Warming effects on greenhouse gas fluxes in peatlands are modulated by vegetation composition

Understanding the effects of warming on greenhouse gas feedbacks to climate change represents a major global challenge. Most research has focused on direct effects of warming, without considering how concurrent changes in plant communities may alter such effects. Here, we combined vegetation manipul...

Full description

Saved in:
Bibliographic Details
Published inEcology letters Vol. 16; no. 10; pp. 1285 - 1293
Main Authors Ward, Susan E, Ostle, Nicholas J, Oakley, Simon, Quirk, Helen, Henrys, Peter A, Bardgett, Richard D, Putten, Wim
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.10.2013
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Understanding the effects of warming on greenhouse gas feedbacks to climate change represents a major global challenge. Most research has focused on direct effects of warming, without considering how concurrent changes in plant communities may alter such effects. Here, we combined vegetation manipulations with warming to investigate their interactive effects on greenhouse gas emissions from peatland. We found that although warming consistently increased respiration, the effect on net ecosystem CO₂ exchange depended on vegetation composition. The greatest increase in CO₂ sink strength after warming was when shrubs were present, and the greatest decrease when graminoids were present. CH₄ was more strongly controlled by vegetation composition than by warming, with largest emissions from graminoid communities. Our results show that plant community composition is a significant modulator of greenhouse gas emissions and their response to warming, and suggest that vegetation change could alter peatland carbon sink strength under future climate change.
AbstractList Understanding the effects of warming on greenhouse gas feedbacks to climate change represents a major global challenge. Most research has focused on direct effects of warming, without considering how concurrent changes in plant communities may alter such effects. Here, we combined vegetation manipulations with warming to investigate their interactive effects on greenhouse gas emissions from peatland. We found that although warming consistently increased respiration, the effect on net ecosystem CO2 exchange depended on vegetation composition. The greatest increase in CO2 sink strength after warming was when shrubs were present, and the greatest decrease when graminoids were present. CH4 was more strongly controlled by vegetation composition than by warming, with largest emissions from graminoid communities. Our results show that plant community composition is a significant modulator of greenhouse gas emissions and their response to warming, and suggest that vegetation change could alter peatland carbon sink strength under future climate change.
Abstract Understanding the effects of warming on greenhouse gas feedbacks to climate change represents a major global challenge. Most research has focused on direct effects of warming, without considering how concurrent changes in plant communities may alter such effects. Here, we combined vegetation manipulations with warming to investigate their interactive effects on greenhouse gas emissions from peatland. We found that although warming consistently increased respiration, the effect on net ecosystem CO 2 exchange depended on vegetation composition. The greatest increase in CO 2 sink strength after warming was when shrubs were present, and the greatest decrease when graminoids were present. CH 4 was more strongly controlled by vegetation composition than by warming, with largest emissions from graminoid communities. Our results show that plant community composition is a significant modulator of greenhouse gas emissions and their response to warming, and suggest that vegetation change could alter peatland carbon sink strength under future climate change.
Understanding the effects of warming on greenhouse gas feedbacks to climate change represents a major global challenge. Most research has focused on direct effects of warming, without considering how concurrent changes in plant communities may alter such effects. Here, we combined vegetation manipulations with warming to investigate their interactive effects on greenhouse gas emissions from peatland. We found that although warming consistently increased respiration, the effect on net ecosystem CO₂ exchange depended on vegetation composition. The greatest increase in CO₂ sink strength after warming was when shrubs were present, and the greatest decrease when graminoids were present. CH₄ was more strongly controlled by vegetation composition than by warming, with largest emissions from graminoid communities. Our results show that plant community composition is a significant modulator of greenhouse gas emissions and their response to warming, and suggest that vegetation change could alter peatland carbon sink strength under future climate change.
Understanding the effects of warming on greenhouse gas feedbacks to climate change represents a major global challenge. Most research has focused on direct effects of warming, without considering how concurrent changes in plant communities may alter such effects. Here, we combined vegetation manipulations with warming to investigate their interactive effects on greenhouse gas emissions from peatland. We found that although warming consistently increased respiration, the effect on net ecosystem CO2 exchange depended on vegetation composition. The greatest increase in CO2 sink strength after warming was when shrubs were present, and the greatest decrease when graminoids were present. CH4 was more strongly controlled by vegetation composition than by warming, with largest emissions from graminoid communities. Our results show that plant community composition is a significant modulator of greenhouse gas emissions and their response to warming, and suggest that vegetation change could alter peatland carbon sink strength under future climate change. [PUBLICATION ABSTRACT]
Author Putten, Wim
Ostle, Nicholas J
Henrys, Peter A
Bardgett, Richard D
Quirk, Helen
Oakley, Simon
Ward, Susan E
Author_xml – sequence: 1
  fullname: Ward, Susan E
– sequence: 2
  fullname: Ostle, Nicholas J
– sequence: 3
  fullname: Oakley, Simon
– sequence: 4
  fullname: Quirk, Helen
– sequence: 5
  fullname: Henrys, Peter A
– sequence: 6
  fullname: Bardgett, Richard D
– sequence: 7
  fullname: Putten, Wim
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27763198$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23953244$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URD_gwB8ASwgJDmnjrzg5VtVSkBZQRavlgqyJMwkpSbzYCXT_PV6yXSQkxFw80jwz74zfY3IwuAEJecrSUxbjDDs8ZZxl-gE5YjJjScplfrDPxedDchzCbZoyXmj2iBxyUSjBpTwiX1bg-3ZoKNY12jFQN9DGIw5f3RSQNhBo3U13GGg70DXC2MFQBQoeae-qqYMRK1pu6A9scISxje3W9WsX2m3-mDysoQv4ZPeekJs3i-uLt8ny4-W7i_NlYhUTOskYiLSoJRRcScVVmVmwcfl4BlQIueCgudYyzVWZs7KOWZ1XVcZYoS0oK07Iq3nu2rvvE4bR9G2w2MVlMd5hmGKZKHSWZf9HpSg4V1Eioi_-Qm_d5Id4yJZiKudcy0i9ninrXQgea7P2bQ9-Y1hqtvaYaI_5bU9kn-0mTmWP1Z689yMCL3cABAtd7WGwbfjDaZ0JVuSRO5u5n22Hm38rmsVycS-dzB1tGPFu3wH-m4lVrczqw6VZLa-K9-rq2mz_6fnM1-AMND5ucfOJp0ymMaSQSvwCFom-tQ
CitedBy_id crossref_primary_10_1007_s11104_015_2710_3
crossref_primary_10_1016_j_jenvman_2017_08_017
crossref_primary_10_1016_j_agrformet_2017_12_248
crossref_primary_10_1007_s10021_015_9907_4
crossref_primary_10_1007_s13157_015_0714_7
crossref_primary_10_1111_nph_18798
crossref_primary_10_1016_j_aeaoa_2022_100175
crossref_primary_10_1016_j_scitotenv_2022_155352
crossref_primary_10_1016_j_apsoil_2023_104831
crossref_primary_10_1016_j_ecolmodel_2015_07_008
crossref_primary_10_1002_ece3_5722
crossref_primary_10_1038_nclimate2643
crossref_primary_10_1111_1365_2745_12413
crossref_primary_10_1016_j_scitotenv_2014_10_037
crossref_primary_10_1111_ejss_13050
crossref_primary_10_1111_gcb_12902
crossref_primary_10_1016_j_agrformet_2016_01_039
crossref_primary_10_1016_j_ecoleng_2017_06_047
crossref_primary_10_5194_gmd_9_2639_2016
crossref_primary_10_5194_bg_18_6133_2021
crossref_primary_10_5194_bg_20_4069_2023
crossref_primary_10_1016_j_jes_2018_08_003
crossref_primary_10_1093_aobpla_plu035
crossref_primary_10_5194_bg_17_727_2020
crossref_primary_10_1016_j_scitotenv_2019_133675
crossref_primary_10_1016_j_yqres_2015_09_002
crossref_primary_10_1111_ejss_13048
crossref_primary_10_3389_fmicb_2021_802213
crossref_primary_10_5194_bg_12_125_2015
crossref_primary_10_1016_j_ecolind_2015_11_035
crossref_primary_10_3389_sjss_2023_11368
crossref_primary_10_1007_s10021_019_00344_2
crossref_primary_10_1016_j_ecoleng_2017_05_011
crossref_primary_10_1088_1748_9326_aaae74
crossref_primary_10_1016_j_catena_2021_105356
crossref_primary_10_5194_bg_18_2449_2021
crossref_primary_10_3390_atmos9120480
crossref_primary_10_2139_ssrn_4017537
crossref_primary_10_1016_j_apsoil_2018_02_015
crossref_primary_10_1029_2019JG005437
crossref_primary_10_1016_j_envpol_2023_121130
crossref_primary_10_1016_j_geoderma_2020_114585
crossref_primary_10_1111_1365_2745_12247
crossref_primary_10_1016_j_soilbio_2014_07_013
crossref_primary_10_1016_j_scitotenv_2023_162166
crossref_primary_10_1007_s11104_022_05561_8
crossref_primary_10_1016_j_scitotenv_2019_135863
crossref_primary_10_5194_bg_18_873_2021
crossref_primary_10_1111_1365_2664_13402
crossref_primary_10_1016_j_scitotenv_2022_154805
crossref_primary_10_1016_j_soilbio_2014_11_016
crossref_primary_10_1111_1365_2435_13537
crossref_primary_10_1111_gcb_13612
crossref_primary_10_1007_s11104_020_04664_4
crossref_primary_10_1029_2019JG005468
crossref_primary_10_1111_gcb_13213
crossref_primary_10_1111_gcb_15753
crossref_primary_10_1016_j_ecoleng_2016_02_012
crossref_primary_10_1016_j_soilbio_2015_08_013
crossref_primary_10_1111_ele_13178
crossref_primary_10_1016_j_catena_2014_05_007
crossref_primary_10_1016_j_geoderma_2020_114313
crossref_primary_10_1007_s00334_015_0544_9
crossref_primary_10_1007_s13157_021_01411_y
crossref_primary_10_1016_j_scitotenv_2017_09_202
crossref_primary_10_1029_2019JG005193
crossref_primary_10_1007_s00442_015_3254_1
crossref_primary_10_1038_s42003_019_0370_1
crossref_primary_10_1111_1365_2435_13783
crossref_primary_10_1007_s11104_016_2999_6
crossref_primary_10_1111_gcb_14140
crossref_primary_10_1029_2022JG007271
crossref_primary_10_1016_j_agrformet_2020_108214
crossref_primary_10_5194_bg_16_4085_2019
crossref_primary_10_1016_j_catena_2020_104789
crossref_primary_10_1139_er_2019_0064
crossref_primary_10_3390_su12145674
crossref_primary_10_1002_2016JG003511
crossref_primary_10_1016_j_atmosenv_2016_07_039
crossref_primary_10_1080_20964129_2020_1806113
crossref_primary_10_1111_gcb_15865
crossref_primary_10_1016_j_ejsobi_2018_03_005
crossref_primary_10_1016_j_scitotenv_2022_154351
crossref_primary_10_1016_j_quascirev_2015_01_025
crossref_primary_10_1007_s13157_021_01486_7
crossref_primary_10_1007_s11104_017_3469_5
crossref_primary_10_1111_1365_2435_14480
crossref_primary_10_1016_j_foreco_2017_11_038
crossref_primary_10_1007_s10021_023_00820_w
crossref_primary_10_1016_j_scitotenv_2018_11_109
crossref_primary_10_1007_s13157_023_01692_5
crossref_primary_10_1016_j_scitotenv_2023_167554
crossref_primary_10_1088_1748_9326_11_4_044024
crossref_primary_10_1016_j_watres_2019_114936
crossref_primary_10_1038_s41467_018_05516_7
crossref_primary_10_1111_nph_13116
crossref_primary_10_1155_2014_712537
crossref_primary_10_1371_journal_pone_0168741
crossref_primary_10_1016_j_pedobi_2019_150571
crossref_primary_10_3390_agronomy13122947
crossref_primary_10_3390_f8030075
crossref_primary_10_1016_j_agee_2023_108862
crossref_primary_10_1111_gcb_14847
crossref_primary_10_5194_bg_15_885_2018
crossref_primary_10_1016_j_foreco_2017_10_017
crossref_primary_10_1111_nph_18755
crossref_primary_10_1029_2023JG007873
crossref_primary_10_1890_14_0292_1
crossref_primary_10_1016_j_scitotenv_2022_161314
crossref_primary_10_3389_fmicb_2019_02348
crossref_primary_10_1021_acs_est_8b01093
crossref_primary_10_1016_j_catena_2021_105391
crossref_primary_10_1016_j_soilbio_2019_107629
crossref_primary_10_1093_femsec_fiad145
crossref_primary_10_1007_s10021_015_9935_0
crossref_primary_10_1002_2013JG002441
crossref_primary_10_1016_j_geoderma_2018_05_005
crossref_primary_10_5194_bg_17_4797_2020
crossref_primary_10_1016_j_foreco_2014_07_004
crossref_primary_10_1016_j_quascirev_2016_11_034
crossref_primary_10_1111_gcb_17033
crossref_primary_10_1007_s10021_020_00516_5
crossref_primary_10_1016_j_scitotenv_2017_06_028
crossref_primary_10_1007_s11104_021_05180_9
crossref_primary_10_1002_rse2_337
crossref_primary_10_1111_gcb_15005
crossref_primary_10_1088_1748_9326_11_7_074016
crossref_primary_10_1016_j_soilbio_2021_108501
crossref_primary_10_1016_j_scitotenv_2022_154294
crossref_primary_10_1007_s10021_016_0035_6
crossref_primary_10_1016_j_apsoil_2017_12_009
crossref_primary_10_1007_s11273_021_09784_x
crossref_primary_10_1111_1365_2745_12288
crossref_primary_10_1007_s13213_018_1421_4
crossref_primary_10_1098_rsos_170449
crossref_primary_10_1007_s11104_015_2713_0
crossref_primary_10_3390_microorganisms10101950
crossref_primary_10_1007_s13157_019_01176_5
crossref_primary_10_1038_s41467_017_01350_5
crossref_primary_10_1002_ece3_7842
crossref_primary_10_1002_ece3_9988
crossref_primary_10_1002_ece3_3243
crossref_primary_10_1007_s10531_022_02479_6
crossref_primary_10_1007_s10533_023_01113_z
crossref_primary_10_1016_j_agee_2015_08_020
crossref_primary_10_1088_1748_9326_abc4fb
crossref_primary_10_1016_j_scitotenv_2019_02_012
crossref_primary_10_1111_gcb_16003
crossref_primary_10_3389_feart_2021_631368
crossref_primary_10_1016_j_scitotenv_2018_07_390
crossref_primary_10_1016_j_scitotenv_2021_150831
crossref_primary_10_1007_s11368_023_03583_y
crossref_primary_10_3390_rs11141685
crossref_primary_10_1007_s13157_017_0878_4
crossref_primary_10_1111_nph_18601
crossref_primary_10_1111_gcb_13928
crossref_primary_10_1002_ecy_1975
crossref_primary_10_1016_j_jenvman_2018_06_013
crossref_primary_10_1111_gcb_14617
crossref_primary_10_1016_j_geoderma_2021_115074
crossref_primary_10_1111_pce_13767
crossref_primary_10_1007_s11104_024_06569_y
crossref_primary_10_1007_s11368_014_0945_x
crossref_primary_10_1016_j_jclepro_2023_136905
crossref_primary_10_1007_s11104_022_05346_z
crossref_primary_10_1016_j_scitotenv_2020_143467
crossref_primary_10_1002_lom3_10270
crossref_primary_10_1007_s11368_021_03043_5
crossref_primary_10_1007_s10980_020_01108_3
crossref_primary_10_1016_j_catena_2022_106335
Cites_doi 10.1038/nature08216
10.1016/j.soilbio.2010.02.013
10.1038/nature03611
10.1016/j.envpol.2010.06.006
10.1111/j.1365-2486.1997.gcb136.x
10.1038/ngeo1323
10.1093/oso/9780195120837.003.0010
10.1029/2008GM000875
10.1126/science.1174268
10.1029/1998GB900021
10.1029/2008GM000828
10.1007/s10021-007-9080-5
10.1111/j.1365-2486.2011.02616.x
10.1016/S0169-5347(03)00007-7
10.1038/nclimate1672
10.1111/j.1365-2486.2006.01292.x
10.1007/s10021-005-0070-1
10.1007/s11104-011-0945-1
10.1016/j.scitotenv.2008.03.015
10.1111/j.1461-0248.2008.01164.x
10.1111/j.1365-2435.2008.01521.x
10.1038/ismej.2008.58
10.1038/nature11118
10.1890/09-0135.1
10.3389/fmicb.2012.00078
10.1111/1365-2745.12043
10.1111/j.1365-2389.2010.01267.x
10.1038/ngeo434
10.1016/S0169-5347(00)01861-9
10.1139/b04-123
10.1016/S1002-0160(09)00003-4
10.1371/journal.pone.0039614
10.1111/gcb.12120
10.1038/35051650
10.1038/nclimate1458
10.1038/ngeo1009
10.1890/04-0922
10.1073/pnas.0503198103
10.1111/j.1461-0248.2011.01611.x
10.1007/s10021-012-9581-8
10.1073/pnas.0409902102
10.1016/j.apsoil.2012.02.015
10.1073/pnas.1208240109
10.1038/366051a0
ContentType Journal Article
Copyright 2013 John Wiley & Sons Ltd/CNRS
2015 INIST-CNRS
2013 John Wiley & Sons Ltd/CNRS.
Copyright © 2013 John Wiley & Sons Ltd/CNRS
Copyright_xml – notice: 2013 John Wiley & Sons Ltd/CNRS
– notice: 2015 INIST-CNRS
– notice: 2013 John Wiley & Sons Ltd/CNRS.
