Integrated In‐Memory Sensor and Computing of Artificial Vision Based on Full‐vdW Optoelectronic Ferroelectric Field‐Effect Transistor

The development and application of artificial intelligence have led to the exploitation of low‐power and compact intelligent information‐processing systems integrated with sensing, memory, and neuromorphic computing functions. The 2D van der Waals (vdW) materials with abundant reservoirs for arbitra...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 11; no. 3; pp. e2305679 - n/a
Main Authors Wang, Peng, Li, Jie, Xue, Wuhong, Ci, Wenjuan, Jiang, Fengxian, Shi, Lei, Zhou, Feichi, Zhou, Peng, Xu, Xiaohong
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.01.2024
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development and application of artificial intelligence have led to the exploitation of low‐power and compact intelligent information‐processing systems integrated with sensing, memory, and neuromorphic computing functions. The 2D van der Waals (vdW) materials with abundant reservoirs for arbitrary stacking based on functions and enabling continued device downscaling offer an attractive alternative for continuously promoting artificial intelligence. In this study, full 2D SnS2/h‐BN/CuInP2S6 (CIPS)‐based ferroelectric field‐effect transistors (Fe‐FETs) and utilized light‐induced ferroelectric polarization reversal to achieve excellent memory properties and multi‐functional sensing‐memory‐computing vision simulations are designed. The device exhibits a high on/off current ratio of over 105, long retention time (>104 s), stable cyclic endurance (>350 cycles), and 128 multilevel current states (7‐bit). In addition, fundamental synaptic plasticity characteristics are emulated including paired‐pulse facilitation (PPF), short‐term plasticity (STP), long‐term plasticity (LTP), long‐term potentiation, and long‐term depression. A ferroelectric optoelectronic reservoir computing system for the Modified National Institute of Standards and Technology (MNIST) handwritten digital recognition achieved a high accuracy of 93.62%. Furthermore, retina‐like light adaptation and Pavlovian conditioning are successfully mimicked. These results provide a strategy for developing a multilevel memory and novel neuromorphic vision systems with integrated sensing‐memory‐processing. A novel multi‐functional neuromorphic visual system with optoelectronic synergy based on SnS2/BN/CuInP2S6 full van der Waals ferroelectric field‐effect transistor is reported. The device demonstrates a high switching ratio of 105, multilevel storage states of 128 (7 bits), excellent synaptic plasticity, and an image recognition accuracy of 93.62% based on reservoir computing.
AbstractList The development and application of artificial intelligence have led to the exploitation of low‐power and compact intelligent information‐processing systems integrated with sensing, memory, and neuromorphic computing functions. The 2D van der Waals (vdW) materials with abundant reservoirs for arbitrary stacking based on functions and enabling continued device downscaling offer an attractive alternative for continuously promoting artificial intelligence. In this study, full 2D SnS 2 /h‐BN/CuInP 2 S 6 (CIPS)‐based ferroelectric field‐effect transistors (Fe‐FETs) and utilized light‐induced ferroelectric polarization reversal to achieve excellent memory properties and multi‐functional sensing‐memory‐computing vision simulations are designed. The device exhibits a high on/off current ratio of over 10 5 , long retention time (>10 4  s), stable cyclic endurance (>350 cycles), and 128 multilevel current states (7‐bit). In addition, fundamental synaptic plasticity characteristics are emulated including paired‐pulse facilitation (PPF), short‐term plasticity (STP), long‐term plasticity (LTP), long‐term potentiation, and long‐term depression. A ferroelectric optoelectronic reservoir computing system for the Modified National Institute of Standards and Technology (MNIST) handwritten digital recognition achieved a high accuracy of 93.62%. Furthermore, retina‐like light adaptation and Pavlovian conditioning are successfully mimicked. These results provide a strategy for developing a multilevel memory and novel neuromorphic vision systems with integrated sensing‐memory‐processing.
The development and application of artificial intelligence have led to the exploitation of low‐power and compact intelligent information‐processing systems integrated with sensing, memory, and neuromorphic computing functions. The 2D van der Waals (vdW) materials with abundant reservoirs for arbitrary stacking based on functions and enabling continued device downscaling offer an attractive alternative for continuously promoting artificial intelligence. In this study, full 2D SnS2/h‐BN/CuInP2S6 (CIPS)‐based ferroelectric field‐effect transistors (Fe‐FETs) and utilized light‐induced ferroelectric polarization reversal to achieve excellent memory properties and multi‐functional sensing‐memory‐computing vision simulations are designed. The device exhibits a high on/off current ratio of over 105, long retention time (>104 s), stable cyclic endurance (>350 cycles), and 128 multilevel current states (7‐bit). In addition, fundamental synaptic plasticity characteristics are emulated including paired‐pulse facilitation (PPF), short‐term plasticity (STP), long‐term plasticity (LTP), long‐term potentiation, and long‐term depression. A ferroelectric optoelectronic reservoir computing system for the Modified National Institute of Standards and Technology (MNIST) handwritten digital recognition achieved a high accuracy of 93.62%. Furthermore, retina‐like light adaptation and Pavlovian conditioning are successfully mimicked. These results provide a strategy for developing a multilevel memory and novel neuromorphic vision systems with integrated sensing‐memory‐processing. A novel multi‐functional neuromorphic visual system with optoelectronic synergy based on SnS2/BN/CuInP2S6 full van der Waals ferroelectric field‐effect transistor is reported. The device demonstrates a high switching ratio of 105, multilevel storage states of 128 (7 bits), excellent synaptic plasticity, and an image recognition accuracy of 93.62% based on reservoir computing.
The development and application of artificial intelligence have led to the exploitation of low-power and compact intelligent information-processing systems integrated with sensing, memory, and neuromorphic computing functions. The 2D van der Waals (vdW) materials with abundant reservoirs for arbitrary stacking based on functions and enabling continued device downscaling offer an attractive alternative for continuously promoting artificial intelligence. In this study, full 2D SnS2/h-BN/CuInP2S6 (CIPS)-based ferroelectric field-effect transistors (Fe-FETs) and utilized light-induced ferroelectric polarization reversal to achieve excellent memory properties and multi-functional sensing-memory-computing vision simulations are designed. The device exhibits a high on/off current ratio of over 105, long retention time (>104 s), stable cyclic endurance (>350 cycles), and 128 multilevel current states (7-bit). In addition, fundamental synaptic plasticity characteristics are emulated including paired-pulse facilitation (PPF), short-term plasticity (STP), long-term plasticity (LTP), long-term potentiation, and long-term depression. A ferroelectric optoelectronic reservoir computing system for the Modified National Institute of Standards and Technology (MNIST) handwritten digital recognition achieved a high accuracy of 93.62%. Furthermore, retina-like light adaptation and Pavlovian conditioning are successfully mimicked. These results provide a strategy for developing a multilevel memory and novel neuromorphic vision systems with integrated sensing-memory-processing.
Abstract The development and application of artificial intelligence have led to the exploitation of low‐power and compact intelligent information‐processing systems integrated with sensing, memory, and neuromorphic computing functions. The 2D van der Waals (vdW) materials with abundant reservoirs for arbitrary stacking based on functions and enabling continued device downscaling offer an attractive alternative for continuously promoting artificial intelligence. In this study, full 2D SnS2/h‐BN/CuInP2S6 (CIPS)‐based ferroelectric field‐effect transistors (Fe‐FETs) and utilized light‐induced ferroelectric polarization reversal to achieve excellent memory properties and multi‐functional sensing‐memory‐computing vision simulations are designed. The device exhibits a high on/off current ratio of over 105, long retention time (>104 s), stable cyclic endurance (>350 cycles), and 128 multilevel current states (7‐bit). In addition, fundamental synaptic plasticity characteristics are emulated including paired‐pulse facilitation (PPF), short‐term plasticity (STP), long‐term plasticity (LTP), long‐term potentiation, and long‐term depression. A ferroelectric optoelectronic reservoir computing system for the Modified National Institute of Standards and Technology (MNIST) handwritten digital recognition achieved a high accuracy of 93.62%. Furthermore, retina‐like light adaptation and Pavlovian conditioning are successfully mimicked. These results provide a strategy for developing a multilevel memory and novel neuromorphic vision systems with integrated sensing‐memory‐processing.
The development and application of artificial intelligence have led to the exploitation of low-power and compact intelligent information-processing systems integrated with sensing, memory, and neuromorphic computing functions. The 2D van der Waals (vdW) materials with abundant reservoirs for arbitrary stacking based on functions and enabling continued device downscaling offer an attractive alternative for continuously promoting artificial intelligence. In this study, full 2D SnS /h-BN/CuInP S (CIPS)-based ferroelectric field-effect transistors (Fe-FETs) and utilized light-induced ferroelectric polarization reversal to achieve excellent memory properties and multi-functional sensing-memory-computing vision simulations are designed. The device exhibits a high on/off current ratio of over 10 , long retention time (>10  s), stable cyclic endurance (>350 cycles), and 128 multilevel current states (7-bit). In addition, fundamental synaptic plasticity characteristics are emulated including paired-pulse facilitation (PPF), short-term plasticity (STP), long-term plasticity (LTP), long-term potentiation, and long-term depression. A ferroelectric optoelectronic reservoir computing system for the Modified National Institute of Standards and Technology (MNIST) handwritten digital recognition achieved a high accuracy of 93.62%. Furthermore, retina-like light adaptation and Pavlovian conditioning are successfully mimicked. These results provide a strategy for developing a multilevel memory and novel neuromorphic vision systems with integrated sensing-memory-processing.
The development and application of artificial intelligence have led to the exploitation of low-power and compact intelligent information-processing systems integrated with sensing, memory, and neuromorphic computing functions. The 2D van der Waals (vdW) materials with abundant reservoirs for arbitrary stacking based on functions and enabling continued device downscaling offer an attractive alternative for continuously promoting artificial intelligence. In this study, full 2D SnS2 /h-BN/CuInP2 S6 (CIPS)-based ferroelectric field-effect transistors (Fe-FETs) and utilized light-induced ferroelectric polarization reversal to achieve excellent memory properties and multi-functional sensing-memory-computing vision simulations are designed. The device exhibits a high on/off current ratio of over 105 , long retention time (>104 s), stable cyclic endurance (>350 cycles), and 128 multilevel current states (7-bit). In addition, fundamental synaptic plasticity characteristics are emulated including paired-pulse facilitation (PPF), short-term plasticity (STP), long-term plasticity (LTP), long-term potentiation, and long-term depression. A ferroelectric optoelectronic reservoir computing system for the Modified National Institute of Standards and Technology (MNIST) handwritten digital recognition achieved a high accuracy of 93.62%. Furthermore, retina-like light adaptation and Pavlovian conditioning are successfully mimicked. These results provide a strategy for developing a multilevel memory and novel neuromorphic vision systems with integrated sensing-memory-processing.The development and application of artificial intelligence have led to the exploitation of low-power and compact intelligent information-processing systems integrated with sensing, memory, and neuromorphic computing functions. The 2D van der Waals (vdW) materials with abundant reservoirs for arbitrary stacking based on functions and enabling continued device downscaling offer an attractive alternative for continuously promoting artificial intelligence. In this study, full 2D SnS2 /h-BN/CuInP2 S6 (CIPS)-based ferroelectric field-effect transistors (Fe-FETs) and utilized light-induced ferroelectric polarization reversal to achieve excellent memory properties and multi-functional sensing-memory-computing vision simulations are designed. The device exhibits a high on/off current ratio of over 105 , long retention time (>104 s), stable cyclic endurance (>350 cycles), and 128 multilevel current states (7-bit). In addition, fundamental synaptic plasticity characteristics are emulated including paired-pulse facilitation (PPF), short-term plasticity (STP), long-term plasticity (LTP), long-term potentiation, and long-term depression. A ferroelectric optoelectronic reservoir computing system for the Modified National Institute of Standards and Technology (MNIST) handwritten digital recognition achieved a high accuracy of 93.62%. Furthermore, retina-like light adaptation and Pavlovian conditioning are successfully mimicked. These results provide a strategy for developing a multilevel memory and novel neuromorphic vision systems with integrated sensing-memory-processing.
Author Wang, Peng
Ci, Wenjuan
Jiang, Fengxian
Li, Jie
Zhou, Feichi
Xue, Wuhong
Shi, Lei
Xu, Xiaohong
Zhou, Peng
Author_xml – sequence: 1
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
  organization: Shanxi Normal University
– sequence: 2
  givenname: Jie
  surname: Li
  fullname: Li, Jie
  organization: Southern University of Science and Technology
– sequence: 3
  givenname: Wuhong
  surname: Xue
  fullname: Xue, Wuhong
  email: xuewuhong@sxnu.edu.cn
  organization: Shanxi Normal University
– sequence: 4
  givenname: Wenjuan
  surname: Ci
  fullname: Ci, Wenjuan
  organization: Shanxi Normal University
– sequence: 5
  givenname: Fengxian
  surname: Jiang
  fullname: Jiang, Fengxian
  organization: Shanxi Normal University
– sequence: 6
  givenname: Lei
  surname: Shi
  fullname: Shi, Lei
  organization: Shanxi Normal University
– sequence: 7
  givenname: Feichi
  surname: Zhou
  fullname: Zhou, Feichi
  email: zhoufc@sustech.edu.cn
  organization: Southern University of Science and Technology
– sequence: 8
  givenname: Peng
  orcidid: 0000-0002-7301-1013
  surname: Zhou
  fullname: Zhou, Peng
  email: pengzhou@fudan.edu.cn
  organization: Fudan University
– sequence: 9
  givenname: Xiaohong
  orcidid: 0000-0001-7588-4793
  surname: Xu
  fullname: Xu, Xiaohong
  email: xuxh@sxnu.edu.cn
  organization: Shanxi Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38029338$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vEzEQhleoiJbSK0dkiQuXBH_txj6GtIFIRT20lKPl9UfkyLGD7S3KjTsXfiO_BIeECPXSk2dGz_uORzMvm5MQg2ma1wiOEYT4vdQPeYwhJrDtJvxZc4YRZyPCKD35Lz5tLnJeQQhRSyYUsRfNKWEQc0LYWfNzEYpZJlmMBovw-8evz2Yd0xbcmpBjAjJoMIvrzVBcWIJowTQVZ51y0oN7l10M4IPMVVuD-eB9NXjQX8HNpkTjjSopBqfA3KR0yHeZM15X8MraWgF3SYbsconpVfPcSp_NxeE9b77Mr-5mn0bXNx8Xs-n1SLWI0BHldqI7rQjUlBOEO8V6iW0vFTGUEkI7RmqJSUZZC1Wn255bajTrkeyoQuS8Wex9dZQrsUluLdNWROnE30JMSyHrmMobgXsNJeYthrSjiBtme9JaVN25Uh3feb3be21S_DaYXMTaZWW8l8HEIQvMeDuBkHFc0beP0FUcUqiTCsxRRwgi7c7wzYEa-rXRx-_9W1kFxntApZhzMvaIICh2ZyF2ZyGOZ1EF9JFAuSJL3V1J0vknZd-dN9snmojp5f1txwklfwBxBs6W
CitedBy_id crossref_primary_10_1002_admt_202402121
crossref_primary_10_1002_adma_202402253
crossref_primary_10_1088_1361_648X_ada65a
crossref_primary_10_1021_acsaelm_4c02195
crossref_primary_10_1007_s12274_024_6966_x
crossref_primary_10_1002_anie_202418949
crossref_primary_10_1002_adfm_202415360
crossref_primary_10_1002_advs_202401250
crossref_primary_10_1021_acsanm_4c06195
crossref_primary_10_1021_acs_chemrev_4c00631
crossref_primary_10_1002_smll_202411129
crossref_primary_10_1002_adma_202416033
crossref_primary_10_1002_advs_202416259
crossref_primary_10_1016_j_mser_2024_100873
crossref_primary_10_1021_acsami_4c11731
crossref_primary_10_1002_adma_202400332
crossref_primary_10_1021_acs_nanolett_4c06084
crossref_primary_10_1021_acsaelm_4c00418
crossref_primary_10_1002_adom_202401555
crossref_primary_10_1002_smtd_202401543
crossref_primary_10_1002_adfm_202407746
crossref_primary_10_1021_acsami_5c00738
crossref_primary_10_1002_adfm_202316536
crossref_primary_10_1002_admt_202401589
crossref_primary_10_1002_adfm_202422304
crossref_primary_10_1002_ange_202418949
crossref_primary_10_1021_acs_nanolett_4c02447
crossref_primary_10_1002_adfm_202416333
crossref_primary_10_1039_D4NH00405A
crossref_primary_10_1002_adfm_202412832
crossref_primary_10_1021_jacs_4c11968
crossref_primary_10_1002_adfm_202314980
Cites_doi 10.1038/s41928-017-0006-8
10.1038/s41928-018-0092-2
10.1038/s41467-022-29364-8
10.1038/nature01501
10.1038/s41928-019-0338-7
10.1126/science.abg3161
10.1002/adfm.201902890
10.1002/adfm.201200244
10.1038/s41586-020-2285-x
10.1002/advs.202200566
10.1002/adma.202108979
10.1007/s12274-021-3729-9
10.1038/s41565-019-0501-3
10.1002/adma.201908040
10.1146/annurev.matsci.37.061206.113016
10.1021/acsnano.9b03648
10.1038/s41467-020-20692-1
10.1002/adfm.201600318
10.1038/s41565-021-01003-1
10.1021/acsnano.8b01810
10.1038/s41563-021-01099-9
10.1016/j.nanoen.2021.105785
10.1038/s41928-022-00838-3
10.1021/acs.nanolett.1c03240
10.1038/s41928-021-00615-8
10.1021/acsnano.2c07281
10.1038/s41467-018-05640-4
10.1038/nature14539
10.1002/adma.202004469
10.1038/ncomms8522
10.1038/s41467-022-29171-1
10.1007/s12274-020-3041-0
10.1002/adma.200900759
10.1021/acsnano.9b00340
10.1038/s41467-020-16985-0
10.1002/adma.201807075
10.1002/inf2.12230
10.1038/s41565-019-0462-6
10.1038/s41928-020-00501-9
10.1038/s41467-023-37973-0
10.1038/s41586-020-2038-x
10.1021/acsnano.1c09136
10.1038/ncomms12357
10.1063/5.0094965
10.1038/s41928-022-00713-1
10.1038/s41467-021-22047-w
10.1002/adma.201906899
10.1002/adma.202208664
10.1002/adfm.202110415
10.1038/s41467-021-21320-2
10.1038/s41928-022-00847-2
10.1021/acsnano.3c00187
10.1002/aelm.201900818
10.1021/acsnano.9b07687
10.1038/s41467-021-22680-5
10.1002/adfm.202201359
10.1038/s41467-019-10738-4
10.1038/s41928-020-0435-7
10.1038/nature24270
10.1038/s41467-022-35160-1
10.1016/j.nanoen.2021.106439
10.1021/acsnano.3c01198
10.1007/s40843-021-1920-9
10.1021/nl502669v
ContentType Journal Article
Copyright 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH
2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
7X8
DOA
DOI 10.1002/advs.202305679
DatabaseName Wiley-Blackwell Open Access Collection
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_2bd0a2952046419e8fb35f18b89cc691
38029338
10_1002_advs_202305679
ADVS6934
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 12241403; 12174237; 52371245
– fundername: National Key Research and Development Program of China
  funderid: 2022YFB3505301
– fundername: National Natural Science Foundation of China
  grantid: 12174237
– fundername: National Natural Science Foundation of China
  grantid: 52371245
– fundername: National Natural Science Foundation of China
  grantid: 12241403
– fundername: National Key Research and Development Program of China
  grantid: 2022YFB3505301
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
EJD
IGS
PHGZM
PHGZT
NPM
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
MBDVC
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c5134-49f7d6dc30d493126c8ba2fbac3e44334683c8b8a84850c6d5b9f4ed8b1a64c13
IEDL.DBID BENPR
ISSN 2198-3844
IngestDate Wed Aug 27 01:30:24 EDT 2025
Thu Jul 10 17:47:42 EDT 2025
Wed Aug 13 09:53:43 EDT 2025
Wed Feb 19 02:08:40 EST 2025
Thu Apr 24 23:01:29 EDT 2025
Tue Jul 01 04:00:00 EDT 2025
Wed Jan 22 16:18:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords full-vdW ferroelectric field effect transistor
neuromorphic vision system
multilevel memory
sensing-memory-computing
Language English
License Attribution
2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5134-49f7d6dc30d493126c8ba2fbac3e44334683c8b8a84850c6d5b9f4ed8b1a64c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7588-4793
0000-0002-7301-1013
OpenAccessLink https://www.proquest.com/docview/2916331351?pq-origsite=%requestingapplication%
PMID 38029338
PQID 2916331351
PQPubID 4365299
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_2bd0a2952046419e8fb35f18b89cc691
proquest_miscellaneous_2895700892
proquest_journals_2916331351
pubmed_primary_38029338
crossref_primary_10_1002_advs_202305679
crossref_citationtrail_10_1002_advs_202305679
wiley_primary_10_1002_advs_202305679_ADVS6934
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2023; 35
2023; 6
2019; 10
2019; 13
2019; 14
2020; 14
2020; 13
2020; 11
2022; 65
2022; 21
2017; 550
2022; 22
2007; 37
2010; 22
2018; 9
2020; 3
2021; 33
2018; 1
2022; 34
2014; 14
2020; 579
2019; 29
2022; 32
2021; 83
2012; 22
2015; 6
2023; 14
2021; 4
2021; 89
2019; 6
2021; 3
2020; 581
2019; 31
2023; 17
2015; 521
2019; 2
2020; 32
2016; 7
2021; 15
2021; 12
2022; 5
2022; 9
2022; 13
2021; 373
2022; 10
2018; 12
2003; 422
2016; 26
2022; 16
2022; 17
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 6
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 12
  start-page: 6700
  year: 2018
  publication-title: ACS Nano
– volume: 3
  start-page: 917
  year: 2021
  publication-title: InfoMat
– volume: 16
  start-page: 5418
  year: 2022
  publication-title: ACS Nano
– volume: 12
  start-page: 2480
  year: 2021
  publication-title: Nat. Commun.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 580
  year: 2019
  publication-title: Nat. Electron.
– volume: 6
  start-page: 6095
  year: 2023
  publication-title: ACS Nano
– volume: 89
  year: 2021
  publication-title: Nano Energy
– volume: 17
  start-page: 27
  year: 2022
  publication-title: Nat. Nanotechnol.
– volume: 13
  start-page: 3445
  year: 2020
  publication-title: Nano Res.
– volume: 521
  start-page: 436
  year: 2015
  publication-title: Nature
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 1
  start-page: 22
  year: 2018
  publication-title: Nat. Electron.
– volume: 65
  start-page: 1639
  year: 2022
  publication-title: Sci. China Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 37
  start-page: 589
  year: 2007
  publication-title: Annu. Rev. Mater. Res.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 5437
  year: 2014
  publication-title: Nano Lett.
– volume: 15
  start-page: 2472
  year: 2021
  publication-title: Nano Res.
– volume: 6
  start-page: 7522
  year: 2015
  publication-title: Nat. Commun.
– volume: 22
  start-page: 81
  year: 2022
  publication-title: Nano Lett.
– volume: 13
  start-page: 1707
  year: 2022
  publication-title: Nat. Commun.
– volume: 22
  start-page: 2744
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 4405
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 10
  year: 2022
  publication-title: APL Mater.
– volume: 4
  start-page: 522
  year: 2021
  publication-title: Nat. Electron.
– volume: 550
  start-page: 354
  year: 2017
  publication-title: Nature
– volume: 581
  start-page: 278
  year: 2020
  publication-title: Nature
– volume: 5
  start-page: 761
  year: 2022
  publication-title: Nat. Electron.
– volume: 10
  start-page: 3037
  year: 2019
  publication-title: Nat. Commun.
– volume: 14
  start-page: 746
  year: 2020
  publication-title: ACS Nano
– volume: 3
  start-page: 371
  year: 2020
  publication-title: Nat. Electron.
– volume: 21
  start-page: 195
  year: 2022
  publication-title: Nat. Mater.
– volume: 16
  year: 2022
  publication-title: ACS Nano
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 14
  start-page: 662
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 22
  start-page: 933
  year: 2010
  publication-title: Adv. Mater.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 422
  start-page: 506
  year: 2003
  publication-title: Nature
– volume: 83
  year: 2021
  publication-title: Nano Energy
– volume: 579
  start-page: 62
  year: 2020
  publication-title: Nature
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 1
  start-page: 333
  year: 2018
  publication-title: Nat. Electron.
– volume: 5
  start-page: 672
  year: 2022
  publication-title: Nat. Electron.
– volume: 12
  start-page: 1109
  year: 2021
  publication-title: Nat. Commun.
– volume: 373
  start-page: 1353
  year: 2021
  publication-title: Science
– volume: 3
  start-page: 664
  year: 2020
  publication-title: Nat. Electron.
– volume: 13
  start-page: 2634
  year: 2019
  publication-title: ACS Nano
– volume: 12
  start-page: 408
  year: 2021
  publication-title: Nat. Commun.
– volume: 17
  start-page: 7695
  year: 2023
  publication-title: ACS Nano
– volume: 14
  start-page: 2281
  year: 2023
  publication-title: Nat. Commun.
– volume: 13
  start-page: 8265
  year: 2019
  publication-title: ACS Nano
– volume: 5
  start-page: 84
  year: 2022
  publication-title: Nat. Electron.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 13
  start-page: 1485
  year: 2022
  publication-title: Nat. Commun.
– volume: 14
  start-page: 776
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 12
  start-page: 1798
  year: 2021
  publication-title: Nat. Commun.
– volume: 9
  start-page: 3344
  year: 2018
  publication-title: Nat. Commun.
– volume: 13
  start-page: 7432
  year: 2022
  publication-title: Nat. Commun.
– volume: 11
  start-page: 3211
  year: 2020
  publication-title: Nat. Commun.
– ident: e_1_2_8_5_1
  doi: 10.1038/s41928-017-0006-8
– ident: e_1_2_8_12_1
  doi: 10.1038/s41928-018-0092-2
– ident: e_1_2_8_28_1
  doi: 10.1038/s41467-022-29364-8
– ident: e_1_2_8_29_1
  doi: 10.1038/nature01501
– ident: e_1_2_8_46_1
  doi: 10.1038/s41928-019-0338-7
– ident: e_1_2_8_15_1
  doi: 10.1126/science.abg3161
– ident: e_1_2_8_48_1
  doi: 10.1002/adfm.201902890
– ident: e_1_2_8_58_1
  doi: 10.1002/adfm.201200244
– ident: e_1_2_8_18_1
  doi: 10.1038/s41586-020-2285-x
– ident: e_1_2_8_41_1
  doi: 10.1002/advs.202200566
– ident: e_1_2_8_20_1
  doi: 10.1002/adma.202108979
– ident: e_1_2_8_51_1
  doi: 10.1007/s12274-021-3729-9
– ident: e_1_2_8_13_1
  doi: 10.1038/s41565-019-0501-3
– ident: e_1_2_8_38_1
  doi: 10.1002/adma.201908040
– ident: e_1_2_8_32_1
  doi: 10.1146/annurev.matsci.37.061206.113016
– ident: e_1_2_8_43_1
  doi: 10.1021/acsnano.9b03648
– ident: e_1_2_8_7_1
  doi: 10.1038/s41467-020-20692-1
– ident: e_1_2_8_42_1
  doi: 10.1002/adfm.201600318
– ident: e_1_2_8_54_1
  doi: 10.1038/s41565-021-01003-1
– ident: e_1_2_8_45_1
  doi: 10.1021/acsnano.8b01810
– ident: e_1_2_8_64_1
  doi: 10.1038/s41563-021-01099-9
– ident: e_1_2_8_49_1
  doi: 10.1016/j.nanoen.2021.105785
– ident: e_1_2_8_8_1
  doi: 10.1038/s41928-022-00838-3
– ident: e_1_2_8_60_1
  doi: 10.1021/acs.nanolett.1c03240
– ident: e_1_2_8_62_1
  doi: 10.1038/s41928-021-00615-8
– ident: e_1_2_8_37_1
  doi: 10.1021/acsnano.2c07281
– ident: e_1_2_8_26_1
  doi: 10.1038/s41467-018-05640-4
– ident: e_1_2_8_1_1
  doi: 10.1038/nature14539
– ident: e_1_2_8_35_1
  doi: 10.1002/adma.202004469
– ident: e_1_2_8_59_1
  doi: 10.1038/ncomms8522
– ident: e_1_2_8_16_1
  doi: 10.1038/s41467-022-29171-1
– ident: e_1_2_8_53_1
  doi: 10.1007/s12274-020-3041-0
– ident: e_1_2_8_31_1
  doi: 10.1002/adma.200900759
– ident: e_1_2_8_56_1
  doi: 10.1021/acsnano.9b00340
– ident: e_1_2_8_17_1
  doi: 10.1038/s41467-020-16985-0
– ident: e_1_2_8_55_1
  doi: 10.1002/adma.201807075
– ident: e_1_2_8_52_1
  doi: 10.1002/inf2.12230
– ident: e_1_2_8_4_1
  doi: 10.1038/s41565-019-0462-6
– ident: e_1_2_8_9_1
  doi: 10.1038/s41928-020-00501-9
– ident: e_1_2_8_21_1
  doi: 10.1038/s41467-023-37973-0
– ident: e_1_2_8_19_1
  doi: 10.1038/s41586-020-2038-x
– ident: e_1_2_8_39_1
  doi: 10.1021/acsnano.1c09136
– ident: e_1_2_8_44_1
  doi: 10.1038/ncomms12357
– ident: e_1_2_8_34_1
  doi: 10.1063/5.0094965
– ident: e_1_2_8_61_1
  doi: 10.1038/s41928-022-00713-1
– ident: e_1_2_8_14_1
  doi: 10.1038/s41467-021-22047-w
– ident: e_1_2_8_22_1
  doi: 10.1002/adma.201906899
– ident: e_1_2_8_50_1
  doi: 10.1002/adma.202208664
– ident: e_1_2_8_30_1
  doi: 10.1002/adfm.202110415
– ident: e_1_2_8_47_1
  doi: 10.1038/s41467-021-21320-2
– ident: e_1_2_8_11_1
  doi: 10.1038/s41928-022-00847-2
– ident: e_1_2_8_63_1
  doi: 10.1021/acsnano.3c00187
– ident: e_1_2_8_36_1
  doi: 10.1002/aelm.201900818
– ident: e_1_2_8_24_1
  doi: 10.1021/acsnano.9b07687
– ident: e_1_2_8_57_1
  doi: 10.1038/s41467-021-22680-5
– ident: e_1_2_8_27_1
  doi: 10.1002/adfm.202201359
– ident: e_1_2_8_40_1
  doi: 10.1038/s41467-019-10738-4
– ident: e_1_2_8_3_1
  doi: 10.1038/s41928-020-0435-7
– ident: e_1_2_8_2_1
  doi: 10.1038/nature24270
– ident: e_1_2_8_6_1
  doi: 10.1038/s41467-022-35160-1
– ident: e_1_2_8_25_1
  doi: 10.1016/j.nanoen.2021.106439
– ident: e_1_2_8_10_1
  doi: 10.1021/acsnano.3c01198
– ident: e_1_2_8_23_1
  doi: 10.1007/s40843-021-1920-9
– ident: e_1_2_8_33_1
  doi: 10.1021/nl502669v
SSID ssj0001537418
Score 2.5025842
Snippet The development and application of artificial intelligence have led to the exploitation of low‐power and compact intelligent information‐processing systems...
The development and application of artificial intelligence have led to the exploitation of low-power and compact intelligent information-processing systems...
Abstract The development and application of artificial intelligence have led to the exploitation of low‐power and compact intelligent information‐processing...
SourceID doaj
proquest
pubmed
crossref
wiley
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2305679
SubjectTerms Energy efficiency
Ferroelectrics
full‐vdW ferroelectric field effect transistor
Interfaces
Light
Microscopy
multilevel memory
neuromorphic vision system
Retina
sensing‐memory‐computing
Sensors
Vision systems
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29b9UwELdQpy6IUj4CLTISEjBETXy2Y48U8dQiAUMpdIv8OaGkerxWYuvehb-Rv6RnOy88JFAXttg5XWzfne4cn39HyAvVKd9FJ2sG0dfccVvrgM3IjI3on6xyGe3zozw65e_PxNlGqa-UE1bggcvCHTDrG8O0YOkMrtVBRQsitsoq7ZzM99YZ8tzYTJX7wZBgWdYojQ07MP4yoXOzFDKnvK0NL5TB-v8WYf4ZsGaPs7hH7k6hIn1ThrhD7oThPtmZjPE7fTUhRr_eJdfHa9AHT4-HX1c_P6T82R_0BPeo45KawdNSvQH9FB1jZlmQI-iXfLecHqIz8xQf0pYUGVz6r_TT-Wr8XSWHLsJyObVTK2W-IWFBP6bZ5WXEkQfkdPHu89ujeqqyUDvRAq-5jp2X3kHjuYaWSaesYdEaB4FzAC4VYJcyiivROOmF1ZEHr2xrJHctPCRbwziEx4S6lgeZ4GCgc0ghtOnAmoYHhxIXwlWkXq967yYI8lQJ41tfwJNZn6TUz1KqyMuZ_ryAb_yT8jAJcaZKoNm5A1Wpn1Spv02VKrK3VoF-smT8BMbPAKmOYUWez6_RBtPBihnCeIE0SqcyAUqzijwqqjOPBFSDERUonHvWpVsm0mM0ciI18Cf_Y0ZPyTZy5uWX0R7ZWi0vwj4GUSv7LNvLDUjzGts
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley-Blackwell Open Access Collection
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Jb9UwEIAtKBcuiLKGFmQkJOAQNfEW-0gRTy0Si1QKvUVee0FJlb5W4tY7F34jv4QZJy-PJ4EQt9gZOXHsyYy3bwh5phsdmuRVyXgKpfDClSZCMjHrEtgnp32mfb5XB8fi7Yk8-e0U_8iHmCfcUDPy_xoV3LrzvTU01IZLxG0z9IEbc53cwPO1uKmPiY_rWRbJEc-CEeZgdF1yLcSK3Fixvc0iNixTBvj_yevcdGKzFVrcJrcm95G-Gtt7m1yL3R2yPSnoOX0xUaRf3iXfD1cgiEAPu59XP97hntpv9AjGrf1AbRfoGNEBbBftUy5ypEnQz_m8Od0HAxcoXOAwFQq4DF_oh7Nlv46cQxdxGKY0pnA3HAiORGSazWCmkNwjx4s3n14flFPkhdLLmotSmNQEFTyvgjC8ZsprZ1ly1vMoBOdCaQ5Z2mqhZeVVkM4kEYN2tVXC1_w-2er6Lj4k1NciKkTE8MaDhDS24c5WInroBVL6gpSrr976CUuO0TG-tiNQmbXYSu3cSgV5PsufjUCOv0ruYyPOUgjSzhn9cNpOetkyFyrLjGS4xFubqJPjMtVQN-O9MnVBdlddoJ20Gx4BPjXnGNuwIE_n26CXuNhiu9hfgIw2GDpAG1aQB2PXmd-E6wq8LK6h7rkv_aMiLXgoR8pw8eg_5XfITcgU44zRLtlaDhfxMfhQS_ckq8kvqCIXkA
  priority: 102
  providerName: Wiley-Blackwell
Title Integrated In‐Memory Sensor and Computing of Artificial Vision Based on Full‐vdW Optoelectronic Ferroelectric Field‐Effect Transistor
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202305679
https://www.ncbi.nlm.nih.gov/pubmed/38029338
https://www.proquest.com/docview/2916331351
https://www.proquest.com/docview/2895700892
https://doaj.org/article/2bd0a2952046419e8fb35f18b89cc691
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELbo7oULojwDZWUkJOBgNfEr9gl1oasW0VKxFHqL_OSCkmW7rdQf0P-N7TgpSDxucTJJ7IzHMx473wfAC1ELW3vDESbeImqoRtKFosdK--CftDAJ7fOYH5zS92fsLCfczvO2ymFMTAO17UzMke_iEMcQEvnk3qx-oMgaFVdXM4XGFpiGIViICZjO949PPt1kWRiJ8CwDWmOJd5W9jCjdOIbOcf_WL94ogfb_KdL8PXBNnmdxF9zJISPc63W8DW659h7YzkZ5Dl9l5OjX98H14QD-YOFhi47iLtoruAwz1W4NVWthz-EQvBXsfHpgjx8Bv6Q_zOE8uDQLw0GcmKJL-xV-XG26G6YcuHDrdS7HUtz9hnr8Y5icXsIceQBOF_uf3x6gzLOADKsIRVT62nJrSGmpJBXmRmiFvVaGOEoJoVyQcEooQQUrDbdMS0-dFbpSnJqKPASTtmvdYwBNRR2PgDCkNkGCSVUTrUrqTNA5Y6YAaPjejckg5JEL43vTwyfjJuqnGfVTgJej_KqH3_ir5Dyqb5SKsNnpRLf-1mQrbLC2pcKS4bigW0knvCbMV6Ft0hguqwLsDMpvsi2HV4w9rwDPx8vBCuPSimpddxFkhIxEAULiAjzqO81YEyLKEFMREdqeetF_GtKEeGTJJaFP_l2Zp-B2uIf26aAdMNmsL9yzECBt9AxsYXoyA9O9d0cflrNsE7OUbvgJESESWA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuiPJcKGAkEHCwmtiO1z4gxEKrXdouiD7oLfgVLihZttui_gD-Dr-RcV4Ficept9iZJHZm7Bm_vg_gsRopPyqcpIwXngonLNUBkwUztkD_ZJWr0T5ncnIg3h5lRyvwozsLE7dVdn1i3VH7ysU58g2GcQznkU_u5fwrjaxRcXW1o9BozGI7nH3DIdvxi-kb1O8TxrY2919PaMsqQF2WckGFLkZeescTLzRPmXTKGlZY43gQgnMhFccsZZRQWeKkz6wuRPDKpkYKl3J87yVYFVwmbACr483Z-w_nszoZj3AwHTpkwjaMP42o4CyG6nG_2C_eryYJ-FNk-3ugXHu6rWtwtQ1RyavGptZgJZTXYa3tBI7Jsxap-vkN-D7twCY8mZZ0N-7aPSN7ODKuFsSUnjScEegdSVXUL2zwKshhfaKdjNGFeoIXcSBMT_1H8m6-rM6ZechWWCzadEzF3Xa0wVsmtZOtMU5uwsGFaOAWDMqqDHeAuFQEGQFo-MihRKbNiFuTiODQxrLMDYF2_zt3Leh55N74kjdwzSyP-sl7_QzhaS8_b-A-_io5jurrpSJMd51RLT7nbavPmfWJYTpjcQE51UEVlmdFinXTzkmdDmG9U37e9h34id7Sh_Cov42tPi7lmDJUJyijdCQmUJoN4XZjNH1JuEowhuMK615b0X8qkmP8syc1F3f_XZiHcHmyv7uT70xn2_fgCj4vmqmodRgsFyfhPgZnS_ugbREEPl10I_wJr9NLgQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJcEOUZKGAkEHCINrGdxD4gxNKuuhSWilLoLfjJBSXLdlvUH8Cf4tcxk1dB4nHqLc5OHt4Zz4ztyfcR8lAW0hXB5jHjwcXCChMrD83AtAkQn4y0DdrnPN85EK8Os8M18qP_FgbLKnuf2DhqV1tcIx8zyGM4Rz65cejKIva2ps8XX2NkkMKd1p5OozWRXX_6DaZvR89mW6DrR4xNt9-_3Ik7hoHYZikXsVChcLmzPHFC8ZTlVhrNgtGWeyE4F7nkcEpqKWSW2NxlRgXhnTSpzoVNOdz3AlkvcFY0IuuT7fneu7MVnowjNEyPFJmwsXYniBDOMG3H2rFfImFDGPCnLPf3pLmJetMr5HKXrtIXrX1tkDVfXSUbnUM4ok861Oqn18j3WQ884eisit9gBe8p3YdZcr2kunK05Y-ASEnr0Nywxa6gH5qv2-kEwqmjcICT4vjEfaRvF6v6jKWHTv1y2bWxhZV3cYu9TJuA2-CdXCcH56KBG2RU1ZW_RahNhc8RjIYXFiQypQtudCK8BXvLMhuRuP-_S9sBoCMPx5eyhW5mJeqnHPQTkceD_KKF_vir5ATVN0ghZHdzol5-LjsPUDLjEs1UxnAzOVVeBsOzkELflLW5SiOy2Su_7PwIPGKw-og8GH4GD4DbOrry9THISIUkBVKxiNxsjWZ4Ey4TyOe4hL43VvSfjpSQC-3niovb_36Z--QiDL7y9Wy-e4dcgstFuyq1SUar5bG_C3naytzrBgQln857DP4ELRVPtg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+In%E2%80%90Memory+Sensor+and+Computing+of+Artificial+Vision+Based+on+Full%E2%80%90vdW+Optoelectronic+Ferroelectric+Field%E2%80%90Effect+Transistor&rft.jtitle=Advanced+science&rft.au=Wang%2C+Peng&rft.au=Li%2C+Jie&rft.au=Xue%2C+Wuhong&rft.au=Ci%2C+Wenjuan&rft.date=2024-01-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=11&rft.issue=3&rft_id=info:doi/10.1002%2Fadvs.202305679&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_advs_202305679
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon