Influence of Microstructure on the Ionic Conductivity of Plasma-Sprayed Yttria-Stabilized Zirconia Deposits
Yttria‐stabilized zirconia (YSZ) deposits were prepared by an atmospheric plasma spray (APS) on a stainless‐steel substrate preheated to different temperatures from room temperature to 1100°C. The microstructure of the deposits was characterized from polished and fractured cross sections by scanning...
Saved in:
Published in | Journal of the American Ceramic Society Vol. 91; no. 12; pp. 3931 - 3936 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Malden, USA
Blackwell Publishing Inc
01.12.2008
Wiley Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Yttria‐stabilized zirconia (YSZ) deposits were prepared by an atmospheric plasma spray (APS) on a stainless‐steel substrate preheated to different temperatures from room temperature to 1100°C. The microstructure of the deposits was characterized from polished and fractured cross sections by scanning electron microscopy (SEM). The ionic conductivity of the deposits was measured using both DC and AC methods, and the relationship between ionic conductivity and microstructure of deposits was examined. SEM observation revealed that the YSZ deposits exhibit different microstructures with different deposition temperatures. With the increase of the deposition temperature, the columnar grain growth across lamellar interfaces was enhanced and subsequently the intersplat bonding ratio in the deposit was improved. The ionic conductivity of YSZ deposits at the direction perpendicular to the deposit surface was significantly increased through the microstructure development on increasing the deposition temperature. However, it was found that the intergrain resistance changed little despite a remarkable change of the deposition temperature. A microstructure model is proposed to correlate the relative conductivity to the mean lamellar interface bonding ratio. The increase in ionic conductivity of the YSZ deposit with the deposition temperature can be attributed to the increase in the lamellar interface bonding ratio. |
---|---|
AbstractList | Yttria-stabilized zirconia (YSZ) deposits were prepared by an atmospheric plasma spray (APS) on a stainless-steel substrate preheated to different temperatures from room temperature to 1100{degrees}C. The microstructure of the deposits was characterized from polished and fractured cross sections by scanning electron microscopy (SEM). The ionic conductivity of the deposits was measured using both DC and AC methods, and the relationship between ionic conductivity and microstructure of deposits was examined. SEM observation revealed that the YSZ deposits exhibit different microstructures with different deposition temperatures. With the increase of the deposition temperature, the columnar grain growth across lamellar interfaces was enhanced and subsequently the intersplat bonding ratio in the deposit was improved. The ionic conductivity of YSZ deposits at the direction perpendicular to the deposit surface was significantly increased through the microstructure development on increasing the deposition temperature. However, it was found that the intergrain resistance changed little despite a remarkable change of the deposition temperature. A microstructure model is proposed to correlate the relative conductivity to the mean lamellar interface bonding ratio. The increase in ionic conductivity of the YSZ deposit with the deposition temperature can be attributed to the increase in the lamellar interface bonding ratio. Yttria-stabilized zirconia (YSZ) deposits were prepared by an atmospheric plasma spray (APS) on a stainless-steel substrate preheated to different temperatures from room temperature to 1100'C. The microstructure of the deposits was characterized from polished and fractured cross sections by scanning electron microscopy (SEM). The ionic conductivity of the deposits was measured using both DC and AC methods, and the relationship between ionic conductivity and microstructure of deposits was examined. SEM observation revealed that the YSZ deposits exhibit different microstructures with different deposition temperatures. With the increase of the deposition temperature, the columnar grain growth across lamellar interfaces was enhanced and subsequently the intersplat bonding ratio in the deposit was improved. The ionic conductivity of YSZ deposits at the direction perpendicular to the deposit surface was significantly increased through the microstructure development on increasing the deposition temperature. However, it was found that the intergrain resistance changed little despite a remarkable change of the deposition temperature. A microstructure model is proposed to correlate the relative conductivity to the mean lamellar interface bonding ratio. The increase in ionic conductivity of the YSZ deposit with the deposition temperature can be attributed to the increase in the lamellar interface bonding ratio. Yttria-stabilized zirconia (YSZ) deposits were prepared by an atmospheric plasma spray (APS) on a stainless-steel substrate preheated to different temperatures from room temperature to 1100...C. The microstructure of the deposits was characterized from