– notice: Copyright © 2013 John Wiley & Sons Ltd/CNRS
DBID FBQ
BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SN
7SS
7U9
C1K
H94
M7N
7ST
7U6
SOI
7X8
DOI 10.1111/ele.12167
DatabaseName AGRIS
Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Ecology Abstracts
Entomology Abstracts (Full archive)
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environment Abstracts
Sustainability Science Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Entomology Abstracts
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
Ecology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environmental Sciences and Pollution Management
Environment Abstracts
Sustainability Science Abstracts
MEDLINE - Academic
DatabaseTitleList Ecology Abstracts
CrossRef
MEDLINE - Academic

MEDLINE
Entomology Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1461-0248
Editor van der Putten, Wim
Editor_xml – sequence: 1
  givenname: Wim
  surname: van der Putten
  fullname: van der Putten, Wim
– sequence: 7
  givenname: Wim
  surname: van der Putten
  fullname: van der Putten, Wim
EndPage 1293
ExternalDocumentID 3069306691
10_1111_ele_12167
23953244
27763198
ELE12167
ark_67375_WNG_WLQ9M5QT_6
US201400004345
Genre letter
Letter
Research Support, Non-U.S. Gov't
Feature
GrantInformation_xml – fundername: Natural Environment Research Council
  funderid: NE/E011594/1
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABTAH
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOD
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
N~3
O66
O9-
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAPBV
IPNFZ
IQODW
PQEST
UMP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SN
7SS
7U9
C1K
H94
M7N
7ST
7U6
SOI
7X8
ID FETCH-LOGICAL-c5137-61a309f4a9254525b6cac146024adea832a72774085b81bf740f8dd61197ca5c3
IEDL.DBID DR2
ISSN 1461-023X
IngestDate Fri Aug 16 07:19:48 EDT 2024
Fri Aug 16 07:15:13 EDT 2024
Thu Oct 10 18:56:02 EDT 2024
Fri Aug 23 03:22:10 EDT 2024
Sat Sep 28 07:55:25 EDT 2024
Tue Sep 20 21:47:10 EDT 2022
Sat Aug 24 00:41:16 EDT 2024
Wed Oct 30 09:48:35 EDT 2024
Wed Dec 27 19:07:44 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Warming
Floristic composition
Plant community
CH
plant community composition
Carbon dioxide
peatland
CO
Peat bog
N
O
Carbon cycle
Greenhouse gas
plant functional group
Nitrogen protoxide
Functional group
CO 2
CH 4
warming
N2O
greenhouse gas
Language English
License CC BY 4.0
2013 John Wiley & Sons Ltd/CNRS.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5137-61a309f4a9254525b6cac146024adea832a72774085b81bf740f8dd61197ca5c3
Notes http://dx.doi.org/10.1111/ele.12167
 
ArticleID:ELE12167
ark:/67375/WNG-WLQ9M5QT-6
istex:57712EBD2C6B9221DFC17EBE0FA35AED288E3013
Natural Environment Research Council - No. NE/E011594/1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
SourceType-Other Sources-1
ObjectType-Article-2
content type line 63
ObjectType-Correspondence-1
OpenAccessLink http://nora.nerc.ac.uk/id/eprint/503123/1/N503123PP.pdf
PMID 23953244
PQID 1431582274
PQPubID 32390
PageCount 9
ParticipantIDs proquest_miscellaneous_1516397666
proquest_miscellaneous_1439225740
proquest_journals_1431582274
crossref_primary_10_1111_ele_12167
pubmed_primary_23953244
pascalfrancis_primary_27763198
wiley_primary_10_1111_ele_12167_ELE12167
istex_primary_ark_67375_WNG_WLQ9M5QT_6
fao_agris_US201400004345
PublicationCentury 2000
PublicationDate October 2013
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: October 2013
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
– name: Paris
PublicationTitle Ecology letters
PublicationTitleAlternate Ecol Lett
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References Briones, M.J.I., Garnett, M.H. & Ineson, P. (2010). Soil biology and warming play a key role in the release of 'old C' from organic soils. Soil Biol. Biochem., 42, 960-967.
Kolb, S. & Horn, M.A. (2012). Microbial CH4 and N2O consumption in acidic wetlands. Front. Microbiol., 3, Art. 78. DOI: 10.3389/fmicb.2012.00078
Bardgett, R.D., Freeman, C. & Ostle, N.J. (2008). Microbial contributions to climate change through carbon cycle feedbacks. ISME J., 2, 805-814.
Wardle, D.A. & Zackrisson, O. (2005). Effects of species and functional group loss on island ecosystem properties. Nature, 435, 806-810.
Craine, J.M., Fierer, N. & McLauchlan, K.K. (2010). Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nat. Geosci., 3, 854-857.
Hattenschwiler, S. & Vitousek, P.M. (2000). The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol. Evol., 15, 238-243.
Walker, M.D., Wahren, C.H., Hollister, R.D., Henry, G.H.R., Ahlquist, L.E., Alatalo, J.M. et al. (2006). Plant community responses to experimental warming across the tundra biome. Proc. Natl Acad. Sci. USA, 103, 1342-1346.
Freeman, C., Ostle, N. & Kang, H. (2001). An enzymic 'latch' on a global carbon store - A shortage of oxygen locks up carbon in peatlands by restraining a single enzyme. Nature, 409, 149-149.
McNamara, N.P., Plant, T., Oakley, S., Ward, S., Wood, C. & Ostle, N. (2008). Gully hotspot contribution to landscape methane (CH4) and carbon dioxide (CO2) fluxes in a northern peatland. Sci. Total Environ., 404, 354-360.
Kardol, P., Cregger, M.A., Campany, C.E. & Classen, A.T. (2010). Soil ecosystem functioning under climate change: plant species and community effects. Ecology, 91, 767-781.
Orwin, K.H., Kirschbaum, M.U.F., St John, M.G. & Dickie, I.A. (2011). Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecol. Lett., 14, 493-502.
Bardgett, R.D., Manning, P., Morriën, E. & De Vries, F.T. (2013). Hierarchical responses of plant-soil interactions to climate change: consequences for the global carbon cycle. J. Ecol., 101, 334-343.
Ward, S.E., Ostle, N.J., Oakley, S., Quirk, H., Stott, A., Henrys, P.A. et al. (2012). Fire Accelerates Assimilation and Transfer of Photosynthetic Carbon from Plants to Soil Microbes in a Northern Peatland. Ecosystems, 15, 1245-1257.
Fenner, N. & Freeman, C. (2011). Drought-induced carbon loss in peatlands. Nat. Geosci., 4, 895-900.
Repo, M.E., Susiluoto, S., Lind, S.E., Jokinen, S., Elsakov, V., Biasi, C. et al. (2009). Large N2O emissions from cryoturbated peat soil in tundra. Nat. Geosci., 2, 189-192.
Gray, A., Levy, P.E., Cooper, M.D.A., Jones, T., Gaiawyn, J., Leeson, S.R. et al. (2013). Methane indicator values for peatlands: a comparison of species and functional groups. Glob. Change Biol., 19, 1141-1150.
Stevens, C.J., Dupre, C., Dorland, E., Gaudnik, C., Gowing, D.J.G., Bleeker, A. et al. (2010). Nitrogen deposition threatens species richness of grasslands across Europe. Environ. Pollut., 158, 2940-2945.
Ward, S.E., Bardgett, R.D., McNamara, N.P. & Ostle, N.J. (2009). Plant functional group identity influences short-term peatland ecosystem carbon flux: evidence from a plant removal experiment. Funct. Ecol., 23, 454-462.
Hooper, D.U., Chapin, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S. et al. (2005). Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr., 75, 3-35.
Drewer, J., Lohila, A., Aurela, M., Laurila, T., Minkkinen, K., Penttila, T. et al. (2010). Comparison of greenhouse gas fluxes and nitrogen budgets from an ombotrophic bog in Scotland and a minerotrophic sedge fen in Finland. Eur. J. Soil Sci., 61, 640-650.
Levy, P.E., Burden, A., Cooper, M.D.A., Dinsmore, K.J., Drewer, J., Evans, C. et al. (2012). Methane emissions from soils: synthesis and analysis of a large UK data set. Glob. Change Biol., 18, 1657-1669.
Dorrepaal, E., Toet, S., van Logtestijn, R.S.P., Swart, E., van de Weg, M.J., Callaghan, T.V. et al. (2009). Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature, 460, 616-619.
Martikainen, P.J., Nykanen, H., Crill, P. & Silvola, J. (1993). Effect of a lowered water table on nitrous oxide fluxes from northern peatlands. Nature, 366, 51-53.
Kim, S.-Y., Freeman, C., Fenner, N. & Kang, H. (2012). Functional and structural responses of bacterial and methanogen communities to 3-year warming incubation in different depths of peat mire. Appl. Soil Ecol., 57, 23-30.
IPCC (2007). Climate change Reports. WGI, II, III.
Roulet, N.T., Lafleur, P.M., Richard, P.J.H., Moore, T.R., Humphreys, E.R. & Bubier, J. (2007). Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Glob. Change Biol., 13, 397-411.
Green, S.M. & Baird, A.J. (2012). A mesocosm study of the role of the sedge Eriophorum angustifolium in the efflux of methane-including that due to episodic ebullition-from peatlands. Plant Soil, 351, 207-218.
Reay, D.S., Davidson, E.A., Smith, K.A., Smith, P., Melillo, J.M., Dentener, F. et al. (2012). Global agriculture and nitrous oxide emissions. Nat. Clim. Change, 2, 410-416.
Strack, M., Waller, M.F. & Waddington, J.M. (2006). Sedge succession and peatland methane dynamics: A potential feedback to climate change. Ecosystems, 9, 278-287.
Tilman, D., Reich, P.B. & Isbell, F. (2012). Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. Proc. Natl Acad. Sci. USA, 109, 10394-10397.
Thuiller, W., Lavorel, S., Araujo, M.B., Sykes, M.T. & Prentice, I.C. (2005). Climate change threats to plant diversity in Europe. Proc. Natl Acad. Sci. USA, 102, 8245-8250.
Ward, S.E., Bardgett, R.D., McNamara, N.P., Adamson, J.K. & Ostle, N.J. (2007). Long-term consequences of grazing and burning on northern peatland carbon dynamics. Ecosystems, 10, 1069-1083.
Lai, D.Y.F. (2009). Methane Dynamics in Northern Peatlands: A Review. Pedosphere, 19, 409-421.
Marion, G.M., Henry, G.H.R., Freckman, D.W., Johnstone, J., Jones, G., Jones, M.H. et al. (1997). Open-top designs for manipulating field temperature in high-latitude ecosystems. Glob. Change Biol., 3, 20-32.
Gallego-Sala, A.V. & Prentice, C.I. (2013). Blanket peat biome endangered by climate change. Nat. Clim. Change, 3, 152-155.
Dise, N.B. (2009). Peatland Response to Global Change. Science, 326, 810-811.
Bellisario, L.M., Bubier, J.L., Moore, T.R. & Chanton, J.P. (1999). Controls on CH4 emissions from a northern peatland. Global Biogeochem. Cycles, 13, 81-91.
Hooper, D.U., Adair, E.C., Cardinale, B.J., Byrnes, J.E.K., Hungate, B.A., Matulich, K.L. et al. (2012). A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature, 486, 105-129.
Read, D.J., Leake, J.R. & Perez-Moreno, J. (2004). Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can. J. Bot., 82, 1243-1263.
van Winden, J.F., Reichart, G.-J., McNamara, N.P., Benthien, A. & Damste, J.S.S. (2012). Temperature-induced increase in methane release from peat bogs: a mesocosm experiment. PLoS ONE, 7, e39614.
Diaz, S., Symstad, A.J., Chapin, F.S., Wardle, D.A. & Huenneke, L.F. (2003). Functional diversity revealed by removal experiments. Trends Ecol. Evol., 18, 140-146.
De Deyn, G.B., Cornelissen, J.H.C. & Bardgett, R.D. (2008). Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol. Lett., 11, 516-531.
2009; 23
2013; 3
2012; 486
2004; 82
2006; 9
2005; 435
2009
2013; 101
2007
2008; 404
2001; 409
2012; 18
2008; 11
2003; 18
2011; 14
2012; 15
2011; 4
2008; 2
2012; 57
1993; 366
2007; 10
1997; 3
2007; 13
2010; 61
2012; 109
1999
2013; 19
2010; 42
2012; 351
2012; 2
2012; 3
2000; 15
2005; 102
2010; 158
1999; 13
2005; 75
2009; 460
2010; 3
2010; 91
2009; 19
2009; 2
2012; 7
2006; 103
2009; 326
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
Holland E.A. (e_1_2_7_19_1) 1999
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
IPCC (e_1_2_7_23_1) 2007
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 91
  start-page: 767
  year: 2010
  end-page: 781
  article-title: Soil ecosystem functioning under climate change: plant species and community effects
  publication-title: Ecology
– start-page: 1
  year: 2009
  end-page: 3
– volume: 13
  start-page: 397
  year: 2007
  end-page: 411
  article-title: Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland
  publication-title: Glob. Change Biol.
– volume: 158
  start-page: 2940
  year: 2010
  end-page: 2945
  article-title: Nitrogen deposition threatens species richness of grasslands across Europe
  publication-title: Environ. Pollut.
– volume: 15
  start-page: 238
  year: 2000
  end-page: 243
  article-title: The role of polyphenols in terrestrial ecosystem nutrient cycling
  publication-title: Trends Ecol. Evol.
– volume: 3
  year: 2012
  article-title: Microbial CH and N O consumption in acidic wetlands
  publication-title: Front. Microbiol.
– volume: 18
  start-page: 140
  year: 2003
  end-page: 146
  article-title: Functional diversity revealed by removal experiments
  publication-title: Trends Ecol. Evol.
– volume: 23
  start-page: 454
  year: 2009
  end-page: 462
  article-title: Plant functional group identity influences short‐term peatland ecosystem carbon flux: evidence from a plant removal experiment
  publication-title: Funct. Ecol.
– year: 2007
– volume: 3
  start-page: 854
  year: 2010
  end-page: 857
  article-title: Widespread coupling between the rate and temperature sensitivity of organic matter decay
  publication-title: Nat. Geosci.
– volume: 460
  start-page: 616
  year: 2009
  end-page: 619
  article-title: Carbon respiration from subsurface peat accelerated by climate warming in the subarctic
  publication-title: Nature
– volume: 19
  start-page: 409
  year: 2009
  end-page: 421
  article-title: Methane Dynamics in Northern Peatlands: A Review
  publication-title: Pedosphere
– volume: 409
  start-page: 149
  year: 2001
  end-page: 149
  article-title: An enzymic ‘latch’ on a global carbon store ‐ A shortage of oxygen locks up carbon in peatlands by restraining a single enzyme
  publication-title: Nature
– volume: 19
  start-page: 1141
  year: 2013
  end-page: 1150
  article-title: Methane indicator values for peatlands: a comparison of species and functional groups
  publication-title: Glob. Change Biol.
– volume: 109
  start-page: 10394
  year: 2012
  end-page: 10397
  article-title: Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory
  publication-title: Proc. Natl Acad. Sci. USA
– start-page: 185
  year: 1999
  end-page: 201
– volume: 326
  start-page: 810
  year: 2009
  end-page: 811
  article-title: Peatland Response to Global Change
  publication-title: Science
– volume: 18
  start-page: 1657
  year: 2012
  end-page: 1669
  article-title: Methane emissions from soils: synthesis and analysis of a large UK data set
  publication-title: Glob. Change Biol.
– volume: 82
  start-page: 1243
  year: 2004
  end-page: 1263
  article-title: Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes
  publication-title: Can. J. Bot.
– volume: 4
  start-page: 895
  year: 2011
  end-page: 900
  article-title: Drought‐induced carbon loss in peatlands
  publication-title: Nat. Geosci.
– volume: 75
  start-page: 3
  year: 2005
  end-page: 35
  article-title: Effects of biodiversity on ecosystem functioning: A consensus of current knowledge
  publication-title: Ecol. Monogr.
– volume: 61
  start-page: 640
  year: 2010
  end-page: 650
  article-title: Comparison of greenhouse gas fluxes and nitrogen budgets from an ombotrophic bog in Scotland and a minerotrophic sedge fen in Finland
  publication-title: Eur. J. Soil Sci.
– volume: 3
  start-page: 152
  year: 2013
  end-page: 155
  article-title: Blanket peat biome endangered by climate change
  publication-title: Nat. Clim. Change
– volume: 103
  start-page: 1342
  year: 2006
  end-page: 1346
  article-title: Plant community responses to experimental warming across the tundra biome
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 9
  start-page: 278
  year: 2006
  end-page: 287
  article-title: Sedge succession and peatland methane dynamics: A potential feedback to climate change
  publication-title: Ecosystems
– volume: 486
  start-page: 105
  year: 2012
  end-page: 129
  article-title: A global synthesis reveals biodiversity loss as a major driver of ecosystem change
  publication-title: Nature
– volume: 351
  start-page: 207
  year: 2012
  end-page: 218
  article-title: A mesocosm study of the role of the sedge Eriophorum angustifolium in the efflux of methane‐including that due to episodic ebullition‐from peatlands
  publication-title: Plant Soil
– volume: 3
  start-page: 20
  year: 1997
  end-page: 32
  article-title: Open‐top designs for manipulating field temperature in high‐latitude ecosystems
  publication-title: Glob. Change Biol.
– volume: 101
  start-page: 334
  year: 2013
  end-page: 343
  article-title: Hierarchical responses of plant–soil interactions to climate change: consequences for the global carbon cycle
  publication-title: J. Ecol.
– volume: 42
  start-page: 960
  year: 2010
  end-page: 967
  article-title: Soil biology and warming play a key role in the release of ‘old C’ from organic soils
  publication-title: Soil Biol. Biochem.
– volume: 366
  start-page: 51
  year: 1993
  end-page: 53
  article-title: Effect of a lowered water table on nitrous oxide fluxes from northern peatlands
  publication-title: Nature
– volume: 10
  start-page: 1069
  year: 2007
  end-page: 1083
  article-title: Long‐term consequences of grazing and burning on northern peatland carbon dynamics
  publication-title: Ecosystems
– volume: 13
  start-page: 81
  year: 1999
  end-page: 91
  article-title: Controls on CH emissions from a northern peatland
  publication-title: Global Biogeochem. Cycles
– start-page: 187
  year: 2009
  end-page: 203
– volume: 14
  start-page: 493
  year: 2011
  end-page: 502
  article-title: Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model‐based assessment
  publication-title: Ecol. Lett.
– volume: 2
  start-page: 189
  year: 2009
  end-page: 192
  article-title: Large N2O emissions from cryoturbated peat soil in tundra
  publication-title: Nat. Geosci.
– volume: 102
  start-page: 8245
  year: 2005
  end-page: 8250
  article-title: Climate change threats to plant diversity in Europe
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 435
  start-page: 806
  year: 2005
  end-page: 810
  article-title: Effects of species and functional group loss on island ecosystem properties
  publication-title: Nature
– volume: 2
  start-page: 805
  year: 2008
  end-page: 814
  article-title: Microbial contributions to climate change through carbon cycle feedbacks
  publication-title: ISME J.
– volume: 2
  start-page: 410
  year: 2012
  end-page: 416
  article-title: Global agriculture and nitrous oxide emissions
  publication-title: Nat. Clim. Change
– volume: 57
  start-page: 23
  year: 2012
  end-page: 30
  article-title: Functional and structural responses of bacterial and methanogen communities to 3‐year warming incubation in different depths of peat mire
  publication-title: Appl. Soil Ecol.
– volume: 11
  start-page: 516
  year: 2008
  end-page: 531
  article-title: Plant functional traits and soil carbon sequestration in contrasting biomes
  publication-title: Ecol. Lett.
– volume: 404
  start-page: 354
  year: 2008
  end-page: 360
  article-title: Gully hotspot contribution to landscape methane (CH ) and carbon dioxide (CO ) fluxes in a northern peatland
  publication-title: Sci. Total Environ.
– volume: 7
  start-page: e39614.
  year: 2012
  article-title: Temperature‐induced increase in methane release from peat bogs: a mesocosm experiment
  publication-title: PLoS ONE
– volume: 15
  start-page: 1245
  year: 2012
  end-page: 1257
  article-title: Fire Accelerates Assimilation and Transfer of Photosynthetic Carbon from Plants to Soil Microbes in a Northern Peatland
  publication-title: Ecosystems
– ident: e_1_2_7_11_1
  doi: 10.1038/nature08216
– ident: e_1_2_7_6_1
  doi: 10.1016/j.soilbio.2010.02.013
– ident: e_1_2_7_45_1
  doi: 10.1038/nature03611
– ident: e_1_2_7_37_1
  doi: 10.1016/j.envpol.2010.06.006
– ident: e_1_2_7_29_1
  doi: 10.1111/j.1365-2486.1997.gcb136.x
– ident: e_1_2_7_13_1
  doi: 10.1038/ngeo1323
– start-page: 185
  volume-title: Standard soil methods for long‐term ecological research
  year: 1999
  ident: e_1_2_7_19_1
  doi: 10.1093/oso/9780195120837.003.0010
  contributor:
    fullname: Holland E.A.
– ident: e_1_2_7_2_1
  doi: 10.1029/2008GM000875
– ident: e_1_2_7_10_1
  doi: 10.1126/science.1174268
– ident: e_1_2_7_5_1
  doi: 10.1029/1998GB900021
– ident: e_1_2_7_22_1
  doi: 10.1029/2008GM000828
– ident: e_1_2_7_42_1
  doi: 10.1007/s10021-007-9080-5
– ident: e_1_2_7_28_1
  doi: 10.1111/j.1365-2486.2011.02616.x
– ident: e_1_2_7_9_1
  doi: 10.1016/S0169-5347(03)00007-7
– ident: e_1_2_7_15_1
  doi: 10.1038/nclimate1672
– ident: e_1_2_7_36_1
  doi: 10.1111/j.1365-2486.2006.01292.x
– ident: e_1_2_7_38_1
  doi: 10.1007/s10021-005-0070-1
– ident: e_1_2_7_17_1
  doi: 10.1007/s11104-011-0945-1
– ident: e_1_2_7_31_1
  doi: 10.1016/j.scitotenv.2008.03.015
– ident: e_1_2_7_8_1
  doi: 10.1111/j.1461-0248.2008.01164.x
– ident: e_1_2_7_43_1
  doi: 10.1111/j.1365-2435.2008.01521.x
– ident: e_1_2_7_3_1
  doi: 10.1038/ismej.2008.58
– ident: e_1_2_7_21_1
  doi: 10.1038/nature11118
– ident: e_1_2_7_24_1
  doi: 10.1890/09-0135.1
– ident: e_1_2_7_26_1
  doi: 10.3389/fmicb.2012.00078
– ident: e_1_2_7_4_1
  doi: 10.1111/1365-2745.12043
– ident: e_1_2_7_12_1
  doi: 10.1111/j.1365-2389.2010.01267.x
– ident: e_1_2_7_35_1
  doi: 10.1038/ngeo434
– ident: e_1_2_7_18_1
  doi: 10.1016/S0169-5347(00)01861-9
– ident: e_1_2_7_33_1
  doi: 10.1139/b04-123
– volume-title: Climate change Reports
  year: 2007
  ident: e_1_2_7_23_1
  contributor:
    fullname: IPCC
– ident: e_1_2_7_27_1
  doi: 10.1016/S1002-0160(09)00003-4
– ident: e_1_2_7_46_1
  doi: 10.1371/journal.pone.0039614
– ident: e_1_2_7_16_1
  doi: 10.1111/gcb.12120
– ident: e_1_2_7_14_1
  doi: 10.1038/35051650
– ident: e_1_2_7_34_1
  doi: 10.1038/nclimate1458
– ident: e_1_2_7_7_1
  doi: 10.1038/ngeo1009
– ident: e_1_2_7_20_1
  doi: 10.1890/04-0922
– ident: e_1_2_7_41_1
  doi: 10.1073/pnas.0503198103
– ident: e_1_2_7_32_1
  doi: 10.1111/j.1461-0248.2011.01611.x
– ident: e_1_2_7_44_1
  doi: 10.1007/s10021-012-9581-8
– ident: e_1_2_7_39_1
  doi: 10.1073/pnas.0409902102
– ident: e_1_2_7_25_1
  doi: 10.1016/j.apsoil.2012.02.015
– ident: e_1_2_7_40_1
  doi: 10.1073/pnas.1208240109
– ident: e_1_2_7_30_1
  doi: 10.1038/366051a0
SSID ssj0012971
Score 2.5513065
Snippet Understanding the effects of warming on greenhouse gas feedbacks to climate change represents a major global challenge. Most research has focused on direct...
Abstract Understanding the effects of warming on greenhouse gas feedbacks to climate change represents a major global challenge. Most research has focused on...
SourceID proquest
crossref
pubmed
pascalfrancis
wiley
istex
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 1285
SubjectTerms Animal and plant ecology
Animal, plant and microbial ecology
Biodiversity
Biological and medical sciences
botanical composition
Carbon cycle
carbon dioxide
Carbon Dioxide - metabolism
Carbon Sequestration
carbon sinks
CH 4
CH4
Climate change
CO 2
CO2
Fundamental and applied biological sciences. Psychology
General aspects
Global Warming
greenhouse gas
greenhouse gas emissions
Greenhouse gases
Methane - metabolism
N2O
peatland
Peatlands
plant communities
plant community composition
plant functional group
Plants - metabolism
Poaceae
Soil
Vegetation
warming
Title Warming effects on greenhouse gas fluxes in peatlands are modulated by vegetation composition
URI https://api.istex.fr/ark:/67375/WNG-WLQ9M5QT-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fele.12167
https://www.ncbi.nlm.nih.gov/pubmed/23953244
https://www.proquest.com/docview/1431582274
https://search.proquest.com/docview/1439225740
https://search.proquest.com/docview/1516397666
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qQfDFb220llVEfElpssnmgk-iV4u0hWqPuwclzG42qVSTcrmTnn-9M5sPPVER3xayS7LztTPZ38wAPN0LbahtIf1AJcaPtEY_1Qr9hDOvVRAk0vL_jqNjdTCJ3s7i2Qa86HNh2voQww831gxnr1nBUTc_KTlZZS6NoDiTPJAJw7levxtKR9Ex1gZb9EKfzqVZV1WIUTzDyrWz6EqBNXmoTNxLRkhiQ0Qq2u4Wv3M_171Zdxzt34AP_UZaFMr57nKhd823X2o8_udOb8L1zk0VL1u5ugUbtroNV9vGlSsajV2x69Ud-DhFRtOUogOGiLoSJWN5zuplY0WJjSg-Ly9tIz5V4oIMv8stFji34kudc-8wmwu9El9t2QEfBaPcOyjZXZjsj09fHfhdywbfxIFLOES5lxYRpiE3L4-1MmiIB-QJYG6RzAeSw5RwWTVNDnNBo2KU54ovMw3GRt6Dzaqu7BYIjSOD5K-OwlxGlhxVW6AJTV7EMsy1kh486ZmXXbSVObI-oiGKZY5iHmwRWzMsyWJmk_chx5Pu9jOKPXjmeD0sxvk5o9ySOJsev8mmhyfpUXxymikPdtaEYVhAG1FkwUYebPfSkXUWoKGQSvK3U9DvwePhMekuX8hgZYkJPCcle0pE-MucOOC7V4oyPbjfSt6PD5ApESOiNzx38vNnOmTjw7EbPPj3qQ_hWsi9PxxycRs2F_OlfUQe2ELvOFX7DmtNJ7I
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQwhe-B4LjGEQQrxkWuLEaSReEHQUaCsNWrUvk2UnTkCDZGpatPLXc-d8QBEgxJul2HJ8X76zf74DeHLkG1-bjLueiBI30Fq5sRbKjejltfC8iBs67xiNxWAavJ2H8y143r6FqfNDdAdupBnWXpOC04H0T1qOZplyI4hoGy6hunMq3PDqfZc8CjeyOtzCKV3cmeZNXiHC8XRDN3aj7UyV6KMSeS8II6kqJFNW17f4nQO66c_aDen4Opy2S6lxKGeHq6U-TL79kuXxf9d6A641nip7UYvWTdgyxS24XNeuXGOrb_Ndr2_D6UwRoCZnDTaElQXLCc7zsVxVhuWqYtnn1YWp2KeCnaPtt8-LmVoY9qVMqXyYSZles68mb7CPjIDuDZrsDkyP-5OXA7ep2uAmoWffHCp-FGeBin2qXx5qkagEmYDOgEqNQgui0GeKKLOaRp85w1bWS1NB95mJChO-CztFWZg9YFr1EoUua89PeWDQVzWZSvwkzULup1pwBx633JPndXIO2QY1SDFpKebAHvJVqhyNppx-8CmktBegQejAU8vsbrBanBHQLQrlbPxazoYn8Sg8mUjhwMGGNHQDcCECjVjPgf1WPGRjBCqMqjj9O8b9DjzqPqP60p2MKgwygfrEaFKRCH_pE3p0_YqBpgN3a9H78QM8RmIEOMMzK0B_poPsD_u2ce_fuz6EK4PJaCiHb8bv7sNVn0qBWCDjPuwsFyvzAB2ypT6wevcdyZgryg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQyBe-IYFxjAIIV4yLV9OI54QtAzoKgar2geQZTtOmDaSqmnRyl_PnfMBRYAQb5ZiK_H57vy7-Oc7gMf7vvGVyQLX47F2Q6Wkmygu3ZhuXnPPiwND_zsOR_xgHL6ZRtMNeNbehanzQ3Q_3MgyrL8mA5-l2U9Gjl6ZUiPweBMuhByRLyGi913uKNzH6mgL3-jixjRt0goRjacburYZbWayRIhK0j0niqSsUEpZXd7id_hzHc7a_WhwFT62M6lpKKd7y4Xa099-SfL4n1O9BlcanMqe14p1HTZMcQMu1pUrV9jq22zXq5vwaSKJTpOzhhnCyoLlROb5XC4rw3JZsexseW4qdlKwGXp-e7mYyblhX8qUioeZlKkV-2ryhvnIiObecMluwXjQP35x4DY1G1wdefbGoQz2kyyUiU_VyyPFtdS4BggFZGok-g-JiCmmvGoKEXOGrayXppxOM7WMdHAbtoqyMNvAlOxpiYC156dBaBCpmkxqX6dZFPip4oEDj9rFE7M6NYdoQxqUmLASc2Abl1XIHF2mGH_wKaC0x59h5MATu9bdYDk_JZpbHInJ6JWYDI-Sw-joWHAHdteUoRuAE-HownoO7LTaIRoXUGFMFdC3Y9TvwMPuMRovncjIwuAiUJ8EHSoK4S99Io8OXzHMdOBOrXk_PiBIUBghvuGp1Z8_y0H0h33buPvvXR_ApXcvB2L4evT2Hlz2qQ6IZTHuwNZivjT3EY0t1K61uu8ewyp5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Warming+effects+on+greenhouse+gas+fluxes+in+peatlands+are+modulated+by+vegetation+composition&rft.jtitle=Ecology+letters&rft.au=Ward%2C+Susan+E&rft.au=Ostle%2C+Nicholas+J&rft.au=Oakley%2C+Simon&rft.au=Quirk%2C+Helen&rft.date=2013-10-01&rft.issn=1461-023X&rft.eissn=1461-0248&rft.volume=16&rft.issue=10&rft.spage=1285&rft.epage=1293&rft_id=info:doi/10.1111%2Fele.12167&rft.externalDocID=US201400004345
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon