertura do dossel está associada com o aumento da diversidade das interações formiga-planta na nossa área de estudo, e essa mudança é independente da riqueza de formigas ou de plantas. Adicionalmente, nós encontramos baixa sobreposição de nicho tanto para formigas quanto de plantas em ambientes com maior abertura do dossel. Nós hipotetizamos que a disponibilidade de luz aumenta a possibilidade de forrageamento das formigas, uma vez que, a variação na disponibilidade de luz fornece diferentes quantidades e qualidades de recurso disponível nas plantas. Além disso, a maior disponibilidade de luz promove o crescimento vegetativo das plantas, criando "pontes" entre as plantas para o forrageamento das formigas. Em resumo, nossos resultados destacam a importância da heterogeneidade ambiental como um fator que determina a diversidade das interações formiga-planta em ambientes tropicais. |
Author | Dáttilo, Wesley Dyer, Lee |
Author_xml | – sequence: 1 fullname: Dáttilo, Wesley – sequence: 2 fullname: Dyer, Lee |
BookMark | eNqNks1u1DAUhS1UJKaFBQ-AsMQGFmntxD_xcjq0pVLVlv6oS8tJbqiHjB1sT8t0xTvwhjwJLgNdVALhjWWd79zr6-NNtOG8A4ReUrJN89pp0rhNS8rlEzShkrFCslJtoAkhRBSVIOIZ2oxxno-KEzZBzcw4P67wyQjOQYx4z10b10LE7-0NhGjTCvseT1368e376WBcwocuQTBtst5FbB1O14B3g7mzgzUOTxfmzjt8ZrKy7wPE9Bw97c0Q4cXvfQtd7u9dzD4URycHh7PpUdFyWsmia4mqWNNXhEkJQijW9aUyihDedZQzKaQsW8qhaQzrQLZSKaibDkRHO8Gh2kJv13XH4L8sc2O9sLGFIV8a_DJqKkQlyrom9X-gpVQ1k5xk9M0jdO6XweVBMkXrklDBeaberak2-BgD9HoMdmHCSlOi74PRORj9K5jM7jxiW5vM_XOmYOzwL8etHWD199J69-L0j-PV2jGPyYcHB2OKMalE1ou1bmOCrw-6CZ-1kJXk-ur4QJ-flcdMfLzSZeZfr_neeG0-BRv15XmeneePVDPGVfUTosjC3w |
CODEN | BTROAZ |
CitedBy_id | crossref_primary_10_1016_j_ecocom_2018_12_006 crossref_primary_10_1371_journal_pone_0193822 crossref_primary_10_1007_s42965_025_00371_2 crossref_primary_10_1016_j_foreco_2014_12_007 crossref_primary_10_1007_s00040_021_00844_2 crossref_primary_10_1111_btp_12294 crossref_primary_10_3958_059_043_0410 crossref_primary_10_7554_eLife_100202_3 crossref_primary_10_1016_j_fooweb_2024_e00359 crossref_primary_10_1111_1365_2656_12978 crossref_primary_10_1186_s40663_017_0118_7 crossref_primary_10_1111_aec_12839 crossref_primary_10_1007_s10980_018_0747_4 crossref_primary_10_1111_ens_12315 crossref_primary_10_1111_btp_12324 crossref_primary_10_1111_geb_12932 crossref_primary_10_1111_een_13227 crossref_primary_10_1016_j_actao_2018_11_001 crossref_primary_10_1016_j_foreco_2016_04_011 crossref_primary_10_1111_btp_13196 crossref_primary_10_1007_s10531_022_02428_3 crossref_primary_10_1111_icad_12605 crossref_primary_10_21829_abm131_2024_2241 crossref_primary_10_1371_journal_pone_0121275 crossref_primary_10_1007_s00040_020_00753_w crossref_primary_10_1111_1365_2656_12902 crossref_primary_10_7554_eLife_100202 crossref_primary_10_1016_j_jaridenv_2018_04_003 crossref_primary_10_1098_rspb_2016_2564 |
Cites_doi | 10.1111/j.1461-0248.2009.01437.x 10.1038/163688a0 10.1126/science.1082074 10.1126/science.230.4728.895 10.2307/2997557 10.1007/BF00378599 10.1046/j.1442-9993.2003.01290.x 10.1111/j.0030-1299.2005.12944.x 10.1073/pnas.1633576100 10.1073/pnas.1009007107 10.1017/S0266467410000209 10.1093/aob/mcq093 10.1016/j.biocon.2003.07.016 10.2307/1940675 10.1126/science.1214915 10.1007/s11829-013-9256-1 10.1046/j.1461-0248.2003.00554.x 10.1007/s004420050674 10.1139/x90-084 10.1007/s00442-006-0396-1 10.1007/s10457-012-9489-5 10.1007/s11829-011-9170-3 10.1086/282436 10.1890/03-0557 10.1126/science.1215442 10.1038/152264a0 10.1101/SQB.1957.022.01.039 10.1023/A:1018422807610 10.1111/j.1744-7429.2009.00624.x 10.1590/S1519-566X2009000200001 10.1146/annurev.ecolsys.34.011802.132410 10.1046/j.0305-0270.2003.00994.x 10.1111/j.1600-0587.2010.06538.x 10.1890/0012-9658(1999)080[1908:SHOLAW]2.0.CO;2 10.1086/284913 10.1111/j.1365-2656.2010.01779.x 10.2307/1932254 10.1111/j.1365-2656.2006.01056.x 10.1590/S0044-59672010000400010 10.1890/0012-9658(2002)083[0689:TAFOAT]2.0.CO;2 10.1590/S1516-89132006000300016 10.1603/0046-225X-34.2.317 10.1007/s004420000449 10.1111/een.12029 10.1890/08-1634.1 10.1007/s004420051031 10.1016/j.biocon.2009.12.004 10.1111/j.1365-2745.2010.01648.x 10.1111/j.1744-7429.1998.tb00050.x 10.1023/A:1009771519028 10.1038/35012228 10.1111/j.1365-2427.2009.02307.x 10.1890/1051-0761(2001)011[1123:ABISLM]2.0.CO;2 10.1590/S0044-59672012000400016 10.1002/j.1537-2197.1929.tb09488.x 10.1046/j.1365-2656.2002.00651.x 10.2307/2260066 10.1111/j.0906-7590.2004.03675.x 10.1093/aob/mci052 10.1007/978-1-4615-6003-6_28 10.1890/1051-0761(1999)009[0714:IIEACS]2.0.CO;2 10.1016/S1146-609X(03)00086-9 10.2307/5982 10.1603/0046-225X-30.5.842 10.1016/j.flora.2007.03.001 10.1890/03-0233 10.1146/annurev.ecolsys.39.110707.173430 10.1080/0028825X.2003.9512846 10.1080/00218839.1980.11100017 10.1111/ecog.00814 10.1890/04-1916 10.1163/187498310X487785 10.1146/annurev.es.18.110187.002243 10.1890/07-2121.1 10.1111/j.1442-9993.2007.01811.x 10.1007/s00442-012-2310-3 10.1890/0012-9658(2002)083[2394:QDOFWM]2.0.CO;2 10.1046/j.1461-0248.2001.00230.x 10.1038/nature05429 10.1111/j.2007.0906-7590.05083.x 10.1111/j.1365-2656.2007.01264.x |
ContentType | Journal Article |
Copyright | Copyright © 2014 Association for Tropical Biology and Conservation Inc. 2014 The Association for Tropical Biology and Conservation |
Copyright_xml | – notice: Copyright © 2014 Association for Tropical Biology and Conservation Inc. – notice: 2014 The Association for Tropical Biology and Conservation |
DBID | FBQ BSCLL AAYXX CITATION 7QG 7QR 7SN 7SS 7ST 8FD C1K F1W FR3 H95 L.G P64 SOI 7U6 7S9 L.6 |
DOI | 10.1111/btp.12157 |
DatabaseName | AGRIS Istex CrossRef Animal Behavior Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Environment Abstracts Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Animal Behavior Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Chemoreception Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Entomology Abstracts CrossRef Entomology Abstracts AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1744-7429 |
EndPage | 719 |
ExternalDocumentID | 3475719921 10_1111_btp_12157 BTP12157 44944796 ark_67375_WNG_SR2N46QW_2 US201500084459 |
Genre | article |
GeographicLocations | Amazonia South America, Amazon R |
GeographicLocations_xml | – name: Amazonia – name: South America, Amazon R |
GrantInformation_xml | – fundername: NSF funderid: DEB 1020509; DEB 1145609 – fundername: Office National des Forêts Brazil – fundername: Brazilian Research Program in Biodiversity (PPBio Project) funderid: CNPq n◦ 558225/2009–8; n◦ 237339/2012–9 |
GroupedDBID | -DZ -JH -~X .3N .GA .Y3 05W 0R~ 10A 1OC 23N 2AX 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AACFU AAESR AAEVG AAHHS AAHKG AAISJ AAJUZ AAKGQ AANLZ AAONW AAPSS AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABCVL ABEML ABHUG ABJNI ABPLY ABPPZ ABPVW ABTAH ABTLG ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACSTJ ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADHSS ADIZJ ADKYN ADMGS ADOYD ADOZA ADULT ADXAS ADZLD ADZMN ADZOD AEDJY AEEZP AEGXH AEIGN AEIMD AENEX AEPYG AEQDE AESBF AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFIJ AFFPM AFGKR AFNWH AFPWT AFRAH AFVGU AFZJQ AGJLS AGUYK AI. AIAGR AIURR AIWBW AJBDE AJXKR AKPMI ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI CWIXF D-E D-F DC7 DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 DWIUU EBD EBS ECGQY EDH EJD F00 F01 F04 F5P FBQ FEDTE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HQ2 HTVGU HVGLF HZI HZ~ IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- P2P P2W P2X P4D PQ0 Q.N Q11 Q5J QB0 R.K RBO ROL RX1 SA0 SUPJJ TN5 UB1 V8K VH1 VQA W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ZCA ZXP ZY4 ZZTAW ~IA ~KM ~WT AAHBH ABXSQ ADACV AHBTC AHXOZ AILXY AITYG AQVQM BSCLL H13 HGLYW IPSME OIG AAHQN AAMMB AAMNL AANHP AAYCA ABSQW ACHIC ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX ADXHL AGHNM CITATION 7QG 7QR 7SN 7SS 7ST 8FD C1K F1W FR3 H95 L.G P64 SOI 7U6 7S9 L.6 |
ID | FETCH-LOGICAL-c5137-dc0934bf30477e6694df29a9005dd15476772c15ebba4de7c799e8bde6d1d65e3 |
IEDL.DBID | DR2 |
ISSN | 0006-3606 |
IngestDate | Fri Jul 11 18:37:54 EDT 2025 Fri Jul 11 06:50:02 EDT 2025 Sun Jul 13 04:22:27 EDT 2025 Tue Jul 01 02:22:48 EDT 2025 Thu Apr 24 23:06:36 EDT 2025 Wed Jan 22 16:42:20 EST 2025 Thu Jul 03 22:44:53 EDT 2025 Wed Oct 30 09:53:19 EDT 2024 Wed Dec 27 18:36:11 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5137-dc0934bf30477e6694df29a9005dd15476772c15ebba4de7c799e8bde6d1d65e3 |
Notes | http://dx.doi.org/10.1111/btp.12157 Figure S1. Map showing the spatial arrangement of the 12 sampling plots.Table S1. All ant-plant interactions recorded in the 12 sampling plots. NSF - No. DEB 1020509; No. DEB 1145609 ArticleID:BTP12157 istex:2449C8CF97730B01B442A53DEC9A6134512EF999 Office National des Forêts Brazil Brazilian Research Program in Biodiversity (PPBio Project) - No. CNPq n◦ 558225/2009-8; No. n◦ 237339/2012-9 ark:/67375/WNG-SR2N46QW-2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1618201655 |
PQPubID | 976347 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1663628808 proquest_miscellaneous_1627984750 proquest_journals_1618201655 crossref_primary_10_1111_btp_12157 crossref_citationtrail_10_1111_btp_12157 wiley_primary_10_1111_btp_12157_BTP12157 jstor_primary_44944796 istex_primary_ark_67375_WNG_SR2N46QW_2 fao_agris_US201500084459 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2014 |
PublicationDateYYYYMMDD | 2014-11-01 |
PublicationDate_xml | – month: 11 year: 2014 text: November 2014 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Biotropica |
PublicationTitleAlternate | Biotropica |
PublicationYear | 2014 |
Publisher | Association for Tropical Biology Blackwell Publishing Ltd Wiley Periodicals Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: Association for Tropical Biology – name: Blackwell Publishing Ltd – name: Wiley Periodicals Inc – name: Wiley Subscription Services, Inc |
References | Shirley, H. L. 1929. The influence of light intensity and light quality upon the growth of plants. Am. J. Bot. 16: 354-390. Menke, S. B., and D. A. Holway. 2006. Abiotic factors control invasion by Argentine ants at the community scale. J. Anim. Ecol. 75: 368-376. Pocock, M. J., D. M. Evans, and J. Memmott. 2012. The robustness and restoration of a network of ecological networks. Science 335: 973-977. Zytynska, S. E., M. S. Khudr, E. Harris, and R. F. Preziosi. 2012. Genetic effects of tank-forming bromeliads on the associated invertebrate community in a tropical forest ecosystem. Oecologia 170: 467-475. Dyer, L. A., D. K. Letourneau, G. Vega-Chavarria, and D. Salazar-Amoretti. 2010b. Herbivores on a dominant understory shrub increase local plant diversity in rain forest communities. Ecology 91: 3707-3718. Wright, S. J. 2002. Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia 130: 1-14. Gaston, K. J. 2000. Global patterns in biodiversity. Nature 405: 220-227. Longino, J. T., J. Coddington, and R. K. Colwell. 2002. The ant fauna of a tropical rain forest: Estimating species richness in three different ways. Ecology 83: 689-702. Kennard, M. J., B. J. Pusey, J. D. Olden, S. J. Mackay, J. L. Stein, and N. Marsh. 2010. Classification of natural flow regimes in Australia to support environmental flow management. Freshw. Biol. 55: 171-193. Tews, J., U. Brose, V. Grimm, K. Tielborger, M. C. Wichmann, M. Schwager, and F. Jeltsch. 2004. Animal species diversity driven by habitat heterogeneity-diversity: The importance of keystone structures. J. Biogeogr. 31: 79-92. Albrecht, M., P. Duelli, B. Schmid, and C. B. Müller. 2007. Interaction diversity within quantified insect food webs in restored and adjacent intensively managed meadows. J. Anim. Ecol. 76: 1015-1025. Stevens, G. C. 1989. The latitudinal gradient in geographical range: How so many species coexist in the tropics. Am. Nat. 133: 240-256. Cerdá, X., J. Retana, and A. Manzaneda. 1998. The role of competition by dominants and temperature in the foraging of subordinate species in Mediterranean ant communities. Oecologia 117: 404-412. Bronstein, J. L. 1998. The contribution of ant-plant protection studies to our understanding of mutualism. Biotropica 30: 150-161. Schemske, D. W., G. G. Mittelbach, H. V. Cornell, J. M. Sobel, and K. Roy. 2009. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40: 245-269. Schoereder, J. H., T. G. Sobrinho, M. S. Madureira, C. R. Ribas, and P. S. Oliveira. 2010. The arboreal ant community visiting extrafloral nectaries in the Neotropical cerrado savanna. Terr. Arthropod Rev. 3: 3-27. Budke, J. C., J. A. Jarenkow, and A. T. Oliveira-Filho. 2008. Tree community features of two stands of riverine forest under different flooding regimes in Southern Brazil. Flora 203: 162-174. Williams, C. B. 1943. Area and the number of species. Nature 152: 264-267. Bestelmeyer, B. T., and J. A. Wien. 2001. Ant biodiversity in semiarid landscape mosaics: The consequences of grazing vs. natural heterogeneity. Ecol. Appl. 11: 1123-1140. Tylianakis, J. M., T. Tscharntke, and O. T. Lewis. 2007. Habitat modification alters the structure of tropical host-parasitoid food webs. Nature 445: 202-205. Camargo, F. F., R. B. Costa, M. D. V. Resende, R. A. R. Roa, N. B. Rodrigues, L. V. Santos, and A. C. A. Freitas. 2010. Variabilidade genética para caracteres morfométricos de matrizes de castanha-do-brasil da Amazônia Mato-grossense. Acta Amazon. 40: 705-710. Blüthgen, N., J. Fründ, D. P. Vázquez, and F. Menze. 2008. What do interaction network metrics tell us about specialization and biological traits? Ecology 89: 3387-3399. Jones, H. G. 1992. Plants and microclimate: A quantitative approach to environmental plant physiology 2. Cambridge University Press, Cambridge, U.K. Ribas, C. R., Schoereder J. H., M. Pic, and S. M. Soare. 2003. Tree heterogeneity, resource availability, and larger scale processes regulating arboreal ant species richness. Austral Ecol. 28: 305-314. Andersen, A. N. 1990. The use of ant communities to evaluate change in Australian terrestrial ecosystems: A review and a recipe. Proc. Entomol. Soc. Aust. 16: 347-357. Coley, P. D., J. P. Bryant, and F. S. Chapin. 1985. Resource availability and plant anti-herbivore defense. Science 230: 895-899. Sahli, H. F., and J. K. Conner. 2006. Characterizing ecological generalization in plant-pollination systems. Oecologia 148: 365-372. Heil, M., and D. McKey. 2003. Protective ant-plant interactions as model systems in ecological and evolutionary research. Annu. Rev. Ecol. Evol. Syst. 34: 425-453. Horn, H. S. 1966. Measurement of "overlap" in comparative ecological studies. Am. Nat. 100: 419-424. Maestre, F. T., J. L. Quero, N. J. Gotelli, A. Escudero, V. Ochoa, M. Delgado-Baquerizo, M. García-Gómez, M. A. Bowker, S. Soliveres, C. Escolar, P. García-Palacios, M. Berdugo, E. Valencia, B. Gozalo, A. Gallardo, L. Aguilera, T. Arredondo, J. Blones, B. Boeken, D. Bran, A. A. Conceição, O. Cabrera, M. Chaieb, M. Derak, D. J. Eldridge, C. I. Espinosa, A. Florentino, J. Gaitán, M. G. Gatica, W. Ghiloufi, S. Gómez-González, J. R. Gutiérrez, R. M. Hernández, X. Huang, E. Huber-Sannwald, M. Jankju, M. Miriti, J. Monerris, R. L. Mau, E. Morici, K. Naseri, A. Ospina, V. Polo, A. Prina, E. Pucheta, D. A. Ramírez-Collantes, R. Romao, M. Tighe, C. Torres-Díaz, J. Val, J. P. Veiga, D. Wang, and E. Zaady. 2012. Plant species richness and ecosystem multifunctionality in global drylands. Science 335: 214-218. SAS Institute Inc. 2011. SAS® 9.3 Guide to software updates. SAS Institute Inc., Cary, NC. Gavin, D. G., and D. R. Peart. 1997. Spatial structure and regeneration of Tetramerista glabra in peat swamp rain forest in Indonesian Borneo. Plant Ecol. 131: 223-231. Kaiser-Bunbury, C. N., S. Muff, J. Memmott, C. B. Muller, and A. Caflisch. 2010. The robustness of pollination networks to the loss of species and interactions: A quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13: 442-452. Yamawo, A., and Y. Hada. 2010. Effects of light on direct and indirect defences against herbivores of young plants of Mallotus japonicus demonstrate a trade-off between two indirect defence traits. Ann. Bot. 106: 143-148. Brown, K. S. 1997. Diversity, disturbance, and sustainable use of Neotropical forests: Insects as indicators for conservation monitoring. J. Insect Conserv. 