polished and fractured cross sections by scanning electron microscopy (SEM). The ionic conductivity of the deposits was measured using both DC and AC methods, and the relationship between ionic conductivity and microstructure of deposits was examined. SEM observation revealed that the YSZ deposits exhibit different microstructures with different deposition temperatures. With the increase of the deposition temperature, the columnar grain growth across lamellar interfaces was enhanced and subsequently the intersplat bonding ratio in the deposit was improved. The ionic conductivity of YSZ deposits at the direction perpendicular to the deposit surface was significantly increased through the microstructure development on increasing the deposition temperature. However, it was found that the intergrain resistance changed little despite a remarkable change of the deposition temperature. A microstructure model is proposed to correlate the relative conductivity to the mean lamellar interface bonding ratio. The increase in ionic conductivity of the YSZ deposit with the deposition temperature can be attributed to the increase in the lamellar interface bonding ratio. (ProQuest: ... denotes formulae/symbols omitted.) Yttria‐stabilized zirconia (YSZ) deposits were prepared by an atmospheric plasma spray (APS) on a stainless‐steel substrate preheated to different temperatures from room temperature to 1100°C. The microstructure of the deposits was characterized from polished and fractured cross sections by scanning electron microscopy (SEM). The ionic conductivity of the deposits was measured using both DC and AC methods, and the relationship between ionic conductivity and microstructure of deposits was examined. SEM observation revealed that the YSZ deposits exhibit different microstructures with different deposition temperatures. With the increase of the deposition temperature, the columnar grain growth across lamellar interfaces was enhanced and subsequently the intersplat bonding ratio in the deposit was improved. The ionic conductivity of YSZ deposits at the direction perpendicular to the deposit surface was significantly increased through the microstructure development on increasing the deposition temperature. However, it was found that the intergrain resistance changed little despite a remarkable change of the deposition temperature. A microstructure model is proposed to correlate the relative conductivity to the mean lamellar interface bonding ratio. The increase in ionic conductivity of the YSZ deposit with the deposition temperature can be attributed to the increase in the lamellar interface bonding ratio. |
Author | Li, Chang-Jiu Yang, Guan-Jun Xing, Ya-Zhe Li, Cheng-Xin Zhang, Qiang |
Author_xml | – sequence: 1 givenname: Ya-Zhe surname: Xing fullname: Xing, Ya-Zhe organization: State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China – sequence: 2 givenname: Chang-Jiu surname: Li fullname: Li, Chang-Jiu email: licj@mail.xjtu.edu.cn organization: State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China – sequence: 3 givenname: Qiang surname: Zhang fullname: Zhang, Qiang organization: State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China – sequence: 4 givenname: Cheng-Xin surname: Li fullname: Li, Cheng-Xin organization: State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China – sequence: 5 givenname: Guan-Jun surname: Yang fullname: Yang, Guan-Jun organization: State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20986363$$DView record in Pascal Francis |
BookMark | eNqNkVFvFCEUhYmpidvqf5iY6NuMMMAwvGiatba76aqJNY2-kLssRLazzAqM7vrrZbq1D32xvMC9fOeQyzlGR773BqGC4Irk9WZdEc5JWUvSVDXGbYVrIXi1e4Im9xdHaIIxrkvR1vgZOo5xnUsiWzZBNzNvu8F4bYreFgunQx9TGHQaQu74Iv0wxaz3ThfT3q9y3_1yaT-ynzuIGyi_bAPszar4llJwuUywdJ37kzvfXdBZCcV7s-2jS_E5emqhi-bF3X6Cvn44u5pelJefzmfT08tSc0J5aSyR0DbQMpEn4XZFAfOagQEKvGGwIhILi5cSg6XA2GrJrYVaMqEtlwzTE_T64LsN_c_BxKQ2LmrTdeBNP0RFGSdM4ub_YF6CtjSDLx-A634IPg-haiIk420tMvTqDoKoobMBvHZRbYPbQNirGsu2oc1o9vbAjX8dg7FKuwTJ9T4FcJ0iWI3JqrUaA1RjgGpMVt0mq3bZoH1g8O-NR0jfHaS_XWf2j9ap-en07PacHcqDg4vJ7O4dINyoRtAMX388V1cXi0bO5wt1Tf8Ccv3M7Q |
CODEN | JACTAW |
CitedBy_id | crossref_primary_10_1007_s11666_013_9965_0 crossref_primary_10_1016_j_ijhydene_2017_09_073 crossref_primary_10_1016_j_jssc_2022_123497 crossref_primary_10_1002_fuce_202100048 crossref_primary_10_1007_s11666_022_01379_z crossref_primary_10_1007_s11666_012_9771_0 crossref_primary_10_1016_j_jeurceramsoc_2016_07_030 crossref_primary_10_1007_s11666_017_0530_0 crossref_primary_10_1016_j_surfcoat_2013_09_010 crossref_primary_10_1016_j_ceramint_2015_09_010 crossref_primary_10_1007_s11666_012_9862_y crossref_primary_10_1007_s11666_012_9823_5 crossref_primary_10_1063_5_0144820 crossref_primary_10_1016_j_jpowsour_2012_04_049 crossref_primary_10_1016_j_surfcoat_2013_09_012 crossref_primary_10_1016_S0894_9166_11_60045_1 crossref_primary_10_1080_21870764_2021_1905266 crossref_primary_10_1179_1432891714Z_000000000873 crossref_primary_10_1016_j_actamat_2016_03_020 crossref_primary_10_1007_s11666_010_9591_z crossref_primary_10_1007_s12613_012_0620_4 crossref_primary_10_1007_s11666_015_0260_0 crossref_primary_10_1016_j_ceramint_2018_06_258 crossref_primary_10_4028_www_scientific_net_AMM_44_47_2144 crossref_primary_10_1088_2053_1591_ab445e crossref_primary_10_1016_j_ceramint_2016_09_088 crossref_primary_10_1016_j_ultsonch_2018_04_004 crossref_primary_10_1016_j_ceramint_2018_01_087 crossref_primary_10_1016_j_surfcoat_2018_07_074 crossref_primary_10_1080_02670844_2019_1669348 crossref_primary_10_1016_j_surfcoat_2014_11_010 crossref_primary_10_1007_s11666_024_01859_4 crossref_primary_10_1016_j_ceramint_2012_02_048 crossref_primary_10_1016_j_ceramint_2022_10_222 crossref_primary_10_1016_j_jeurceramsoc_2017_06_005 crossref_primary_10_1115_1_4026143 crossref_primary_10_1016_j_apsusc_2020_146176 crossref_primary_10_1016_j_surfcoat_2018_08_082 crossref_primary_10_1016_j_jpowsour_2012_12_092 crossref_primary_10_1016_j_jeurceramsoc_2017_04_031 crossref_primary_10_1007_s11666_020_01087_6 crossref_primary_10_1007_s11666_012_9864_9 crossref_primary_10_1007_s11666_018_0818_8 crossref_primary_10_1016_j_ceramint_2016_11_009 crossref_primary_10_1016_j_jeurceramsoc_2018_01_028 crossref_primary_10_1039_C5TA01203A crossref_primary_10_1016_j_surfcoat_2010_05_011 crossref_primary_10_1007_s11666_017_0533_x crossref_primary_10_1016_j_surfcoat_2024_131572 crossref_primary_10_1016_j_ceramint_2025_02_262 crossref_primary_10_1016_j_surfcoat_2012_08_026 crossref_primary_10_1007_s11666_015_0345_9 crossref_primary_10_1016_j_surfcoat_2015_04_031 crossref_primary_10_1016_j_ijhydene_2014_02_138 crossref_primary_10_1007_s11837_020_04395_y crossref_primary_10_1007_s11666_016_0464_y crossref_primary_10_1016_j_surfcoat_2017_03_032 crossref_primary_10_1007_s11666_012_9831_5 |
Cites_doi | 10.1016/S0167-2738(00)00452-5 10.1111/j.1551-2916.2005.00912.x 10.1023/A:1018574221589 10.1111/j.1151-2916.1997.tb02890.x 10.1111/j.1551-2916.2008.02476.x 10.1016/j.surfcoat.2003.10.129 10.1111/j.1151-2916.2000.tb01247.x 10.1016/S0921-5093(04)00900-1 10.1016/j.msea.2003.08.119 10.1016/0040-6090(84)90506-6 10.1016/j.surfcoat.2004.04.086 10.1016/0040-6090(91)90114-D 10.1007/BF02608548 10.1016/j.surfcoat.2004.01.002 10.1016/j.ssi.2006.03.034 10.1016/0257-8972(92)90004-T 10.1361/105996302770348754 10.1615/HighTempMatProc.v9.i3.70 10.1016/j.jpowsour.2007.10.031 10.1361/105996303770348249 10.1016/j.ssi.2006.03.004 10.1016/j.mseb.2006.10.005 10.1016/0257-8972(89)90052-2 10.1016/S0920-3796(97)00049-5 |
ContentType | Journal Article |
Copyright | 2008 The American Ceramic Society 2009 INIST-CNRS Copyright American Ceramic Society Dec 2008 |
Copyright_xml | – notice: 2008 The American Ceramic Society – notice: 2009 INIST-CNRS – notice: Copyright American Ceramic Society Dec 2008 |
DBID | BSCLL AAYXX CITATION IQODW 7QQ 7SR 8FD JG9 |
DOI | 10.1111/j.1551-2916.2008.02775.x |
DatabaseName | Istex CrossRef Pascal-Francis Ceramic Abstracts Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Ceramic Abstracts Technology Research Database |
DatabaseTitleList | Materials Research Database Materials Research Database Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts Engineering Applied Sciences |
EISSN | 1551-2916 |
EndPage | 3936 |
ExternalDocumentID | 1616774691 20986363 10_1111_j_1551_2916_2008_02775_x JACE02775 ark_67375_WNG_THM69JJM_W |
Genre | article |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1OB 1OC 29L 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABDPE ABEFU ABEML ABJNI ABPVW ABTAH ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACKIV ACNCT ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG CO8 COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBO EBS EDO EJD EMK ESX F00 F01 F04 FEDTE FOJGT FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ H~9 I-F IRD ITF ITG ITH IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NDZJH NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QF4 QM1 QN7 QO4 R.K RAX RIWAO RJQFR ROL RX1 SAMSI SJN SUPJJ TAE TH9 TN5 TUS UB1 UPT V8K VH1 W8V W99 WBKPD WFSAM WH7 WIH WIK WOHZO WQJ WRC WTY WXSBR WYISQ XG1 YQT ZCG ZE2 ZY4 ZZTAW ~02 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADMLS ADXHL AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW 7QQ 7SR 8FD JG9 |
ID | FETCH-LOGICAL-c5135-ef19a86a8477755fd3a0524aea3a564ad1907f0b90af3a44db5ffa2947cf59403 |
IEDL.DBID | DR2 |
ISSN | 0002-7820 |
IngestDate | Fri Jul 11 04:22:06 EDT 2025 Fri Jul 11 15:43:37 EDT 2025 Fri Jul 25 19:15:09 EDT 2025 Mon Jul 21 09:12:01 EDT 2025 Tue Jul 01 00:21:44 EDT 2025 Thu Apr 24 22:50:42 EDT 2025 Wed Jan 22 16:22:42 EST 2025 Wed Oct 30 09:48:32 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Scanning electron microscopy Electrical conductivity Electrical properties Ionic conductivity Solid electrolyte Stabilized zirconia Experimental study Solid oxide fuel cell Oxide ceramics Yttrium Oxides Property structure relationship Zirconium Oxides Manufacturing Microstructure Plasma spraying Electroceramics |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5135-ef19a86a8477755fd3a0524aea3a564ad1907f0b90af3a44db5ffa2947cf59403 |
Notes | istex:7003C7FEDD70373D3699C302071A1F3C01BF61F6 ark:/67375/WNG-THM69JJM-W ArticleID:JACE02775 J. Stevenson—contributing editor This work was supported by National Natural Science Foundation of China (grant No. 50671080), National Science Fund for Distinguished Young Scholars (grant No.50725101), National Basic Research Program of China (grant No. 2007CB707702). ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 217945827 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_34514906 proquest_miscellaneous_33337383 proquest_journals_217945827 pascalfrancis_primary_20986363 crossref_citationtrail_10_1111_j_1551_2916_2008_02775_x crossref_primary_10_1111_j_1551_2916_2008_02775_x wiley_primary_10_1111_j_1551_2916_2008_02775_x_JACE02775 istex_primary_ark_67375_WNG_THM69JJM_W |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2008 |
PublicationDateYYYYMMDD | 2008-12-01 |
PublicationDate_xml | – month: 12 year: 2008 text: December 2008 |
PublicationDecade | 2000 |
PublicationPlace | Malden, USA |
PublicationPlace_xml | – name: Malden, USA – name: Malden, MA – name: Columbus |
PublicationTitle | Journal of the American Ceramic Society |
PublicationYear | 2008 |
Publisher | Blackwell Publishing Inc Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Inc – name: Wiley – name: Wiley Subscription Services, Inc |
References | I.-H. Jung, K.-K. Bae, M.-S. Yang, and S.-K. Ihm, "A Study of the Microstructur of Yttria-Stabilized Zirconia Deposited by Inductively Coupled Plasma Spraying," J. Thermal Spray Technol., 9, 463-77 (2000). C.-J. Li, X.-J. Ning, and C.-X. Li, "Effect of Densification Process on the Properties of Plasma-Sprayed YSZ Electrolyte Coatings for Solid Oxide Fuel Cell," Surf. Coat. Technol., 190, 60-4 (2005). R. McPherson, "A Model for the Thermal Conductivity of Plasma Sprayed Ceramic Coatings," Thin Solid Films, 112, 89-95 (1984). V. Pershin, M. Lufitha, S. Chandra, and J. Mostaghimi, "Effect of Substrate Temperature on Adhesion Strength of Plasma-Sprayed Nickel Coatings," J. Thermal Spray Technol., 12, 370-6 (2003). S. C. Singhal, "Advances in Solid Oxide Fuel Cell Technology," Solid State Ionics, 135, 305-13 (2000). C. Zhang, C.-J. Li, G. Zhang, X.-J. Ning, C.-X. Li, H. Liao, and C. Coddet, "Ionic Conductivity and its Temperature Dependence of Atmospheric Plasma-Sprayed Yttria Stabilized Zirconia Electrolyte," Mater. Sci. Eng. B, 137, 24-30 (2007). O. Yamamoto, "Solid Oxide Fuel Cells: Fundamental Aspects and Prospects," Electrochim. Acta, 45, 2423-35 (2000). H. B. Guo, S. Kuroda, and H. Murakami, "Microstructures and Properties of Plasma-Spayed Segmented Thermal Barrier Coatings," J. Am. Ceram. Soc., 89, 1432-9 (2006). C.-J. Li and A. Ohmori, "Relationships between the Microstructure and Properties of Thermally Sprayed Deposits," J. Thermal Spray Technol., 11, 365-74 (2002). R. McPherson, "A Review of Microstructure and Properties of Plasma Sprayed Ceramic Coatings," Surf. Coat. Technol., 39-40, 173-81 (1989). A. Ohmori and C.-J. Li, "Quantitative Characterization of the Structure of Plasma Sprayed Al2O3 Coating by Using Copper Electroplating," Thin Solid Films, 201, 241-52 (1991). J. Ilavsky, A. J. Allen, G. G. Long, S. Krueger, C. C. Berndt, and H. Herman, "Influence of Spray Angle on the Pore and Crack Microstructure of Plasma-Sprayed Deposits," J. Am. Ceram. Soc., 80, 733-42 (1997). G. N. Heintze and S. Uematsu, "Preparation and Structures of Plasma-Sprayed γ-and α-Al2O3 Coatings," Surf. Coat. Technol., 50, 213-22 (1992). H. B. Guo, R. Vaβen, and D. Stöver, "Atmospheric Plasma Sprayed Thick Thermal Barrier Coatings with High Segmentation Crack Density," Surf. Coat. Technol., 186, 353-63 (2004). C.-X. Li, C.-J. Li, H.-G. Long, Y.-Z. Xing, H.-L. Liao, and C. Coddet, "Characterization of Atmospheric Plasma-Sprayed Sc2O3-ZrO2 Electrolyte Coating," Solid State Ionics, 177, 2149-53 (2006). W. Chi, S. Sampath, and H. Wang, "Microstructure-Thermal Conductivity Relationships for Plasma-Sprayed Yttria-Stabilized Zirconia Coatings," J. Am. Ceram. Soc., 91, 2636-45 (2008). S. Sampath, X. Jiang, A. Kulkarni, J. Matejicek, D. L. Gilmore, and R. A. Neiser, "Development of Process Maps for Plasma Spray: Case Study for Molybdenum," Mater. Sci. Eng. A, 348, 54-66 (2003). S. Sampath, X. Y. Jiang, J. Matejicek, A. C. Leger, and A. Vardelle, "Substrate Temperature Effects on Splat Formation, Microstructure Development and Properties of Plasma Sprayed Coatings Part I: Case Study for Partially Stabilized Zirconia," Mater. Sci. Eng. A, 272, 181-8 (1999). R. G. Castro, A. H. Bartlett, K. J. Hollis, and R. D. Fields, "The Effect of Substrate Temperature on the Thermal Diffusivity and Bonding Characteristics of Plasma Sprayed Beryllium," Fusion Eng. Des., 37, 243-52 (1997). C.-J. Li, C.-X. Li, Y.-Z. Xing, M. Gao, and G.-J. Yang, "Influence of YSZ Electrolyte Thickness on the Characteristics of Plasma-Sprayed Cermet Supported Tubular SOFC," Solid State Ionics, 177, 2065-9 (2006). C.-J. Li, A. Ohmori, and R. McPherson, "The Relationship between Microstructure and Young's Modulus of Thermally Sprayed Ceramic Coatings," J. Mater. Sci., 32, 997-1004 (1997). I.-H. Jung, J.-S. Moon, K.-C. Song, and M.-S. Yang, "Microstructure of Yttria Stabilized Zirconia Deposited by Plasma Spraying," Surf. Coat. Technol., 180-181, 454-7 (2004). J. Gong, Y. Li, Z. Zhang, and Z. Tang, "AC Impedance Study of Zirconia Doped with Yttria and Calcia," J. Am. Ceram. Soc., 83, 648-50 (2000). I. Sevostianov and M. Kachanov, "Plasma-Sprayed Ceramic Coatings: Anisotropic Elastic and Conductive Properties in Relation to the Microstructure; Cross-Property Correlations," Mater. Sci. Eng. A, 297, 235-43 (2001). A. Tricoire, M. Vardelle, P. Fauchais, F. Braillard, A. Malié, and P. Bengtsson, "Macrocrack Formation in Plasma-Sprayed YSZ TBCs when Spraying Thick Passes," High Temp. Mater. Process, 9, 401-13 (2005). Y.-Z. Xing, C.-J. Li, C.-X. Li, and G.-J. Yang, "Influence of Through-Lamella Grain Growth on Ionic Conductivity of Plasma-Sprayed Yttria-Stabilized Zirconia as an Electrolyte in Solid Oxide Fuel Cells," J. Power Sources, 176, 31-8 (2008). K. A. Khor, X. J. Chen, S. H. Chan, and L. G. Yu, "Microstructure-Property Modifications in Plasma Sprayed 20 Wt.% Yttria Stabilized Zirconia Electrolyte by Spark Plasma Sintering (SPS) Technique," Mater. Sci. Eng. A, 366, 120-6 (2004). C.-J. Li and W.-Z. Wang, "Quantitative Characterization of Lamellar Microstructure of Plasma-Sprayed Ceramic Coatings Through Visualization of Void Distribution," Mater. Sci. Eng. A, 386, 10-9 (2004). 2005; 190 1997; 80 2004; 180–181 2004; 386 2004; 186 2004; 366 2000; 135 2000; 45 2000; 9 2002; 11 2005 2006; 177 2008; 91 1992; 50 2003; 12 2001; 297 2007; 137 1991; 201 2003; 348 2006; 89 1997; 32 1984; 112 1997; 37 2005; 9 2000; 83 1999; 272 2008; 176 1989; 39–40 Li C.‐J. (e_1_2_6_26_2) 2004; 386 Yamamoto O. (e_1_2_6_3_2) 2000; 45 Sampath S. (e_1_2_6_7_2) 2003; 348 Jung I.‐H. (e_1_2_6_20_2) 2000; 9 Li C.‐X. (e_1_2_6_25_2) 2006; 177 e_1_2_6_18_2 e_1_2_6_19_2 Li C.‐J. (e_1_2_6_4_2) 2005; 190 e_1_2_6_12_2 e_1_2_6_10_2 e_1_2_6_11_2 e_1_2_6_16_2 Tricoire A. (e_1_2_6_24_2) 2005; 9 Wang W.‐Z. (e_1_2_6_30_2) 2005 Sevostianov I. (e_1_2_6_13_2) 2001; 297 e_1_2_6_8_2 e_1_2_6_9_2 e_1_2_6_29_2 e_1_2_6_6_2 e_1_2_6_5_2 Castro R. G. (e_1_2_6_14_2) 1997; 37 e_1_2_6_23_2 e_1_2_6_2_2 Sampath S. (e_1_2_6_15_2) 1999; 272 e_1_2_6_22_2 Pershin V. (e_1_2_6_17_2) 2003; 12 e_1_2_6_21_2 e_1_2_6_28_2 e_1_2_6_27_2 |
References_xml | – reference: O. Yamamoto, "Solid Oxide Fuel Cells: Fundamental Aspects and Prospects," Electrochim. Acta, 45, 2423-35 (2000). – reference: A. Ohmori and C.-J. Li, "Quantitative Characterization of the Structure of Plasma Sprayed Al2O3 Coating by Using Copper Electroplating," Thin Solid Films, 201, 241-52 (1991). – reference: R. G. Castro, A. H. Bartlett, K. J. Hollis, and R. D. Fields, "The Effect of Substrate Temperature on the Thermal Diffusivity and Bonding Characteristics of Plasma Sprayed Beryllium," Fusion Eng. Des., 37, 243-52 (1997). – reference: C.-J. Li, A. Ohmori, and R. McPherson, "The Relationship between Microstructure and Young's Modulus of Thermally Sprayed Ceramic Coatings," J. Mater. Sci., 32, 997-1004 (1997). – reference: H. B. Guo, R. Vaβen, and D. Stöver, "Atmospheric Plasma Sprayed Thick Thermal Barrier Coatings with High Segmentation Crack Density," Surf. Coat. Technol., 186, 353-63 (2004). – reference: I. Sevostianov and M. Kachanov, "Plasma-Sprayed Ceramic Coatings: Anisotropic Elastic and Conductive Properties in Relation to the Microstructure; Cross-Property Correlations," Mater. Sci. Eng. A, 297, 235-43 (2001). – reference: J. Gong, Y. Li, Z. Zhang, and Z. Tang, "AC Impedance Study of Zirconia Doped with Yttria and Calcia," J. Am. Ceram. Soc., 83, 648-50 (2000). – reference: S. C. Singhal, "Advances in Solid Oxide Fuel Cell Technology," Solid State Ionics, 135, 305-13 (2000). – reference: I.-H. Jung, K.-K. Bae, M.-S. Yang, and S.-K. Ihm, "A Study of the Microstructur of Yttria-Stabilized Zirconia Deposited by Inductively Coupled Plasma Spraying," J. Thermal Spray Technol., 9, 463-77 (2000). – reference: V. Pershin, M. Lufitha, S. Chandra, and J. Mostaghimi, "Effect of Substrate Temperature on Adhesion Strength of Plasma-Sprayed Nickel Coatings," J. Thermal Spray Technol., 12, 370-6 (2003). – reference: J. Ilavsky, A. J. Allen, G. G. Long, S. Krueger, C. C. Berndt, and H. Herman, "Influence of Spray Angle on the Pore and Crack Microstructure of Plasma-Sprayed Deposits," J. Am. Ceram. Soc., 80, 733-42 (1997). – reference: C. Zhang, C.-J. Li, G. Zhang, X.-J. Ning, C.-X. Li, H. Liao, and C. Coddet, "Ionic Conductivity and its Temperature Dependence of Atmospheric Plasma-Sprayed Yttria Stabilized Zirconia Electrolyte," Mater. Sci. Eng. B, 137, 24-30 (2007). – reference: C.-J. Li, X.-J. Ning, and C.-X. Li, "Effect of Densification Process on the Properties of Plasma-Sprayed YSZ Electrolyte Coatings for Solid Oxide Fuel Cell," Surf. Coat. Technol., 190, 60-4 (2005). – reference: C.-J. Li and W.-Z. Wang, "Quantitative Characterization of Lamellar Microstructure of Plasma-Sprayed Ceramic Coatings Through Visualization of Void Distribution," Mater. Sci. Eng. A, 386, 10-9 (2004). – reference: S. Sampath, X. Jiang, A. Kulkarni, J. Matejicek, D. L. Gilmore, and R. A. Neiser, "Development of Process Maps for Plasma Spray: Case Study for Molybdenum," Mater. Sci. Eng. A, 348, 54-66 (2003). – reference: I.-H. Jung, J.-S. Moon, K.-C. Song, and M.-S. Yang, "Microstructure of Yttria Stabilized Zirconia Deposited by Plasma Spraying," Surf. Coat. Technol., 180-181, 454-7 (2004). – reference: C.-X. Li, C.-J. Li, H.-G. Long, Y.-Z. Xing, H.-L. Liao, and C. Coddet, "Characterization of Atmospheric Plasma-Sprayed Sc2O3-ZrO2 Electrolyte Coating," Solid State Ionics, 177, 2149-53 (2006). – reference: C.-J. Li, C.-X. Li, Y.-Z. Xing, M. Gao, and G.-J. Yang, "Influence of YSZ Electrolyte Thickness on the Characteristics of Plasma-Sprayed Cermet Supported Tubular SOFC," Solid State Ionics, 177, 2065-9 (2006). – reference: G. N. Heintze and S. Uematsu, "Preparation and Structures of Plasma-Sprayed γ-and α-Al2O3 Coatings," Surf. Coat. Technol., 50, 213-22 (1992). – reference: W. Chi, S. Sampath, and H. Wang, "Microstructure-Thermal Conductivity Relationships for Plasma-Sprayed Yttria-Stabilized Zirconia Coatings," J. Am. Ceram. Soc., 91, 2636-45 (2008). – reference: C.-J. Li and A. Ohmori, "Relationships between the Microstructure and Properties of Thermally Sprayed Deposits," J. Thermal Spray Technol., 11, 365-74 (2002). – reference: S. Sampath, X. Y. Jiang, J. Matejicek, A. C. Leger, and A. Vardelle, "Substrate Temperature Effects on Splat Formation, Microstructure Development and Properties of Plasma Sprayed Coatings Part I: Case Study for Partially Stabilized Zirconia," Mater. Sci. Eng. A, 272, 181-8 (1999). – reference: K. A. Khor, X. J. Chen, S. H. Chan, and L. G. Yu, "Microstructure-Property Modifications in Plasma Sprayed 20 Wt.% Yttria Stabilized Zirconia Electrolyte by Spark Plasma Sintering (SPS) Technique," Mater. Sci. Eng. A, 366, 120-6 (2004). – reference: A. Tricoire, M. Vardelle, P. Fauchais, F. Braillard, A. Malié, and P. Bengtsson, "Macrocrack Formation in Plasma-Sprayed YSZ TBCs when Spraying Thick Passes," High Temp. Mater. Process, 9, 401-13 (2005). – reference: R. McPherson, "A Model for the Thermal Conductivity of Plasma Sprayed Ceramic Coatings," Thin Solid Films, 112, 89-95 (1984). – reference: H. B. Guo, S. Kuroda, and H. Murakami, "Microstructures and Properties of Plasma-Spayed Segmented Thermal Barrier Coatings," J. Am. Ceram. Soc., 89, 1432-9 (2006). – reference: R. McPherson, "A Review of Microstructure and Properties of Plasma Sprayed Ceramic Coatings," Surf. Coat. Technol., 39-40, 173-81 (1989). – reference: Y.-Z. Xing, C.-J. Li, C.-X. Li, and G.-J. Yang, "Influence of Through-Lamella Grain Growth on Ionic Conductivity of Plasma-Sprayed Yttria-Stabilized Zirconia as an Electrolyte in Solid Oxide Fuel Cells," J. Power Sources, 176, 31-8 (2008). – volume: 9 start-page: 463 year: 2000 end-page: 77 article-title: A Study of the Microstructur of Yttria‐Stabilized Zirconia Deposited by Inductively Coupled Plasma Spraying publication-title: J. Thermal Spray Technol. – start-page: 1506 year: 2005 end-page: 10 – volume: 190 start-page: 60 year: 2005 end-page: 4 article-title: Effect of Densification Process on the Properties of Plasma‐Sprayed YSZ Electrolyte Coatings for Solid Oxide Fuel Cell publication-title: Surf. Coat. Technol. – volume: 297 start-page: 235 year: 2001 end-page: 43 article-title: Plasma‐Sprayed Ceramic Coatings publication-title: Anisotropic Elastic and Conductive Properties in Relation to the Microstructure; Cross-Property Correlations – volume: 176 start-page: 31 year: 2008 end-page: 8 article-title: Influence of Through‐Lamella Grain Growth on Ionic Conductivity of Plasma‐Sprayed Yttria‐Stabilized Zirconia as an Electrolyte in Solid Oxide Fuel Cells publication-title: J. Power Sources – volume: 39–40 start-page: 173 year: 1989 end-page: 81 article-title: A Review of Microstructure and Properties of Plasma Sprayed Ceramic Coatings publication-title: Surf. Coat. Technol. – volume: 272 start-page: 181 year: 1999 end-page: 8 article-title: Substrate Temperature Effects on Splat Formation, Microstructure Development and Properties of Plasma Sprayed Coatings Part I publication-title: Case Study for Partially Stabilized Zirconia – volume: 180–181 start-page: 454 year: 2004 end-page: 7 article-title: Microstructure of Yttria Stabilized Zirconia Deposited by Plasma Spraying publication-title: Surf. Coat. Technol. – volume: 386 start-page: 10 year: 2004 end-page: 9 article-title: Quantitative Characterization of Lamellar Microstructure of Plasma‐Sprayed Ceramic Coatings Through Visualization of Void Distribution publication-title: Mater. Sci. Eng. A – volume: 348 start-page: 54 year: 2003 end-page: 66 article-title: Development of Process Maps for Plasma Spray publication-title: Case Study for Molybdenum – volume: 37 start-page: 243 year: 1997 end-page: 52 article-title: The Effect of Substrate Temperature on the Thermal Diffusivity and Bonding Characteristics of Plasma Sprayed Beryllium publication-title: Fusion Eng. Des. – volume: 186 start-page: 353 year: 2004 end-page: 63 article-title: Atmospheric Plasma Sprayed Thick Thermal Barrier Coatings with High Segmentation Crack Density publication-title: Surf. Coat. Technol. – volume: 135 start-page: 305 year: 2000 end-page: 13 article-title: Advances in Solid Oxide Fuel Cell Technology publication-title: Solid State Ionics – volume: 366 start-page: 120 year: 2004 end-page: 6 article-title: Microstructure‐Property Modifications in Plasma Sprayed 20 Wt.% Yttria Stabilized Zirconia Electrolyte by Spark Plasma Sintering (SPS) Technique publication-title: Mater. Sci. Eng. A – volume: 11 start-page: 365 year: 2002 end-page: 74 article-title: Relationships between the Microstructure and Properties of Thermally Sprayed Deposits publication-title: J. Thermal Spray Technol. – volume: 50 start-page: 213 year: 1992 end-page: 22 article-title: Preparation and Structures of Plasma‐Sprayed γ‐and α‐Al O Coatings publication-title: Surf. Coat. Technol. – volume: 91 start-page: 2636 year: 2008 end-page: 45 article-title: Microstructure‐Thermal Conductivity Relationships for Plasma‐Sprayed Yttria‐Stabilized Zirconia Coatings publication-title: J. Am. Ceram. Soc. – volume: 45 start-page: 2423 year: 2000 end-page: 35 article-title: Solid Oxide Fuel Cells publication-title: Fundamental Aspects and Prospects – volume: 137 start-page: 24 year: 2007 end-page: 30 article-title: Ionic Conductivity and its Temperature Dependence of Atmospheric Plasma‐Sprayed Yttria Stabilized Zirconia Electrolyte publication-title: Mater. Sci. Eng. B – volume: 12 start-page: 370 year: 2003 end-page: 6 article-title: Effect of Substrate Temperature on Adhesion Strength of Plasma‐Sprayed Nickel Coatings publication-title: J. Thermal Spray Technol. – volume: 32 start-page: 997 year: 1997 end-page: 1004 article-title: The Relationship between Microstructure and Young's Modulus of Thermally Sprayed Ceramic Coatings publication-title: J. Mater. Sci. – volume: 201 start-page: 241 year: 1991 end-page: 52 article-title: Quantitative Characterization of the Structure of Plasma Sprayed Al O Coating by Using Copper Electroplating publication-title: Thin Solid Films – volume: 177 start-page: 2149 year: 2006 end-page: 53 article-title: Characterization of Atmospheric Plasma‐Sprayed Sc O –ZrO Electrolyte Coating publication-title: Solid State Ionics – volume: 112 start-page: 89 year: 1984 end-page: 95 article-title: A Model for the Thermal Conductivity of Plasma Sprayed Ceramic Coatings publication-title: Thin Solid Films – volume: 89 start-page: 1432 year: 2006 end-page: 9 article-title: Microstructures and Properties of Plasma‐Spayed Segmented Thermal Barrier Coatings publication-title: J. Am. Ceram. Soc. – volume: 177 start-page: 2065 year: 2006 end-page: 9 article-title: Influence of YSZ Electrolyte Thickness on the Characteristics of Plasma‐Sprayed Cermet Supported Tubular SOFC publication-title: Solid State Ionics – volume: 80 start-page: 733 year: 1997 end-page: 42 article-title: Influence of Spray Angle on the Pore and Crack Microstructure of Plasma‐Sprayed Deposits publication-title: J. Am. Ceram. Soc. – volume: 83 start-page: 648 year: 2000 end-page: 50 article-title: AC Impedance Study of Zirconia Doped with Yttria and Calcia publication-title: J. Am. Ceram. Soc. – volume: 9 start-page: 401 year: 2005 end-page: 13 article-title: Macrocrack Formation in Plasma‐Sprayed YSZ TBCs when Spraying Thick Passes publication-title: High Temp. Mater. Process – ident: e_1_2_6_2_2 doi: 10.1016/S0167-2738(00)00452-5 – ident: e_1_2_6_23_2 doi: 10.1111/j.1551-2916.2005.00912.x – ident: e_1_2_6_29_2 doi: 10.1023/A:1018574221589 – ident: e_1_2_6_9_2 doi: 10.1111/j.1151-2916.1997.tb02890.x – volume: 348 start-page: 54 year: 2003 ident: e_1_2_6_7_2 article-title: Development of Process Maps for Plasma Spray publication-title: Case Study for Molybdenum – ident: e_1_2_6_16_2 doi: 10.1111/j.1551-2916.2008.02476.x – ident: e_1_2_6_21_2 doi: 10.1016/j.surfcoat.2003.10.129 – ident: e_1_2_6_6_2 doi: 10.1111/j.1151-2916.2000.tb01247.x – volume: 386 start-page: 10 year: 2004 ident: e_1_2_6_26_2 article-title: Quantitative Characterization of Lamellar Microstructure of Plasma‐Sprayed Ceramic Coatings Through Visualization of Void Distribution publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(04)00900-1 – ident: e_1_2_6_8_2 doi: 10.1016/j.msea.2003.08.119 – ident: e_1_2_6_28_2 doi: 10.1016/0040-6090(84)90506-6 – volume: 45 start-page: 2423 year: 2000 ident: e_1_2_6_3_2 article-title: Solid Oxide Fuel Cells publication-title: Fundamental Aspects and Prospects – volume: 190 start-page: 60 year: 2005 ident: e_1_2_6_4_2 article-title: Effect of Densification Process on the Properties of Plasma‐Sprayed YSZ Electrolyte Coatings for Solid Oxide Fuel Cell publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2004.04.086 – ident: e_1_2_6_12_2 doi: 10.1016/0040-6090(91)90114-D – volume: 9 start-page: 463 year: 2000 ident: e_1_2_6_20_2 article-title: A Study of the Microstructur of Yttria‐Stabilized Zirconia Deposited by Inductively Coupled Plasma Spraying publication-title: J. Thermal Spray Technol. doi: 10.1007/BF02608548 – ident: e_1_2_6_22_2 doi: 10.1016/j.surfcoat.2004.01.002 – volume: 177 start-page: 2149 year: 2006 ident: e_1_2_6_25_2 article-title: Characterization of Atmospheric Plasma‐Sprayed Sc2O3–ZrO2 Electrolyte Coating publication-title: Solid State Ionics doi: 10.1016/j.ssi.2006.03.034 – ident: e_1_2_6_19_2 doi: 10.1016/0257-8972(92)90004-T – ident: e_1_2_6_11_2 doi: 10.1361/105996302770348754 – volume: 9 start-page: 401 year: 2005 ident: e_1_2_6_24_2 article-title: Macrocrack Formation in Plasma‐Sprayed YSZ TBCs when Spraying Thick Passes publication-title: High Temp. Mater. Process doi: 10.1615/HighTempMatProc.v9.i3.70 – ident: e_1_2_6_18_2 doi: 10.1016/j.jpowsour.2007.10.031 – volume: 297 start-page: 235 year: 2001 ident: e_1_2_6_13_2 article-title: Plasma‐Sprayed Ceramic Coatings publication-title: Anisotropic Elastic and Conductive Properties in Relation to the Microstructure; Cross-Property Correlations – volume: 12 start-page: 370 year: 2003 ident: e_1_2_6_17_2 article-title: Effect of Substrate Temperature on Adhesion Strength of Plasma‐Sprayed Nickel Coatings publication-title: J. Thermal Spray Technol. doi: 10.1361/105996303770348249 – ident: e_1_2_6_5_2 doi: 10.1016/j.ssi.2006.03.004 – volume: 272 start-page: 181 year: 1999 ident: e_1_2_6_15_2 article-title: Substrate Temperature Effects on Splat Formation, Microstructure Development and Properties of Plasma Sprayed Coatings Part I publication-title: Case Study for Partially Stabilized Zirconia – ident: e_1_2_6_27_2 doi: 10.1016/j.mseb.2006.10.005 – ident: e_1_2_6_10_2 doi: 10.1016/0257-8972(89)90052-2 – volume: 37 start-page: 243 year: 1997 ident: e_1_2_6_14_2 article-title: The Effect of Substrate Temperature on the Thermal Diffusivity and Bonding Characteristics of Plasma Sprayed Beryllium publication-title: Fusion Eng. Des. doi: 10.1016/S0920-3796(97)00049-5 – start-page: 1506 volume-title: Proceedings of the 2005 International Thermal Spray Conference, Basil year: 2005 ident: e_1_2_6_30_2 |
SSID | ssj0001984 |
Score | 2.2311635 |
Snippet | Yttria‐stabilized zirconia (YSZ) deposits were prepared by an atmospheric plasma spray (APS) on a stainless‐steel substrate preheated to different temperatures... Yttria-stabilized zirconia (YSZ) deposits were prepared by an atmospheric plasma spray (APS) on a stainless-steel substrate preheated to different temperatures... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3931 |
SubjectTerms | Applied sciences Building materials. Ceramics. Glasses Ceramic industries Ceramics Chemical industry and chemicals Conductivity Electrotechnical and electronic ceramics Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells Ions Microstructure Plasma Stainless steel Technical ceramics Zirconium |
Title | Influence of Microstructure on the Ionic Conductivity of Plasma-Sprayed Yttria-Stabilized Zirconia Deposits |
URI | https://api.istex.fr/ark:/67375/WNG-THM69JJM-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1551-2916.2008.02775.x https://www.proquest.com/docview/217945827 https://www.proquest.com/docview/33337383 https://www.proquest.com/docview/34514906 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELXQcoED34iwsOSAuKVyYidOjquyS7dSVwh22YVLNIltqSokq6aVlj3xE_iN_BJmnA9ahNAKkVPjeCJ5OmM_t89vGHtZcl0oEDyw2phA4h4kgAJjOTWqSCXQ2UzH8j1OJqdyeh6fd_wnOgvT6kMMP7hRZrj5mhIcimY7yXG1DyLENx0lMlIqHhGeJOoW4aN3v5SkcG8teyRMEnHbpJ4_vmhrpbpJTr8k5iQ06DzbVr3YgqWb4NatTod32aIfV0tKWYzWq2JUXv0m-fh_Bn6P3elArL_fRt19dsNUD9jtDWlDvPswb9Ztn-Yhq4_6Wih-bf0ZkQBb4dr1ElsqH1Gof0Qivf64rkiB1pW0oL5vEd1_gR_fvr-_WMJXo_2PKyo0Qg0rJw58hW2f5kvc1s_Bf20cCa15xE4PD07Gk6Ar9RCUcSjiwNgwgzQBXCtxLLHVAngcSTAgIE4kaMQtyvIi42AFSKmL2FqIMqlKG2eSi8dsp6or84T5PEx1pMvU6CyRWRoCB52F4FSEilJpj6n-a83LTgedynF8zjf2Q-jgnBzcVekkB-eXHgsHy4tWC-QaNq9c5AwGsFwQlw6fnR2_yU8msySbTmf5mcf2tkJrMIh4liYiER7b7WMt7-aZJo9oPsV8Uh57MTzFCYL-9YHK1OsmF3gpkYq_9JCImjOeeCx1cXftweXT_fGB-_z030132S3HwXEUoWdsB6PPPEegtyr2XAr_BEHjRZg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6h9gAceKOaQusD4uZoba9fxyq0JKGJEKS0cFmNvWsparGrOJFKT_wEfiO_hJn1gxghVCF8ite7lnY8s_uN8_kbxl5mXKUR-NzJldaOwBzEgRR9OdZRGgugbzMNy3cWjk7E5Cw4a8oB0bcwtT5E98KNIsOs1xTg9EK6H-W43TseApyGE-lFUTBAQLlNBb5NfvX-l5YUZteixcIkEten9fzxTr29apvMfkXcSajQfHld96IHTDfhrdmfju6zi3ZmNS3lfLBepYPs-jfRx_809QfsXoNj7YPa8R6yW7p4xO5uqBvi2cdFta77VI9ZOW7Lodhlbk-JB1hr166X2FLYCETtMen02sOyIBFaU9WC-r5DgP8Ffnz7_uFyCV-1sj-tqNYINayMPvA1tn1eLDGzX4D9WhseWvWEnRwdzocjp6n24GT4sAJH524CcQi4XeJcglz5wANPgAYfglCAQugS5TxNOOQ-CKHSIM_BS0SU5UEiuP-UbRVloXeYzd1YeSqLtUpCkcQucFCJC0ZIKM0iZbGofa4ya6TQqSLHhdxIidDAkgzcFOokA8sri7ndyMtaDuQGY14Z1-kGwPKc6HR47XT2Rs5H0zCZTKby1GJ7Pd_qBng8iUM_9C222zqbbJaaSnq0pGJIRRbb767iGkF__EChy3UlfTwiP_b_0kMgcE54aLHYON6NJycnB8ND8_vZvw_dZ7dH8-mxPB7P3u6yO4aSYxhDz9kWeqJ-gbhvle6ZeP4Jh5JJsw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLXQJiF4YHxqYbDlAfGWyomdr8epXWkLrSbY2ODFuoltqSqkVdNK2574CfxGfgnXTlIahNCEyFPj-Eby7b32cXt8LiGvciqzGBj1tFTK47gH8SDDWE5UnCUczNlMy_KdRINzProML2v-kzkLU-lDbH5wM5lh52uT4Aup20mOq70XIL6pKZFBHIcdxJO7PKKJifDe-19SUri55g0UNhpxbVbPH9_UWqp2jdevDHUSSvSerspetHDpNrq1y1N_j8yagVWslFlnvco6-c1vmo__Z-QPyYMaxbrHVdg9IndU8Zjc39I2xLuP03Jd9SmfkPmwKYbizrU7NizASrl2vcSWwkUY6g6NSq_bnRdGgtbWtDB9TxHef4Uf375_WCzhWkn308pUGjENK6sOfINtn6dL3NdPwe0py0Irn5Lz_slZd-DVtR68PPRZ6Cntp5BEgIsljiXUkgENAw4KGIQRB4nAJdY0SyloBpzLLNQagpTHuQ5TTtkzslPMC7VPXOonMpB5omQa8TTxgYJMfbAyQlkeS4fEzdcq8loI3dTj-CK2NkToYGEcXJfpNA4WVw7xN5aLSgzkFjavbeRsDGA5M2Q6fHYxeSPOBuMoHY3G4sIhh63Q2hgENE0iFjGHHDSxJuqJphSBmVAxoWKHHG2e4gxh_vaBQs3XpWB4xSxhf-nBETanNHJIYuPu1oMTo-Puif38_N9Nj8jd015fvBtO3h6Qe5aPY-lCL8gOBqJ6iaBvlR3abP4JgytIaw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+Microstructure+on+the+Ionic+Conductivity+of+Plasma-Sprayed+Yttria-Stabilized+Zirconia+Deposits&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=Xing%2C+Ya-Zhe&rft.au=Li%2C+Chang-Jiu&rft.au=Zhang%2C+Qian&rft.au=Li%2C+Cheng-Xin&rft.date=2008-12-01&rft.issn=0002-7820&rft.volume=91&rft.spage=3931&rft.epage=3936&rft_id=info:doi/10.1111%2Fj.1551-2916.2008.02775.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon |