Electrostrictive polymers for mechanical energy harvesting
This article reviews the developments in electrostrictive polymers for energy harvesting. Electrostrictive polymers are a variety of electroactive polymers that deform due to the electrostatic and polarization interaction between two electrodes with opposite electric charge. Electrostrictive polymer...
Saved in:
Published in | Journal of polymer science. Part B, Polymer physics Vol. 50; no. 8; pp. 523 - 535 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
15.04.2012
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article reviews the developments in electrostrictive polymers for energy harvesting. Electrostrictive polymers are a variety of electroactive polymers that deform due to the electrostatic and polarization interaction between two electrodes with opposite electric charge. Electrostrictive polymers have been the subject of much interest and research over the past decade. In earlier years, much of the focus was placed on actuator configurations, and in more recent years, the focus has turned to investigating material properties that may enhance electromechanical activities. Since the last 5 years and with the development of low‐power electronics, the possibility of using these materials for energy harvesting has been investigated. This review outlines the operating principle in energy scavenging mode and conversion mechanisms behind this generator technology, highlights some of its advantages over existing actuator technologies, identifies some of the challenges associated with its development, and examines the main focus of research within this field, including some of the potential applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012
Research into the use of electrostrictive polymers—materials that deform under the influence of an electric field—for energy generation has been growing in intensity over the last few years. Light weight, low cost, and flexibility in both shape and mechanical deformation make them ideal for applications. This review examines the recent advances in the field, the principles, mechanisms, and advantages, as well as focuses on the future challenges in the main research. |
---|---|
AbstractList | This article reviews the developments in electrostrictive polymers for energy harvesting. Electrostrictive polymers are a variety of electroactive polymers that deform due to the electrostatic and polarization interaction between two electrodes with opposite electric charge. Electrostrictive polymers have been the subject of much interest and research over the past decade. In earlier years, much of the focus was placed on actuator configurations, and in more recent years, the focus has turned to investigating material properties that may enhance electromechanical activities. Since the last 5 years and with the development of low‐power electronics, the possibility of using these materials for energy harvesting has been investigated. This review outlines the operating principle in energy scavenging mode and conversion mechanisms behind this generator technology, highlights some of its advantages over existing actuator technologies, identifies some of the challenges associated with its development, and examines the main focus of research within this field, including some of the potential applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012
Research into the use of electrostrictive polymers—materials that deform under the influence of an electric field—for energy generation has been growing in intensity over the last few years. Light weight, low cost, and flexibility in both shape and mechanical deformation make them ideal for applications. This review examines the recent advances in the field, the principles, mechanisms, and advantages, as well as focuses on the future challenges in the main research. This article reviews the developments in electrostrictive polymers for energy harvesting. Electrostrictive polymers are a variety of electroactive polymers that deform due to the electrostatic and polarization interaction between two electrodes with opposite electric charge. Electrostrictive polymers have been the subject of much interest and research over the past decade. In earlier years, much of the focus was placed on actuator configurations, and in more recent years, the focus has turned to investigating material properties that may enhance electromechanical activities. Since the last 5 years and with the development of low-power electronics, the possibility of using these materials for energy harvesting has been investigated. This review outlines the operating principle in energy scavenging mode and conversion mechanisms behind this generator technology, high-tights some of its advantages over existing actuator technologies, identifies some of the challenges associated with its development, and examines the main focus of research within this field, including some of the potential applications. This article reviews the developments in electrostrictive polymers for energy harvesting. Electrostrictive polymers are a variety of electroactive polymers that deform due to the electrostatic and polarization interaction between two electrodes with opposite electric charge. Electrostrictive polymers have been the subject of much interest and research over the past decade. In earlier years, much of the focus was placed on actuator configurations, and in more recent years, the focus has turned to investigating material properties that may enhance electromechanical activities. Since the last 5 years and with the development of low‐power electronics, the possibility of using these materials for energy harvesting has been investigated. This review outlines the operating principle in energy scavenging mode and conversion mechanisms behind this generator technology, highlights some of its advantages over existing actuator technologies, identifies some of the challenges associated with its development, and examines the main focus of research within this field, including some of the potential applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012 |
Author | Cottinet, Pierre-Jean Lebrun, Laurent Guyomar, Daniel Lallart, Mickaël |
Author_xml | – sequence: 1 givenname: Mickaël surname: Lallart fullname: Lallart, Mickaël organization: INSA de Lyon, LGEF, Villeurbanne, France – sequence: 2 givenname: Pierre-Jean surname: Cottinet fullname: Cottinet, Pierre-Jean organization: INSA de Lyon, LGEF, Villeurbanne, France – sequence: 3 givenname: Daniel surname: Guyomar fullname: Guyomar, Daniel email: daniel.guyomar@insa-lyon.fr organization: INSA de Lyon, LGEF, Villeurbanne, France – sequence: 4 givenname: Laurent surname: Lebrun fullname: Lebrun, Laurent organization: INSA de Lyon, LGEF, Villeurbanne, France |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26049939$$DView record in Pascal Francis |
BookMark | eNp9kMtKxDAUhoMoOF42PkE3ggjVk6ZpG3c6eIPxBorLcCY51WinHZN6mbc3OupCxFUI-b4_5_wrbLHtWmJsg8MOB8h2p10z3skE5HKBDTgolUJeVYtsAFVVpkVWFMtsJYQHgPgm1YDtHTZket-F3jvTuxdKYsRsQj4kdeeTCZl7bJ3BJqGW_N0suUf_QqF37d0aW6qxCbT-da6ym6PD6-FJOro4Ph3uj1IjuZApWRASEce5rUs7hnjPqQJjK-IC0ZaZICtya3NbWDAyBwUoMpQ2w4qrWqyyrXnu1HdPz_FvPXHBUNNgS91z0BwEF3Gdqozo5heKIc5ce2yNC3rq3QT9TGcF5EoJFbntOWfi5sFT_YNw0B9F6o8i9WeREYZfsHE99q5re4-u-Vvhc-XVNTT7J1xfXowOvp107rjQ09uPg_5RF6Uopb49P9bnMlNn4qrUt-IdSqOX5w |
CODEN | JPLPAY |
CitedBy_id | crossref_primary_10_1016_j_jmps_2019_05_008 crossref_primary_10_1038_srep18593 crossref_primary_10_1016_j_sna_2013_06_022 crossref_primary_10_1002_aisy_202000125 crossref_primary_10_1016_j_physleta_2017_12_030 crossref_primary_10_1038_s41598_021_93486_0 crossref_primary_10_1088_0964_1726_25_9_095048 crossref_primary_10_1140_epjp_i2015_15020_x crossref_primary_10_1016_j_nanoen_2023_109004 crossref_primary_10_1021_jacs_7b13688 crossref_primary_10_3390_electronics10080879 crossref_primary_10_1016_j_mechatronics_2014_09_007 crossref_primary_10_1016_j_piutam_2014_12_006 crossref_primary_10_1016_j_snb_2013_08_028 crossref_primary_10_1016_j_ijnonlinmec_2023_104368 crossref_primary_10_1109_TUFFC_2012_2470 crossref_primary_10_1002_adfm_201707053 crossref_primary_10_1063_1_4900485 crossref_primary_10_1007_s12541_016_0141_6 crossref_primary_10_1021_acsnano_7b08332 crossref_primary_10_1063_1_4864160 crossref_primary_10_1007_s12541_015_0123_0 crossref_primary_10_1016_j_sna_2014_02_034 crossref_primary_10_1016_j_msec_2020_111047 crossref_primary_10_1088_1742_6596_744_1_012077 crossref_primary_10_1021_acsami_1c12745 crossref_primary_10_1002_adma_201707271 crossref_primary_10_3390_act12120456 crossref_primary_10_1007_s10483_019_2539_7 crossref_primary_10_1016_j_sna_2012_05_044 crossref_primary_10_1039_C3TA14726F crossref_primary_10_1002_mame_201900330 crossref_primary_10_1002_smll_202311570 crossref_primary_10_1016_j_sna_2012_09_019 crossref_primary_10_1088_1361_665X_aadb6c crossref_primary_10_1177_1045389X14549866 crossref_primary_10_3390_en15176324 crossref_primary_10_1109_JMEMS_2018_2837684 crossref_primary_10_1088_0964_1726_25_8_085024 crossref_primary_10_1038_s41467_017_01558_5 crossref_primary_10_1002_pat_3336 crossref_primary_10_1016_j_sna_2012_10_032 crossref_primary_10_1038_s41598_020_77581_2 crossref_primary_10_1063_1_5008431 crossref_primary_10_1002_aesr_202400221 crossref_primary_10_1002_adma_201804801 crossref_primary_10_1063_1_4764337 crossref_primary_10_1088_1361_665X_ad0392 crossref_primary_10_4028_www_scientific_net_MSF_917_117 crossref_primary_10_1088_0964_1726_22_2_025038 crossref_primary_10_1021_acsami_4c09938 crossref_primary_10_3390_electronics9091345 crossref_primary_10_1002_polb_23761 crossref_primary_10_1016_j_cclet_2017_08_020 crossref_primary_10_1126_science_aay8467 crossref_primary_10_1007_s11012_015_0213_1 crossref_primary_10_1021_acsaelm_4c01333 crossref_primary_10_1063_1_4939859 crossref_primary_10_1002_app_45220 crossref_primary_10_1021_acs_jpcc_7b03372 crossref_primary_10_1063_1_4876910 crossref_primary_10_4028_www_scientific_net_KEM_765_12 crossref_primary_10_1063_1_5123756 crossref_primary_10_1021_acs_jpcc_8b04002 crossref_primary_10_1063_1_4896185 crossref_primary_10_1179_1753555715Y_0000000053 crossref_primary_10_1002_pat_3487 crossref_primary_10_1016_j_enconman_2018_12_058 crossref_primary_10_1016_j_matdes_2021_110193 crossref_primary_10_1021_acs_langmuir_6b04185 |
Cites_doi | 10.1109/TUFFC.2011.1771 10.1016/j.compscitech.2011.02.003 10.1007/s11465-009-0031-z 10.1016/j.sna.2009.02.024 10.1177/1045389X08096888 10.1063/1.3534000 10.1117/12.547133 10.1109/TUFFC.2005.1563285 10.1016/j.jnoncrysol.2006.10.003 10.1109/TPEL.2002.802194 10.1109/TUFFC.912 10.1126/science.1127798 10.1109/TUFFC.2005.1428041 10.1109/TUFFC.2010.1481 10.1109/48.972090 10.1063/1.3167773 10.1088/0964-1726/19/2/025007 10.1088/0964-1726/16/6/028 10.1016/j.physleta.2010.12.026 10.1063/1.2793172 10.1108/01439910310479702 10.1088/0964-1726/15/5/039 10.1088/0022-3727/39/14/027 10.1063/1.2407271 10.1088/0964-1726/19/8/085012 10.1088/0034-4885/61/9/002 10.1016/j.sna.2009.05.009 10.1063/1.3462304 10.1111/j.1475-1305.2004.00120.x 10.1063/1.3456084 10.1063/1.1575505 10.1063/1.3478468 10.1007/s10832-006-6287-3 10.1109/JOE.2004.833135 10.1109/TUFFC.2006.1610572 10.1002/adma.200401161 |
ContentType | Journal Article |
Copyright | Copyright © 2012 Wiley Periodicals, Inc. 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2012 Wiley Periodicals, Inc. – notice: 2015 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW 7SR 7U5 8FD JG9 L7M |
DOI | 10.1002/polb.23045 |
DatabaseName | Istex CrossRef Pascal-Francis Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics Applied Sciences |
EISSN | 1099-0488 |
EndPage | 535 |
ExternalDocumentID | 26049939 10_1002_polb_23045 POLB23045 ark_67375_WNG_N529M3Q7_W |
Genre | reviewArticle |
GroupedDBID | -~X .GA .Y3 05W 10A 1L6 1OC 1ZS 4.4 4ZD 51W 51X 52N 52O 52P 52S 52T 52W 52X 53G 5GY 5VS 7PT 8-1 8UM 930 A03 AAEVG AAHBH AAHHS AANLZ AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADEOM ADIZJ ADMGS ADOZA ADXAS AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AZFZN BDRZF BRXPI BSCLL BY8 CS3 DCZOG DR2 DRFUL DRSTM EBS EJD F00 F5P FEDTE G-S GNP GODZA GYXMG HBH HF~ HGLYW HHY HHZ HVGLF IX1 KQQ LATKE LAW LEEKS LH4 LOXES LP6 LP7 LUTES LYRES MEWTI MRFUL MSFUL MSSTM MXFUL MXSTM OIG P2P P2W P4D QB0 QRW RNS ROL RWB RWI RYL SUPJJ TN5 UB1 UPT V2E W99 WH7 WIH WJL WOHZO WQJ WXSBR XG1 XPP XV2 YQT ZZTAW AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ AAYXX AGQPQ AGYGG CITATION 1OB 31~ 6TJ AAMMB ADMLS AEFGJ AGXDD AI. AIDQK AIDYY IQODW M6T MRSTM RIWAO SAMSI VH1 7SR 7U5 8FD JG9 L7M |
ID | FETCH-LOGICAL-c5135-ed035aaab4df7db0ed04e80cd8e13aad723ed34dd4d6d0c54090a32a5d2a819f3 |
IEDL.DBID | DR2 |
ISSN | 0887-6266 |
IngestDate | Sun Aug 24 04:10:13 EDT 2025 Mon Jul 21 09:14:18 EDT 2025 Tue Jul 01 01:14:11 EDT 2025 Thu Apr 24 22:50:59 EDT 2025 Wed Jan 22 16:20:01 EST 2025 Wed Oct 30 09:52:11 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | State of the art Electroactive polymer electrostrictive polymers Conversion rate dielectric properties energy harvesting Electrostriction ferroelectricity actuators nanoparticles Energy conversion Electric field effect Actuator |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5135-ed035aaab4df7db0ed04e80cd8e13aad723ed34dd4d6d0c54090a32a5d2a819f3 |
Notes | istex:73F5C1097EE9DB830C261002F94D44DC24A4B45E ark:/67375/WNG-N529M3Q7-W ArticleID:POLB23045 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/polb.23045 |
PQID | 1031309987 |
PQPubID | 23500 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1031309987 pascalfrancis_primary_26049939 crossref_primary_10_1002_polb_23045 crossref_citationtrail_10_1002_polb_23045 wiley_primary_10_1002_polb_23045_POLB23045 istex_primary_ark_67375_WNG_N529M3Q7_W |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 April 2012 |
PublicationDateYYYYMMDD | 2012-04-15 |
PublicationDate_xml | – month: 04 year: 2012 text: 15 April 2012 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: Hoboken, NJ |
PublicationTitle | Journal of polymer science. Part B, Polymer physics |
PublicationTitleAlternate | J. Polym. Sci. B Polym. Phys |
PublicationYear | 2012 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley |
References | Jean-Mistral, C.; Basrour, S.; Chaillout, J.-J. Smart Mater. Struct. 2010, 19, 085012. Guyomar, D.; Badel, A.; Lefeuvre, E.; Richard, C. IEEE Trans. Ultrasonics Ferroelectrics Frequency Control 2005, 52, 584-595. Lallart, M.; Cottinet, P.-J.; Lebrun, L.; Guiffard, B.; Guyomar, D. J. Appl. Phys. 2010, 108, 034901. Sodano, H. A.; Park, G.; Inman, D. J. Strain 2004, 40, 49-58. Qiu, J.; Jiang, H.; Ji, H.; Zhu, K. Frontiers Mech. Eng. China 2009, 4, 153-159. Liu, Y.; Ren, K. L.; Hofmann, H. F.; Zhang, Q. IEEE Trans. Ultrasonics Ferroelectrics Frequency Control 2005, 52, 2411-2417. Guyomar, D.; Sebald, G.; Pruvost, S.; Lallart, M.; Khodayari, A.; Richard, C. J Intell. Mater. Syst. Struct. 2009, 20, 609-624. Ottman, G. K.; Hofmann, H. F.; Bhatt, A. C.; Lesieutre, G. A. IEEE Trans. Power Electron. 2002, 17, 669-676. Guiffard, B.; Seveyrat, L.; Sebald, G.; Guyomar, D. J. Phys. D: Appl. Phys. 2006, 39, 3053-3057. Damjanovic, D. Rep. Prog. Phys. 1998, 61, 1267-1324. Huang, C.; Zhang, Q.-M. Adv. Mater. 2005, 17, 1153-1158. McKay, T.; O'Brien, B.; Calius, E.; Anderson, I. Appl. Phys. Lett. 2010, 97, 062911. Chu, B.; Zhou, X.; Ren, K.; Neese, B.; Lin, M.; Wang, Q.; Bauer, F.; Zhang, Q. M. Science 2006, 313, 334-336. Lallart, M.; Guyomar, D. Appl. Phys. Lett. 2010, 97, 014104. Koh, S. J. A.; Zhao, X.; Suo, Z. Appl. Phys. Lett. 2009, 94, 262902. Lebrun, L.; Guyomar, D.; Guiffard, B.; Cottinet, P.-J.; Putson, C. Sens. Actuators A 2009, 153, 251-257. Lallart, M.; Garbuio, L.; Petit, L.; Richard, C.; Guyomar, D. IEEE Trans. Ultrasonics Ferroelectrics Frequency Control 2008, 55, 2119-2130. Liu, Y. Proc. SPIE 2004, 5385, 17-28. Wongtimnoi, K.; Guiffard, B.; Bogner-Van de Moortèle, A.; Seveyrat, L.; Gauthier, C.; Cavaillé, J.-Y. Compos. Sci. Technol. 2011, 71, 885-892. Mahmoud, M. A. E.; Abdel-Rahman, E. M.; El-Saadany, E. F.; Mansour, R. R. Smart Mater. Struct. 2010, 19, 025007. Huang, C.; Zhang, Q. M.; Su, J. Appl. Phys. Lett. 2003, 82, 3502. Lee, C.; Ye, M.; Bin, Y.; Rama, K.; Chun-Huat, H. Sens. Actuators A 2009, 156, 208-216. Madden, J. D. W.; Vandesteeg, N. A.; Anquetil, P. A.; Madden, P. G. A.; Takshi, A.; Pytel, R. Z.; Lafontaine, S. R.; Wieringa, P. A.; Hunter, I. W. IEEE J. Oceanic Eng. 2004, 29, 706-728. Ren, K.; Liu, Y.; Geng, X.; Hofmann, H. F.; Zhang, Q. M. IEEE Trans. Ultrasonics Ferroelectrics Frequency Control 2006, 53, 631-638. Cottinet, P.-J.; Guyomar, D.; Guiffard, B.; Putson, C.; Lebrun, L. IEEE Trans. Ultrasonics Ferroelectrics Frequency Control 2010, 57, 774-784. Guyomar, D.; Lallart, M.; Cottinet, P.-J. Phys. Lett. A 2011, 375, 260-264. Qiu, J.; Jiang, H.; Hongli, J.; Kongjun, Z. Frontiers Mech. Eng. China 2009, 4, 153-159. Makihara, K.; Onoda, J.; Miyakawa, T. Smart Mater. Struct. 2006, 15, 1493-1498. Sebald, G.; Seveyrat, L.; Guyomar, D.; Lebrun, L.; Guiffard, B.; Pruvost, S. J. Appl. Phys. 2006, 100, 124112. Bar-Cohen, Y. Ind. Robot Int. J. 2003, 30, 331-337. Shu, Y. C.; Lien, I. C.; Wu, W. J. Smart Mater. Struct. 2007, 16, 2253-2264. Cottinet, P.-J.; Lallart, M.; Guyomar, D; Guiffard, B.; Lebrun, L.; Sebald, G.; Putson, C. IEEE Trans. Ultrasonics Ferroelectrics Frequency Control 2011, 58, 30-42. Bobnar, V.; Levstik, A.; Huang, C.; Zhang, Q. M. J. Non-Cryst. Solids 2007, 353, 205-209. Putson, C.; Lebrun, L.; Guyomar, D.; Muensit, N.; Cottinet, P.-J.; Seveyrat, L.; Guiffard, B. J. Appl. Phys. 2011, 109, 024104. Taylor, G. W.; Burns, J. R.; Kammann, S. A.; Powers, W. B.; Welsh, T. R. IEEE J. Oceanic Eng. 2001, 26, 539-547. Choi, W. J.; Jeon, Y.; Jeong, J.-H.; Sood, R.; Kim, S. G. J. Electroceram. 2006, 17, 543-548. Ren, K.; Liu, Y.; Hofmann, H.; Zhang, Q. M.; Blottman, J. Appl. Phys. Lett. 2007, 91, 132910. 2002; 17 2010; 97 2004; 40 2006; 53 2010; 57 2009; 20 2004; 29 2010; 19 2010; 108 2006; 17 2006; 39 2006; 15 2004; 5385 2007; 91 2009; 156 2001; 26 2008; 55 1998; 61 2009; 153 2011; 58 2006; 313 2003; 30 2011; 375 1999 2007; 16 2011; 109 2009; 94 2011; 71 2007; 353 2005; 52 2009; 4 2003; 82 2005; 17 2006; 100 e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_13_2 e_1_2_7_12_2 e_1_2_7_11_2 e_1_2_7_10_2 e_1_2_7_26_2 e_1_2_7_27_2 e_1_2_7_28_2 e_1_2_7_29_2 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_35_2 e_1_2_7_36_2 e_1_2_7_37_2 e_1_2_7_38_2 e_1_2_7_39_2 |
References_xml | – reference: Huang, C.; Zhang, Q.-M. Adv. Mater. 2005, 17, 1153-1158. – reference: Madden, J. D. W.; Vandesteeg, N. A.; Anquetil, P. A.; Madden, P. G. A.; Takshi, A.; Pytel, R. Z.; Lafontaine, S. R.; Wieringa, P. A.; Hunter, I. W. IEEE J. Oceanic Eng. 2004, 29, 706-728. – reference: Choi, W. J.; Jeon, Y.; Jeong, J.-H.; Sood, R.; Kim, S. G. J. Electroceram. 2006, 17, 543-548. – reference: Lallart, M.; Garbuio, L.; Petit, L.; Richard, C.; Guyomar, D. IEEE Trans. Ultrasonics Ferroelectrics Frequency Control 2008, 55, 2119-2130. – reference: Wongtimnoi, K.; Guiffard, B.; Bogner-Van de Moortèle, A.; Seveyrat, L.; Gauthier, C.; Cavaillé, J.-Y. Compos. Sci. Technol. 2011, 71, 885-892. – reference: Guyomar, D.; Badel, A.; Lefeuvre, E.; Richard, C. IEEE Trans. Ultrasonics Ferroelectrics Frequency Control 2005, 52, 584-595. – reference: Damjanovic, D. Rep. Prog. Phys. 1998, 61, 1267-1324. – reference: Ren, K.; Liu, Y.; Hofmann, H.; Zhang, Q. M.; Blottman, J. Appl. Phys. Lett. 2007, 91, 132910. – reference: Liu, Y.; Ren, K. L.; Hofmann, H. F.; Zhang, Q. IEEE Trans. Ultrasonics Ferroelectrics Frequency Control 2005, 52, 2411-2417. – reference: Shu, Y. C.; Lien, I. C.; Wu, W. J. Smart Mater. Struct. 2007, 16, 2253-2264. – reference: Koh, S. J. A.; Zhao, X.; Suo, Z. Appl. Phys. Lett. 2009, 94, 262902. – reference: Chu, B.; Zhou, X.; Ren, K.; Neese, B.; Lin, M.; Wang, Q.; Bauer, F.; Zhang, Q. M. Science 2006, 313, 334-336. – reference: Sebald, G.; Seveyrat, L.; Guyomar, D.; Lebrun, L.; Guiffard, B.; Pruvost, S. J. Appl. Phys. 2006, 100, 124112. – reference: Cottinet, P.-J.; Lallart, M.; Guyomar, D; Guiffard, B.; Lebrun, L.; Sebald, G.; Putson, C. IEEE Trans. Ultrasonics Ferroelectrics Frequency Control 2011, 58, 30-42. – reference: Qiu, J.; Jiang, H.; Hongli, J.; Kongjun, Z. Frontiers Mech. Eng. China 2009, 4, 153-159. – reference: Putson, C.; Lebrun, L.; Guyomar, D.; Muensit, N.; Cottinet, P.-J.; Seveyrat, L.; Guiffard, B. J. Appl. Phys. 2011, 109, 024104. – reference: Taylor, G. W.; Burns, J. R.; Kammann, S. A.; Powers, W. B.; Welsh, T. R. IEEE J. Oceanic Eng. 2001, 26, 539-547. – reference: Guyomar, D.; Sebald, G.; Pruvost, S.; Lallart, M.; Khodayari, A.; Richard, C. J Intell. Mater. Syst. Struct. 2009, 20, 609-624. – reference: Makihara, K.; Onoda, J.; Miyakawa, T. Smart Mater. Struct. 2006, 15, 1493-1498. – reference: Lallart, M.; Guyomar, D. Appl. Phys. Lett. 2010, 97, 014104. – reference: Guiffard, B.; Seveyrat, L.; Sebald, G.; Guyomar, D. J. Phys. D: Appl. Phys. 2006, 39, 3053-3057. – reference: Jean-Mistral, C.; Basrour, S.; Chaillout, J.-J. Smart Mater. Struct. 2010, 19, 085012. – reference: Bobnar, V.; Levstik, A.; Huang, C.; Zhang, Q. M. J. Non-Cryst. Solids 2007, 353, 205-209. – reference: Liu, Y. Proc. SPIE 2004, 5385, 17-28. – reference: Bar-Cohen, Y. Ind. Robot Int. J. 2003, 30, 331-337. – reference: Cottinet, P.-J.; Guyomar, D.; Guiffard, B.; Putson, C.; Lebrun, L. IEEE Trans. Ultrasonics Ferroelectrics Frequency Control 2010, 57, 774-784. – reference: Huang, C.; Zhang, Q. M.; Su, J. Appl. Phys. Lett. 2003, 82, 3502. – reference: Sodano, H. A.; Park, G.; Inman, D. J. Strain 2004, 40, 49-58. – reference: Lee, C.; Ye, M.; Bin, Y.; Rama, K.; Chun-Huat, H. Sens. Actuators A 2009, 156, 208-216. – reference: Qiu, J.; Jiang, H.; Ji, H.; Zhu, K. Frontiers Mech. Eng. China 2009, 4, 153-159. – reference: Lallart, M.; Cottinet, P.-J.; Lebrun, L.; Guiffard, B.; Guyomar, D. J. Appl. Phys. 2010, 108, 034901. – reference: McKay, T.; O'Brien, B.; Calius, E.; Anderson, I. Appl. Phys. Lett. 2010, 97, 062911. – reference: Ottman, G. K.; Hofmann, H. F.; Bhatt, A. C.; Lesieutre, G. A. IEEE Trans. Power Electron. 2002, 17, 669-676. – reference: Ren, K.; Liu, Y.; Geng, X.; Hofmann, H. F.; Zhang, Q. M. IEEE Trans. Ultrasonics Ferroelectrics Frequency Control 2006, 53, 631-638. – reference: Lebrun, L.; Guyomar, D.; Guiffard, B.; Cottinet, P.-J.; Putson, C. Sens. Actuators A 2009, 153, 251-257. – reference: Mahmoud, M. A. E.; Abdel-Rahman, E. M.; El-Saadany, E. F.; Mansour, R. R. Smart Mater. Struct. 2010, 19, 025007. – reference: Guyomar, D.; Lallart, M.; Cottinet, P.-J. Phys. Lett. A 2011, 375, 260-264. – volume: 15 start-page: 1493 year: 2006 end-page: 1498 publication-title: Smart Mater. Struct. – volume: 4 start-page: 153 year: 2009 end-page: 159 publication-title: Frontiers Mech. Eng. China – volume: 353 start-page: 205 year: 2007 end-page: 209 publication-title: J. Non‐Cryst. Solids – volume: 17 start-page: 669 year: 2002 end-page: 676 publication-title: IEEE Trans. Power Electron. – volume: 17 start-page: 1153 year: 2005 end-page: 1158 publication-title: Adv. Mater. – volume: 19 start-page: 085012 year: 2010 publication-title: Smart Mater. Struct. – volume: 108 start-page: 034901 year: 2010 publication-title: J. Appl. Phys. – volume: 71 start-page: 885 year: 2011 end-page: 892 publication-title: Compos. Sci. Technol. – volume: 5385 start-page: 17 year: 2004 end-page: 28 publication-title: Proc. SPIE – volume: 97 start-page: 014104 year: 2010 publication-title: Appl. Phys. Lett. – volume: 61 start-page: 1267 year: 1998 end-page: 1324 publication-title: Rep. Prog. Phys. – volume: 156 start-page: 208 year: 2009 end-page: 216 publication-title: Sens. Actuators A – volume: 40 start-page: 49 year: 2004 end-page: 58 publication-title: Strain – volume: 153 start-page: 251 year: 2009 end-page: 257 publication-title: Sens. Actuators A – volume: 52 start-page: 584 year: 2005 end-page: 595 publication-title: IEEE Trans. Ultrasonics Ferroelectrics Frequency Control – volume: 91 start-page: 132910 year: 2007 publication-title: Appl. Phys. Lett. – volume: 313 start-page: 334 year: 2006 end-page: 336 publication-title: Science – volume: 30 start-page: 331 year: 2003 end-page: 337 publication-title: Ind. Robot Int. J. – volume: 26 start-page: 539 year: 2001 end-page: 547 publication-title: IEEE J. Oceanic Eng. – volume: 16 start-page: 2253 year: 2007 end-page: 2264 publication-title: Smart Mater. Struct. – volume: 39 start-page: 3053 year: 2006 end-page: 3057 publication-title: J. Phys. D: Appl. Phys. – volume: 20 start-page: 609 year: 2009 end-page: 624 publication-title: J Intell. Mater. Syst. Struct. – volume: 97 start-page: 062911 year: 2010 publication-title: Appl. Phys. Lett. – volume: 375 start-page: 260 year: 2011 end-page: 264 publication-title: Phys. Lett. A – volume: 82 start-page: 3502 year: 2003 publication-title: Appl. Phys. Lett. – volume: 109 start-page: 024104 year: 2011 publication-title: J. Appl. Phys. – volume: 94 start-page: 262902 year: 2009 publication-title: Appl. Phys. Lett. – volume: 58 start-page: 30 year: 2011 end-page: 42 publication-title: IEEE Trans. Ultrasonics Ferroelectrics Frequency Control – volume: 17 start-page: 543 year: 2006 end-page: 548 publication-title: J. Electroceram. – volume: 52 start-page: 2411 year: 2005 end-page: 2417 publication-title: IEEE Trans. Ultrasonics Ferroelectrics Frequency Control – volume: 55 start-page: 2119 year: 2008 end-page: 2130 publication-title: IEEE Trans. Ultrasonics Ferroelectrics Frequency Control – volume: 53 start-page: 631 year: 2006 end-page: 638 publication-title: IEEE Trans. Ultrasonics Ferroelectrics Frequency Control – volume: 19 start-page: 025007 year: 2010 publication-title: Smart Mater. Struct. – volume: 57 start-page: 774 year: 2010 end-page: 784 publication-title: IEEE Trans. Ultrasonics Ferroelectrics Frequency Control – volume: 29 start-page: 706 year: 2004 end-page: 728 publication-title: IEEE J. Oceanic Eng. – volume: 100 start-page: 124112 year: 2006 publication-title: J. Appl. Phys. – year: 1999 – ident: e_1_2_7_29_2 doi: 10.1109/TUFFC.2011.1771 – ident: e_1_2_7_34_2 doi: 10.1016/j.compscitech.2011.02.003 – ident: e_1_2_7_27_2 doi: 10.1007/s11465-009-0031-z – ident: e_1_2_7_15_2 doi: 10.1016/j.sna.2009.02.024 – ident: e_1_2_7_30_2 – ident: e_1_2_7_28_2 doi: 10.1177/1045389X08096888 – ident: e_1_2_7_39_2 doi: 10.1063/1.3534000 – ident: e_1_2_7_16_2 doi: 10.1117/12.547133 – ident: e_1_2_7_17_2 doi: 10.1109/TUFFC.2005.1563285 – ident: e_1_2_7_37_2 doi: 10.1016/j.jnoncrysol.2006.10.003 – ident: e_1_2_7_3_2 doi: 10.1109/TPEL.2002.802194 – ident: e_1_2_7_32_2 doi: 10.1109/TUFFC.912 – ident: e_1_2_7_40_2 doi: 10.1126/science.1127798 – ident: e_1_2_7_24_2 doi: 10.1109/TUFFC.2005.1428041 – ident: e_1_2_7_20_2 doi: 10.1109/TUFFC.2010.1481 – ident: e_1_2_7_2_2 doi: 10.1109/48.972090 – ident: e_1_2_7_12_2 doi: 10.1063/1.3167773 – ident: e_1_2_7_13_2 doi: 10.1088/0964-1726/19/2/025007 – ident: e_1_2_7_26_2 doi: 10.1088/0964-1726/16/6/028 – ident: e_1_2_7_23_2 doi: 10.1016/j.physleta.2010.12.026 – ident: e_1_2_7_10_2 doi: 10.1063/1.2793172 – ident: e_1_2_7_8_2 doi: 10.1108/01439910310479702 – ident: e_1_2_7_31_2 doi: 10.1088/0964-1726/15/5/039 – ident: e_1_2_7_35_2 doi: 10.1088/0022-3727/39/14/027 – ident: e_1_2_7_25_2 doi: 10.1007/s11465-009-0031-z – ident: e_1_2_7_7_2 doi: 10.1063/1.2407271 – ident: e_1_2_7_18_2 doi: 10.1088/0964-1726/19/8/085012 – ident: e_1_2_7_9_2 doi: 10.1088/0034-4885/61/9/002 – ident: e_1_2_7_19_2 doi: 10.1016/j.sna.2009.05.009 – ident: e_1_2_7_33_2 doi: 10.1063/1.3462304 – ident: e_1_2_7_5_2 doi: 10.1111/j.1475-1305.2004.00120.x – ident: e_1_2_7_11_2 – ident: e_1_2_7_21_2 doi: 10.1063/1.3456084 – ident: e_1_2_7_36_2 doi: 10.1063/1.1575505 – ident: e_1_2_7_14_2 doi: 10.1063/1.3478468 – ident: e_1_2_7_4_2 doi: 10.1007/s10832-006-6287-3 – ident: e_1_2_7_22_2 doi: 10.1109/JOE.2004.833135 – ident: e_1_2_7_6_2 doi: 10.1109/TUFFC.2006.1610572 – ident: e_1_2_7_38_2 doi: 10.1002/adma.200401161 |
SSID | ssj0009959 |
Score | 2.312023 |
SecondaryResourceType | review_article |
Snippet | This article reviews the developments in electrostrictive polymers for energy harvesting. Electrostrictive polymers are a variety of electroactive polymers... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 523 |
SubjectTerms | Actuators Applied sciences Conversion dielectric properties Electrical, magnetic and optical properties Electroactive polymers Electrodes Electrostriction electrostrictive polymers energy harvesting Exact sciences and technology ferroelectricity Harvesting nanoparticles Organic polymers Physicochemistry of polymers Polymers Properties and characterization Scavenging |
Title | Electrostrictive polymers for mechanical energy harvesting |
URI | https://api.istex.fr/ark:/67375/WNG-N529M3Q7-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpolb.23045 https://www.proquest.com/docview/1031309987 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEB5KRfTFS1VM1RJRBIW0ye7mJr5oaS1ijxcs7Ysss5dYaM0p5wLqr3dmc5LjERH0LYHdZTMzu_Nld-YbgMeFq7CWpkkIe_hEFQITrBsuIuDJO5HLzBznDh-OioMj9eYkP1mDF30uTMcPMRy48coI-zUvcDTTnSVp6MX43HAYs-IMcw7WYkT0cckdxURaPc0nofZi4CYVO8uuK97oEgv2G0dH4pQE1HSVLVag568ANnig_evwuZ97F3hytj2fmW374zdax__9uBtwbQFN45edLd2ENd9uwJXdviLcBlwO4aJ2egue73XVc7joR9gwYxrqOx-BxwSC46-e84lZ_bEPuYXxKU4Cn0f75TYc7e992j1IFlUYEptnMk-8S2WOiEa5pnQmpXflq9S6ymcS0ZVCeieVc8oVLrWEAOsUpcDcCSS40cg7sN6OW38X4soSWiporDKrlUrRpLIxwqIqnbe-kBE87bWh7YKinCtlnOuOXFlolosOcong0dD2oiPm-GOrJ0GpQxOcnHEoW5nr49FrPcpFfSg_lPo4gq0VrQ8d6H-PfgplHcHD3gw0iZ2vVbD14_lUc6EMSeZWlRE8C0r9y4T0-3dvX4WnzX9pfA-uElITfI2V5fdhfTaZ-weEhmZmK1j9T8MJBow |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1taxQxEB60ReoXq9Xi1lpXFEFh270k--Y3La2n3p0vtLTfwmySVWi7V-4FWn-9M9m7PU9E0G-7kITdySTzJJk8D8Dz1OZYyLKKCHu4SKUCIywqFhFwFJ0oZHYs3x3uD9LusfpwmpzOcnP4LkzDD9FuuPHI8PM1D3DekN5bsIZeDs9LzmNWyU1YZUlvv6L6umCPYiqtOdEn4fa0ZScVe4u6S_FolU17xfmROCYTVY22xRL4_BXC-hh0uN4IrY49dSGnnpztTiflrvnxG7Hjf__eXbgzQ6fhm8ad7sENV2_A2v5cFG4DbvmMUTO-D68PGgEd1v3wc2ZITV3zLnhIODi8cHylmD0gdP56YfgdR57So_72AI4PD472u9FMiCEyZNUkcjaWCSKWylaZLWN6Vy6Pjc1dRyLaTEhnpbJW2dTGhkBgEaMUmFiBhDgquQkr9bB2DyHMDQGmlNrKOoVSMZaxrEphUGXWGZfKAF7Ou0ObGUs5i2Wc64ZfWWi2i_Z2CeBZW_ay4eb4Y6kXvlfbIjg642y2LNEng3d6kIiiL79k-iSAnaVubyvQko_WhbII4OncDzSZnU9WsHbD6VizVoYkf8uzAF75Xv3LB-nPn3pv_dPWvxR-Amvdo35P994PPj6C2wTcBJ9qdZJtWJmMpu4xgaNJueOHwE8XXQqn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VVhwvHAVECpQgEBKV0iY-ciBeoO1SoF0KatW-IMuxHZDaZld7SMCvZ8bZZFmEkOAtkWzLmRl7vtgz3wA8TW2uC15WEWIPF4mU6UgXFRURcOid0GUmlnKHD_rp3rF4dypPl-BlmwvT8EN0B260Mvx-TQt8aKutOWnocHBeUhizkJdgRaRxTja982lOHkVMWi3PJ8L2tCMnZVvzvgvuaIUk-43CI_UYJVQ1pS0WsOevCNa7oN4N-NxOvok8OducTspN8-M3Xsf__bqbcH2GTcNXjTHdgiVXr8LV7bYk3Cpc9vGiZnwbXuw25XOo6offMUMc6judgYeIgsMLRwnFpP_Q-eTC8KseeUKP-ssdOO7tHm3vRbMyDJGRCZeRszGXWutS2CqzZYzvwuWxsblLuNY2Y9xZLqwVNrWxQQhYxJozLS3TiDcqfheW60Ht7kGYG4RLKY6VJYUQsS5jXpXMaJFZZ1zKA3jeakOZGUc5lco4Vw27MlMkF-XlEsCTru2wYeb4Y6tnXqldEz06o1i2TKqT_hvVl6w44B8zdRLA-oLWuw74w4d_hbwI4HFrBgrFTvcqunaD6VhRpQyO5pZnAWx4pf5lQurww_5r_7T2L40fwZXDnZ7af9t_fx-uIWpjdKWVyAewPBlN3UNERpNy3S-AnxSaCV8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrostrictive+Polymers+for+Mechanical+Energy+Harvesting&rft.jtitle=Journal+of+polymer+science.+Part+B%2C+Polymer+physics&rft.au=LALLART%2C+Micka%C3%ABl&rft.au=COTTINET%2C+Pierre-Jean&rft.au=GUYOMAR%2C+Daniel&rft.au=LEBRUN%2C+Laurent&rft.date=2012-04-15&rft.pub=Wiley&rft.issn=0887-6266&rft.volume=50&rft.issue=8&rft.spage=523&rft.epage=535&rft_id=info:doi/10.1002%2Fpolb.23045&rft.externalDBID=n%2Fa&rft.externalDocID=26049939 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-6266&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-6266&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-6266&client=summon |