1: 25-42. Bersier, L. F., C. Banasek-Richte, and M. F. Cattin. 2002. Quantitative descriptors of food-web matrices. Ecology 83: 2394-2407. Rico-Gray, V., C. Díaz-Castelazo, A. Ramírez-Hernández, P. R. Guimarães, and J. N. Holland. 2012. Abiotic factors shape temporal variation in the structure of an ant-plant network. Arthropod Plant Interact. 6: 289-295. Cramer, M. J. M., and M. R. Willig. 2005. Habitat heterogeneity, species diversity and null models. Oikos 108: 209-218. Ribeiro, S. P., and Y. Basset. 2007. Gall-forming and free-feeding herbivory along vertical gradients in a lowland tropical rainforest: The importance of leaf sclerophylly. Ecography 30: 663-672. Simpson, E. H. 1949. Measurement of diversity. Nature 163: 688. Mezger, D., and M. Pfeiffer. 2011. Partitioning the impact of abiotic factors and spatial patterns on species richness and community structure of ground ant assemblages in four Bornean rainforests. Ecography 34: 39-48. Gotelli, N., and R. K. Colwell. 2001. Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4: 379-391. Burkle, L. A., and R. E. Irwin. 2010. Beyond biomass: Measuring the effects of community-level nitrogen enrichment on floral traits, pollinator visitation and plant reproduction. J. Ecol. 98: 705-717. Mezger, D., and M. Pfeiffer. 2010. Is nest temperature an important factor for niche partitioning by leaf-litter ants (Hymenoptera: Formicidae) in Bornean rain forests? J. Trop. Ecol. 2: 445-455. Vicente, R. E., W. Dáttilo, and T. J. Izzo. 2012. New record of a very specialized interaction: Myrcidris epicharis Ward 1990 (Pseudomyrmecinae) and its myrmecophyte host Myrcia madida McVaugh (Myrtaceae) in Brazilian Meridional Amazon. Acta Amazon. 42: 567-570. Bascompte, J., P. Jordano, C. J. Melián, and J. M. Olesen. 2003. The nested assembly of plant-animal mutualistic networks. Proc. Natl. Acad. Sci. U.S.A. 100: 9383-9387. Chazdon, R. L., and N. Fetcher. 1984. Photosynthetic light environments in a lowland tropical rain forest in Costa Rica. J. Ecol. 72: 553-564. Reyes-Lopes, J., N. Ruiz, and J. Fernándes-Haeger. 2003. Community structure of ground-ants: The role of single trees in a Mediterranean pastureland. Acta Oecol. 24: 195-202. Szabo, T. I. 1980. Effect of weather factors on honeybee a flight activity and colony weight gain. J. Apic. Res. 19: 164-171. MacArthur, R. H., and J. MacArthur. 1961. On bird species diversity. Ecology 42: 594-598. Nicotra, A. B., R. L. Chazdon, and S. V. B. Iriarte. 1999. Spatial heterogeneity of light and woody seedling regeneration in tropical wet forests. Ecology 80: 1908-1926. Denslow, J. S. 1987. Tropical rainforest gaps and tree species diversity. Annu. Rev. Ecol. Syst. 18: 431-451. Canham, C., J. S. Denslow, W. J. Platt, J. R. Runkle, T. A. Spies, and P. S. White. 1990. Light regimes beneath closed canopies and tree- fall gaps in temperate and tropical forests. Can. J. For. Res. 20: 620-631. Ceccon, E., P. Huante, and R. Rincón. 2006. Abiotic factors influencing tropical dry forests regeneration. Braz. Arch. Biol. Technol. 49: 305-312. Dáttilo, W., V. Rico-Gray, D. J. Rodrigues, and T. J. Izzo. 2013a. Soil and vegetation features determine the nested pattern of ant-plant networks in a tropical rainforest. Ecol. Entomol. 38: 374-380. Oberbauer, S. F., D. B. Clark, D. A. Clark, and M. Quesada. 1988. Crown light environments of saplings of two species of rain forest emergent trees. Oecologia 75: 207-212. Powell, S., A. N. Costa, C. T. Lopes, and H. L. Vasoncelos. 2011. Canopy connectivit 2010; 55 2010; 98 2006; 75 2009; 40 2010; 13 2010; 107 1990; 16 2004; 27 2010; 106 2004; 7 2010; 143 1997; 1 2008; 33 1998; 117 2011; 15 1988; 75 2007; 30 2007; 76 1999; 80 1993; 3 1950; 38 2004; 31 2010a; 42 2000 2000; 125 2002; 83 2004; 36 2000; 405 2012; 170 1949; 163 2005; 108 1943; 152 1961; 42 2000; 123 2001; 11 2010; 3 2012; 335 2010; 2 2003; 41 2005; 34 2007; 445 2004; 85 1997; 66 2012 2011 2011; 80 2013a; 38 2002; 130 1997; 131 1989; 133 1997 2010b; 91 2005; 86 2005 1994 2008; 203 2011; 34 1992 2010; 40 1987; 18 1999; 9 2003; 34 1984; 72 1957; 22 1990; 20 1966; 100 1980; 19 2001; 4 2006; 49 2013b; 7 2005; 95 2003; 24 2008; 89 2003; 28 1929; 16 1998; 70 2002; 71 1998; 30 2012; 6 2006; 148 2003; 300 2004; 118 2003; 100 2009; 38 1985; 230 2012; 42 2001; 30 2012; 85 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_91_1 Jones H. G. (e_1_2_6_44_1) 1992 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 Pianka E. R. (e_1_2_6_63_1) 1994 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 Dobzhansky T. (e_1_2_6_32_1) 1950; 38 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_24_1 e_1_2_6_49_1 Andersen A. N. (e_1_2_6_3_1) 1990; 16 e_1_2_6_22_1 R Core Team (e_1_2_6_66_1) 2012 SAS Institute Inc (e_1_2_6_75_1) 2011 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_94_1 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_92_1 Tundisi J. G. (e_1_2_6_85_1) 1998; 70 e_1_2_6_90_1 Bestelmeyer B. T. (e_1_2_6_7_1) 2000 Denslow J. S. (e_1_2_6_31_1) 1994 e_1_2_6_14_1 e_1_2_6_35_1 Montgomery R. A. (e_1_2_6_58_1) 2004; 36 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_79_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_86_1 e_1_2_6_21_1 Gotelli N. J. (e_1_2_6_40_1) 2011; 15 e_1_2_6_80_1 Andersen A. N. (e_1_2_6_4_1) 2000 e_1_2_6_61_1 e_1_2_6_82_1 e_1_2_6_8_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_67_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – reference: Chazdon, R. L., and N. Fetcher. 1984. Photosynthetic light environments in a lowland tropical rain forest in Costa Rica. J. Ecol. 72: 553-564. – reference: Cerdá, X., J. Retana, and A. Manzaneda. 1998. The role of competition by dominants and temperature in the foraging of subordinate species in Mediterranean ant communities. Oecologia 117: 404-412. – reference: Dyer, L. A., D. K. Letourneau, G. Vega-Chavarria, and D. Salazar-Amoretti. 2010b. Herbivores on a dominant understory shrub increase local plant diversity in rain forest communities. Ecology 91: 3707-3718. – reference: Fisher, B. L. 1999. Improving inventory efficiency: A case study of leaf-litter ant diversity in Madagascar. Ecol. Appl. 9: 714-731. – reference: Gotelli, N., and R. K. Colwell. 2001. Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4: 379-391. – reference: Jones, H. G. 1992. Plants and microclimate: A quantitative approach to environmental plant physiology 2. Cambridge University Press, Cambridge, U.K. – reference: Tundisi, J. G., T. Matsumura-Tundisi, O. Rocha, E. L. Espíndola, A. C. Rietzler, M. S. Ibanez, P. Costa-Neto, M. C. Calijuri, and M. Pompeu. 1998. Aquatic biodiversity as a consequence of diversity of habitats and functional mechanisms. An. Acad. Bras. Cienc. 70: 767-773. – reference: Wright, S. J. 2002. Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia 130: 1-14. – reference: Bestelmeyer, B. T., and J. A. Wien. 2001. Ant biodiversity in semiarid landscape mosaics: The consequences of grazing vs. natural heterogeneity. Ecol. Appl. 11: 1123-1140. – reference: Kersch, M. F., and C. R. Fonseca. 2005. Abiotic factors and the conditional outcome of an ant-plant mutualism. Ecology 86: 2117-2126. – reference: Williams, C. B. 1943. Area and the number of species. Nature 152: 264-267. – reference: Camargo, F. F., R. B. Costa, M. D. V. Resende, R. A. R. Roa, N. B. Rodrigues, L. V. Santos, and A. C. A. Freitas. 2010. Variabilidade genética para caracteres morfométricos de matrizes de castanha-do-brasil da Amazônia Mato-grossense. Acta Amazon. 40: 705-710. – reference: Colwell, R. K., C. X. Mao, and J. Chang 2004. Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85: 2717-2727. – reference: Powell, S., A. N. Costa, C. T. Lopes, and H. L. Vasoncelos. 2011. Canopy connectivity and the availability of diverse nesting resources affect species coexistence in arboreal communities. J. Anim. Ecol. 80: 352-360. – reference: Dyer, L. A., C. D. Dodson, D. K. Letourneau, M. A. Tobler, A. Hsu, and J. O. Stireman III. 2004. Ecological causes and consequences of variation in defensive chemistry of a neotropical shrub. Ecology 85: 2795-2803. – reference: Schemske, D. W., G. G. Mittelbach, H. V. Cornell, J. M. Sobel, and K. Roy. 2009. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40: 245-269. – reference: Rico-Gray, V., C. Díaz-Castelazo, A. Ramírez-Hernández, P. R. Guimarães, and J. N. Holland. 2012. Abiotic factors shape temporal variation in the structure of an ant-plant network. Arthropod Plant Interact. 6: 289-295. – reference: SAS Institute Inc. 2011. SAS® 9.3 Guide to software updates. SAS Institute Inc., Cary, NC. – reference: Dáttilo, W., T. J. Izzo, H. L. Vasconcelos, and V. Rico-Gray. 2013b. Strength of the modular pattern in Amazonian symbiotic ant-plant networks. Arthropod Plant Interact. 7: 455-461. – reference: Tylianakis, J. M., T. Tscharntke, and O. T. Lewis. 2007. Habitat modification alters the structure of tropical host-parasitoid food webs. Nature 445: 202-205. – reference: Mezger, D., and M. Pfeiffer. 2011. Partitioning the impact of abiotic factors and spatial patterns on species richness and community structure of ground ant assemblages in four Bornean rainforests. Ecography 34: 39-48. – reference: Ceccon, E., P. Huante, and R. Rincón. 2006. Abiotic factors influencing tropical dry forests regeneration. Braz. Arch. Biol. Technol. 49: 305-312. – reference: Lassau, S. A., and D. F. Hochuli. 2004. Effects of habitat complexity on ant assemblages. Ecography 27: 157-164. – reference: Sutherst, R. W., and G. Maywald. 2005. A climate model of the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae): Implications for invasion of new regions, particularly Oceania. Environ. Entomol. 34: 317-335. – reference: Pianka, E. R. 1994. Evolutionary ecology, p. 486. Harper Collins College Publishers, New York, NY. – reference: Kellman, M., and R. Tackaberry. 1993. Disturbance and tree species coexistence in tropical riparian forest fragments. Glob. Ecol. Biogeogr. Lett. 3: 1-9. – reference: Albrecht, M., P. Duelli, B. Schmid, and C. B. Müller. 2007. Interaction diversity within quantified insect food webs in restored and adjacent intensively managed meadows. J. Anim. Ecol. 76: 1015-1025. – reference: Reyes-Lopes, J., N. Ruiz, and J. Fernándes-Haeger. 2003. Community structure of ground-ants: The role of single trees in a Mediterranean pastureland. Acta Oecol. 24: 195-202. – reference: Dyer, L. A., T. R. Walla, H. F. Greeney, J. O. Stireman, III, and R. F. Hazen. 2010a. Diversity of Interactions: A metric for studies of biodiversity. Biotropica 42: 281-289. – reference: Gotelli, N. J., A. M. Ellison, R. R. Dunn, and N. J. Sanders. 2011. Counting ants (Hymenoptera: Formicidae): Biodiversity sampling and statistical analysis for myrmecologists. Myrmecol. News 15: 13-19. – reference: Gaston, K. J. 2000. Global patterns in biodiversity. Nature 405: 220-227. – reference: Pocock, M. J., D. M. Evans, and J. Memmott. 2012. The robustness and restoration of a network of ecological networks. Science 335: 973-977. – reference: Mezger, D., and M. Pfeiffer. 2010. Is nest temperature an important factor for niche partitioning by leaf-litter ants (Hymenoptera: Formicidae) in Bornean rain forests? J. Trop. Ecol. 2: 445-455. – reference: Vicente, R. E., W. Dáttilo, and T. J. Izzo. 2012. New record of a very specialized interaction: Myrcidris epicharis Ward 1990 (Pseudomyrmecinae) and its myrmecophyte host Myrcia madida McVaugh (Myrtaceae) in Brazilian Meridional Amazon. Acta Amazon. 42: 567-570. – reference: Bersier, L. F., C. Banasek-Richte, and M. F. Cattin. 2002. Quantitative descriptors of food-web matrices. Ecology 83: 2394-2407. – reference: R Core Team. 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org/ (accessed 15 July 2012). – reference: Bascompte, J., P. Jordano, C. J. Melián, and J. M. Olesen. 2003. The nested assembly of plant-animal mutualistic networks. Proc. Natl. Acad. Sci. U.S.A. 100: 9383-9387. – reference: Szabo, T. I. 1980. Effect of weather factors on honeybee a flight activity and colony weight gain. J. Apic. Res. 19: 164-171. – reference: Montgomery, R. A. 2004. Effects of understory vegetation on patterns of light attenuation near the forest floor. Biotropica 36: 33-39. – reference: Nicotra, A. B., R. L. Chazdon, and S. V. B. Iriarte. 1999. Spatial heterogeneity of light and woody seedling regeneration in tropical wet forests. Ecology 80: 1908-1926. – reference: Radhika, V., C. Kost, A. Mithöfer, and W. Boland. 2010. Regulation of extrafloral nectar secretion by jasmonates in lima bean is light dependent. Proc. Natl. Acad. Sci. U.S.A. 107: 17228-17233. – reference: Oberbauer, S. F., D. B. Clark, D. A. Clark, and M. Quesada. 1988. Crown light environments of saplings of two species of rain forest emergent trees. Oecologia 75: 207-212. – reference: Dáttilo, W., V. Rico-Gray, D. J. Rodrigues, and T. J. Izzo. 2013a. Soil and vegetation features determine the nested pattern of ant-plant networks in a tropical rainforest. Ecol. Entomol. 38: 374-380. – reference: Hutchinson, G. E. 1957. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22: 415-427. – reference: Longino, J. T., J. Coddington, and R. K. Colwell. 2002. The ant fauna of a tropical rain forest: Estimating species richness in three different ways. Ecology 83: 689-702. – reference: Montgomery, B. R., D. Kelly, A. W. Robertson, and J. Ladley. 2003. Pollinator behaviour, not increased resources, boosts seed set of forest edges in a New Zealand Loranthaceous mistletoe. N.Z. J. Bot. 41: 277-286. – reference: Budke, J. C., J. A. Jarenkow, and A. T. Oliveira-Filho. 2008. Tree community features of two stands of riverine forest under different flooding regimes in Southern Brazil. Flora 203: 162-174. – reference: Wang, C., J. S. Strazanac, and L. Butler. 2001. Association between ants (Hymenoptera: Formicidae) and habitat characteristics in oak-dominated mixed forests. Environ. Entomol. 30: 842-848. – reference: Tews, J., U. Brose, V. Grimm, K. Tielborger, M. C. Wichmann, M. Schwager, and F. Jeltsch. 2004. Animal species diversity driven by habitat heterogeneity-diversity: The importance of keystone structures. J. Biogeogr. 31: 79-92. – reference: Andersen, A. N. 1990. The use of ant communities to evaluate change in Australian terrestrial ecosystems: A review and a recipe. Proc. Entomol. Soc. Aust. 16: 347-357. – reference: Ribeiro, S. P., and Y. Basset. 2007. Gall-forming and free-feeding herbivory along vertical gradients in a lowland tropical rainforest: The importance of leaf sclerophylly. Ecography 30: 663-672. – reference: Menke, S. B., and D. A. Holway. 2006. Abiotic factors control invasion by Argentine ants at the community scale. J. Anim. Ecol. 75: 368-376. – reference: Zytynska, S. E., M. S. Khudr, E. Harris, and R. F. Preziosi. 2012. Genetic effects of tank-forming bromeliads on the associated invertebrate community in a tropical forest ecosystem. Oecologia 170: 467-475. – reference: Del-Claro, K., and H. M. Torezan-Silingardi. 2009. Insect-plant interactions: New pathways to a better comprehension of ecological communities in Neotropical savannas. Neotrop. Entomol. 38: 159-164. – reference: Dáttilo, W., R. L. Martins, V. Uhde, J. C. Noronha, F. P. Florêncio, and T. J. Izzo. 2012. Floral resource partitioning by ants and bees in a jambolan Syzygium jambolanum (Myrtaceae) agroforestry system in Brazilian Meridional Amazon. Agroforest. Syst. 85: 105-111. – reference: Lewis, O. J., J. Memmott, J. Lasalle, C. H. C. Lyal, C. Whitefoord, and H. C. J. Godfray. 2002. Structure of a diverse tropical-forest insect-parasitoid community. J. Anim. Ecol. 71: 855-873. – reference: Myklestad, A., and M. Saetersdal. 2004. The importance of traditional meadow management techniques for conservation of vascular plant species richness in Norway. Biol. Conserv. 118: 133-139. – reference: MacArthur, R. H., and J. MacArthur. 1961. On bird species diversity. Ecology 42: 594-598. – reference: Retana, J., and X. Cerdá. 2000. Patterns of diversity and composition of Mediterranean ground ant communities tracking spatial and temporal variability in the thermal environment. Oecologia 123: 436-444. – reference: Ricklefs, R. E. 2004. A comprehensive framework for global patterns in biodiversity. Ecol. Lett. 7: 1-15. – reference: Brown, K. S. 1997. Diversity, disturbance, and sustainable use of Neotropical forests: Insects as indicators for conservation monitoring. J. Insect Conserv. 1: 25-42. – reference: Ribas, C. R., Schoereder J. H., M. Pic, and S. M. Soare. 2003. Tree heterogeneity, resource availability, and larger scale processes regulating arboreal ant species richness. Austral Ecol. 28: 305-314. – reference: Kennard, M. J., B. J. Pusey, J. D. Olden, S. J. Mackay, J. L. Stein, and N. Marsh. 2010. Classification of natural flow regimes in Australia to support environmental flow management. Freshw. Biol. 55: 171-193. – reference: Stevens, G. C. 1989. The latitudinal gradient in geographical range: How so many species coexist in the tropics. Am. Nat. 133: 240-256. – reference: Canham, C., J. S. Denslow, W. J. Platt, J. R. Runkle, T. A. Spies, and P. S. White. 1990. Light regimes beneath closed canopies and tree- fall gaps in temperate and tropical forests. Can. J. For. Res. 20: 620-631. – reference: Cerdá, X., J. Retana, and S. Cros. 1997. Thermal disruption of transitive hierarchies in Mediterranean ant communities. J. Anim. Ecol. 66: 363-374. – reference: Burkle, L. A., and R. E. Irwin. 2010. Beyond biomass: Measuring the effects of community-level nitrogen enrichment on floral traits, pollinator visitation and plant reproduction. J. Ecol. 98: 705-717. – reference: Gavin, D. G., and D. R. Peart. 1997. Spatial structure and regeneration of Tetramerista glabra in peat swamp rain forest in Indonesian Borneo. Plant Ecol. 131: 223-231. – reference: Kaiser-Bunbury, C. N., S. Muff, J. Memmott, C. B. Muller, and A. Caflisch. 2010. The robustness of pollination networks to the loss of species and interactions: A quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13: 442-452. – reference: Cramer, M. J. M., and M. R. Willig. 2005. Habitat heterogeneity, species diversity and null models. Oikos 108: 209-218. – reference: Maestre, F. T., J. L. Quero, N. J. Gotelli, A. Escudero, V. Ochoa, M. Delgado-Baquerizo, M. García-Gómez, M. A. Bowker, S. Soliveres, C. Escolar, P. García-Palacios, M. Berdugo, E. Valencia, B. Gozalo, A. Gallardo, L. Aguilera, T. Arredondo, J. Blones, B. Boeken, D. Bran, A. A. Conceição, O. Cabrera, M. Chaieb, M. Derak, D. J. Eldridge, C. I. Espinosa, A. Florentino, J. Gaitán, M. G. Gatica, W. Ghiloufi, S. Gómez-González, J. R. Gutiérrez, R. M. Hernández, X. Huang, E. Huber-Sannwald, M. Jankju, M. Miriti, J. Monerris, R. L. Mau, E. Morici, K. Naseri, A. Ospina, V. Polo, A. Prina, E. Pucheta, D. A. Ramírez-Collantes, R. Romao, M. Tighe, C. Torres-Díaz, J. Val, J. P. Veiga, D. Wang, and E. Zaady. 2012. Plant species richness and ecosystem multifunctionality in global drylands. Science 335: 214-218. – reference: Yamawo, A., and Y. Hada. 2010. Effects of light on direct and indirect defences against herbivores of young plants of Mallotus japonicus demonstrate a trade-off between two indirect defence traits. Ann. Bot. 106: 143-148. – reference: Dobzhansky, T. 1950. Evolution in the tropics. Am. Sci. 38: 209-211. – reference: Schoereder, J. H., T. G. Sobrinho, M. S. Madureira, C. R. Ribas, and P. S. Oliveira. 2010. The arboreal ant community visiting extrafloral nectaries in the Neotropical cerrado savanna. Terr. Arthropod Rev. 3: 3-27. – reference: Shirley, H. L. 1929. The influence of light intensity and light quality upon the growth of plants. Am. J. Bot. 16: 354-390. – reference: Blüthgen, N., J. Fründ, D. P. Vázquez, and F. Menze. 2008. What do interaction network metrics tell us about specialization and biological traits? Ecology 89: 3387-3399. – reference: Monsi, M., and T. Saeki. 2005. On the factor light in plant communities and its importance for matter production. Ann. Bot. 95: 549-567. – reference: Horn, H. S. 1966. Measurement of "overlap" in comparative ecological studies. Am. Nat. 100: 419-424. – reference: Davidson, D. W., S. C. Cook, R. R. Snelling, and T. H. Chua. 2003. Explaining the abundance of ants in lowland tropical rainforest canopies. Science 300: 969-972. – reference: Heil, M., and D. McKey. 2003. Protective ant-plant interactions as model systems in ecological and evolutionary research. Annu. Rev. Ecol. Evol. Syst. 34: 425-453. – reference: Bronstein, J. L. 1998. The contribution of ant-plant protection studies to our understanding of mutualism. Biotropica 30: 150-161. – reference: Simpson, E. H. 1949. Measurement of diversity. Nature 163: 688. – reference: Blüthgen, N., M. Verhaagh, W. Goitía, K. Jaffé, W. Morawetz, and W. Barthlott. 2000. How plants shape the ant community in the Amazonian rainforest canopy: The key role of extrafloral nectaries and homopteran honeydew. Oecologia 125: 229-240. – reference: Sahli, H. F., and J. K. Conner. 2006. Characterizing ecological generalization in plant-pollination systems. Oecologia 148: 365-372. – reference: Tylianakis, J. M., E. Laliberté, A. Nielsen, and J. Bascompte. 2010. Conservation of species interaction networks. Biol. Conserv. 143: 2270-2279. – reference: Coley, P. D., J. P. Bryant, and F. S. Chapin. 1985. Resource availability and plant anti-herbivore defense. Science 230: 895-899. – reference: Vasconcelos, H. L., M. F. Leite, J. M. S. Vilhena, A. P. Lima, and W. E. Magnusson. 2008. Ant diversity in an Amazonian savanna: Relationship with vegetation structure, disturbance by fire, and dominant ants. Austral Ecol. 33: 221-231. – reference: Denslow, J. S. 1987. Tropical rainforest gaps and tree species diversity. Annu. Rev. Ecol. Syst. 18: 431-451. – year: 2011 – volume: 22 start-page: 415 year: 1957 end-page: 427 article-title: Concluding remarks publication-title: Cold Spring Harb. Symp. Quant. Biol. – volume: 41 start-page: 277 year: 2003 end-page: 286 article-title: Pollinator behaviour, not increased resources, boosts seed set of forest edges in a New Zealand Loranthaceous mistletoe publication-title: N.Z. J. Bot. – volume: 18 start-page: 431 year: 1987 end-page: 451 article-title: Tropical rainforest gaps and tree species diversity publication-title: Annu. Rev. Ecol. Syst. – volume: 70 start-page: 767 year: 1998 end-page: 773 article-title: Aquatic biodiversity as a consequence of diversity of habitats and functional mechanisms publication-title: An. Acad. Bras. Cienc. – volume: 31 start-page: 79 year: 2004 end-page: 92 article-title: Animal species diversity driven by habitat heterogeneity–diversity: The importance of keystone structures publication-title: J. Biogeogr. – volume: 117 start-page: 404 year: 1998 end-page: 412 article-title: The role of competition by dominants and temperature in the foraging of subordinate species in Mediterranean ant communities publication-title: Oecologia – volume: 143 start-page: 2270 year: 2010 end-page: 2279 article-title: Conservation of species interaction networks publication-title: Biol. Conserv. – volume: 38 start-page: 209 year: 1950 end-page: 211 article-title: Evolution in the tropics publication-title: Am. Sci. – start-page: 285 year: 1997 end-page: 293 – volume: 40 start-page: 705 year: 2010 end-page: 710 article-title: Variabilidade genética para caracteres morfométricos de matrizes de castanha–do–brasil da Amazônia Mato–grossense publication-title: Acta Amazon. – year: 2005 – volume: 3 start-page: 1 year: 1993 end-page: 9 article-title: Disturbance and tree species coexistence in tropical riparian forest fragments publication-title: Glob. Ecol. Biogeogr. Lett. – volume: 83 start-page: 689 year: 2002 end-page: 702 article-title: The ant fauna of a tropical rain forest: Estimating species richness in three different ways publication-title: Ecology – volume: 72 start-page: 553 year: 1984 end-page: 564 article-title: Photosynthetic light environments in a lowland tropical rain forest in Costa Rica publication-title: J. Ecol. – volume: 86 start-page: 2117 year: 2005 end-page: 2126 article-title: Abiotic factors and the conditional outcome of an ant–plant mutualism publication-title: Ecology – volume: 40 start-page: 245 year: 2009 end-page: 269 article-title: Is there a latitudinal gradient in the importance of biotic interactions? publication-title: Annu. Rev. Ecol. Evol. Syst. – volume: 100 start-page: 419 year: 1966 end-page: 424 article-title: Measurement of “overlap” in comparative ecological studies publication-title: Am. Nat. – volume: 80 start-page: 1908 year: 1999 end-page: 1926 article-title: Spatial heterogeneity of light and woody seedling regeneration in tropical wet forests publication-title: Ecology – volume: 38 start-page: 374 year: 2013a end-page: 380 article-title: Soil and vegetation features determine the nested pattern of ant–plant networks in a tropical rainforest publication-title: Ecol. Entomol. – volume: 152 start-page: 264 year: 1943 end-page: 267 article-title: Area and the number of species publication-title: Nature – volume: 16 start-page: 347 year: 1990 end-page: 357 article-title: The use of ant communities to evaluate change in Australian terrestrial ecosystems: A review and a recipe publication-title: Proc. Entomol. Soc. Aust. – volume: 38 start-page: 159 year: 2009 end-page: 164 article-title: Insect–plant interactions: New pathways to a better comprehension of ecological communities in Neotropical savannas publication-title: Neotrop. Entomol. – volume: 85 start-page: 2717 year: 2004 end-page: 2727 article-title: Interpolating, extrapolating, and comparing incidence‐based species accumulation curves publication-title: Ecology – volume: 4 start-page: 379 year: 2001 end-page: 391 article-title: Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness publication-title: Ecol. Lett. – volume: 100 start-page: 9383 year: 2003 end-page: 9387 article-title: The nested assembly of plant–animal mutualistic networks publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 13 start-page: 442 year: 2010 end-page: 452 article-title: The robustness of pollination networks to the loss of species and interactions: A quantitative approach incorporating pollinator behaviour publication-title: Ecol. Lett. – volume: 133 start-page: 240 year: 1989 end-page: 256 article-title: The latitudinal gradient in geographical range: How so many species coexist in the tropics publication-title: Am. Nat. – volume: 24 start-page: 195 year: 2003 end-page: 202 article-title: Community structure of ground–ants: The role of single trees in a Mediterranean pastureland publication-title: Acta Oecol. – volume: 125 start-page: 229 year: 2000 end-page: 240 article-title: How plants shape the ant community in the Amazonian rainforest canopy: The key role of extrafloral nectaries and homopteran honeydew publication-title: Oecologia – volume: 80 start-page: 352 year: 2011 end-page: 360 article-title: Canopy connectivity and the availability of diverse nesting resources affect species coexistence in arboreal communities publication-title: J. Anim. Ecol. – volume: 49 start-page: 305 year: 2006 end-page: 312 article-title: Abiotic factors influencing tropical dry forests regeneration publication-title: Braz. Arch. Biol. Technol. – volume: 16 start-page: 354 year: 1929 end-page: 390 article-title: The influence of light intensity and light quality upon the growth of plants publication-title: Am. J. Bot. – volume: 76 start-page: 1015 year: 2007 end-page: 1025 article-title: Interaction diversity within quantified insect food webs in restored and adjacent intensively managed meadows publication-title: J. Anim. Ecol. – volume: 7 start-page: 455 year: 2013b end-page: 461 article-title: Strength of the modular pattern in Amazonian symbiotic ant–plant networks publication-title: Arthropod Plant Interact. – volume: 131 start-page: 223 year: 1997 end-page: 231 article-title: Spatial structure and regeneration of in peat swamp rain forest in Indonesian Borneo publication-title: Plant Ecol. – volume: 42 start-page: 594 year: 1961 end-page: 598 article-title: On bird species diversity publication-title: Ecology – volume: 85 start-page: 2795 year: 2004 end-page: 2803 article-title: Ecological causes and consequences of variation in defensive chemistry of a neotropical shrub publication-title: Ecology – volume: 2 start-page: 445 year: 2010 end-page: 455 article-title: Is nest temperature an important factor for niche partitioning by leaf‐litter ants (Hymenoptera: Formicidae) in Bornean rain forests? publication-title: J. Trop. Ecol. – volume: 9 start-page: 714 year: 1999 end-page: 731 article-title: Improving inventory efficiency: A case study of leaf–litter ant diversity in Madagascar publication-title: Ecol. Appl. – volume: 170 start-page: 467 year: 2012 end-page: 475 article-title: Genetic effects of tank–forming bromeliads on the associated invertebrate community in a tropical forest ecosystem publication-title: Oecologia – volume: 30 start-page: 842 year: 2001 end-page: 848 article-title: Association between ants (Hymenoptera: Formicidae) and habitat characteristics in oak–dominated mixed forests publication-title: Environ. Entomol. – volume: 95 start-page: 549 year: 2005 end-page: 567 article-title: On the factor light in plant communities and its importance for matter production publication-title: Ann. Bot. – volume: 36 start-page: 33 year: 2004 end-page: 39 article-title: Effects of understory vegetation on patterns of light attenuation near the forest floor publication-title: Biotropica – volume: 30 start-page: 663 year: 2007 end-page: 672 article-title: Gall–forming and free–feeding herbivory along vertical gradients in a lowland tropical rainforest: The importance of leaf sclerophylly publication-title: Ecography – start-page: 120 year: 1994 end-page: 127 – start-page: 25 year: 2000 end-page: 34 – volume: 20 start-page: 620 year: 1990 end-page: 631 article-title: Light regimes beneath closed canopies and tree– fall gaps in temperate and tropical forests publication-title: Can. J. For. Res. – volume: 6 start-page: 289 year: 2012 end-page: 295 article-title: Abiotic factors shape temporal variation in the structure of an ant–plant network publication-title: Arthropod Plant Interact. – start-page: 486 year: 1994 – volume: 19 start-page: 164 year: 1980 end-page: 171 article-title: Effect of weather factors on honeybee a flight activity and colony weight gain publication-title: J. Apic. Res. – volume: 11 start-page: 1123 year: 2001 end-page: 1140 article-title: Ant biodiversity in semiarid landscape mosaics: The consequences of grazing vs. natural heterogeneity publication-title: Ecol. Appl. – volume: 15 start-page: 13 year: 2011 end-page: 19 article-title: Counting ants (Hymenoptera: Formicidae): Biodiversity sampling and statistical analysis for myrmecologists publication-title: Myrmecol. News – volume: 34 start-page: 425 year: 2003 end-page: 453 article-title: Protective ant–plant interactions as model systems in ecological and evolutionary research publication-title: Annu. Rev. Ecol. Evol. Syst. – volume: 335 start-page: 973 year: 2012 end-page: 977 article-title: The robustness and restoration of a network of ecological networks publication-title: Science – volume: 1 start-page: 25 year: 1997 end-page: 42 article-title: Diversity, disturbance, and sustainable use of Neotropical forests: Insects as indicators for conservation monitoring publication-title: J. Insect Conserv. – volume: 55 start-page: 171 year: 2010 end-page: 193 article-title: Classification of natural flow regimes in Australia to support environmental flow management publication-title: Freshw. Biol. – volume: 34 start-page: 317 year: 2005 end-page: 335 article-title: A climate model of the red imported fire ant, Buren (Hymenoptera: Formicidae): Implications for invasion of new regions, particularly Oceania publication-title: Environ. Entomol. – volume: 445 start-page: 202 year: 2007 end-page: 205 article-title: Habitat modification alters the structure of tropical host–parasitoid food webs publication-title: Nature – volume: 27 start-page: 157 year: 2004 end-page: 164 article-title: Effects of habitat complexity on ant assemblages publication-title: Ecography – volume: 107 start-page: 17228 year: 2010 end-page: 17233 article-title: Regulation of extrafloral nectar secretion by jasmonates in lima bean is light dependent publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 7 start-page: 1 year: 2004 end-page: 15 article-title: A comprehensive framework for global patterns in biodiversity publication-title: Ecol. Lett. – volume: 85 start-page: 105 year: 2012 end-page: 111 article-title: Floral resource partitioning by ants and bees in a jambolan Syzygium jambolanum (Myrtaceae) agroforestry system in Brazilian Meridional Amazon publication-title: Agroforest. Syst. – volume: 42 start-page: 567 year: 2012 end-page: 570 article-title: New record of a very specialized interaction: Ward 1990 (Pseudomyrmecinae) and its myrmecophyte host McVaugh (Myrtaceae) in Brazilian Meridional Amazon publication-title: Acta Amazon. – volume: 106 start-page: 143 year: 2010 end-page: 148 article-title: Effects of light on direct and indirect defences against herbivores of young plants of demonstrate a trade–off between two indirect defence traits publication-title: Ann. Bot. – start-page: 122 year: 2000 end-page: 144 – volume: 66 start-page: 363 year: 1997 end-page: 374 article-title: Thermal disruption of transitive hierarchies in Mediterranean ant communities publication-title: J. Anim. Ecol. – volume: 108 start-page: 209 year: 2005 end-page: 218 article-title: Habitat heterogeneity, species diversity and null models publication-title: Oikos – volume: 34 start-page: 39 year: 2011 end-page: 48 article-title: Partitioning the impact of abiotic factors and spatial patterns on species richness and community structure of ground ant assemblages in four Bornean rainforests publication-title: Ecography – volume: 83 start-page: 2394 year: 2002 end-page: 2407 article-title: Quantitative descriptors of food–web matrices publication-title: Ecology – volume: 118 start-page: 133 year: 2004 end-page: 139 article-title: The importance of traditional meadow management techniques for conservation of vascular plant species richness in Norway publication-title: Biol. Conserv. – year: 1992 – volume: 163 start-page: 688 year: 1949 article-title: Measurement of diversity publication-title: Nature – volume: 405 start-page: 220 year: 2000 end-page: 227 article-title: Global patterns in biodiversity publication-title: Nature – volume: 203 start-page: 162 year: 2008 end-page: 174 article-title: Tree community features of two stands of riverine forest under different flooding regimes in Southern Brazil publication-title: Flora – volume: 335 start-page: 214 year: 2012 end-page: 218 article-title: Plant species richness and ecosystem multifunctionality in global drylands publication-title: Science – year: 2012 – volume: 71 start-page: 855 year: 2002 end-page: 873 article-title: Structure of a diverse tropical–forest insect–parasitoid community publication-title: J. Anim. Ecol. – volume: 300 start-page: 969 year: 2003 end-page: 972 article-title: Explaining the abundance of ants in lowland tropical rainforest canopies publication-title: Science – volume: 148 start-page: 365 year: 2006 end-page: 372 article-title: Characterizing ecological generalization in plant–pollination systems publication-title: Oecologia – volume: 28 start-page: 305 year: 2003 end-page: 314 article-title: Tree heterogeneity, resource availability, and larger scale processes regulating arboreal ant species richness publication-title: Austral Ecol. – volume: 33 start-page: 221 year: 2008 end-page: 231 article-title: Ant diversity in an Amazonian savanna: Relationship with vegetation structure, disturbance by fire, and dominant ants publication-title: Austral Ecol. – volume: 30 start-page: 150 year: 1998 end-page: 161 article-title: The contribution of ant‐plant protection studies to our understanding of mutualism publication-title: Biotropica – volume: 91 start-page: 3707 year: 2010b end-page: 3718 article-title: Herbivores on a dominant understory shrub increase local plant diversity in rain forest communities publication-title: Ecology – volume: 98 start-page: 705 year: 2010 end-page: 717 article-title: Beyond biomass: Measuring the effects of community–level nitrogen enrichment on floral traits, pollinator visitation and plant reproduction publication-title: J. Ecol. – volume: 75 start-page: 368 year: 2006 end-page: 376 article-title: Abiotic factors control invasion by Argentine ants at the community scale publication-title: J. Anim. Ecol. – volume: 123 start-page: 436 year: 2000 end-page: 444 article-title: Patterns of diversity and composition of Mediterranean ground ant communities tracking spatial and temporal variability in the thermal environment publication-title: Oecologia – volume: 130 start-page: 1 year: 2002 end-page: 14 article-title: Plant diversity in tropical forests: A review of mechanisms of species coexistence publication-title: Oecologia – volume: 75 start-page: 207 year: 1988 end-page: 212 article-title: Crown light environments of saplings of two species of rain forest emergent trees publication-title: Oecologia – volume: 230 start-page: 895 year: 1985 end-page: 899 article-title: Resource availability and plant anti–herbivore defense publication-title: Science – volume: 42 start-page: 281 year: 2010a end-page: 289 article-title: Diversity of Interactions: A metric for studies of biodiversity publication-title: Biotropica – volume: 89 start-page: 3387 year: 2008 end-page: 3399 article-title: What do interaction network metrics tell us about specialization and biological traits? publication-title: Ecology – volume: 3 start-page: 3 year: 2010 end-page: 27 article-title: The arboreal ant community visiting extrafloral nectaries in the Neotropical cerrado savanna publication-title: Terr. Arthropod Rev. – ident: e_1_2_6_45_1 doi: 10.1111/j.1461-0248.2009.01437.x – ident: e_1_2_6_79_1 doi: 10.1038/163688a0 – ident: e_1_2_6_28_1 doi: 10.1126/science.1082074 – ident: e_1_2_6_21_1 doi: 10.1126/science.230.4728.895 – ident: e_1_2_6_46_1 doi: 10.2307/2997557 – ident: e_1_2_6_62_1 doi: 10.1007/BF00378599 – ident: e_1_2_6_70_1 doi: 10.1046/j.1442-9993.2003.01290.x – ident: e_1_2_6_24_1 doi: 10.1111/j.0030-1299.2005.12944.x – ident: e_1_2_6_5_1 doi: 10.1073/pnas.1633576100 – ident: e_1_2_6_67_1 doi: 10.1073/pnas.1009007107 – volume: 16 start-page: 347 year: 1990 ident: e_1_2_6_3_1 article-title: The use of ant communities to evaluate change in Australian terrestrial ecosystems: A review and a recipe publication-title: Proc. Entomol. Soc. Aust. – ident: e_1_2_6_55_1 doi: 10.1017/S0266467410000209 – ident: e_1_2_6_93_1 doi: 10.1093/aob/mcq093 – ident: e_1_2_6_60_1 doi: 10.1016/j.biocon.2003.07.016 – ident: e_1_2_6_92_1 doi: 10.2307/1940675 – ident: e_1_2_6_64_1 doi: 10.1126/science.1214915 – ident: e_1_2_6_25_1 doi: 10.1007/s11829-013-9256-1 – ident: e_1_2_6_72_1 doi: 10.1046/j.1461-0248.2003.00554.x – ident: e_1_2_6_19_1 doi: 10.1007/s004420050674 – volume-title: SAS® 9.3 Guide to software updates year: 2011 ident: e_1_2_6_75_1 – ident: e_1_2_6_16_1 doi: 10.1139/x90-084 – ident: e_1_2_6_74_1 doi: 10.1007/s00442-006-0396-1 – ident: e_1_2_6_26_1 doi: 10.1007/s10457-012-9489-5 – ident: e_1_2_6_73_1 doi: 10.1007/s11829-011-9170-3 – ident: e_1_2_6_42_1 doi: 10.1086/282436 – ident: e_1_2_6_22_1 doi: 10.1890/03-0557 – ident: e_1_2_6_53_1 doi: 10.1126/science.1215442 – ident: e_1_2_6_91_1 doi: 10.1038/152264a0 – ident: e_1_2_6_43_1 doi: 10.1101/SQB.1957.022.01.039 – volume: 38 start-page: 209 year: 1950 ident: e_1_2_6_32_1 article-title: Evolution in the tropics publication-title: Am. Sci. – ident: e_1_2_6_12_1 doi: 10.1023/A:1018422807610 – ident: e_1_2_6_35_1 doi: 10.1111/j.1744-7429.2009.00624.x – ident: e_1_2_6_29_1 doi: 10.1590/S1519-566X2009000200001 – ident: e_1_2_6_41_1 doi: 10.1146/annurev.ecolsys.34.011802.132410 – ident: e_1_2_6_83_1 doi: 10.1046/j.0305-0270.2003.00994.x – ident: e_1_2_6_56_1 doi: 10.1111/j.1600-0587.2010.06538.x – start-page: 122 volume-title: Ants: Standard methods for measuring and monitoring biodiversity year: 2000 ident: e_1_2_6_7_1 – ident: e_1_2_6_61_1 doi: 10.1890/0012-9658(1999)080[1908:SHOLAW]2.0.CO;2 – ident: e_1_2_6_80_1 doi: 10.1086/284913 – ident: e_1_2_6_65_1 doi: 10.1111/j.1365-2656.2010.01779.x – ident: e_1_2_6_52_1 doi: 10.2307/1932254 – ident: e_1_2_6_54_1 doi: 10.1111/j.1365-2656.2006.01056.x – volume: 70 start-page: 767 year: 1998 ident: e_1_2_6_85_1 article-title: Aquatic biodiversity as a consequence of diversity of habitats and functional mechanisms publication-title: An. Acad. Bras. Cienc. – ident: e_1_2_6_15_1 doi: 10.1590/S0044-59672010000400010 – volume-title: R: A language and environment for statistical computing year: 2012 ident: e_1_2_6_66_1 – volume: 15 start-page: 13 year: 2011 ident: e_1_2_6_40_1 article-title: Counting ants (Hymenoptera: Formicidae): Biodiversity sampling and statistical analysis for myrmecologists publication-title: Myrmecol. News – ident: e_1_2_6_51_1 doi: 10.1890/0012-9658(2002)083[0689:TAFOAT]2.0.CO;2 – ident: e_1_2_6_17_1 doi: 10.1590/S1516-89132006000300016 – start-page: 486 volume-title: Evolutionary ecology year: 1994 ident: e_1_2_6_63_1 – ident: e_1_2_6_81_1 doi: 10.1603/0046-225X-34.2.317 – ident: e_1_2_6_10_1 doi: 10.1007/s004420000449 – ident: e_1_2_6_27_1 doi: 10.1111/een.12029 – ident: e_1_2_6_34_1 doi: 10.1890/08-1634.1 – ident: e_1_2_6_68_1 doi: 10.1007/s004420051031 – ident: e_1_2_6_86_1 doi: 10.1016/j.biocon.2009.12.004 – ident: e_1_2_6_14_1 doi: 10.1111/j.1365-2745.2010.01648.x – ident: e_1_2_6_11_1 doi: 10.1111/j.1744-7429.1998.tb00050.x – ident: e_1_2_6_38_1 doi: 10.1023/A:1009771519028 – volume: 36 start-page: 33 year: 2004 ident: e_1_2_6_58_1 article-title: Effects of understory vegetation on patterns of light attenuation near the forest floor publication-title: Biotropica – ident: e_1_2_6_37_1 doi: 10.1038/35012228 – ident: e_1_2_6_47_1 doi: 10.1111/j.1365-2427.2009.02307.x – ident: e_1_2_6_8_1 doi: 10.1890/1051-0761(2001)011[1123:ABISLM]2.0.CO;2 – ident: e_1_2_6_89_1 doi: 10.1590/S0044-59672012000400016 – ident: e_1_2_6_78_1 doi: 10.1002/j.1537-2197.1929.tb09488.x – ident: e_1_2_6_50_1 doi: 10.1046/j.1365-2656.2002.00651.x – ident: e_1_2_6_20_1 doi: 10.2307/2260066 – ident: e_1_2_6_49_1 doi: 10.1111/j.0906-7590.2004.03675.x – ident: e_1_2_6_57_1 doi: 10.1093/aob/mci052 – ident: e_1_2_6_84_1 doi: 10.1007/978-1-4615-6003-6_28 – ident: e_1_2_6_36_1 doi: 10.1890/1051-0761(1999)009[0714:IIEACS]2.0.CO;2 – ident: e_1_2_6_69_1 doi: 10.1016/S1146-609X(03)00086-9 – ident: e_1_2_6_18_1 doi: 10.2307/5982 – ident: e_1_2_6_90_1 doi: 10.1603/0046-225X-30.5.842 – ident: e_1_2_6_13_1 doi: 10.1016/j.flora.2007.03.001 – ident: e_1_2_6_33_1 doi: 10.1890/03-0233 – volume-title: A quantitative approach to environmental plant physiology 2 year: 1992 ident: e_1_2_6_44_1 – ident: e_1_2_6_76_1 doi: 10.1146/annurev.ecolsys.39.110707.173430 – ident: e_1_2_6_59_1 doi: 10.1080/0028825X.2003.9512846 – ident: e_1_2_6_82_1 doi: 10.1080/00218839.1980.11100017 – start-page: 120 volume-title: La Selva: Ecology and natural history of a neotropical rain forest year: 1994 ident: e_1_2_6_31_1 – start-page: 25 volume-title: Ants: Standard methods for measuring and monitoring biodiversity year: 2000 ident: e_1_2_6_4_1 – ident: e_1_2_6_23_1 doi: 10.1111/ecog.00814 – ident: e_1_2_6_48_1 doi: 10.1890/04-1916 – ident: e_1_2_6_77_1 doi: 10.1163/187498310X487785 – ident: e_1_2_6_30_1 doi: 10.1146/annurev.es.18.110187.002243 – ident: e_1_2_6_9_1 doi: 10.1890/07-2121.1 – ident: e_1_2_6_88_1 doi: 10.1111/j.1442-9993.2007.01811.x – ident: e_1_2_6_94_1 doi: 10.1007/s00442-012-2310-3 – ident: e_1_2_6_6_1 doi: 10.1890/0012-9658(2002)083[2394:QDOFWM]2.0.CO;2 – ident: e_1_2_6_39_1 doi: 10.1046/j.1461-0248.2001.00230.x – ident: e_1_2_6_87_1 doi: 10.1038/nature05429 – ident: e_1_2_6_71_1 doi: 10.1111/j.2007.0906-7590.05083.x – ident: e_1_2_6_2_1 doi: 10.1111/j.1365-2656.2007.01264.x |
SSID | ssj0009504 |
Score | 2.233625 |
Snippet | In closed‐canopy tropical forest understory, light availability is a significant determinant of habitat diversity because canopy structure is highly variable... In closed-canopy tropical forest understory, light availability is a significant determinant of habitat diversity because canopy structure is highly variable... |
SourceID | proquest crossref wiley jstor istex fao |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 712 |
SubjectTerms | abiotic factors Amazonia biodiversidade biodiversity canopy diversidade de interações ecological interactions fatores abióticos foraging Formicidae habitats interaction diversity interações ecológicas interações planta-animal light intensity paisagens tropicais plant-animal interactions species diversity Tropical Biology tropical forests tropical landscapes understory vegetative growth |
Title | Canopy Openness Enhances Diversity of Ant–Plant Interactions in the Brazilian Amazon Rain Forest |
URI | https://api.istex.fr/ark:/67375/WNG-SR2N46QW-2/fulltext.pdf https://www.jstor.org/stable/44944796 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbtp.12157 https://www.proquest.com/docview/1618201655 https://www.proquest.com/docview/1627984750 https://www.proquest.com/docview/1663628808 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEG5iQPCi8REyJkorIl4mzM72YxpPm7gxCC6aZEkOQtM906MhOrPszIK7J_-D_9BfYlXPg42oiLeGqYZ-VFV_0131FSHPZJIaabgJDXPwg5KqOFT4yi6Nk3mUpUI6TBR-OxHHU_bmgl9skJddLkzDD9FfuKFleH-NBm5stWbktp55agTMJMdYLQREJ_Ea4W7UMDBjbBeg9JZVCKN4-p7XzqIbuSkBoeLifu2CE6_BznXw6k-fozvkQzfuJujkan9R2_109Qul439ObIvcblEpHTVqdJdsuOIeudnUqVxCa-y5rZf3iT00RTlbUoxDQSdJx8Un1JuKvuoCPGiZ01FR__j2HQsi1dTfOTbpExW9LCggTnowN6tLvGChoy9mVRYUn5kolgmt6gdkejQ-OzwO2zINYcoHQxlmaaSGzOb4gCedEIpleawMbDnPMkBoUgCCTwfcWWtY5mQqlXKJzZzIBpngbrhNNouycDuE5rnLjciVAGDBnLTKSm4TZ8DvsMTyOCAvug3TacthjqU0PuvuXwYWT_vFC8jTXnTWEHf8TmgHdl2bj-BQ9fQ0xusfrDDAuArIc68KfWczv8IgOMn1-eS1Pj2JJ0y8P9cwpm2vK70gY4oxqURA9jrl0a1jqDTWJ4gxhYwH5En_GUwa32lM4coFysRSAWrg0d9kxBArRUcJrInXpj_PUh-cvfONh_8uuktuwTBZk3W5Rzbr-cI9AvhV28fezn4CTD8oXg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB61RQguvKsuFDAIIS6pths_YolLWlICtBG0idpLZdm7Xlq17EbJRiI58R_4h_wSPN6HUgQIcbO0Y8k7nhl_Hs8D4IXoxFpopluaWndBiWXUkvjKLrQVaZjEXFhMFD4Y8P6Ivj9hJyvwus6FKetDNA431Axvr1HB0SG9pOWmGPvaCGIVrmFHb3-hOoyWSu6GZQ1mjO5yOL2qK4RxPM3UK6fRaqpzh1GRvV_r8MQrwHMZvvrzZ-82nNYrL8NOLrZmhdmKF78UdfzfX7sDtypgSrqlJN2FFZvdg-tlq8q5G_V8eev5fTC7OsvHc4KhKGgnSS87Q9GZkjd1jAfJU9LNih_fvmNPpIJ4t2OZQTEl5xlxoJPsTPTiHH0spPtFL_KM4EsTwU6h0-IBjPZ6w91-q-rU0Iod30UriUPZpibFNzxhOZc0SSOp3a6zJHEgTXAH4uNtZo3RNLEiFlLajkksT7YTzmx7HdayPLMbQNLUppqnkjtsQa0w0ghmOlY700M7hkUBvKp3TMVVGXPspnGp6uuMY57yzAvgeUM6Lmt3_I5ow2270p-dTVWjowg9QNhkgDIZwEsvC81kPbnAODjB1PHgrTo6jAaUfzpWbk3rXlgaQkolpULyADZr6VGVbZgqbFEQYRYZC-BZ89lpNT7V6MzmM6SJhHTAgYV_o-FtbBYddhxPvDj9-S_VzvCjHzz8d9KncKM_PNhX--8GHx7BTbdkWiZhbsJaMZnZxw6NFeaJV7qfvfAseQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELbaIhAX3lUXChiEEJetNhs_1uKUNgnlFZW2UXuoZNm7NlSF3SjZSCQn_gP_kF-Cx_tQigAhbpZ2LPkxM_7WnvkGoWc8SRVXVIWKGPeDkoo4FPDKzpXhNspSxg0kCr8fsf0xeXNKT9fQyyYXpuKHaC_cwDK8vwYDn2R2xch1OfHUCHwdXSEsSkCl-4fxCuNuVFEwQ3CXg-k1rRCE8bRdLx1G61YVDqLC6n5tohMv4c5V9OqPn-FNdNYMvIo6udiZl3onXf7C6fifM7uFbtSwFPcqPbqN1kx-B12tClUuXGvgya0Xd5HeU3kxWWAIRAEviQf5J1CcGe43ER64sLiXlz--fYeKSCX2l45V_sQMn-fYQU68O1XLc7hhwb0valnkGN6ZMNQJnZX30Hg4ON7bD-s6DWFKO10eZmkkukRbeMHjhjFBMhsL5facZpmDaJw5CJ92qNFakczwlAthEp0ZlnUyRk13E23kRW62ELbWWMWsYA5ZEMO10JzqxCjneEiiaRygF82GybQmMYdaGp9l8zPjFk_6xQvQ01Z0UjF3_E5oy-26VB-dR5Xjoxjuf6DEAKEiQM-9KrSd1fQCouA4lSejV_LoMB4R9uFEujFtel1pBQkRhHDBArTdKI-sPcNMQoGCGHLIaICetJ-dTcNDjcpNMQeZmAsHG2j0NxnWhVLRUeLWxGvTn2cpd48PfOP-v4s-RtcO-kP57vXo7QN03Y2YVBmY22ijnM7NQwfFSv3Im9xPMQgrMQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Canopy+Openness+Enhances+Diversity+of+Ant%E2%80%93Plant+Interactions+in+the+Brazilian+Amazon+Rain+Forest&rft.jtitle=Biotropica&rft.au=D%C3%A1ttilo%2C+Wesley&rft.au=Dyer%2C+Lee&rft.date=2014-11-01&rft.issn=0006-3606&rft.eissn=1744-7429&rft.volume=46&rft.issue=6&rft.spage=712&rft.epage=719&rft_id=info:doi/10.1111%2Fbtp.12157&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_btp_12157 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3606&client=summon |