Electrostrictive polymers for mechanical energy harvesting

This article reviews the developments in electrostrictive polymers for energy harvesting. Electrostrictive polymers are a variety of electroactive polymers that deform due to the electrostatic and polarization interaction between two electrodes with opposite electric charge. Electrostrictive polymer...

Full description

Saved in:
Bibliographic Details
Published inJournal of polymer science. Part B, Polymer physics Vol. 50; no. 8; pp. 523 - 535
Main Authors Lallart, Mickaël, Cottinet, Pierre-Jean, Guyomar, Daniel, Lebrun, Laurent
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 15.04.2012
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article reviews the developments in electrostrictive polymers for energy harvesting. Electrostrictive polymers are a variety of electroactive polymers that deform due to the electrostatic and polarization interaction between two electrodes with opposite electric charge. Electrostrictive polymers have been the subject of much interest and research over the past decade. In earlier years, much of the focus was placed on actuator configurations, and in more recent years, the focus has turned to investigating material properties that may enhance electromechanical activities. Since the last 5 years and with the development of low‐power electronics, the possibility of using these materials for energy harvesting has been investigated. This review outlines the operating principle in energy scavenging mode and conversion mechanisms behind this generator technology, highlights some of its advantages over existing actuator technologies, identifies some of the challenges associated with its development, and examines the main focus of research within this field, including some of the potential applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012 Research into the use of electrostrictive polymers—materials that deform under the influence of an electric field—for energy generation has been growing in intensity over the last few years. Light weight, low cost, and flexibility in both shape and mechanical deformation make them ideal for applications. This review examines the recent advances in the field, the principles, mechanisms, and advantages, as well as focuses on the future challenges in the main research.
AbstractList This article reviews the developments in electrostrictive polymers for energy harvesting. Electrostrictive polymers are a variety of electroactive polymers that deform due to the electrostatic and polarization interaction between two electrodes with opposite electric charge. Electrostrictive polymers have been the subject of much interest and research over the past decade. In earlier years, much of the focus was placed on actuator configurations, and in more recent years, the focus has turned to investigating material properties that may enhance electromechanical activities. Since the last 5 years and with the development of low‐power electronics, the possibility of using these materials for energy harvesting has been investigated. This review outlines the operating principle in energy scavenging mode and conversion mechanisms behind this generator technology, highlights some of its advantages over existing actuator technologies, identifies some of the challenges associated with its development, and examines the main focus of research within this field, including some of the potential applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012 Research into the use of electrostrictive polymers—materials that deform under the influence of an electric field—for energy generation has been growing in intensity over the last few years. Light weight, low cost, and flexibility in both shape and mechanical deformation make them ideal for applications. This review examines the recent advances in the field, the principles, mechanisms, and advantages, as well as focuses on the future challenges in the main research.
This article reviews the developments in electrostrictive polymers for energy harvesting. Electrostrictive polymers are a variety of electroactive polymers that deform due to the electrostatic and polarization interaction between two electrodes with opposite electric charge. Electrostrictive polymers have been the subject of much interest and research over the past decade. In earlier years, much of the focus was placed on actuator configurations, and in more recent years, the focus has turned to investigating material properties that may enhance electromechanical activities. Since the last 5 years and with the development of low-power electronics, the possibility of using these materials for energy harvesting has been investigated. This review outlines the operating principle in energy scavenging mode and conversion mechanisms behind this generator technology, high-tights some of its advantages over existing actuator technologies, identifies some of the challenges associated with its development, and examines the main focus of research within this field, including some of the potential applications.
This article reviews the developments in electrostrictive polymers for energy harvesting. Electrostrictive polymers are a variety of electroactive polymers that deform due to the electrostatic and polarization interaction between two electrodes with opposite electric charge. Electrostrictive polymers have been the subject of much interest and research over the past decade. In earlier years, much of the focus was placed on actuator configurations, and in more recent years, the focus has turned to investigating material properties that may enhance electromechanical activities. Since the last 5 years and with the development of low‐power electronics, the possibility of using these materials for energy harvesting has been investigated. This review outlines the operating principle in energy scavenging mode and conversion mechanisms behind this generator technology, highlights some of its advantages over existing actuator technologies, identifies some of the challenges associated with its development, and examines the main focus of research within this field, including some of the potential applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012
Author Cottinet, Pierre-Jean
Lebrun, Laurent
Guyomar, Daniel
Lallart, Mickaël
Author_xml – sequence: 1
  givenname: Mickaël
  surname: Lallart
  fullname: Lallart, Mickaël
  organization: INSA de Lyon, LGEF, Villeurbanne, France
– sequence: 2
  givenname: Pierre-Jean
  surname: Cottinet
  fullname: Cottinet, Pierre-Jean
  organization: INSA de Lyon, LGEF, Villeurbanne, France
– sequence: 3
  givenname: Daniel
  surname: Guyomar
  fullname: Guyomar, Daniel
  email: daniel.guyomar@insa-lyon.fr
  organization: INSA de Lyon, LGEF, Villeurbanne, France
– sequence: 4
  givenname: Laurent
  surname: Lebrun
  fullname: Lebrun, Laurent
  organization: INSA de Lyon, LGEF, Villeurbanne, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26049939$$DView record in Pascal Francis
BookMark eNp9kMtKxDAUhoMoOF42PkE3ggjVk6ZpG3c6eIPxBorLcCY51WinHZN6mbc3OupCxFUI-b4_5_wrbLHtWmJsg8MOB8h2p10z3skE5HKBDTgolUJeVYtsAFVVpkVWFMtsJYQHgPgm1YDtHTZket-F3jvTuxdKYsRsQj4kdeeTCZl7bJ3BJqGW_N0suUf_QqF37d0aW6qxCbT-da6ym6PD6-FJOro4Ph3uj1IjuZApWRASEce5rUs7hnjPqQJjK-IC0ZaZICtya3NbWDAyBwUoMpQ2w4qrWqyyrXnu1HdPz_FvPXHBUNNgS91z0BwEF3Gdqozo5heKIc5ce2yNC3rq3QT9TGcF5EoJFbntOWfi5sFT_YNw0B9F6o8i9WeREYZfsHE99q5re4-u-Vvhc-XVNTT7J1xfXowOvp107rjQ09uPg_5RF6Uopb49P9bnMlNn4qrUt-IdSqOX5w
CODEN JPLPAY
CitedBy_id crossref_primary_10_1016_j_jmps_2019_05_008
crossref_primary_10_1038_srep18593
crossref_primary_10_1016_j_sna_2013_06_022
crossref_primary_10_1002_aisy_202000125
crossref_primary_10_1016_j_physleta_2017_12_030
crossref_primary_10_1038_s41598_021_93486_0
crossref_primary_10_1088_0964_1726_25_9_095048
crossref_primary_10_1140_epjp_i2015_15020_x
crossref_primary_10_1016_j_nanoen_2023_109004
crossref_primary_10_1021_jacs_7b13688
crossref_primary_10_3390_electronics10080879
crossref_primary_10_1016_j_mechatronics_2014_09_007
crossref_primary_10_1016_j_piutam_2014_12_006
crossref_primary_10_1016_j_snb_2013_08_028
crossref_primary_10_1016_j_ijnonlinmec_2023_104368
crossref_primary_10_1109_TUFFC_2012_2470
crossref_primary_10_1002_adfm_201707053
crossref_primary_10_1063_1_4900485
crossref_primary_10_1007_s12541_016_0141_6
crossref_primary_10_1021_acsnano_7b08332
crossref_primary_10_1063_1_4864160
crossref_primary_10_1007_s12541_015_0123_0
crossref_primary_10_1016_j_sna_2014_02_034
crossref_primary_10_1016_j_msec_2020_111047
crossref_primary_10_1088_1742_6596_744_1_012077
crossref_primary_10_1021_acsami_1c12745
crossref_primary_10_1002_adma_201707271
crossref_primary_10_3390_act12120456
crossref_primary_10_1007_s10483_019_2539_7
crossref_primary_10_1016_j_sna_2012_05_044
crossref_primary_10_1039_C3TA14726F
crossref_primary_10_1002_mame_201900330
crossref_primary_10_1002_smll_202311570
crossref_primary_10_1016_j_sna_2012_09_019
crossref_primary_10_1088_1361_665X_aadb6c
crossref_primary_10_1177_1045389X14549866
crossref_primary_10_3390_en15176324
crossref_primary_10_1109_JMEMS_2018_2837684
crossref_primary_10_1088_0964_1726_25_8_085024
crossref_primary_10_1038_s41467_017_01558_5
crossref_primary_10_1002_pat_3336
crossref_primary_10_1016_j_sna_2012_10_032
crossref_primary_10_1038_s41598_020_77581_2
crossref_primary_10_1063_1_5008431
crossref_primary_10_1002_aesr_202400221
crossref_primary_10_1002_adma_201804801
crossref_primary_10_1063_1_4764337
crossref_primary_10_1088_1361_665X_ad0392
crossref_primary_10_4028_www_scientific_net_MSF_917_117
crossref_primary_10_1088_0964_1726_22_2_025038
crossref_primary_10_1021_acsami_4c09938
crossref_primary_10_3390_electronics9091345
crossref_primary_10_1002_polb_23761
crossref_primary_10_1016_j_cclet_2017_08_020
crossref_primary_10_1126_science_aay8467
crossref_primary_10_1007_s11012_015_0213_1
crossref_primary_10_1021_acsaelm_4c01333
crossref_primary_10_1063_1_4939859
crossref_primary_10_1002_app_45220
crossref_primary_10_1021_acs_jpcc_7b03372
crossref_primary_10_1063_1_4876910
crossref_primary_10_4028_www_scientific_net_KEM_765_12
crossref_primary_10_1063_1_5123756
crossref_primary_10_1021_acs_jpcc_8b04002
crossref_primary_10_1063_1_4896185
crossref_primary_10_1179_1753555715Y_0000000053
crossref_primary_10_1002_pat_3487
crossref_primary_10_1016_j_enconman_2018_12_058
crossref_primary_10_1016_j_matdes_2021_110193
crossref_primary_10_1021_acs_langmuir_6b04185
Cites_doi 10.1109/TUFFC.2011.1771
10.1016/j.compscitech.2011.02.003
10.1007/s11465-009-0031-z
10.1016/j.sna.2009.02.024
10.1177/1045389X08096888
10.1063/1.3534000
10.1117/12.547133
10.1109/TUFFC.2005.1563285
10.1016/j.jnoncrysol.2006.10.003
10.1109/TPEL.2002.802194
10.1109/TUFFC.912
10.1126/science.1127798
10.1109/TUFFC.2005.1428041
10.1109/TUFFC.2010.1481
10.1109/48.972090
10.1063/1.3167773
10.1088/0964-1726/19/2/025007
10.1088/0964-1726/16/6/028
10.1016/j.physleta.2010.12.026
10.1063/1.2793172
10.1108/01439910310479702
10.1088/0964-1726/15/5/039
10.1088/0022-3727/39/14/027
10.1063/1.2407271
10.1088/0964-1726/19/8/085012
10.1088/0034-4885/61/9/002
10.1016/j.sna.2009.05.009
10.1063/1.3462304
10.1111/j.1475-1305.2004.00120.x
10.1063/1.3456084
10.1063/1.1575505
10.1063/1.3478468
10.1007/s10832-006-6287-3
10.1109/JOE.2004.833135
10.1109/TUFFC.2006.1610572
10.1002/adma.200401161
ContentType Journal Article
Copyright Copyright © 2012 Wiley Periodicals, Inc.
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2012 Wiley Periodicals, Inc.
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7SR
7U5
8FD
JG9
L7M
DOI 10.1002/polb.23045
DatabaseName Istex
CrossRef
Pascal-Francis
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
Applied Sciences
EISSN 1099-0488
EndPage 535
ExternalDocumentID 26049939
10_1002_polb_23045
POLB23045
ark_67375_WNG_N529M3Q7_W
Genre reviewArticle
GroupedDBID -~X
.GA
.Y3
05W
10A
1L6
1OC
1ZS
4.4
4ZD
51W
51X
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5VS
7PT
8-1
8UM
930
A03
AAEVG
AAHBH
AAHHS
AANLZ
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADEOM
ADIZJ
ADMGS
ADOZA
ADXAS
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZFZN
BDRZF
BRXPI
BSCLL
BY8
CS3
DCZOG
DR2
DRFUL
DRSTM
EBS
EJD
F00
F5P
FEDTE
G-S
GNP
GODZA
GYXMG
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
IX1
KQQ
LATKE
LAW
LEEKS
LH4
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MRFUL
MSFUL
MSSTM
MXFUL
MXSTM
OIG
P2P
P2W
P4D
QB0
QRW
RNS
ROL
RWB
RWI
RYL
SUPJJ
TN5
UB1
UPT
V2E
W99
WH7
WIH
WJL
WOHZO
WQJ
WXSBR
XG1
XPP
XV2
YQT
ZZTAW
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
AAYXX
AGQPQ
AGYGG
CITATION
1OB
31~
6TJ
AAMMB
ADMLS
AEFGJ
AGXDD
AI.
AIDQK
AIDYY
IQODW
M6T
MRSTM
RIWAO
SAMSI
VH1
7SR
7U5
8FD
JG9
L7M
ID FETCH-LOGICAL-c5135-ed035aaab4df7db0ed04e80cd8e13aad723ed34dd4d6d0c54090a32a5d2a819f3
IEDL.DBID DR2
ISSN 0887-6266
IngestDate Sun Aug 24 04:10:13 EDT 2025
Mon Jul 21 09:14:18 EDT 2025
Tue Jul 01 01:14:11 EDT 2025
Thu Apr 24 22:50:59 EDT 2025
Wed Jan 22 16:20:01 EST 2025
Wed Oct 30 09:52:11 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords State of the art
Electroactive polymer
electrostrictive polymers
Conversion rate
dielectric properties
energy harvesting
Electrostriction
ferroelectricity
actuators
nanoparticles
Energy conversion
Electric field effect
Actuator
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5135-ed035aaab4df7db0ed04e80cd8e13aad723ed34dd4d6d0c54090a32a5d2a819f3
Notes istex:73F5C1097EE9DB830C261002F94D44DC24A4B45E
ark:/67375/WNG-N529M3Q7-W
ArticleID:POLB23045
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/polb.23045
PQID 1031309987
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_1031309987
pascalfrancis_primary_26049939
crossref_primary_10_1002_polb_23045
crossref_citationtrail_10_1002_polb_23045
wiley_primary_10_1002_polb_23045_POLB23045
istex_primary_ark_67375_WNG_N529M3Q7_W
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 April 2012
PublicationDateYYYYMMDD 2012-04-15
PublicationDate_xml – month: 04
  year: 2012
  text: 15 April 2012
  day: 15
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
PublicationTitle Journal of polymer science. Part B, Polymer physics
PublicationTitleAlternate J. Polym. Sci. B Polym. Phys
PublicationYear 2012
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
References Jean-Mistral, C.; Basrour, S.; Chaillout, J.-J. Smart Mater. Struct. 2010, 19, 085012.
Guyomar, D.; Badel, A.; Lefeuvre, E.; Richard, C. IEEE Trans. Ultrasonics Ferroelectrics Frequency Control 2005, 52, 584-595.
Lallart, M.; Cottinet, P.-J.; Lebrun, L.; Guiffard, B.; Guyomar, D. J. Appl. Phys. 2010, 108, 034901.
Sodano, H. A.; Park, G.; Inman, D. J. Strain 2004, 40, 49-58.
Qiu, J.; Jiang, H.; Ji, H.; Zhu, K. Frontiers Mech. Eng. China 2009, 4, 153-159.
Liu, Y.; Ren, K. L.; Hofmann, H. F.; Zhang, Q. IEEE Trans. Ultrasonics Ferroelectrics Frequency Control 2005, 52, 2411-2417.
Guyomar, D.; Sebald, G.; Pruvost, S.; Lallart, M.; Khodayari, A.; Richard, C. J Intell. Mater. Syst. Struct. 2009, 20, 609-624.
Ottman, G. K.; Hofmann, H. F.; Bhatt, A. C.; Lesieutre, G. A. IEEE Trans. Power Electron. 2002, 17, 669-676.
Guiffard, B.; Seveyrat, L.; Sebald, G.; Guyomar, D. J. Phys. D: Appl. Phys. 2006, 39, 3053-3057.
Damjanovic, D. Rep. Prog. Phys. 1998, 61, 1267-1324.
Huang, C.; Zhang, Q.-M. Adv. Mater. 2005, 17, 1153-1158.
McKay, T.; O'Brien, B.; Calius, E.; Anderson, I. Appl. Phys. Lett. 2010, 97, 062911.
Chu, B.; Zhou, X.; Ren, K.; Neese, B.; Lin, M.; Wang, Q.; Bauer, F.; Zhang, Q. M. Science 2006, 313, 334-336.
Lallart, M.; Guyomar, D. Appl. Phys. Lett. 2010, 97, 014104.
Koh, S. J. A.; Zhao, X.; Suo, Z. Appl. Phys. Lett. 2009, 94, 262902.
Lebrun, L.; Guyomar, D.; Guiffard, B.; Cottinet, P.-J.; Putson, C. Sens. Actuators A 2009, 153, 251-257.
Lallart, M.; Garbuio, L.; Petit, L.; Richard, C.; Guyomar, D. IEEE Trans. Ultrasonics Ferroelectrics Frequency Control 2008, 55, 2119-2130.
Liu, Y. Proc. SPIE 2004, 5385, 17-28.
Wongtimnoi, K.; Guiffard, B.; Bogner-Van de Moortèle, A.; Seveyrat, L.; Gauthier, C.; Cavaillé, J.-Y. Compos. Sci. Technol. 2011, 71, 885-892.
Mahmoud, M. A. E.; Abdel-Rahman, E. M.; El-Saadany, E. F.; Mansour, R. R. Smart Mater. Struct. 2010, 19, 025007.
Huang, C.; Zhang, Q. M.; Su, J. Appl. Phys. Lett. 2003, 82, 3502.
Lee, C.; Ye, M.; Bin, Y.; Rama, K.; Chun-Huat, H. Sens. Actuators A 2009, 156, 208-216.
Madden, J. D. W.; Vandesteeg, N. A.; Anquetil, P. A.; Madden, P. G. A.; Takshi, A.; Pytel, R. Z.; Lafontaine, S. R.; Wieringa, P. A.; Hunter, I. W. IEEE J. Oceanic Eng. 2004, 29, 706-728.
Ren, K.; Liu, Y.; Geng, X.; Hofmann, H. F.; Zhang, Q. M. IEEE Trans. Ultrasonics Ferroelectrics Frequency Control 2006, 53, 631-638.
Cottinet, P.-J.; Guyomar, D.; Guiffard, B.; Putson, C.; Lebrun, L. IEEE Trans. Ultrasonics Ferroelectrics Frequency Control 2010, 57, 774-784.
Guyomar, D.; Lallart, M.; Cottinet, P.-J. Phys. Lett. A 2011, 375, 260-264.
Qiu, J.; Jiang, H.; Hongli, J.; Kongjun, Z. Frontiers Mech. Eng. China 2009, 4, 153-159.
Makihara, K.; Onoda, J.; Miyakawa, T. Smart Mater. Struct. 2006, 15, 1493-1498.
Sebald, G.; Seveyrat, L.; Guyomar, D.; Lebrun, L.; Guiffard, B.; Pruvost, S. J. Appl. Phys. 2006, 100, 124112.
Bar-Cohen, Y. Ind. Robot Int. J. 2003, 30, 331-337.
Shu, Y. C.; Lien, I. C.; Wu, W. J. Smart Mater. Struct. 2007, 16, 2253-2264.
Cottinet, P.-J.; Lallart, M.; Guyomar, D; Guiffard, B.; Lebrun, L.; Sebald, G.; Putson, C. IEEE Trans. Ultrasonics Ferroelectrics Frequency Control 2011, 58, 30-42.
Bobnar, V.; Levstik, A.; Huang, C.; Zhang, Q. M. J. Non-Cryst. Solids 2007, 353, 205-209.
Putson, C.; Lebrun, L.; Guyomar, D.; Muensit, N.; Cottinet, P.-J.; Seveyrat, L.; Guiffard, B. J. Appl. Phys. 2011, 109, 024104.
Taylor, G. W.; Burns, J. R.; Kammann, S. A.; Powers, W. B.; Welsh, T. R. IEEE J. Oceanic Eng. 2001, 26, 539-547.
Choi, W. J.; Jeon, Y.; Jeong, J.-H.; Sood, R.; Kim, S. G. J. Electroceram. 2006, 17, 543-548.
Ren, K.; Liu, Y.; Hofmann, H.; Zhang, Q. M.; Blottman, J. Appl. Phys. Lett. 2007, 91, 132910.
2002; 17
2010; 97
2004; 40
2006; 53
2010; 57
2009; 20
2004; 29
2010; 19
2010; 108
2006; 17
2006; 39
2006; 15
2004; 5385
2007; 91
2009; 156
2001; 26
2008; 55
1998; 61
2009; 153
2011; 58
2006; 313
2003; 30
2011; 375
1999
2007; 16
2011; 109
2009; 94
2011; 71
2007; 353
2005; 52
2009; 4
2003; 82
2005; 17
2006; 100
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_13_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
e_1_2_7_26_2
e_1_2_7_27_2
e_1_2_7_28_2
e_1_2_7_29_2
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_35_2
e_1_2_7_36_2
e_1_2_7_37_2
e_1_2_7_38_2
e_1_2_7_39_2
References_xml – reference: Huang, C.; Zhang, Q.-M. Adv. Mater. 2005, 17, 1153-1158.
– reference: Madden, J. D. W.; Vandesteeg, N. A.; Anquetil, P. A.; Madden, P. G. A.; Takshi, A.; Pytel, R. Z.; Lafontaine, S. R.; Wieringa, P. A.; Hunter, I. W. IEEE J. Oceanic Eng. 2004, 29, 706-728.
– reference: Choi, W. J.; Jeon, Y.; Jeong, J.-H.; Sood, R.; Kim, S. G. J. Electroceram. 2006, 17, 543-548.
– reference: Lallart, M.; Garbuio, L.; Petit, L.; Richard, C.; Guyomar, D. IEEE Trans. Ultrasonics Ferroelectrics Frequency Control 2008, 55, 2119-2130.
– reference: Wongtimnoi, K.; Guiffard, B.; Bogner-Van de Moortèle, A.; Seveyrat, L.; Gauthier, C.; Cavaillé, J.-Y. Compos. Sci. Technol. 2011, 71, 885-892.
– reference: Guyomar, D.; Badel, A.; Lefeuvre, E.; Richard, C. IEEE Trans. Ultrasonics Ferroelectrics Frequency Control 2005, 52, 584-595.
– reference: Damjanovic, D. Rep. Prog. Phys. 1998, 61, 1267-1324.
– reference: Ren, K.; Liu, Y.; Hofmann, H.; Zhang, Q. M.; Blottman, J. Appl. Phys. Lett. 2007, 91, 132910.
– reference: Liu, Y.; Ren, K. L.; Hofmann, H. F.; Zhang, Q. IEEE Trans. Ultrasonics Ferroelectrics Frequency Control 2005, 52, 2411-2417.
– reference: Shu, Y. C.; Lien, I. C.; Wu, W. J. Smart Mater. Struct. 2007, 16, 2253-2264.
– reference: Koh, S. J. A.; Zhao, X.; Suo, Z. Appl. Phys. Lett. 2009, 94, 262902.
– reference: Chu, B.; Zhou, X.; Ren, K.; Neese, B.; Lin, M.; Wang, Q.; Bauer, F.; Zhang, Q. M. Science 2006, 313, 334-336.
– reference: Sebald, G.; Seveyrat, L.; Guyomar, D.; Lebrun, L.; Guiffard, B.; Pruvost, S. J. Appl. Phys. 2006, 100, 124112.
– reference: Cottinet, P.-J.; Lallart, M.; Guyomar, D; Guiffard, B.; Lebrun, L.; Sebald, G.; Putson, C. IEEE Trans. Ultrasonics Ferroelectrics Frequency Control 2011, 58, 30-42.
– reference: Qiu, J.; Jiang, H.; Hongli, J.; Kongjun, Z. Frontiers Mech. Eng. China 2009, 4, 153-159.
– reference: Putson, C.; Lebrun, L.; Guyomar, D.; Muensit, N.; Cottinet, P.-J.; Seveyrat, L.; Guiffard, B. J. Appl. Phys. 2011, 109, 024104.
– reference: Taylor, G. W.; Burns, J. R.; Kammann, S. A.; Powers, W. B.; Welsh, T. R. IEEE J. Oceanic Eng. 2001, 26, 539-547.
– reference: Guyomar, D.; Sebald, G.; Pruvost, S.; Lallart, M.; Khodayari, A.; Richard, C. J Intell. Mater. Syst. Struct. 2009, 20, 609-624.
– reference: Makihara, K.; Onoda, J.; Miyakawa, T. Smart Mater. Struct. 2006, 15, 1493-1498.
– reference: Lallart, M.; Guyomar, D. Appl. Phys. Lett. 2010, 97, 014104.
– reference: Guiffard, B.; Seveyrat, L.; Sebald, G.; Guyomar, D. J. Phys. D: Appl. Phys. 2006, 39, 3053-3057.
– reference: Jean-Mistral, C.; Basrour, S.; Chaillout, J.-J. Smart Mater. Struct. 2010, 19, 085012.
– reference: Bobnar, V.; Levstik, A.; Huang, C.; Zhang, Q. M. J. Non-Cryst. Solids 2007, 353, 205-209.
– reference: Liu, Y. Proc. SPIE 2004, 5385, 17-28.
– reference: Bar-Cohen, Y. Ind. Robot Int. J. 2003, 30, 331-337.
– reference: Cottinet, P.-J.; Guyomar, D.; Guiffard, B.; Putson, C.; Lebrun, L. IEEE Trans. Ultrasonics Ferroelectrics Frequency Control 2010, 57, 774-784.
– reference: Huang, C.; Zhang, Q. M.; Su, J. Appl. Phys. Lett. 2003, 82, 3502.
– reference: Sodano, H. A.; Park, G.; Inman, D. J. Strain 2004, 40, 49-58.
– reference: Lee, C.; Ye, M.; Bin, Y.; Rama, K.; Chun-Huat, H. Sens. Actuators A 2009, 156, 208-216.
– reference: Qiu, J.; Jiang, H.; Ji, H.; Zhu, K. Frontiers Mech. Eng. China 2009, 4, 153-159.
– reference: Lallart, M.; Cottinet, P.-J.; Lebrun, L.; Guiffard, B.; Guyomar, D. J. Appl. Phys. 2010, 108, 034901.
– reference: McKay, T.; O'Brien, B.; Calius, E.; Anderson, I. Appl. Phys. Lett. 2010, 97, 062911.
– reference: Ottman, G. K.; Hofmann, H. F.; Bhatt, A. C.; Lesieutre, G. A. IEEE Trans. Power Electron. 2002, 17, 669-676.
– reference: Ren, K.; Liu, Y.; Geng, X.; Hofmann, H. F.; Zhang, Q. M. IEEE Trans. Ultrasonics Ferroelectrics Frequency Control 2006, 53, 631-638.
– reference: Lebrun, L.; Guyomar, D.; Guiffard, B.; Cottinet, P.-J.; Putson, C. Sens. Actuators A 2009, 153, 251-257.
– reference: Mahmoud, M. A. E.; Abdel-Rahman, E. M.; El-Saadany, E. F.; Mansour, R. R. Smart Mater. Struct. 2010, 19, 025007.
– reference: Guyomar, D.; Lallart, M.; Cottinet, P.-J. Phys. Lett. A 2011, 375, 260-264.
– volume: 15
  start-page: 1493
  year: 2006
  end-page: 1498
  publication-title: Smart Mater. Struct.
– volume: 4
  start-page: 153
  year: 2009
  end-page: 159
  publication-title: Frontiers Mech. Eng. China
– volume: 353
  start-page: 205
  year: 2007
  end-page: 209
  publication-title: J. Non‐Cryst. Solids
– volume: 17
  start-page: 669
  year: 2002
  end-page: 676
  publication-title: IEEE Trans. Power Electron.
– volume: 17
  start-page: 1153
  year: 2005
  end-page: 1158
  publication-title: Adv. Mater.
– volume: 19
  start-page: 085012
  year: 2010
  publication-title: Smart Mater. Struct.
– volume: 108
  start-page: 034901
  year: 2010
  publication-title: J. Appl. Phys.
– volume: 71
  start-page: 885
  year: 2011
  end-page: 892
  publication-title: Compos. Sci. Technol.
– volume: 5385
  start-page: 17
  year: 2004
  end-page: 28
  publication-title: Proc. SPIE
– volume: 97
  start-page: 014104
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 61
  start-page: 1267
  year: 1998
  end-page: 1324
  publication-title: Rep. Prog. Phys.
– volume: 156
  start-page: 208
  year: 2009
  end-page: 216
  publication-title: Sens. Actuators A
– volume: 40
  start-page: 49
  year: 2004
  end-page: 58
  publication-title: Strain
– volume: 153
  start-page: 251
  year: 2009
  end-page: 257
  publication-title: Sens. Actuators A
– volume: 52
  start-page: 584
  year: 2005
  end-page: 595
  publication-title: IEEE Trans. Ultrasonics Ferroelectrics Frequency Control
– volume: 91
  start-page: 132910
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 313
  start-page: 334
  year: 2006
  end-page: 336
  publication-title: Science
– volume: 30
  start-page: 331
  year: 2003
  end-page: 337
  publication-title: Ind. Robot Int. J.
– volume: 26
  start-page: 539
  year: 2001
  end-page: 547
  publication-title: IEEE J. Oceanic Eng.
– volume: 16
  start-page: 2253
  year: 2007
  end-page: 2264
  publication-title: Smart Mater. Struct.
– volume: 39
  start-page: 3053
  year: 2006
  end-page: 3057
  publication-title: J. Phys. D: Appl. Phys.
– volume: 20
  start-page: 609
  year: 2009
  end-page: 624
  publication-title: J Intell. Mater. Syst. Struct.
– volume: 97
  start-page: 062911
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 375
  start-page: 260
  year: 2011
  end-page: 264
  publication-title: Phys. Lett. A
– volume: 82
  start-page: 3502
  year: 2003
  publication-title: Appl. Phys. Lett.
– volume: 109
  start-page: 024104
  year: 2011
  publication-title: J. Appl. Phys.
– volume: 94
  start-page: 262902
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 58
  start-page: 30
  year: 2011
  end-page: 42
  publication-title: IEEE Trans. Ultrasonics Ferroelectrics Frequency Control
– volume: 17
  start-page: 543
  year: 2006
  end-page: 548
  publication-title: J. Electroceram.
– volume: 52
  start-page: 2411
  year: 2005
  end-page: 2417
  publication-title: IEEE Trans. Ultrasonics Ferroelectrics Frequency Control
– volume: 55
  start-page: 2119
  year: 2008
  end-page: 2130
  publication-title: IEEE Trans. Ultrasonics Ferroelectrics Frequency Control
– volume: 53
  start-page: 631
  year: 2006
  end-page: 638
  publication-title: IEEE Trans. Ultrasonics Ferroelectrics Frequency Control
– volume: 19
  start-page: 025007
  year: 2010
  publication-title: Smart Mater. Struct.
– volume: 57
  start-page: 774
  year: 2010
  end-page: 784
  publication-title: IEEE Trans. Ultrasonics Ferroelectrics Frequency Control
– volume: 29
  start-page: 706
  year: 2004
  end-page: 728
  publication-title: IEEE J. Oceanic Eng.
– volume: 100
  start-page: 124112
  year: 2006
  publication-title: J. Appl. Phys.
– year: 1999
– ident: e_1_2_7_29_2
  doi: 10.1109/TUFFC.2011.1771
– ident: e_1_2_7_34_2
  doi: 10.1016/j.compscitech.2011.02.003
– ident: e_1_2_7_27_2
  doi: 10.1007/s11465-009-0031-z
– ident: e_1_2_7_15_2
  doi: 10.1016/j.sna.2009.02.024
– ident: e_1_2_7_30_2
– ident: e_1_2_7_28_2
  doi: 10.1177/1045389X08096888
– ident: e_1_2_7_39_2
  doi: 10.1063/1.3534000
– ident: e_1_2_7_16_2
  doi: 10.1117/12.547133
– ident: e_1_2_7_17_2
  doi: 10.1109/TUFFC.2005.1563285
– ident: e_1_2_7_37_2
  doi: 10.1016/j.jnoncrysol.2006.10.003
– ident: e_1_2_7_3_2
  doi: 10.1109/TPEL.2002.802194
– ident: e_1_2_7_32_2
  doi: 10.1109/TUFFC.912
– ident: e_1_2_7_40_2
  doi: 10.1126/science.1127798
– ident: e_1_2_7_24_2
  doi: 10.1109/TUFFC.2005.1428041
– ident: e_1_2_7_20_2
  doi: 10.1109/TUFFC.2010.1481
– ident: e_1_2_7_2_2
  doi: 10.1109/48.972090
– ident: e_1_2_7_12_2
  doi: 10.1063/1.3167773
– ident: e_1_2_7_13_2
  doi: 10.1088/0964-1726/19/2/025007
– ident: e_1_2_7_26_2
  doi: 10.1088/0964-1726/16/6/028
– ident: e_1_2_7_23_2
  doi: 10.1016/j.physleta.2010.12.026
– ident: e_1_2_7_10_2
  doi: 10.1063/1.2793172
– ident: e_1_2_7_8_2
  doi: 10.1108/01439910310479702
– ident: e_1_2_7_31_2
  doi: 10.1088/0964-1726/15/5/039
– ident: e_1_2_7_35_2
  doi: 10.1088/0022-3727/39/14/027
– ident: e_1_2_7_25_2
  doi: 10.1007/s11465-009-0031-z
– ident: e_1_2_7_7_2
  doi: 10.1063/1.2407271
– ident: e_1_2_7_18_2
  doi: 10.1088/0964-1726/19/8/085012
– ident: e_1_2_7_9_2
  doi: 10.1088/0034-4885/61/9/002
– ident: e_1_2_7_19_2
  doi: 10.1016/j.sna.2009.05.009
– ident: e_1_2_7_33_2
  doi: 10.1063/1.3462304
– ident: e_1_2_7_5_2
  doi: 10.1111/j.1475-1305.2004.00120.x
– ident: e_1_2_7_11_2
– ident: e_1_2_7_21_2
  doi: 10.1063/1.3456084
– ident: e_1_2_7_36_2
  doi: 10.1063/1.1575505
– ident: e_1_2_7_14_2
  doi: 10.1063/1.3478468
– ident: e_1_2_7_4_2
  doi: 10.1007/s10832-006-6287-3
– ident: e_1_2_7_22_2
  doi: 10.1109/JOE.2004.833135
– ident: e_1_2_7_6_2
  doi: 10.1109/TUFFC.2006.1610572
– ident: e_1_2_7_38_2
  doi: 10.1002/adma.200401161
SSID ssj0009959
Score 2.312023
SecondaryResourceType review_article
Snippet This article reviews the developments in electrostrictive polymers for energy harvesting. Electrostrictive polymers are a variety of electroactive polymers...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 523
SubjectTerms Actuators
Applied sciences
Conversion
dielectric properties
Electrical, magnetic and optical properties
Electroactive polymers
Electrodes
Electrostriction
electrostrictive polymers
energy harvesting
Exact sciences and technology
ferroelectricity
Harvesting
nanoparticles
Organic polymers
Physicochemistry of polymers
Polymers
Properties and characterization
Scavenging
Title Electrostrictive polymers for mechanical energy harvesting
URI https://api.istex.fr/ark:/67375/WNG-N529M3Q7-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpolb.23045
https://www.proquest.com/docview/1031309987
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEB5KRfTFS1VM1RJRBIW0ye7mJr5oaS1ijxcs7Ysss5dYaM0p5wLqr3dmc5LjERH0LYHdZTMzu_Nld-YbgMeFq7CWpkkIe_hEFQITrBsuIuDJO5HLzBznDh-OioMj9eYkP1mDF30uTMcPMRy48coI-zUvcDTTnSVp6MX43HAYs-IMcw7WYkT0cckdxURaPc0nofZi4CYVO8uuK97oEgv2G0dH4pQE1HSVLVag568ANnig_evwuZ97F3hytj2fmW374zdax__9uBtwbQFN45edLd2ENd9uwJXdviLcBlwO4aJ2egue73XVc7joR9gwYxrqOx-BxwSC46-e84lZ_bEPuYXxKU4Cn0f75TYc7e992j1IFlUYEptnMk-8S2WOiEa5pnQmpXflq9S6ymcS0ZVCeieVc8oVLrWEAOsUpcDcCSS40cg7sN6OW38X4soSWiporDKrlUrRpLIxwqIqnbe-kBE87bWh7YKinCtlnOuOXFlolosOcong0dD2oiPm-GOrJ0GpQxOcnHEoW5nr49FrPcpFfSg_lPo4gq0VrQ8d6H-PfgplHcHD3gw0iZ2vVbD14_lUc6EMSeZWlRE8C0r9y4T0-3dvX4WnzX9pfA-uElITfI2V5fdhfTaZ-weEhmZmK1j9T8MJBow
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1taxQxEB60ReoXq9Xi1lpXFEFh270k--Y3La2n3p0vtLTfwmySVWi7V-4FWn-9M9m7PU9E0G-7kITdySTzJJk8D8Dz1OZYyLKKCHu4SKUCIywqFhFwFJ0oZHYs3x3uD9LusfpwmpzOcnP4LkzDD9FuuPHI8PM1D3DekN5bsIZeDs9LzmNWyU1YZUlvv6L6umCPYiqtOdEn4fa0ZScVe4u6S_FolU17xfmROCYTVY22xRL4_BXC-hh0uN4IrY49dSGnnpztTiflrvnxG7Hjf__eXbgzQ6fhm8ad7sENV2_A2v5cFG4DbvmMUTO-D68PGgEd1v3wc2ZITV3zLnhIODi8cHylmD0gdP56YfgdR57So_72AI4PD472u9FMiCEyZNUkcjaWCSKWylaZLWN6Vy6Pjc1dRyLaTEhnpbJW2dTGhkBgEaMUmFiBhDgquQkr9bB2DyHMDQGmlNrKOoVSMZaxrEphUGXWGZfKAF7Ou0ObGUs5i2Wc64ZfWWi2i_Z2CeBZW_ay4eb4Y6kXvlfbIjg642y2LNEng3d6kIiiL79k-iSAnaVubyvQko_WhbII4OncDzSZnU9WsHbD6VizVoYkf8uzAF75Xv3LB-nPn3pv_dPWvxR-Amvdo35P994PPj6C2wTcBJ9qdZJtWJmMpu4xgaNJueOHwE8XXQqn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VVhwvHAVECpQgEBKV0iY-ciBeoO1SoF0KatW-IMuxHZDaZld7SMCvZ8bZZFmEkOAtkWzLmRl7vtgz3wA8TW2uC15WEWIPF4mU6UgXFRURcOid0GUmlnKHD_rp3rF4dypPl-BlmwvT8EN0B260Mvx-TQt8aKutOWnocHBeUhizkJdgRaRxTja982lOHkVMWi3PJ8L2tCMnZVvzvgvuaIUk-43CI_UYJVQ1pS0WsOevCNa7oN4N-NxOvok8OducTspN8-M3Xsf__bqbcH2GTcNXjTHdgiVXr8LV7bYk3Cpc9vGiZnwbXuw25XOo6offMUMc6judgYeIgsMLRwnFpP_Q-eTC8KseeUKP-ssdOO7tHm3vRbMyDJGRCZeRszGXWutS2CqzZYzvwuWxsblLuNY2Y9xZLqwVNrWxQQhYxJozLS3TiDcqfheW60Ht7kGYG4RLKY6VJYUQsS5jXpXMaJFZZ1zKA3jeakOZGUc5lco4Vw27MlMkF-XlEsCTru2wYeb4Y6tnXqldEz06o1i2TKqT_hvVl6w44B8zdRLA-oLWuw74w4d_hbwI4HFrBgrFTvcqunaD6VhRpQyO5pZnAWx4pf5lQurww_5r_7T2L40fwZXDnZ7af9t_fx-uIWpjdKWVyAewPBlN3UNERpNy3S-AnxSaCV8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrostrictive+Polymers+for+Mechanical+Energy+Harvesting&rft.jtitle=Journal+of+polymer+science.+Part+B%2C+Polymer+physics&rft.au=LALLART%2C+Micka%C3%ABl&rft.au=COTTINET%2C+Pierre-Jean&rft.au=GUYOMAR%2C+Daniel&rft.au=LEBRUN%2C+Laurent&rft.date=2012-04-15&rft.pub=Wiley&rft.issn=0887-6266&rft.volume=50&rft.issue=8&rft.spage=523&rft.epage=535&rft_id=info:doi/10.1002%2Fpolb.23045&rft.externalDBID=n%2Fa&rft.externalDocID=26049939
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-6266&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-6266&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-6266&client=summon