Influence of Microstructure on the Ionic Conductivity of Plasma-Sprayed Yttria-Stabilized Zirconia Deposits

Yttria‐stabilized zirconia (YSZ) deposits were prepared by an atmospheric plasma spray (APS) on a stainless‐steel substrate preheated to different temperatures from room temperature to 1100°C. The microstructure of the deposits was characterized from polished and fractured cross sections by scanning...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Ceramic Society Vol. 91; no. 12; pp. 3931 - 3936
Main Authors Xing, Ya-Zhe, Li, Chang-Jiu, Zhang, Qiang, Li, Cheng-Xin, Yang, Guan-Jun
Format Journal Article
LanguageEnglish
Published Malden, USA Blackwell Publishing Inc 01.12.2008
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Yttria‐stabilized zirconia (YSZ) deposits were prepared by an atmospheric plasma spray (APS) on a stainless‐steel substrate preheated to different temperatures from room temperature to 1100°C. The microstructure of the deposits was characterized from polished and fractured cross sections by scanning electron microscopy (SEM). The ionic conductivity of the deposits was measured using both DC and AC methods, and the relationship between ionic conductivity and microstructure of deposits was examined. SEM observation revealed that the YSZ deposits exhibit different microstructures with different deposition temperatures. With the increase of the deposition temperature, the columnar grain growth across lamellar interfaces was enhanced and subsequently the intersplat bonding ratio in the deposit was improved. The ionic conductivity of YSZ deposits at the direction perpendicular to the deposit surface was significantly increased through the microstructure development on increasing the deposition temperature. However, it was found that the intergrain resistance changed little despite a remarkable change of the deposition temperature. A microstructure model is proposed to correlate the relative conductivity to the mean lamellar interface bonding ratio. The increase in ionic conductivity of the YSZ deposit with the deposition temperature can be attributed to the increase in the lamellar interface bonding ratio.
AbstractList Yttria-stabilized zirconia (YSZ) deposits were prepared by an atmospheric plasma spray (APS) on a stainless-steel substrate preheated to different temperatures from room temperature to 1100{degrees}C. The microstructure of the deposits was characterized from polished and fractured cross sections by scanning electron microscopy (SEM). The ionic conductivity of the deposits was measured using both DC and AC methods, and the relationship between ionic conductivity and microstructure of deposits was examined. SEM observation revealed that the YSZ deposits exhibit different microstructures with different deposition temperatures. With the increase of the deposition temperature, the columnar grain growth across lamellar interfaces was enhanced and subsequently the intersplat bonding ratio in the deposit was improved. The ionic conductivity of YSZ deposits at the direction perpendicular to the deposit surface was significantly increased through the microstructure development on increasing the deposition temperature. However, it was found that the intergrain resistance changed little despite a remarkable change of the deposition temperature. A microstructure model is proposed to correlate the relative conductivity to the mean lamellar interface bonding ratio. The increase in ionic conductivity of the YSZ deposit with the deposition temperature can be attributed to the increase in the lamellar interface bonding ratio.
Yttria-stabilized zirconia (YSZ) deposits were prepared by an atmospheric plasma spray (APS) on a stainless-steel substrate preheated to different temperatures from room temperature to 1100'C. The microstructure of the deposits was characterized from polished and fractured cross sections by scanning electron microscopy (SEM). The ionic conductivity of the deposits was measured using both DC and AC methods, and the relationship between ionic conductivity and microstructure of deposits was examined. SEM observation revealed that the YSZ deposits exhibit different microstructures with different deposition temperatures. With the increase of the deposition temperature, the columnar grain growth across lamellar interfaces was enhanced and subsequently the intersplat bonding ratio in the deposit was improved. The ionic conductivity of YSZ deposits at the direction perpendicular to the deposit surface was significantly increased through the microstructure development on increasing the deposition temperature. However, it was found that the intergrain resistance changed little despite a remarkable change of the deposition temperature. A microstructure model is proposed to correlate the relative conductivity to the mean lamellar interface bonding ratio. The increase in ionic conductivity of the YSZ deposit with the deposition temperature can be attributed to the increase in the lamellar interface bonding ratio.
Yttria-stabilized zirconia (YSZ) deposits were prepared by an atmospheric plasma spray (APS) on a stainless-steel substrate preheated to different temperatures from room temperature to 1100...C. The microstructure of the deposits was characterized from polished and fractured cross sections by scanning electron microscopy (SEM). The ionic conductivity of the deposits was measured using both DC and AC methods, and the relationship between ionic conductivity and microstructure of deposits was examined. SEM observation revealed that the YSZ deposits exhibit different microstructures with different deposition temperatures. With the increase of the deposition temperature, the columnar grain growth across lamellar interfaces was enhanced and subsequently the intersplat bonding ratio in the deposit was improved. The ionic conductivity of YSZ deposits at the direction perpendicular to the deposit surface was significantly increased through the microstructure development on increasing the deposition temperature. However, it was found that the intergrain resistance changed little despite a remarkable change of the deposition temperature. A microstructure model is proposed to correlate the relative conductivity to the mean lamellar interface bonding ratio. The increase in ionic conductivity of the YSZ deposit with the deposition temperature can be attributed to the increase in the lamellar interface bonding ratio. (ProQuest: ... denotes formulae/symbols omitted.)
Yttria‐stabilized zirconia (YSZ) deposits were prepared by an atmospheric plasma spray (APS) on a stainless‐steel substrate preheated to different temperatures from room temperature to 1100°C. The microstructure of the deposits was characterized from polished and fractured cross sections by scanning electron microscopy (SEM). The ionic conductivity of the deposits was measured using both DC and AC methods, and the relationship between ionic conductivity and microstructure of deposits was examined. SEM observation revealed that the YSZ deposits exhibit different microstructures with different deposition temperatures. With the increase of the deposition temperature, the columnar grain growth across lamellar interfaces was enhanced and subsequently the intersplat bonding ratio in the deposit was improved. The ionic conductivity of YSZ deposits at the direction perpendicular to the deposit surface was significantly increased through the microstructure development on increasing the deposition temperature. However, it was found that the intergrain resistance changed little despite a remarkable change of the deposition temperature. A microstructure model is proposed to correlate the relative conductivity to the mean lamellar interface bonding ratio. The increase in ionic conductivity of the YSZ deposit with the deposition temperature can be attributed to the increase in the lamellar interface bonding ratio.
Author Li, Chang-Jiu
Yang, Guan-Jun
Xing, Ya-Zhe
Li, Cheng-Xin
Zhang, Qiang
Author_xml – sequence: 1
  givenname: Ya-Zhe
  surname: Xing
  fullname: Xing, Ya-Zhe
  organization: State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
– sequence: 2
  givenname: Chang-Jiu
  surname: Li
  fullname: Li, Chang-Jiu
  email: licj@mail.xjtu.edu.cn
  organization: State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
– sequence: 3
  givenname: Qiang
  surname: Zhang
  fullname: Zhang, Qiang
  organization: State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
– sequence: 4
  givenname: Cheng-Xin
  surname: Li
  fullname: Li, Cheng-Xin
  organization: State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
– sequence: 5
  givenname: Guan-Jun
  surname: Yang
  fullname: Yang, Guan-Jun
  organization: State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20986363$$DView record in Pascal Francis
BookMark eNqNkVFvFCEUhYmpidvqf5iY6NuMMMAwvGiatba76aqJNY2-kLssRLazzAqM7vrrZbq1D32xvMC9fOeQyzlGR773BqGC4Irk9WZdEc5JWUvSVDXGbYVrIXi1e4Im9xdHaIIxrkvR1vgZOo5xnUsiWzZBNzNvu8F4bYreFgunQx9TGHQaQu74Iv0wxaz3ThfT3q9y3_1yaT-ynzuIGyi_bAPszar4llJwuUywdJ37kzvfXdBZCcV7s-2jS_E5emqhi-bF3X6Cvn44u5pelJefzmfT08tSc0J5aSyR0DbQMpEn4XZFAfOagQEKvGGwIhILi5cSg6XA2GrJrYVaMqEtlwzTE_T64LsN_c_BxKQ2LmrTdeBNP0RFGSdM4ub_YF6CtjSDLx-A634IPg-haiIk420tMvTqDoKoobMBvHZRbYPbQNirGsu2oc1o9vbAjX8dg7FKuwTJ9T4FcJ0iWI3JqrUaA1RjgGpMVt0mq3bZoH1g8O-NR0jfHaS_XWf2j9ap-en07PacHcqDg4vJ7O4dINyoRtAMX388V1cXi0bO5wt1Tf8Ccv3M7Q
CODEN JACTAW
CitedBy_id crossref_primary_10_1007_s11666_013_9965_0
crossref_primary_10_1016_j_ijhydene_2017_09_073
crossref_primary_10_1016_j_jssc_2022_123497
crossref_primary_10_1002_fuce_202100048
crossref_primary_10_1007_s11666_022_01379_z
crossref_primary_10_1007_s11666_012_9771_0
crossref_primary_10_1016_j_jeurceramsoc_2016_07_030
crossref_primary_10_1007_s11666_017_0530_0
crossref_primary_10_1016_j_surfcoat_2013_09_010
crossref_primary_10_1016_j_ceramint_2015_09_010
crossref_primary_10_1007_s11666_012_9862_y
crossref_primary_10_1007_s11666_012_9823_5
crossref_primary_10_1063_5_0144820
crossref_primary_10_1016_j_jpowsour_2012_04_049
crossref_primary_10_1016_j_surfcoat_2013_09_012
crossref_primary_10_1016_S0894_9166_11_60045_1
crossref_primary_10_1080_21870764_2021_1905266
crossref_primary_10_1179_1432891714Z_000000000873
crossref_primary_10_1016_j_actamat_2016_03_020
crossref_primary_10_1007_s11666_010_9591_z
crossref_primary_10_1007_s12613_012_0620_4
crossref_primary_10_1007_s11666_015_0260_0
crossref_primary_10_1016_j_ceramint_2018_06_258
crossref_primary_10_4028_www_scientific_net_AMM_44_47_2144
crossref_primary_10_1088_2053_1591_ab445e
crossref_primary_10_1016_j_ceramint_2016_09_088
crossref_primary_10_1016_j_ultsonch_2018_04_004
crossref_primary_10_1016_j_ceramint_2018_01_087
crossref_primary_10_1016_j_surfcoat_2018_07_074
crossref_primary_10_1080_02670844_2019_1669348
crossref_primary_10_1016_j_surfcoat_2014_11_010
crossref_primary_10_1007_s11666_024_01859_4
crossref_primary_10_1016_j_ceramint_2012_02_048
crossref_primary_10_1016_j_ceramint_2022_10_222
crossref_primary_10_1016_j_jeurceramsoc_2017_06_005
crossref_primary_10_1115_1_4026143
crossref_primary_10_1016_j_apsusc_2020_146176
crossref_primary_10_1016_j_surfcoat_2018_08_082
crossref_primary_10_1016_j_jpowsour_2012_12_092
crossref_primary_10_1016_j_jeurceramsoc_2017_04_031
crossref_primary_10_1007_s11666_020_01087_6
crossref_primary_10_1007_s11666_012_9864_9
crossref_primary_10_1007_s11666_018_0818_8
crossref_primary_10_1016_j_ceramint_2016_11_009
crossref_primary_10_1016_j_jeurceramsoc_2018_01_028
crossref_primary_10_1039_C5TA01203A
crossref_primary_10_1016_j_surfcoat_2010_05_011
crossref_primary_10_1007_s11666_017_0533_x
crossref_primary_10_1016_j_surfcoat_2024_131572
crossref_primary_10_1016_j_ceramint_2025_02_262
crossref_primary_10_1016_j_surfcoat_2012_08_026
crossref_primary_10_1007_s11666_015_0345_9
crossref_primary_10_1016_j_surfcoat_2015_04_031
crossref_primary_10_1016_j_ijhydene_2014_02_138
crossref_primary_10_1007_s11837_020_04395_y
crossref_primary_10_1007_s11666_016_0464_y
crossref_primary_10_1016_j_surfcoat_2017_03_032
crossref_primary_10_1007_s11666_012_9831_5
Cites_doi 10.1016/S0167-2738(00)00452-5
10.1111/j.1551-2916.2005.00912.x
10.1023/A:1018574221589
10.1111/j.1151-2916.1997.tb02890.x
10.1111/j.1551-2916.2008.02476.x
10.1016/j.surfcoat.2003.10.129
10.1111/j.1151-2916.2000.tb01247.x
10.1016/S0921-5093(04)00900-1
10.1016/j.msea.2003.08.119
10.1016/0040-6090(84)90506-6
10.1016/j.surfcoat.2004.04.086
10.1016/0040-6090(91)90114-D
10.1007/BF02608548
10.1016/j.surfcoat.2004.01.002
10.1016/j.ssi.2006.03.034
10.1016/0257-8972(92)90004-T
10.1361/105996302770348754
10.1615/HighTempMatProc.v9.i3.70
10.1016/j.jpowsour.2007.10.031
10.1361/105996303770348249
10.1016/j.ssi.2006.03.004
10.1016/j.mseb.2006.10.005
10.1016/0257-8972(89)90052-2
10.1016/S0920-3796(97)00049-5
ContentType Journal Article
Copyright 2008 The American Ceramic Society
2009 INIST-CNRS
Copyright American Ceramic Society Dec 2008
Copyright_xml – notice: 2008 The American Ceramic Society
– notice: 2009 INIST-CNRS
– notice: Copyright American Ceramic Society Dec 2008
DBID BSCLL
AAYXX
CITATION
IQODW
7QQ
7SR
8FD
JG9
DOI 10.1111/j.1551-2916.2008.02775.x
DatabaseName Istex
CrossRef
Pascal-Francis
Ceramic Abstracts
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
DatabaseTitleList Materials Research Database
Materials Research Database
Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
Engineering
Applied Sciences
EISSN 1551-2916
EndPage 3936
ExternalDocumentID 1616774691
20986363
10_1111_j_1551_2916_2008_02775_x
JACE02775
ark_67375_WNG_THM69JJM_W
Genre article
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29L
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEFU
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACNCT
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBO
EBS
EDO
EJD
EMK
ESX
F00
F01
F04
FEDTE
FOJGT
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
H~9
I-F
IRD
ITF
ITG
ITH
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QF4
QM1
QN7
QO4
R.K
RAX
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TAE
TH9
TN5
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WFSAM
WH7
WIH
WIK
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
YQT
ZCG
ZE2
ZY4
ZZTAW
~02
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADMLS
ADXHL
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
7QQ
7SR
8FD
JG9
ID FETCH-LOGICAL-c5135-ef19a86a8477755fd3a0524aea3a564ad1907f0b90af3a44db5ffa2947cf59403
IEDL.DBID DR2
ISSN 0002-7820
IngestDate Fri Jul 11 04:22:06 EDT 2025
Fri Jul 11 15:43:37 EDT 2025
Fri Jul 25 19:15:09 EDT 2025
Mon Jul 21 09:12:01 EDT 2025
Tue Jul 01 00:21:44 EDT 2025
Thu Apr 24 22:50:42 EDT 2025
Wed Jan 22 16:22:42 EST 2025
Wed Oct 30 09:48:32 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Scanning electron microscopy
Electrical conductivity
Electrical properties
Ionic conductivity
Solid electrolyte
Stabilized zirconia
Experimental study
Solid oxide fuel cell
Oxide ceramics
Yttrium Oxides
Property structure relationship
Zirconium Oxides
Manufacturing
Microstructure
Plasma spraying
Electroceramics
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5135-ef19a86a8477755fd3a0524aea3a564ad1907f0b90af3a44db5ffa2947cf59403
Notes istex:7003C7FEDD70373D3699C302071A1F3C01BF61F6
ark:/67375/WNG-THM69JJM-W
ArticleID:JACE02775
J. Stevenson—contributing editor
This work was supported by National Natural Science Foundation of China (grant No. 50671080), National Science Fund for Distinguished Young Scholars (grant No.50725101), National Basic Research Program of China (grant No. 2007CB707702).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 217945827
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_34514906
proquest_miscellaneous_33337383
proquest_journals_217945827
pascalfrancis_primary_20986363
crossref_citationtrail_10_1111_j_1551_2916_2008_02775_x
crossref_primary_10_1111_j_1551_2916_2008_02775_x
wiley_primary_10_1111_j_1551_2916_2008_02775_x_JACE02775
istex_primary_ark_67375_WNG_THM69JJM_W
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2008
PublicationDateYYYYMMDD 2008-12-01
PublicationDate_xml – month: 12
  year: 2008
  text: December 2008
PublicationDecade 2000
PublicationPlace Malden, USA
PublicationPlace_xml – name: Malden, USA
– name: Malden, MA
– name: Columbus
PublicationTitle Journal of the American Ceramic Society
PublicationYear 2008
Publisher Blackwell Publishing Inc
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Inc
– name: Wiley
– name: Wiley Subscription Services, Inc
References I.-H. Jung, K.-K. Bae, M.-S. Yang, and S.-K. Ihm, "A Study of the Microstructur of Yttria-Stabilized Zirconia Deposited by Inductively Coupled Plasma Spraying," J. Thermal Spray Technol., 9, 463-77 (2000).
C.-J. Li, X.-J. Ning, and C.-X. Li, "Effect of Densification Process on the Properties of Plasma-Sprayed YSZ Electrolyte Coatings for Solid Oxide Fuel Cell," Surf. Coat. Technol., 190, 60-4 (2005).
R. McPherson, "A Model for the Thermal Conductivity of Plasma Sprayed Ceramic Coatings," Thin Solid Films, 112, 89-95 (1984).
V. Pershin, M. Lufitha, S. Chandra, and J. Mostaghimi, "Effect of Substrate Temperature on Adhesion Strength of Plasma-Sprayed Nickel Coatings," J. Thermal Spray Technol., 12, 370-6 (2003).
S. C. Singhal, "Advances in Solid Oxide Fuel Cell Technology," Solid State Ionics, 135, 305-13 (2000).
C. Zhang, C.-J. Li, G. Zhang, X.-J. Ning, C.-X. Li, H. Liao, and C. Coddet, "Ionic Conductivity and its Temperature Dependence of Atmospheric Plasma-Sprayed Yttria Stabilized Zirconia Electrolyte," Mater. Sci. Eng. B, 137, 24-30 (2007).
O. Yamamoto, "Solid Oxide Fuel Cells: Fundamental Aspects and Prospects," Electrochim. Acta, 45, 2423-35 (2000).
H. B. Guo, S. Kuroda, and H. Murakami, "Microstructures and Properties of Plasma-Spayed Segmented Thermal Barrier Coatings," J. Am. Ceram. Soc., 89, 1432-9 (2006).
C.-J. Li and A. Ohmori, "Relationships between the Microstructure and Properties of Thermally Sprayed Deposits," J. Thermal Spray Technol., 11, 365-74 (2002).
R. McPherson, "A Review of Microstructure and Properties of Plasma Sprayed Ceramic Coatings," Surf. Coat. Technol., 39-40, 173-81 (1989).
A. Ohmori and C.-J. Li, "Quantitative Characterization of the Structure of Plasma Sprayed Al2O3 Coating by Using Copper Electroplating," Thin Solid Films, 201, 241-52 (1991).
J. Ilavsky, A. J. Allen, G. G. Long, S. Krueger, C. C. Berndt, and H. Herman, "Influence of Spray Angle on the Pore and Crack Microstructure of Plasma-Sprayed Deposits," J. Am. Ceram. Soc., 80, 733-42 (1997).
G. N. Heintze and S. Uematsu, "Preparation and Structures of Plasma-Sprayed γ-and α-Al2O3 Coatings," Surf. Coat. Technol., 50, 213-22 (1992).
H. B. Guo, R. Vaβen, and D. Stöver, "Atmospheric Plasma Sprayed Thick Thermal Barrier Coatings with High Segmentation Crack Density," Surf. Coat. Technol., 186, 353-63 (2004).
C.-X. Li, C.-J. Li, H.-G. Long, Y.-Z. Xing, H.-L. Liao, and C. Coddet, "Characterization of Atmospheric Plasma-Sprayed Sc2O3-ZrO2 Electrolyte Coating," Solid State Ionics, 177, 2149-53 (2006).
W. Chi, S. Sampath, and H. Wang, "Microstructure-Thermal Conductivity Relationships for Plasma-Sprayed Yttria-Stabilized Zirconia Coatings," J. Am. Ceram. Soc., 91, 2636-45 (2008).
S. Sampath, X. Jiang, A. Kulkarni, J. Matejicek, D. L. Gilmore, and R. A. Neiser, "Development of Process Maps for Plasma Spray: Case Study for Molybdenum," Mater. Sci. Eng. A, 348, 54-66 (2003).
S. Sampath, X. Y. Jiang, J. Matejicek, A. C. Leger, and A. Vardelle, "Substrate Temperature Effects on Splat Formation, Microstructure Development and Properties of Plasma Sprayed Coatings Part I: Case Study for Partially Stabilized Zirconia," Mater. Sci. Eng. A, 272, 181-8 (1999).
R. G. Castro, A. H. Bartlett, K. J. Hollis, and R. D. Fields, "The Effect of Substrate Temperature on the Thermal Diffusivity and Bonding Characteristics of Plasma Sprayed Beryllium," Fusion Eng. Des., 37, 243-52 (1997).
C.-J. Li, C.-X. Li, Y.-Z. Xing, M. Gao, and G.-J. Yang, "Influence of YSZ Electrolyte Thickness on the Characteristics of Plasma-Sprayed Cermet Supported Tubular SOFC," Solid State Ionics, 177, 2065-9 (2006).
C.-J. Li, A. Ohmori, and R. McPherson, "The Relationship between Microstructure and Young's Modulus of Thermally Sprayed Ceramic Coatings," J. Mater. Sci., 32, 997-1004 (1997).
I.-H. Jung, J.-S. Moon, K.-C. Song, and M.-S. Yang, "Microstructure of Yttria Stabilized Zirconia Deposited by Plasma Spraying," Surf. Coat. Technol., 180-181, 454-7 (2004).
J. Gong, Y. Li, Z. Zhang, and Z. Tang, "AC Impedance Study of Zirconia Doped with Yttria and Calcia," J. Am. Ceram. Soc., 83, 648-50 (2000).
I. Sevostianov and M. Kachanov, "Plasma-Sprayed Ceramic Coatings: Anisotropic Elastic and Conductive Properties in Relation to the Microstructure; Cross-Property Correlations," Mater. Sci. Eng. A, 297, 235-43 (2001).
A. Tricoire, M. Vardelle, P. Fauchais, F. Braillard, A. Malié, and P. Bengtsson, "Macrocrack Formation in Plasma-Sprayed YSZ TBCs when Spraying Thick Passes," High Temp. Mater. Process, 9, 401-13 (2005).
Y.-Z. Xing, C.-J. Li, C.-X. Li, and G.-J. Yang, "Influence of Through-Lamella Grain Growth on Ionic Conductivity of Plasma-Sprayed Yttria-Stabilized Zirconia as an Electrolyte in Solid Oxide Fuel Cells," J. Power Sources, 176, 31-8 (2008).
K. A. Khor, X. J. Chen, S. H. Chan, and L. G. Yu, "Microstructure-Property Modifications in Plasma Sprayed 20 Wt.% Yttria Stabilized Zirconia Electrolyte by Spark Plasma Sintering (SPS) Technique," Mater. Sci. Eng. A, 366, 120-6 (2004).
C.-J. Li and W.-Z. Wang, "Quantitative Characterization of Lamellar Microstructure of Plasma-Sprayed Ceramic Coatings Through Visualization of Void Distribution," Mater. Sci. Eng. A, 386, 10-9 (2004).
2005; 190
1997; 80
2004; 180–181
2004; 386
2004; 186
2004; 366
2000; 135
2000; 45
2000; 9
2002; 11
2005
2006; 177
2008; 91
1992; 50
2003; 12
2001; 297
2007; 137
1991; 201
2003; 348
2006; 89
1997; 32
1984; 112
1997; 37
2005; 9
2000; 83
1999; 272
2008; 176
1989; 39–40
Li C.‐J. (e_1_2_6_26_2) 2004; 386
Yamamoto O. (e_1_2_6_3_2) 2000; 45
Sampath S. (e_1_2_6_7_2) 2003; 348
Jung I.‐H. (e_1_2_6_20_2) 2000; 9
Li C.‐X. (e_1_2_6_25_2) 2006; 177
e_1_2_6_18_2
e_1_2_6_19_2
Li C.‐J. (e_1_2_6_4_2) 2005; 190
e_1_2_6_12_2
e_1_2_6_10_2
e_1_2_6_11_2
e_1_2_6_16_2
Tricoire A. (e_1_2_6_24_2) 2005; 9
Wang W.‐Z. (e_1_2_6_30_2) 2005
Sevostianov I. (e_1_2_6_13_2) 2001; 297
e_1_2_6_8_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_6_2
e_1_2_6_5_2
Castro R. G. (e_1_2_6_14_2) 1997; 37
e_1_2_6_23_2
e_1_2_6_2_2
Sampath S. (e_1_2_6_15_2) 1999; 272
e_1_2_6_22_2
Pershin V. (e_1_2_6_17_2) 2003; 12
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_27_2
References_xml – reference: O. Yamamoto, "Solid Oxide Fuel Cells: Fundamental Aspects and Prospects," Electrochim. Acta, 45, 2423-35 (2000).
– reference: A. Ohmori and C.-J. Li, "Quantitative Characterization of the Structure of Plasma Sprayed Al2O3 Coating by Using Copper Electroplating," Thin Solid Films, 201, 241-52 (1991).
– reference: R. G. Castro, A. H. Bartlett, K. J. Hollis, and R. D. Fields, "The Effect of Substrate Temperature on the Thermal Diffusivity and Bonding Characteristics of Plasma Sprayed Beryllium," Fusion Eng. Des., 37, 243-52 (1997).
– reference: C.-J. Li, A. Ohmori, and R. McPherson, "The Relationship between Microstructure and Young's Modulus of Thermally Sprayed Ceramic Coatings," J. Mater. Sci., 32, 997-1004 (1997).
– reference: H. B. Guo, R. Vaβen, and D. Stöver, "Atmospheric Plasma Sprayed Thick Thermal Barrier Coatings with High Segmentation Crack Density," Surf. Coat. Technol., 186, 353-63 (2004).
– reference: I. Sevostianov and M. Kachanov, "Plasma-Sprayed Ceramic Coatings: Anisotropic Elastic and Conductive Properties in Relation to the Microstructure; Cross-Property Correlations," Mater. Sci. Eng. A, 297, 235-43 (2001).
– reference: J. Gong, Y. Li, Z. Zhang, and Z. Tang, "AC Impedance Study of Zirconia Doped with Yttria and Calcia," J. Am. Ceram. Soc., 83, 648-50 (2000).
– reference: S. C. Singhal, "Advances in Solid Oxide Fuel Cell Technology," Solid State Ionics, 135, 305-13 (2000).
– reference: I.-H. Jung, K.-K. Bae, M.-S. Yang, and S.-K. Ihm, "A Study of the Microstructur of Yttria-Stabilized Zirconia Deposited by Inductively Coupled Plasma Spraying," J. Thermal Spray Technol., 9, 463-77 (2000).
– reference: V. Pershin, M. Lufitha, S. Chandra, and J. Mostaghimi, "Effect of Substrate Temperature on Adhesion Strength of Plasma-Sprayed Nickel Coatings," J. Thermal Spray Technol., 12, 370-6 (2003).
– reference: J. Ilavsky, A. J. Allen, G. G. Long, S. Krueger, C. C. Berndt, and H. Herman, "Influence of Spray Angle on the Pore and Crack Microstructure of Plasma-Sprayed Deposits," J. Am. Ceram. Soc., 80, 733-42 (1997).
– reference: C. Zhang, C.-J. Li, G. Zhang, X.-J. Ning, C.-X. Li, H. Liao, and C. Coddet, "Ionic Conductivity and its Temperature Dependence of Atmospheric Plasma-Sprayed Yttria Stabilized Zirconia Electrolyte," Mater. Sci. Eng. B, 137, 24-30 (2007).
– reference: C.-J. Li, X.-J. Ning, and C.-X. Li, "Effect of Densification Process on the Properties of Plasma-Sprayed YSZ Electrolyte Coatings for Solid Oxide Fuel Cell," Surf. Coat. Technol., 190, 60-4 (2005).
– reference: C.-J. Li and W.-Z. Wang, "Quantitative Characterization of Lamellar Microstructure of Plasma-Sprayed Ceramic Coatings Through Visualization of Void Distribution," Mater. Sci. Eng. A, 386, 10-9 (2004).
– reference: S. Sampath, X. Jiang, A. Kulkarni, J. Matejicek, D. L. Gilmore, and R. A. Neiser, "Development of Process Maps for Plasma Spray: Case Study for Molybdenum," Mater. Sci. Eng. A, 348, 54-66 (2003).
– reference: I.-H. Jung, J.-S. Moon, K.-C. Song, and M.-S. Yang, "Microstructure of Yttria Stabilized Zirconia Deposited by Plasma Spraying," Surf. Coat. Technol., 180-181, 454-7 (2004).
– reference: C.-X. Li, C.-J. Li, H.-G. Long, Y.-Z. Xing, H.-L. Liao, and C. Coddet, "Characterization of Atmospheric Plasma-Sprayed Sc2O3-ZrO2 Electrolyte Coating," Solid State Ionics, 177, 2149-53 (2006).
– reference: C.-J. Li, C.-X. Li, Y.-Z. Xing, M. Gao, and G.-J. Yang, "Influence of YSZ Electrolyte Thickness on the Characteristics of Plasma-Sprayed Cermet Supported Tubular SOFC," Solid State Ionics, 177, 2065-9 (2006).
– reference: G. N. Heintze and S. Uematsu, "Preparation and Structures of Plasma-Sprayed γ-and α-Al2O3 Coatings," Surf. Coat. Technol., 50, 213-22 (1992).
– reference: W. Chi, S. Sampath, and H. Wang, "Microstructure-Thermal Conductivity Relationships for Plasma-Sprayed Yttria-Stabilized Zirconia Coatings," J. Am. Ceram. Soc., 91, 2636-45 (2008).
– reference: C.-J. Li and A. Ohmori, "Relationships between the Microstructure and Properties of Thermally Sprayed Deposits," J. Thermal Spray Technol., 11, 365-74 (2002).
– reference: S. Sampath, X. Y. Jiang, J. Matejicek, A. C. Leger, and A. Vardelle, "Substrate Temperature Effects on Splat Formation, Microstructure Development and Properties of Plasma Sprayed Coatings Part I: Case Study for Partially Stabilized Zirconia," Mater. Sci. Eng. A, 272, 181-8 (1999).
– reference: K. A. Khor, X. J. Chen, S. H. Chan, and L. G. Yu, "Microstructure-Property Modifications in Plasma Sprayed 20 Wt.% Yttria Stabilized Zirconia Electrolyte by Spark Plasma Sintering (SPS) Technique," Mater. Sci. Eng. A, 366, 120-6 (2004).
– reference: A. Tricoire, M. Vardelle, P. Fauchais, F. Braillard, A. Malié, and P. Bengtsson, "Macrocrack Formation in Plasma-Sprayed YSZ TBCs when Spraying Thick Passes," High Temp. Mater. Process, 9, 401-13 (2005).
– reference: R. McPherson, "A Model for the Thermal Conductivity of Plasma Sprayed Ceramic Coatings," Thin Solid Films, 112, 89-95 (1984).
– reference: H. B. Guo, S. Kuroda, and H. Murakami, "Microstructures and Properties of Plasma-Spayed Segmented Thermal Barrier Coatings," J. Am. Ceram. Soc., 89, 1432-9 (2006).
– reference: R. McPherson, "A Review of Microstructure and Properties of Plasma Sprayed Ceramic Coatings," Surf. Coat. Technol., 39-40, 173-81 (1989).
– reference: Y.-Z. Xing, C.-J. Li, C.-X. Li, and G.-J. Yang, "Influence of Through-Lamella Grain Growth on Ionic Conductivity of Plasma-Sprayed Yttria-Stabilized Zirconia as an Electrolyte in Solid Oxide Fuel Cells," J. Power Sources, 176, 31-8 (2008).
– volume: 9
  start-page: 463
  year: 2000
  end-page: 77
  article-title: A Study of the Microstructur of Yttria‐Stabilized Zirconia Deposited by Inductively Coupled Plasma Spraying
  publication-title: J. Thermal Spray Technol.
– start-page: 1506
  year: 2005
  end-page: 10
– volume: 190
  start-page: 60
  year: 2005
  end-page: 4
  article-title: Effect of Densification Process on the Properties of Plasma‐Sprayed YSZ Electrolyte Coatings for Solid Oxide Fuel Cell
  publication-title: Surf. Coat. Technol.
– volume: 297
  start-page: 235
  year: 2001
  end-page: 43
  article-title: Plasma‐Sprayed Ceramic Coatings
  publication-title: Anisotropic Elastic and Conductive Properties in Relation to the Microstructure; Cross-Property Correlations
– volume: 176
  start-page: 31
  year: 2008
  end-page: 8
  article-title: Influence of Through‐Lamella Grain Growth on Ionic Conductivity of Plasma‐Sprayed Yttria‐Stabilized Zirconia as an Electrolyte in Solid Oxide Fuel Cells
  publication-title: J. Power Sources
– volume: 39–40
  start-page: 173
  year: 1989
  end-page: 81
  article-title: A Review of Microstructure and Properties of Plasma Sprayed Ceramic Coatings
  publication-title: Surf. Coat. Technol.
– volume: 272
  start-page: 181
  year: 1999
  end-page: 8
  article-title: Substrate Temperature Effects on Splat Formation, Microstructure Development and Properties of Plasma Sprayed Coatings Part I
  publication-title: Case Study for Partially Stabilized Zirconia
– volume: 180–181
  start-page: 454
  year: 2004
  end-page: 7
  article-title: Microstructure of Yttria Stabilized Zirconia Deposited by Plasma Spraying
  publication-title: Surf. Coat. Technol.
– volume: 386
  start-page: 10
  year: 2004
  end-page: 9
  article-title: Quantitative Characterization of Lamellar Microstructure of Plasma‐Sprayed Ceramic Coatings Through Visualization of Void Distribution
  publication-title: Mater. Sci. Eng. A
– volume: 348
  start-page: 54
  year: 2003
  end-page: 66
  article-title: Development of Process Maps for Plasma Spray
  publication-title: Case Study for Molybdenum
– volume: 37
  start-page: 243
  year: 1997
  end-page: 52
  article-title: The Effect of Substrate Temperature on the Thermal Diffusivity and Bonding Characteristics of Plasma Sprayed Beryllium
  publication-title: Fusion Eng. Des.
– volume: 186
  start-page: 353
  year: 2004
  end-page: 63
  article-title: Atmospheric Plasma Sprayed Thick Thermal Barrier Coatings with High Segmentation Crack Density
  publication-title: Surf. Coat. Technol.
– volume: 135
  start-page: 305
  year: 2000
  end-page: 13
  article-title: Advances in Solid Oxide Fuel Cell Technology
  publication-title: Solid State Ionics
– volume: 366
  start-page: 120
  year: 2004
  end-page: 6
  article-title: Microstructure‐Property Modifications in Plasma Sprayed 20 Wt.% Yttria Stabilized Zirconia Electrolyte by Spark Plasma Sintering (SPS) Technique
  publication-title: Mater. Sci. Eng. A
– volume: 11
  start-page: 365
  year: 2002
  end-page: 74
  article-title: Relationships between the Microstructure and Properties of Thermally Sprayed Deposits
  publication-title: J. Thermal Spray Technol.
– volume: 50
  start-page: 213
  year: 1992
  end-page: 22
  article-title: Preparation and Structures of Plasma‐Sprayed γ‐and α‐Al O Coatings
  publication-title: Surf. Coat. Technol.
– volume: 91
  start-page: 2636
  year: 2008
  end-page: 45
  article-title: Microstructure‐Thermal Conductivity Relationships for Plasma‐Sprayed Yttria‐Stabilized Zirconia Coatings
  publication-title: J. Am. Ceram. Soc.
– volume: 45
  start-page: 2423
  year: 2000
  end-page: 35
  article-title: Solid Oxide Fuel Cells
  publication-title: Fundamental Aspects and Prospects
– volume: 137
  start-page: 24
  year: 2007
  end-page: 30
  article-title: Ionic Conductivity and its Temperature Dependence of Atmospheric Plasma‐Sprayed Yttria Stabilized Zirconia Electrolyte
  publication-title: Mater. Sci. Eng. B
– volume: 12
  start-page: 370
  year: 2003
  end-page: 6
  article-title: Effect of Substrate Temperature on Adhesion Strength of Plasma‐Sprayed Nickel Coatings
  publication-title: J. Thermal Spray Technol.
– volume: 32
  start-page: 997
  year: 1997
  end-page: 1004
  article-title: The Relationship between Microstructure and Young's Modulus of Thermally Sprayed Ceramic Coatings
  publication-title: J. Mater. Sci.
– volume: 201
  start-page: 241
  year: 1991
  end-page: 52
  article-title: Quantitative Characterization of the Structure of Plasma Sprayed Al O Coating by Using Copper Electroplating
  publication-title: Thin Solid Films
– volume: 177
  start-page: 2149
  year: 2006
  end-page: 53
  article-title: Characterization of Atmospheric Plasma‐Sprayed Sc O –ZrO Electrolyte Coating
  publication-title: Solid State Ionics
– volume: 112
  start-page: 89
  year: 1984
  end-page: 95
  article-title: A Model for the Thermal Conductivity of Plasma Sprayed Ceramic Coatings
  publication-title: Thin Solid Films
– volume: 89
  start-page: 1432
  year: 2006
  end-page: 9
  article-title: Microstructures and Properties of Plasma‐Spayed Segmented Thermal Barrier Coatings
  publication-title: J. Am. Ceram. Soc.
– volume: 177
  start-page: 2065
  year: 2006
  end-page: 9
  article-title: Influence of YSZ Electrolyte Thickness on the Characteristics of Plasma‐Sprayed Cermet Supported Tubular SOFC
  publication-title: Solid State Ionics
– volume: 80
  start-page: 733
  year: 1997
  end-page: 42
  article-title: Influence of Spray Angle on the Pore and Crack Microstructure of Plasma‐Sprayed Deposits
  publication-title: J. Am. Ceram. Soc.
– volume: 83
  start-page: 648
  year: 2000
  end-page: 50
  article-title: AC Impedance Study of Zirconia Doped with Yttria and Calcia
  publication-title: J. Am. Ceram. Soc.
– volume: 9
  start-page: 401
  year: 2005
  end-page: 13
  article-title: Macrocrack Formation in Plasma‐Sprayed YSZ TBCs when Spraying Thick Passes
  publication-title: High Temp. Mater. Process
– ident: e_1_2_6_2_2
  doi: 10.1016/S0167-2738(00)00452-5
– ident: e_1_2_6_23_2
  doi: 10.1111/j.1551-2916.2005.00912.x
– ident: e_1_2_6_29_2
  doi: 10.1023/A:1018574221589
– ident: e_1_2_6_9_2
  doi: 10.1111/j.1151-2916.1997.tb02890.x
– volume: 348
  start-page: 54
  year: 2003
  ident: e_1_2_6_7_2
  article-title: Development of Process Maps for Plasma Spray
  publication-title: Case Study for Molybdenum
– ident: e_1_2_6_16_2
  doi: 10.1111/j.1551-2916.2008.02476.x
– ident: e_1_2_6_21_2
  doi: 10.1016/j.surfcoat.2003.10.129
– ident: e_1_2_6_6_2
  doi: 10.1111/j.1151-2916.2000.tb01247.x
– volume: 386
  start-page: 10
  year: 2004
  ident: e_1_2_6_26_2
  article-title: Quantitative Characterization of Lamellar Microstructure of Plasma‐Sprayed Ceramic Coatings Through Visualization of Void Distribution
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(04)00900-1
– ident: e_1_2_6_8_2
  doi: 10.1016/j.msea.2003.08.119
– ident: e_1_2_6_28_2
  doi: 10.1016/0040-6090(84)90506-6
– volume: 45
  start-page: 2423
  year: 2000
  ident: e_1_2_6_3_2
  article-title: Solid Oxide Fuel Cells
  publication-title: Fundamental Aspects and Prospects
– volume: 190
  start-page: 60
  year: 2005
  ident: e_1_2_6_4_2
  article-title: Effect of Densification Process on the Properties of Plasma‐Sprayed YSZ Electrolyte Coatings for Solid Oxide Fuel Cell
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2004.04.086
– ident: e_1_2_6_12_2
  doi: 10.1016/0040-6090(91)90114-D
– volume: 9
  start-page: 463
  year: 2000
  ident: e_1_2_6_20_2
  article-title: A Study of the Microstructur of Yttria‐Stabilized Zirconia Deposited by Inductively Coupled Plasma Spraying
  publication-title: J. Thermal Spray Technol.
  doi: 10.1007/BF02608548
– ident: e_1_2_6_22_2
  doi: 10.1016/j.surfcoat.2004.01.002
– volume: 177
  start-page: 2149
  year: 2006
  ident: e_1_2_6_25_2
  article-title: Characterization of Atmospheric Plasma‐Sprayed Sc2O3–ZrO2 Electrolyte Coating
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2006.03.034
– ident: e_1_2_6_19_2
  doi: 10.1016/0257-8972(92)90004-T
– ident: e_1_2_6_11_2
  doi: 10.1361/105996302770348754
– volume: 9
  start-page: 401
  year: 2005
  ident: e_1_2_6_24_2
  article-title: Macrocrack Formation in Plasma‐Sprayed YSZ TBCs when Spraying Thick Passes
  publication-title: High Temp. Mater. Process
  doi: 10.1615/HighTempMatProc.v9.i3.70
– ident: e_1_2_6_18_2
  doi: 10.1016/j.jpowsour.2007.10.031
– volume: 297
  start-page: 235
  year: 2001
  ident: e_1_2_6_13_2
  article-title: Plasma‐Sprayed Ceramic Coatings
  publication-title: Anisotropic Elastic and Conductive Properties in Relation to the Microstructure; Cross-Property Correlations
– volume: 12
  start-page: 370
  year: 2003
  ident: e_1_2_6_17_2
  article-title: Effect of Substrate Temperature on Adhesion Strength of Plasma‐Sprayed Nickel Coatings
  publication-title: J. Thermal Spray Technol.
  doi: 10.1361/105996303770348249
– ident: e_1_2_6_5_2
  doi: 10.1016/j.ssi.2006.03.004
– volume: 272
  start-page: 181
  year: 1999
  ident: e_1_2_6_15_2
  article-title: Substrate Temperature Effects on Splat Formation, Microstructure Development and Properties of Plasma Sprayed Coatings Part I
  publication-title: Case Study for Partially Stabilized Zirconia
– ident: e_1_2_6_27_2
  doi: 10.1016/j.mseb.2006.10.005
– ident: e_1_2_6_10_2
  doi: 10.1016/0257-8972(89)90052-2
– volume: 37
  start-page: 243
  year: 1997
  ident: e_1_2_6_14_2
  article-title: The Effect of Substrate Temperature on the Thermal Diffusivity and Bonding Characteristics of Plasma Sprayed Beryllium
  publication-title: Fusion Eng. Des.
  doi: 10.1016/S0920-3796(97)00049-5
– start-page: 1506
  volume-title: Proceedings of the 2005 International Thermal Spray Conference, Basil
  year: 2005
  ident: e_1_2_6_30_2
SSID ssj0001984
Score 2.2311635
Snippet Yttria‐stabilized zirconia (YSZ) deposits were prepared by an atmospheric plasma spray (APS) on a stainless‐steel substrate preheated to different temperatures...
Yttria-stabilized zirconia (YSZ) deposits were prepared by an atmospheric plasma spray (APS) on a stainless-steel substrate preheated to different temperatures...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3931
SubjectTerms Applied sciences
Building materials. Ceramics. Glasses
Ceramic industries
Ceramics
Chemical industry and chemicals
Conductivity
Electrotechnical and electronic ceramics
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
Ions
Microstructure
Plasma
Stainless steel
Technical ceramics
Zirconium
Title Influence of Microstructure on the Ionic Conductivity of Plasma-Sprayed Yttria-Stabilized Zirconia Deposits
URI https://api.istex.fr/ark:/67375/WNG-THM69JJM-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1551-2916.2008.02775.x
https://www.proquest.com/docview/217945827
https://www.proquest.com/docview/33337383
https://www.proquest.com/docview/34514906
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELXQcoED34iwsOSAuKVyYidOjquyS7dSVwh22YVLNIltqSokq6aVlj3xE_iN_BJmnA9ahNAKkVPjeCJ5OmM_t89vGHtZcl0oEDyw2phA4h4kgAJjOTWqSCXQ2UzH8j1OJqdyeh6fd_wnOgvT6kMMP7hRZrj5mhIcimY7yXG1DyLENx0lMlIqHhGeJOoW4aN3v5SkcG8teyRMEnHbpJ4_vmhrpbpJTr8k5iQ06DzbVr3YgqWb4NatTod32aIfV0tKWYzWq2JUXv0m-fh_Bn6P3elArL_fRt19dsNUD9jtDWlDvPswb9Ztn-Yhq4_6Wih-bf0ZkQBb4dr1ElsqH1Gof0Qivf64rkiB1pW0oL5vEd1_gR_fvr-_WMJXo_2PKyo0Qg0rJw58hW2f5kvc1s_Bf20cCa15xE4PD07Gk6Ar9RCUcSjiwNgwgzQBXCtxLLHVAngcSTAgIE4kaMQtyvIi42AFSKmL2FqIMqlKG2eSi8dsp6or84T5PEx1pMvU6CyRWRoCB52F4FSEilJpj6n-a83LTgedynF8zjf2Q-jgnBzcVekkB-eXHgsHy4tWC-QaNq9c5AwGsFwQlw6fnR2_yU8msySbTmf5mcf2tkJrMIh4liYiER7b7WMt7-aZJo9oPsV8Uh57MTzFCYL-9YHK1OsmF3gpkYq_9JCImjOeeCx1cXftweXT_fGB-_z030132S3HwXEUoWdsB6PPPEegtyr2XAr_BEHjRZg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6h9gAceKOaQusD4uZoba9fxyq0JKGJEKS0cFmNvWsparGrOJFKT_wEfiO_hJn1gxghVCF8ite7lnY8s_uN8_kbxl5mXKUR-NzJldaOwBzEgRR9OdZRGgugbzMNy3cWjk7E5Cw4a8oB0bcwtT5E98KNIsOs1xTg9EK6H-W43TseApyGE-lFUTBAQLlNBb5NfvX-l5YUZteixcIkEten9fzxTr29apvMfkXcSajQfHld96IHTDfhrdmfju6zi3ZmNS3lfLBepYPs-jfRx_809QfsXoNj7YPa8R6yW7p4xO5uqBvi2cdFta77VI9ZOW7Lodhlbk-JB1hr166X2FLYCETtMen02sOyIBFaU9WC-r5DgP8Ffnz7_uFyCV-1sj-tqNYINayMPvA1tn1eLDGzX4D9WhseWvWEnRwdzocjp6n24GT4sAJH524CcQi4XeJcglz5wANPgAYfglCAQugS5TxNOOQ-CKHSIM_BS0SU5UEiuP-UbRVloXeYzd1YeSqLtUpCkcQucFCJC0ZIKM0iZbGofa4ya6TQqSLHhdxIidDAkgzcFOokA8sri7ndyMtaDuQGY14Z1-kGwPKc6HR47XT2Rs5H0zCZTKby1GJ7Pd_qBng8iUM_9C222zqbbJaaSnq0pGJIRRbb767iGkF__EChy3UlfTwiP_b_0kMgcE54aLHYON6NJycnB8ND8_vZvw_dZ7dH8-mxPB7P3u6yO4aSYxhDz9kWeqJ-gbhvle6ZeP4Jh5JJsw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLXQJiF4YHxqYbDlAfGWyomdr8epXWkLrSbY2ODFuoltqSqkVdNK2574CfxGfgnXTlIahNCEyFPj-Eby7b32cXt8LiGvciqzGBj1tFTK47gH8SDDWE5UnCUczNlMy_KdRINzProML2v-kzkLU-lDbH5wM5lh52uT4Aup20mOq70XIL6pKZFBHIcdxJO7PKKJifDe-19SUri55g0UNhpxbVbPH9_UWqp2jdevDHUSSvSerspetHDpNrq1y1N_j8yagVWslFlnvco6-c1vmo__Z-QPyYMaxbrHVdg9IndU8Zjc39I2xLuP03Jd9SmfkPmwKYbizrU7NizASrl2vcSWwkUY6g6NSq_bnRdGgtbWtDB9TxHef4Uf375_WCzhWkn308pUGjENK6sOfINtn6dL3NdPwe0py0Irn5Lz_slZd-DVtR68PPRZ6Cntp5BEgIsljiXUkgENAw4KGIQRB4nAJdY0SyloBpzLLNQagpTHuQ5TTtkzslPMC7VPXOonMpB5omQa8TTxgYJMfbAyQlkeS4fEzdcq8loI3dTj-CK2NkToYGEcXJfpNA4WVw7xN5aLSgzkFjavbeRsDGA5M2Q6fHYxeSPOBuMoHY3G4sIhh63Q2hgENE0iFjGHHDSxJuqJphSBmVAxoWKHHG2e4gxh_vaBQs3XpWB4xSxhf-nBETanNHJIYuPu1oMTo-Puif38_N9Nj8jd015fvBtO3h6Qe5aPY-lCL8gOBqJ6iaBvlR3abP4JgytIaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+Microstructure+on+the+Ionic+Conductivity+of+Plasma-Sprayed+Yttria-Stabilized+Zirconia+Deposits&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=Xing%2C+Ya-Zhe&rft.au=Li%2C+Chang-Jiu&rft.au=Zhang%2C+Qian&rft.au=Li%2C+Cheng-Xin&rft.date=2008-12-01&rft.issn=0002-7820&rft.volume=91&rft.spage=3931&rft.epage=3936&rft_id=info:doi/10.1111%2Fj.1551-2916.2008.02775.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon