Warming effects on greenhouse gas fluxes in peatlands are modulated by vegetation composition
Understanding the effects of warming on greenhouse gas feedbacks to climate change represents a major global challenge. Most research has focused on direct effects of warming, without considering how concurrent changes in plant communities may alter such effects. Here, we combined vegetation manipul...
Saved in:
Published in | Ecology letters Vol. 16; no. 10; pp. 1285 - 1293 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.10.2013
Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Understanding the effects of warming on greenhouse gas feedbacks to climate change represents a major global challenge. Most research has focused on direct effects of warming, without considering how concurrent changes in plant communities may alter such effects. Here, we combined vegetation manipulations with warming to investigate their interactive effects on greenhouse gas emissions from peatland. We found that although warming consistently increased respiration, the effect on net ecosystem CO₂ exchange depended on vegetation composition. The greatest increase in CO₂ sink strength after warming was when shrubs were present, and the greatest decrease when graminoids were present. CH₄ was more strongly controlled by vegetation composition than by warming, with largest emissions from graminoid communities. Our results show that plant community composition is a significant modulator of greenhouse gas emissions and their response to warming, and suggest that vegetation change could alter peatland carbon sink strength under future climate change. |
---|---|
AbstractList | Understanding the effects of warming on greenhouse gas feedbacks to climate change represents a major global challenge. Most research has focused on direct effects of warming, without considering how concurrent changes in plant communities may alter such effects. Here, we combined vegetation manipulations with warming to investigate their interactive effects on greenhouse gas emissions from peatland. We found that although warming consistently increased respiration, the effect on net ecosystem CO2 exchange depended on vegetation composition. The greatest increase in CO2 sink strength after warming was when shrubs were present, and the greatest decrease when graminoids were present. CH4 was more strongly controlled by vegetation composition than by warming, with largest emissions from graminoid communities. Our results show that plant community composition is a significant modulator of greenhouse gas emissions and their response to warming, and suggest that vegetation change could alter peatland carbon sink strength under future climate change. Abstract Understanding the effects of warming on greenhouse gas feedbacks to climate change represents a major global challenge. Most research has focused on direct effects of warming, without considering how concurrent changes in plant communities may alter such effects. Here, we combined vegetation manipulations with warming to investigate their interactive effects on greenhouse gas emissions from peatland. We found that although warming consistently increased respiration, the effect on net ecosystem CO 2 exchange depended on vegetation composition. The greatest increase in CO 2 sink strength after warming was when shrubs were present, and the greatest decrease when graminoids were present. CH 4 was more strongly controlled by vegetation composition than by warming, with largest emissions from graminoid communities. Our results show that plant community composition is a significant modulator of greenhouse gas emissions and their response to warming, and suggest that vegetation change could alter peatland carbon sink strength under future climate change. Understanding the effects of warming on greenhouse gas feedbacks to climate change represents a major global challenge. Most research has focused on direct effects of warming, without considering how concurrent changes in plant communities may alter such effects. Here, we combined vegetation manipulations with warming to investigate their interactive effects on greenhouse gas emissions from peatland. We found that although warming consistently increased respiration, the effect on net ecosystem CO₂ exchange depended on vegetation composition. The greatest increase in CO₂ sink strength after warming was when shrubs were present, and the greatest decrease when graminoids were present. CH₄ was more strongly controlled by vegetation composition than by warming, with largest emissions from graminoid communities. Our results show that plant community composition is a significant modulator of greenhouse gas emissions and their response to warming, and suggest that vegetation change could alter peatland carbon sink strength under future climate change. Understanding the effects of warming on greenhouse gas feedbacks to climate change represents a major global challenge. Most research has focused on direct effects of warming, without considering how concurrent changes in plant communities may alter such effects. Here, we combined vegetation manipulations with warming to investigate their interactive effects on greenhouse gas emissions from peatland. We found that although warming consistently increased respiration, the effect on net ecosystem CO2 exchange depended on vegetation composition. The greatest increase in CO2 sink strength after warming was when shrubs were present, and the greatest decrease when graminoids were present. CH4 was more strongly controlled by vegetation composition than by warming, with largest emissions from graminoid communities. Our results show that plant community composition is a significant modulator of greenhouse gas emissions and their response to warming, and suggest that vegetation change could alter peatland carbon sink strength under future climate change. [PUBLICATION ABSTRACT] |
Author | Putten, Wim Ostle, Nicholas J Henrys, Peter A Bardgett, Richard D Quirk, Helen Oakley, Simon Ward, Susan E |
Author_xml | – sequence: 1 fullname: Ward, Susan E – sequence: 2 fullname: Ostle, Nicholas J – sequence: 3 fullname: Oakley, Simon – sequence: 4 fullname: Quirk, Helen – sequence: 5 fullname: Henrys, Peter A – sequence: 6 fullname: Bardgett, Richard D – sequence: 7 fullname: Putten, Wim |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27763198$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23953244$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URD_gwB8ASwgJDmnjrzg5VtVSkBZQRavlgqyJMwkpSbzYCXT_PV6yXSQkxFw80jwz74zfY3IwuAEJecrSUxbjDDs8ZZxl-gE5YjJjScplfrDPxedDchzCbZoyXmj2iBxyUSjBpTwiX1bg-3ZoKNY12jFQN9DGIw5f3RSQNhBo3U13GGg70DXC2MFQBQoeae-qqYMRK1pu6A9scISxje3W9WsX2m3-mDysoQv4ZPeekJs3i-uLt8ny4-W7i_NlYhUTOskYiLSoJRRcScVVmVmwcfl4BlQIueCgudYyzVWZs7KOWZ1XVcZYoS0oK07Iq3nu2rvvE4bR9G2w2MVlMd5hmGKZKHSWZf9HpSg4V1Eioi_-Qm_d5Id4yJZiKudcy0i9ninrXQgea7P2bQ9-Y1hqtvaYaI_5bU9kn-0mTmWP1Z689yMCL3cABAtd7WGwbfjDaZ0JVuSRO5u5n22Hm38rmsVycS-dzB1tGPFu3wH-m4lVrczqw6VZLa-K9-rq2mz_6fnM1-AMND5ucfOJp0ymMaSQSvwCFom-tQ |
CitedBy_id | crossref_primary_10_1007_s11104_015_2710_3 crossref_primary_10_1016_j_jenvman_2017_08_017 crossref_primary_10_1016_j_agrformet_2017_12_248 crossref_primary_10_1007_s10021_015_9907_4 crossref_primary_10_1007_s13157_015_0714_7 crossref_primary_10_1111_nph_18798 crossref_primary_10_1016_j_aeaoa_2022_100175 crossref_primary_10_1016_j_scitotenv_2022_155352 crossref_primary_10_1016_j_apsoil_2023_104831 crossref_primary_10_1016_j_ecolmodel_2015_07_008 crossref_primary_10_1002_ece3_5722 crossref_primary_10_1038_nclimate2643 crossref_primary_10_1111_1365_2745_12413 crossref_primary_10_1016_j_scitotenv_2014_10_037 crossref_primary_10_1111_ejss_13050 crossref_primary_10_1111_gcb_12902 crossref_primary_10_1016_j_agrformet_2016_01_039 crossref_primary_10_1016_j_ecoleng_2017_06_047 crossref_primary_10_5194_gmd_9_2639_2016 crossref_primary_10_5194_bg_18_6133_2021 crossref_primary_10_5194_bg_20_4069_2023 crossref_primary_10_1016_j_jes_2018_08_003 crossref_primary_10_1093_aobpla_plu035 crossref_primary_10_5194_bg_17_727_2020 crossref_primary_10_1016_j_scitotenv_2019_133675 crossref_primary_10_1016_j_yqres_2015_09_002 crossref_primary_10_1111_ejss_13048 crossref_primary_10_3389_fmicb_2021_802213 crossref_primary_10_5194_bg_12_125_2015 crossref_primary_10_1016_j_ecolind_2015_11_035 crossref_primary_10_3389_sjss_2023_11368 crossref_primary_10_1007_s10021_019_00344_2 crossref_primary_10_1016_j_ecoleng_2017_05_011 crossref_primary_10_1088_1748_9326_aaae74 crossref_primary_10_1016_j_catena_2021_105356 crossref_primary_10_5194_bg_18_2449_2021 crossref_primary_10_3390_atmos9120480 crossref_primary_10_2139_ssrn_4017537 crossref_primary_10_1016_j_apsoil_2018_02_015 crossref_primary_10_1029_2019JG005437 crossref_primary_10_1016_j_envpol_2023_121130 crossref_primary_10_1016_j_geoderma_2020_114585 crossref_primary_10_1111_1365_2745_12247 crossref_primary_10_1016_j_soilbio_2014_07_013 crossref_primary_10_1016_j_scitotenv_2023_162166 crossref_primary_10_1007_s11104_022_05561_8 crossref_primary_10_1016_j_scitotenv_2019_135863 crossref_primary_10_5194_bg_18_873_2021 crossref_primary_10_1111_1365_2664_13402 crossref_primary_10_1016_j_scitotenv_2022_154805 crossref_primary_10_1016_j_soilbio_2014_11_016 crossref_primary_10_1111_1365_2435_13537 crossref_primary_10_1111_gcb_13612 crossref_primary_10_1007_s11104_020_04664_4 crossref_primary_10_1029_2019JG005468 crossref_primary_10_1111_gcb_13213 crossref_primary_10_1111_gcb_15753 crossref_primary_10_1016_j_ecoleng_2016_02_012 crossref_primary_10_1016_j_soilbio_2015_08_013 crossref_primary_10_1111_ele_13178 crossref_primary_10_1016_j_catena_2014_05_007 crossref_primary_10_1016_j_geoderma_2020_114313 crossref_primary_10_1007_s00334_015_0544_9 crossref_primary_10_1007_s13157_021_01411_y crossref_primary_10_1016_j_scitotenv_2017_09_202 crossref_primary_10_1029_2019JG005193 crossref_primary_10_1007_s00442_015_3254_1 crossref_primary_10_1038_s42003_019_0370_1 crossref_primary_10_1111_1365_2435_13783 crossref_primary_10_1007_s11104_016_2999_6 crossref_primary_10_1111_gcb_14140 crossref_primary_10_1029_2022JG007271 crossref_primary_10_1016_j_agrformet_2020_108214 crossref_primary_10_5194_bg_16_4085_2019 crossref_primary_10_1016_j_catena_2020_104789 crossref_primary_10_1139_er_2019_0064 crossref_primary_10_3390_su12145674 crossref_primary_10_1002_2016JG003511 crossref_primary_10_1016_j_atmosenv_2016_07_039 crossref_primary_10_1080_20964129_2020_1806113 crossref_primary_10_1111_gcb_15865 crossref_primary_10_1016_j_ejsobi_2018_03_005 crossref_primary_10_1016_j_scitotenv_2022_154351 crossref_primary_10_1016_j_quascirev_2015_01_025 crossref_primary_10_1007_s13157_021_01486_7 crossref_primary_10_1007_s11104_017_3469_5 crossref_primary_10_1111_1365_2435_14480 crossref_primary_10_1016_j_foreco_2017_11_038 crossref_primary_10_1007_s10021_023_00820_w crossref_primary_10_1016_j_scitotenv_2018_11_109 crossref_primary_10_1007_s13157_023_01692_5 crossref_primary_10_1016_j_scitotenv_2023_167554 crossref_primary_10_1088_1748_9326_11_4_044024 crossref_primary_10_1016_j_watres_2019_114936 crossref_primary_10_1038_s41467_018_05516_7 crossref_primary_10_1111_nph_13116 crossref_primary_10_1155_2014_712537 crossref_primary_10_1371_journal_pone_0168741 crossref_primary_10_1016_j_pedobi_2019_150571 crossref_primary_10_3390_agronomy13122947 crossref_primary_10_3390_f8030075 crossref_primary_10_1016_j_agee_2023_108862 crossref_primary_10_1111_gcb_14847 crossref_primary_10_5194_bg_15_885_2018 crossref_primary_10_1016_j_foreco_2017_10_017 crossref_primary_10_1111_nph_18755 crossref_primary_10_1029_2023JG007873 crossref_primary_10_1890_14_0292_1 crossref_primary_10_1016_j_scitotenv_2022_161314 crossref_primary_10_3389_fmicb_2019_02348 crossref_primary_10_1021_acs_est_8b01093 crossref_primary_10_1016_j_catena_2021_105391 crossref_primary_10_1016_j_soilbio_2019_107629 crossref_primary_10_1093_femsec_fiad145 crossref_primary_10_1007_s10021_015_9935_0 crossref_primary_10_1002_2013JG002441 crossref_primary_10_1016_j_geoderma_2018_05_005 crossref_primary_10_5194_bg_17_4797_2020 crossref_primary_10_1016_j_foreco_2014_07_004 crossref_primary_10_1016_j_quascirev_2016_11_034 crossref_primary_10_1111_gcb_17033 crossref_primary_10_1007_s10021_020_00516_5 crossref_primary_10_1016_j_scitotenv_2017_06_028 crossref_primary_10_1007_s11104_021_05180_9 crossref_primary_10_1002_rse2_337 crossref_primary_10_1111_gcb_15005 crossref_primary_10_1088_1748_9326_11_7_074016 crossref_primary_10_1016_j_soilbio_2021_108501 crossref_primary_10_1016_j_scitotenv_2022_154294 crossref_primary_10_1007_s10021_016_0035_6 crossref_primary_10_1016_j_apsoil_2017_12_009 crossref_primary_10_1007_s11273_021_09784_x crossref_primary_10_1111_1365_2745_12288 crossref_primary_10_1007_s13213_018_1421_4 crossref_primary_10_1098_rsos_170449 crossref_primary_10_1007_s11104_015_2713_0 crossref_primary_10_3390_microorganisms10101950 crossref_primary_10_1007_s13157_019_01176_5 crossref_primary_10_1038_s41467_017_01350_5 crossref_primary_10_1002_ece3_7842 crossref_primary_10_1002_ece3_9988 crossref_primary_10_1002_ece3_3243 crossref_primary_10_1007_s10531_022_02479_6 crossref_primary_10_1007_s10533_023_01113_z crossref_primary_10_1016_j_agee_2015_08_020 crossref_primary_10_1088_1748_9326_abc4fb crossref_primary_10_1016_j_scitotenv_2019_02_012 crossref_primary_10_1111_gcb_16003 crossref_primary_10_3389_feart_2021_631368 crossref_primary_10_1016_j_scitotenv_2018_07_390 crossref_primary_10_1016_j_scitotenv_2021_150831 crossref_primary_10_1007_s11368_023_03583_y crossref_primary_10_3390_rs11141685 crossref_primary_10_1007_s13157_017_0878_4 crossref_primary_10_1111_nph_18601 crossref_primary_10_1111_gcb_13928 crossref_primary_10_1002_ecy_1975 crossref_primary_10_1016_j_jenvman_2018_06_013 crossref_primary_10_1111_gcb_14617 crossref_primary_10_1016_j_geoderma_2021_115074 crossref_primary_10_1111_pce_13767 crossref_primary_10_1007_s11104_024_06569_y crossref_primary_10_1007_s11368_014_0945_x crossref_primary_10_1016_j_jclepro_2023_136905 crossref_primary_10_1007_s11104_022_05346_z crossref_primary_10_1016_j_scitotenv_2020_143467 crossref_primary_10_1002_lom3_10270 crossref_primary_10_1007_s11368_021_03043_5 crossref_primary_10_1007_s10980_020_01108_3 crossref_primary_10_1016_j_catena_2022_106335 |
Cites_doi | 10.1038/nature08216 10.1016/j.soilbio.2010.02.013 10.1038/nature03611 10.1016/j.envpol.2010.06.006 10.1111/j.1365-2486.1997.gcb136.x 10.1038/ngeo1323 10.1093/oso/9780195120837.003.0010 10.1029/2008GM000875 10.1126/science.1174268 10.1029/1998GB900021 10.1029/2008GM000828 10.1007/s10021-007-9080-5 10.1111/j.1365-2486.2011.02616.x 10.1016/S0169-5347(03)00007-7 10.1038/nclimate1672 10.1111/j.1365-2486.2006.01292.x 10.1007/s10021-005-0070-1 10.1007/s11104-011-0945-1 10.1016/j.scitotenv.2008.03.015 10.1111/j.1461-0248.2008.01164.x 10.1111/j.1365-2435.2008.01521.x 10.1038/ismej.2008.58 10.1038/nature11118 10.1890/09-0135.1 10.3389/fmicb.2012.00078 10.1111/1365-2745.12043 10.1111/j.1365-2389.2010.01267.x 10.1038/ngeo434 10.1016/S0169-5347(00)01861-9 10.1139/b04-123 10.1016/S1002-0160(09)00003-4 10.1371/journal.pone.0039614 10.1111/gcb.12120 10.1038/35051650 10.1038/nclimate1458 10.1038/ngeo1009 10.1890/04-0922 10.1073/pnas.0503198103 10.1111/j.1461-0248.2011.01611.x 10.1007/s10021-012-9581-8 10.1073/pnas.0409902102 10.1016/j.apsoil.2012.02.015 10.1073/pnas.1208240109 10.1038/366051a0 |
ContentType | Journal Article |
Copyright | 2013 John Wiley & Sons Ltd/CNRS 2015 INIST-CNRS 2013 John Wiley & Sons Ltd/CNRS. Copyright © 2013 John Wiley & Sons Ltd/CNRS |
Copyright_xml | – notice: 2013 John Wiley & Sons Ltd/CNRS – notice: 2015 INIST-CNRS – notice: 2013 John Wiley & Sons Ltd/CNRS. – notice: Copyright © 2013 John Wiley & Sons Ltd/CNRS |
DBID | FBQ BSCLL IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SN 7SS 7U9 C1K H94 M7N 7ST 7U6 SOI 7X8 |
DOI | 10.1111/ele.12167 |
DatabaseName | AGRIS Istex Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Ecology Abstracts Entomology Abstracts (Full archive) Virology and AIDS Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Environment Abstracts Sustainability Science Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Entomology Abstracts AIDS and Cancer Research Abstracts Virology and AIDS Abstracts Ecology Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Environmental Sciences and Pollution Management Environment Abstracts Sustainability Science Abstracts MEDLINE - Academic |
DatabaseTitleList | Ecology Abstracts CrossRef MEDLINE - Academic MEDLINE Entomology Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1461-0248 |
Editor | van der Putten, Wim |
Editor_xml | – sequence: 1 givenname: Wim surname: van der Putten fullname: van der Putten, Wim – sequence: 7 givenname: Wim surname: van der Putten fullname: van der Putten, Wim |
EndPage | 1293 |
ExternalDocumentID | 3069306691 10_1111_ele_12167 23953244 27763198 ELE12167 ark_67375_WNG_WLQ9M5QT_6 US201400004345 |
Genre | letter Letter Research Support, Non-U.S. Gov't Feature |
GrantInformation_xml | – fundername: Natural Environment Research Council funderid: NE/E011594/1 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABHUG ABJNI ABPTK ABPVW ABTAH ABWRO ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOD ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FEDTE G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ N~3 O66 O9- P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ UB1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ZY4 ZZTAW ~02 ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG AAPBV IPNFZ IQODW PQEST UMP CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SN 7SS 7U9 C1K H94 M7N 7ST 7U6 SOI 7X8 |
ID | FETCH-LOGICAL-c5137-61a309f4a9254525b6cac146024adea832a72774085b81bf740f8dd61197ca5c3 |
IEDL.DBID | DR2 |
ISSN | 1461-023X |
IngestDate | Fri Aug 16 07:19:48 EDT 2024 Fri Aug 16 07:15:13 EDT 2024 Thu Oct 10 18:56:02 EDT 2024 Fri Aug 23 03:22:10 EDT 2024 Sat Sep 28 07:55:25 EDT 2024 Tue Sep 20 21:47:10 EDT 2022 Sat Aug 24 00:41:16 EDT 2024 Wed Oct 30 09:48:35 EDT 2024 Wed Dec 27 19:07:44 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Warming Floristic composition Plant community CH plant community composition Carbon dioxide peatland CO Peat bog N O Carbon cycle Greenhouse gas plant functional group Nitrogen protoxide Functional group CO 2 CH 4 warming N2O greenhouse gas |
Language | English |
License | CC BY 4.0 2013 John Wiley & Sons Ltd/CNRS. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5137-61a309f4a9254525b6cac146024adea832a72774085b81bf740f8dd61197ca5c3 |
Notes | http://dx.doi.org/10.1111/ele.12167 ArticleID:ELE12167 ark:/67375/WNG-WLQ9M5QT-6 istex:57712EBD2C6B9221DFC17EBE0FA35AED288E3013 Natural Environment Research Council - No. NE/E011594/1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 SourceType-Other Sources-1 ObjectType-Article-2 content type line 63 ObjectType-Correspondence-1 |
OpenAccessLink | http://nora.nerc.ac.uk/id/eprint/503123/1/N503123PP.pdf |
PMID | 23953244 |
PQID | 1431582274 |
PQPubID | 32390 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1516397666 proquest_miscellaneous_1439225740 proquest_journals_1431582274 crossref_primary_10_1111_ele_12167 pubmed_primary_23953244 pascalfrancis_primary_27763198 wiley_primary_10_1111_ele_12167_ELE12167 istex_primary_ark_67375_WNG_WLQ9M5QT_6 fao_agris_US201400004345 |
PublicationCentury | 2000 |
PublicationDate | October 2013 |
PublicationDateYYYYMMDD | 2013-10-01 |
PublicationDate_xml | – month: 10 year: 2013 text: October 2013 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: England – name: Paris |
PublicationTitle | Ecology letters |
PublicationTitleAlternate | Ecol Lett |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell |
References | Briones, M.J.I., Garnett, M.H. & Ineson, P. (2010). Soil biology and warming play a key role in the release of 'old C' from organic soils. Soil Biol. Biochem., 42, 960-967. Kolb, S. & Horn, M.A. (2012). Microbial CH4 and N2O consumption in acidic wetlands. Front. Microbiol., 3, Art. 78. DOI: 10.3389/fmicb.2012.00078 Bardgett, R.D., Freeman, C. & Ostle, N.J. (2008). Microbial contributions to climate change through carbon cycle feedbacks. ISME J., 2, 805-814. Wardle, D.A. & Zackrisson, O. (2005). Effects of species and functional group loss on island ecosystem properties. Nature, 435, 806-810. Craine, J.M., Fierer, N. & McLauchlan, K.K. (2010). Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nat. Geosci., 3, 854-857. Hattenschwiler, S. & Vitousek, P.M. (2000). The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol. Evol., 15, 238-243. Walker, M.D., Wahren, C.H., Hollister, R.D., Henry, G.H.R., Ahlquist, L.E., Alatalo, J.M. et al. (2006). Plant community responses to experimental warming across the tundra biome. Proc. Natl Acad. Sci. USA, 103, 1342-1346. Freeman, C., Ostle, N. & Kang, H. (2001). An enzymic 'latch' on a global carbon store - A shortage of oxygen locks up carbon in peatlands by restraining a single enzyme. Nature, 409, 149-149. McNamara, N.P., Plant, T., Oakley, S., Ward, S., Wood, C. & Ostle, N. (2008). Gully hotspot contribution to landscape methane (CH4) and carbon dioxide (CO2) fluxes in a northern peatland. Sci. Total Environ., 404, 354-360. Kardol, P., Cregger, M.A., Campany, C.E. & Classen, A.T. (2010). Soil ecosystem functioning under climate change: plant species and community effects. Ecology, 91, 767-781. Orwin, K.H., Kirschbaum, M.U.F., St John, M.G. & Dickie, I.A. (2011). Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecol. Lett., 14, 493-502. Bardgett, R.D., Manning, P., Morriën, E. & De Vries, F.T. (2013). Hierarchical responses of plant-soil interactions to climate change: consequences for the global carbon cycle. J. Ecol., 101, 334-343. Ward, S.E., Ostle, N.J., Oakley, S., Quirk, H., Stott, A., Henrys, P.A. et al. (2012). Fire Accelerates Assimilation and Transfer of Photosynthetic Carbon from Plants to Soil Microbes in a Northern Peatland. Ecosystems, 15, 1245-1257. Fenner, N. & Freeman, C. (2011). Drought-induced carbon loss in peatlands. Nat. Geosci., 4, 895-900. Repo, M.E., Susiluoto, S., Lind, S.E., Jokinen, S., Elsakov, V., Biasi, C. et al. (2009). Large N2O emissions from cryoturbated peat soil in tundra. Nat. Geosci., 2, 189-192. Gray, A., Levy, P.E., Cooper, M.D.A., Jones, T., Gaiawyn, J., Leeson, S.R. et al. (2013). Methane indicator values for peatlands: a comparison of species and functional groups. Glob. Change Biol., 19, 1141-1150. Stevens, C.J., Dupre, C., Dorland, E., Gaudnik, C., Gowing, D.J.G., Bleeker, A. et al. (2010). Nitrogen deposition threatens species richness of grasslands across Europe. Environ. Pollut., 158, 2940-2945. Ward, S.E., Bardgett, R.D., McNamara, N.P. & Ostle, N.J. (2009). Plant functional group identity influences short-term peatland ecosystem carbon flux: evidence from a plant removal experiment. Funct. Ecol., 23, 454-462. Hooper, D.U., Chapin, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S. et al. (2005). Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr., 75, 3-35. Drewer, J., Lohila, A., Aurela, M., Laurila, T., Minkkinen, K., Penttila, T. et al. (2010). Comparison of greenhouse gas fluxes and nitrogen budgets from an ombotrophic bog in Scotland and a minerotrophic sedge fen in Finland. Eur. J. Soil Sci., 61, 640-650. Levy, P.E., Burden, A., Cooper, M.D.A., Dinsmore, K.J., Drewer, J., Evans, C. et al. (2012). Methane emissions from soils: synthesis and analysis of a large UK data set. Glob. Change Biol., 18, 1657-1669. Dorrepaal, E., Toet, S., van Logtestijn, R.S.P., Swart, E., van de Weg, M.J., Callaghan, T.V. et al. (2009). Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature, 460, 616-619. Martikainen, P.J., Nykanen, H., Crill, P. & Silvola, J. (1993). Effect of a lowered water table on nitrous oxide fluxes from northern peatlands. Nature, 366, 51-53. Kim, S.-Y., Freeman, C., Fenner, N. & Kang, H. (2012). Functional and structural responses of bacterial and methanogen communities to 3-year warming incubation in different depths of peat mire. Appl. Soil Ecol., 57, 23-30. IPCC (2007). Climate change Reports. WGI, II, III. Roulet, N.T., Lafleur, P.M., Richard, P.J.H., Moore, T.R., Humphreys, E.R. & Bubier, J. (2007). Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Glob. Change Biol., 13, 397-411. Green, S.M. & Baird, A.J. (2012). A mesocosm study of the role of the sedge Eriophorum angustifolium in the efflux of methane-including that due to episodic ebullition-from peatlands. Plant Soil, 351, 207-218. Reay, D.S., Davidson, E.A., Smith, K.A., Smith, P., Melillo, J.M., Dentener, F. et al. (2012). Global agriculture and nitrous oxide emissions. Nat. Clim. Change, 2, 410-416. Strack, M., Waller, M.F. & Waddington, J.M. (2006). Sedge succession and peatland methane dynamics: A potential feedback to climate change. Ecosystems, 9, 278-287. Tilman, D., Reich, P.B. & Isbell, F. (2012). Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. Proc. Natl Acad. Sci. USA, 109, 10394-10397. Thuiller, W., Lavorel, S., Araujo, M.B., Sykes, M.T. & Prentice, I.C. (2005). Climate change threats to plant diversity in Europe. Proc. Natl Acad. Sci. USA, 102, 8245-8250. Ward, S.E., Bardgett, R.D., McNamara, N.P., Adamson, J.K. & Ostle, N.J. (2007). Long-term consequences of grazing and burning on northern peatland carbon dynamics. Ecosystems, 10, 1069-1083. Lai, D.Y.F. (2009). Methane Dynamics in Northern Peatlands: A Review. Pedosphere, 19, 409-421. Marion, G.M., Henry, G.H.R., Freckman, D.W., Johnstone, J., Jones, G., Jones, M.H. et al. (1997). Open-top designs for manipulating field temperature in high-latitude ecosystems. Glob. Change Biol., 3, 20-32. Gallego-Sala, A.V. & Prentice, C.I. (2013). Blanket peat biome endangered by climate change. Nat. Clim. Change, 3, 152-155. Dise, N.B. (2009). Peatland Response to Global Change. Science, 326, 810-811. Bellisario, L.M., Bubier, J.L., Moore, T.R. & Chanton, J.P. (1999). Controls on CH4 emissions from a northern peatland. Global Biogeochem. Cycles, 13, 81-91. Hooper, D.U., Adair, E.C., Cardinale, B.J., Byrnes, J.E.K., Hungate, B.A., Matulich, K.L. et al. (2012). A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature, 486, 105-129. Read, D.J., Leake, J.R. & Perez-Moreno, J. (2004). Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can. J. Bot., 82, 1243-1263. van Winden, J.F., Reichart, G.-J., McNamara, N.P., Benthien, A. & Damste, J.S.S. (2012). Temperature-induced increase in methane release from peat bogs: a mesocosm experiment. PLoS ONE, 7, e39614. Diaz, S., Symstad, A.J., Chapin, F.S., Wardle, D.A. & Huenneke, L.F. (2003). Functional diversity revealed by removal experiments. Trends Ecol. Evol., 18, 140-146. De Deyn, G.B., Cornelissen, J.H.C. & Bardgett, R.D. (2008). Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol. Lett., 11, 516-531. 2009; 23 2013; 3 2012; 486 2004; 82 2006; 9 2005; 435 2009 2013; 101 2007 2008; 404 2001; 409 2012; 18 2008; 11 2003; 18 2011; 14 2012; 15 2011; 4 2008; 2 2012; 57 1993; 366 2007; 10 1997; 3 2007; 13 2010; 61 2012; 109 1999 2013; 19 2010; 42 2012; 351 2012; 2 2012; 3 2000; 15 2005; 102 2010; 158 1999; 13 2005; 75 2009; 460 2010; 3 2010; 91 2009; 19 2009; 2 2012; 7 2006; 103 2009; 326 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 Holland E.A. (e_1_2_7_19_1) 1999 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 IPCC (e_1_2_7_23_1) 2007 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 91 start-page: 767 year: 2010 end-page: 781 article-title: Soil ecosystem functioning under climate change: plant species and community effects publication-title: Ecology – start-page: 1 year: 2009 end-page: 3 – volume: 13 start-page: 397 year: 2007 end-page: 411 article-title: Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland publication-title: Glob. Change Biol. – volume: 158 start-page: 2940 year: 2010 end-page: 2945 article-title: Nitrogen deposition threatens species richness of grasslands across Europe publication-title: Environ. Pollut. – volume: 15 start-page: 238 year: 2000 end-page: 243 article-title: The role of polyphenols in terrestrial ecosystem nutrient cycling publication-title: Trends Ecol. Evol. – volume: 3 year: 2012 article-title: Microbial CH and N O consumption in acidic wetlands publication-title: Front. Microbiol. – volume: 18 start-page: 140 year: 2003 end-page: 146 article-title: Functional diversity revealed by removal experiments publication-title: Trends Ecol. Evol. – volume: 23 start-page: 454 year: 2009 end-page: 462 article-title: Plant functional group identity influences short‐term peatland ecosystem carbon flux: evidence from a plant removal experiment publication-title: Funct. Ecol. – year: 2007 – volume: 3 start-page: 854 year: 2010 end-page: 857 article-title: Widespread coupling between the rate and temperature sensitivity of organic matter decay publication-title: Nat. Geosci. – volume: 460 start-page: 616 year: 2009 end-page: 619 article-title: Carbon respiration from subsurface peat accelerated by climate warming in the subarctic publication-title: Nature – volume: 19 start-page: 409 year: 2009 end-page: 421 article-title: Methane Dynamics in Northern Peatlands: A Review publication-title: Pedosphere – volume: 409 start-page: 149 year: 2001 end-page: 149 article-title: An enzymic ‘latch’ on a global carbon store ‐ A shortage of oxygen locks up carbon in peatlands by restraining a single enzyme publication-title: Nature – volume: 19 start-page: 1141 year: 2013 end-page: 1150 article-title: Methane indicator values for peatlands: a comparison of species and functional groups publication-title: Glob. Change Biol. – volume: 109 start-page: 10394 year: 2012 end-page: 10397 article-title: Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory publication-title: Proc. Natl Acad. Sci. USA – start-page: 185 year: 1999 end-page: 201 – volume: 326 start-page: 810 year: 2009 end-page: 811 article-title: Peatland Response to Global Change publication-title: Science – volume: 18 start-page: 1657 year: 2012 end-page: 1669 article-title: Methane emissions from soils: synthesis and analysis of a large UK data set publication-title: Glob. Change Biol. – volume: 82 start-page: 1243 year: 2004 end-page: 1263 article-title: Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes publication-title: Can. J. Bot. – volume: 4 start-page: 895 year: 2011 end-page: 900 article-title: Drought‐induced carbon loss in peatlands publication-title: Nat. Geosci. – volume: 75 start-page: 3 year: 2005 end-page: 35 article-title: Effects of biodiversity on ecosystem functioning: A consensus of current knowledge publication-title: Ecol. Monogr. – volume: 61 start-page: 640 year: 2010 end-page: 650 article-title: Comparison of greenhouse gas fluxes and nitrogen budgets from an ombotrophic bog in Scotland and a minerotrophic sedge fen in Finland publication-title: Eur. J. Soil Sci. – volume: 3 start-page: 152 year: 2013 end-page: 155 article-title: Blanket peat biome endangered by climate change publication-title: Nat. Clim. Change – volume: 103 start-page: 1342 year: 2006 end-page: 1346 article-title: Plant community responses to experimental warming across the tundra biome publication-title: Proc. Natl Acad. Sci. USA – volume: 9 start-page: 278 year: 2006 end-page: 287 article-title: Sedge succession and peatland methane dynamics: A potential feedback to climate change publication-title: Ecosystems – volume: 486 start-page: 105 year: 2012 end-page: 129 article-title: A global synthesis reveals biodiversity loss as a major driver of ecosystem change publication-title: Nature – volume: 351 start-page: 207 year: 2012 end-page: 218 article-title: A mesocosm study of the role of the sedge Eriophorum angustifolium in the efflux of methane‐including that due to episodic ebullition‐from peatlands publication-title: Plant Soil – volume: 3 start-page: 20 year: 1997 end-page: 32 article-title: Open‐top designs for manipulating field temperature in high‐latitude ecosystems publication-title: Glob. Change Biol. – volume: 101 start-page: 334 year: 2013 end-page: 343 article-title: Hierarchical responses of plant–soil interactions to climate change: consequences for the global carbon cycle publication-title: J. Ecol. – volume: 42 start-page: 960 year: 2010 end-page: 967 article-title: Soil biology and warming play a key role in the release of ‘old C’ from organic soils publication-title: Soil Biol. Biochem. – volume: 366 start-page: 51 year: 1993 end-page: 53 article-title: Effect of a lowered water table on nitrous oxide fluxes from northern peatlands publication-title: Nature – volume: 10 start-page: 1069 year: 2007 end-page: 1083 article-title: Long‐term consequences of grazing and burning on northern peatland carbon dynamics publication-title: Ecosystems – volume: 13 start-page: 81 year: 1999 end-page: 91 article-title: Controls on CH emissions from a northern peatland publication-title: Global Biogeochem. Cycles – start-page: 187 year: 2009 end-page: 203 – volume: 14 start-page: 493 year: 2011 end-page: 502 article-title: Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model‐based assessment publication-title: Ecol. Lett. – volume: 2 start-page: 189 year: 2009 end-page: 192 article-title: Large N2O emissions from cryoturbated peat soil in tundra publication-title: Nat. Geosci. – volume: 102 start-page: 8245 year: 2005 end-page: 8250 article-title: Climate change threats to plant diversity in Europe publication-title: Proc. Natl Acad. Sci. USA – volume: 435 start-page: 806 year: 2005 end-page: 810 article-title: Effects of species and functional group loss on island ecosystem properties publication-title: Nature – volume: 2 start-page: 805 year: 2008 end-page: 814 article-title: Microbial contributions to climate change through carbon cycle feedbacks publication-title: ISME J. – volume: 2 start-page: 410 year: 2012 end-page: 416 article-title: Global agriculture and nitrous oxide emissions publication-title: Nat. Clim. Change – volume: 57 start-page: 23 year: 2012 end-page: 30 article-title: Functional and structural responses of bacterial and methanogen communities to 3‐year warming incubation in different depths of peat mire publication-title: Appl. Soil Ecol. – volume: 11 start-page: 516 year: 2008 end-page: 531 article-title: Plant functional traits and soil carbon sequestration in contrasting biomes publication-title: Ecol. Lett. – volume: 404 start-page: 354 year: 2008 end-page: 360 article-title: Gully hotspot contribution to landscape methane (CH ) and carbon dioxide (CO ) fluxes in a northern peatland publication-title: Sci. Total Environ. – volume: 7 start-page: e39614. year: 2012 article-title: Temperature‐induced increase in methane release from peat bogs: a mesocosm experiment publication-title: PLoS ONE – volume: 15 start-page: 1245 year: 2012 end-page: 1257 article-title: Fire Accelerates Assimilation and Transfer of Photosynthetic Carbon from Plants to Soil Microbes in a Northern Peatland publication-title: Ecosystems – ident: e_1_2_7_11_1 doi: 10.1038/nature08216 – ident: e_1_2_7_6_1 doi: 10.1016/j.soilbio.2010.02.013 – ident: e_1_2_7_45_1 doi: 10.1038/nature03611 – ident: e_1_2_7_37_1 doi: 10.1016/j.envpol.2010.06.006 – ident: e_1_2_7_29_1 doi: 10.1111/j.1365-2486.1997.gcb136.x – ident: e_1_2_7_13_1 doi: 10.1038/ngeo1323 – start-page: 185 volume-title: Standard soil methods for long‐term ecological research year: 1999 ident: e_1_2_7_19_1 doi: 10.1093/oso/9780195120837.003.0010 contributor: fullname: Holland E.A. – ident: e_1_2_7_2_1 doi: 10.1029/2008GM000875 – ident: e_1_2_7_10_1 doi: 10.1126/science.1174268 – ident: e_1_2_7_5_1 doi: 10.1029/1998GB900021 – ident: e_1_2_7_22_1 doi: 10.1029/2008GM000828 – ident: e_1_2_7_42_1 doi: 10.1007/s10021-007-9080-5 – ident: e_1_2_7_28_1 doi: 10.1111/j.1365-2486.2011.02616.x – ident: e_1_2_7_9_1 doi: 10.1016/S0169-5347(03)00007-7 – ident: e_1_2_7_15_1 doi: 10.1038/nclimate1672 – ident: e_1_2_7_36_1 doi: 10.1111/j.1365-2486.2006.01292.x – ident: e_1_2_7_38_1 doi: 10.1007/s10021-005-0070-1 – ident: e_1_2_7_17_1 doi: 10.1007/s11104-011-0945-1 – ident: e_1_2_7_31_1 doi: 10.1016/j.scitotenv.2008.03.015 – ident: e_1_2_7_8_1 doi: 10.1111/j.1461-0248.2008.01164.x – ident: e_1_2_7_43_1 doi: 10.1111/j.1365-2435.2008.01521.x – ident: e_1_2_7_3_1 doi: 10.1038/ismej.2008.58 – ident: e_1_2_7_21_1 doi: 10.1038/nature11118 – ident: e_1_2_7_24_1 doi: 10.1890/09-0135.1 – ident: e_1_2_7_26_1 doi: 10.3389/fmicb.2012.00078 – ident: e_1_2_7_4_1 doi: 10.1111/1365-2745.12043 – ident: e_1_2_7_12_1 doi: 10.1111/j.1365-2389.2010.01267.x – ident: e_1_2_7_35_1 doi: 10.1038/ngeo434 – ident: e_1_2_7_18_1 doi: 10.1016/S0169-5347(00)01861-9 – ident: e_1_2_7_33_1 doi: 10.1139/b04-123 – volume-title: Climate change Reports year: 2007 ident: e_1_2_7_23_1 contributor: fullname: IPCC – ident: e_1_2_7_27_1 doi: 10.1016/S1002-0160(09)00003-4 – ident: e_1_2_7_46_1 doi: 10.1371/journal.pone.0039614 – ident: e_1_2_7_16_1 doi: 10.1111/gcb.12120 – ident: e_1_2_7_14_1 doi: 10.1038/35051650 – ident: e_1_2_7_34_1 doi: 10.1038/nclimate1458 – ident: e_1_2_7_7_1 doi: 10.1038/ngeo1009 – ident: e_1_2_7_20_1 doi: 10.1890/04-0922 – ident: e_1_2_7_41_1 doi: 10.1073/pnas.0503198103 – ident: e_1_2_7_32_1 doi: 10.1111/j.1461-0248.2011.01611.x – ident: e_1_2_7_44_1 doi: 10.1007/s10021-012-9581-8 – ident: e_1_2_7_39_1 doi: 10.1073/pnas.0409902102 – ident: e_1_2_7_25_1 doi: 10.1016/j.apsoil.2012.02.015 – ident: e_1_2_7_40_1 doi: 10.1073/pnas.1208240109 – ident: e_1_2_7_30_1 doi: 10.1038/366051a0 |
SSID | ssj0012971 |
Score | 2.5513065 |
Snippet | Understanding the effects of warming on greenhouse gas feedbacks to climate change represents a major global challenge. Most research has focused on direct... Abstract Understanding the effects of warming on greenhouse gas feedbacks to climate change represents a major global challenge. Most research has focused on... |
SourceID | proquest crossref pubmed pascalfrancis wiley istex fao |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1285 |
SubjectTerms | Animal and plant ecology Animal, plant and microbial ecology Biodiversity Biological and medical sciences botanical composition Carbon cycle carbon dioxide Carbon Dioxide - metabolism Carbon Sequestration carbon sinks CH 4 CH4 Climate change CO 2 CO2 Fundamental and applied biological sciences. Psychology General aspects Global Warming greenhouse gas greenhouse gas emissions Greenhouse gases Methane - metabolism N2O peatland Peatlands plant communities plant community composition plant functional group Plants - metabolism Poaceae Soil Vegetation warming |
Title | Warming effects on greenhouse gas fluxes in peatlands are modulated by vegetation composition |
URI | https://api.istex.fr/ark:/67375/WNG-WLQ9M5QT-6/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fele.12167 https://www.ncbi.nlm.nih.gov/pubmed/23953244 https://www.proquest.com/docview/1431582274 https://search.proquest.com/docview/1439225740 https://search.proquest.com/docview/1516397666 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qQfDFb220llVEfElpssnmgk-iV4u0hWqPuwclzG42qVSTcrmTnn-9M5sPPVER3xayS7LztTPZ38wAPN0LbahtIf1AJcaPtEY_1Qr9hDOvVRAk0vL_jqNjdTCJ3s7i2Qa86HNh2voQww831gxnr1nBUTc_KTlZZS6NoDiTPJAJw7levxtKR9Ex1gZb9EKfzqVZV1WIUTzDyrWz6EqBNXmoTNxLRkhiQ0Qq2u4Wv3M_171Zdxzt34AP_UZaFMr57nKhd823X2o8_udOb8L1zk0VL1u5ugUbtroNV9vGlSsajV2x69Ud-DhFRtOUogOGiLoSJWN5zuplY0WJjSg-Ly9tIz5V4oIMv8stFji34kudc-8wmwu9El9t2QEfBaPcOyjZXZjsj09fHfhdywbfxIFLOES5lxYRpiE3L4-1MmiIB-QJYG6RzAeSw5RwWTVNDnNBo2KU54ovMw3GRt6Dzaqu7BYIjSOD5K-OwlxGlhxVW6AJTV7EMsy1kh486ZmXXbSVObI-oiGKZY5iHmwRWzMsyWJmk_chx5Pu9jOKPXjmeD0sxvk5o9ySOJsev8mmhyfpUXxymikPdtaEYVhAG1FkwUYebPfSkXUWoKGQSvK3U9DvwePhMekuX8hgZYkJPCcle0pE-MucOOC7V4oyPbjfSt6PD5ApESOiNzx38vNnOmTjw7EbPPj3qQ_hWsi9PxxycRs2F_OlfUQe2ELvOFX7DmtNJ7I |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQwhe-B4LjGEQQrxkWuLEaSReEHQUaCsNWrUvk2UnTkCDZGpatPLXc-d8QBEgxJul2HJ8X76zf74DeHLkG1-bjLueiBI30Fq5sRbKjejltfC8iBs67xiNxWAavJ2H8y143r6FqfNDdAdupBnWXpOC04H0T1qOZplyI4hoGy6hunMq3PDqfZc8CjeyOtzCKV3cmeZNXiHC8XRDN3aj7UyV6KMSeS8II6kqJFNW17f4nQO66c_aDen4Opy2S6lxKGeHq6U-TL79kuXxf9d6A641nip7UYvWTdgyxS24XNeuXGOrb_Ndr2_D6UwRoCZnDTaElQXLCc7zsVxVhuWqYtnn1YWp2KeCnaPtt8-LmVoY9qVMqXyYSZles68mb7CPjIDuDZrsDkyP-5OXA7ep2uAmoWffHCp-FGeBin2qXx5qkagEmYDOgEqNQgui0GeKKLOaRp85w1bWS1NB95mJChO-CztFWZg9YFr1EoUua89PeWDQVzWZSvwkzULup1pwBx633JPndXIO2QY1SDFpKebAHvJVqhyNppx-8CmktBegQejAU8vsbrBanBHQLQrlbPxazoYn8Sg8mUjhwMGGNHQDcCECjVjPgf1WPGRjBCqMqjj9O8b9DjzqPqP60p2MKgwygfrEaFKRCH_pE3p0_YqBpgN3a9H78QM8RmIEOMMzK0B_poPsD_u2ce_fuz6EK4PJaCiHb8bv7sNVn0qBWCDjPuwsFyvzAB2ypT6wevcdyZgryg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQyBe-IYFxjAIIV4yLV9OI54QtAzoKgar2geQZTtOmDaSqmnRyl_PnfMBRYAQb5ZiK_H57vy7-Oc7gMf7vvGVyQLX47F2Q6Wkmygu3ZhuXnPPiwND_zsOR_xgHL6ZRtMNeNbehanzQ3Q_3MgyrL8mA5-l2U9Gjl6ZUiPweBMuhByRLyGi913uKNzH6mgL3-jixjRt0goRjacburYZbWayRIhK0j0niqSsUEpZXd7id_hzHc7a_WhwFT62M6lpKKd7y4Xa099-SfL4n1O9BlcanMqe14p1HTZMcQMu1pUrV9jq22zXq5vwaSKJTpOzhhnCyoLlROb5XC4rw3JZsexseW4qdlKwGXp-e7mYyblhX8qUioeZlKkV-2ryhvnIiObecMluwXjQP35x4DY1G1wdefbGoQz2kyyUiU_VyyPFtdS4BggFZGok-g-JiCmmvGoKEXOGrayXppxOM7WMdHAbtoqyMNvAlOxpiYC156dBaBCpmkxqX6dZFPip4oEDj9rFE7M6NYdoQxqUmLASc2Abl1XIHF2mGH_wKaC0x59h5MATu9bdYDk_JZpbHInJ6JWYDI-Sw-joWHAHdteUoRuAE-HownoO7LTaIRoXUGFMFdC3Y9TvwMPuMRovncjIwuAiUJ8EHSoK4S99Io8OXzHMdOBOrXk_PiBIUBghvuGp1Z8_y0H0h33buPvvXR_ApXcvB2L4evT2Hlz2qQ6IZTHuwNZivjT3EY0t1K61uu8ewyp5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Warming+effects+on+greenhouse+gas+fluxes+in+peatlands+are+modulated+by+vegetation+composition&rft.jtitle=Ecology+letters&rft.au=Ward%2C+Susan+E&rft.au=Ostle%2C+Nicholas+J&rft.au=Oakley%2C+Simon&rft.au=Quirk%2C+Helen&rft.date=2013-10-01&rft.issn=1461-023X&rft.eissn=1461-0248&rft.volume=16&rft.issue=10&rft.spage=1285&rft.epage=1293&rft_id=info:doi/10.1111%2Fele.12167&rft.externalDocID=US201400004345 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon |