2D and 3D Porphyrinic Covalent Organic Frameworks: The Influence of Dimensionality on Functionality
The construction of 2D and 3D covalent organic frameworks (COFs) from functional moieties for desired properties has gained much attention. However, the influence of COFs dimensionality on their functionalities, which can further assist in COF design, has never been explored. Now, by selecting desig...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 9; pp. 3624 - 3629 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
24.02.2020
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The construction of 2D and 3D covalent organic frameworks (COFs) from functional moieties for desired properties has gained much attention. However, the influence of COFs dimensionality on their functionalities, which can further assist in COF design, has never been explored. Now, by selecting designed precursors and topology diagrams, 2D and 3D porphyrinic COFs (2D‐PdPor‐COF and 3D‐PdPor‐COF) are synthesized. By model building and Rietveld refinement of powder X‐ray diffraction, 2D‐PdPor‐COF crystallizes as 2D sheets while 3D‐PdPor‐COF adopts a five‐fold interpenetrated pts topology. Interestingly, compared with 2D‐PdPor‐COF, 3D‐PdPor‐COF showed interesting properties, including 1) higher CO2 adsorption capacity; 2) better photocatalytic performance; and 3) size‐selective photocatalysis. Based on this study, we believe that with the incorporation of functional moieties, the dimensionality of COFs can definitely influence their functionalities.
2D vs. 3D COFs: To demonstrate the influence of dimensionality on COF functionality, 2D‐PdPor‐COF and 3D‐PdPor‐COF were synthesized. The results showed that, compared to 2D‐PdPor‐COF, 3D‐PdPor‐COF not only displays higher CO2 adsorption capacity but also exhibits better photocatalytic performance and size selectivity. |
---|---|
AbstractList | The construction of 2D and 3D covalent organic frameworks (COFs) from functional moieties for desired properties has gained much attention. However, the influence of COFs dimensionality on their functionalities, which can further assist in COF design, has never been explored. Now, by selecting designed precursors and topology diagrams, 2D and 3D porphyrinic COFs (2D-PdPor-COF and 3D-PdPor-COF) are synthesized. By model building and Rietveld refinement of powder X-ray diffraction, 2D-PdPor-COF crystallizes as 2D sheets while 3D-PdPor-COF adopts a five-fold interpenetrated pts topology. Interestingly, compared with 2D-PdPor-COF, 3D-PdPor-COF showed interesting properties, including 1) higher CO2 adsorption capacity; 2) better photocatalytic performance; and 3) size-selective photocatalysis. Based on this study, we believe that with the incorporation of functional moieties, the dimensionality of COFs can definitely influence their functionalities.The construction of 2D and 3D covalent organic frameworks (COFs) from functional moieties for desired properties has gained much attention. However, the influence of COFs dimensionality on their functionalities, which can further assist in COF design, has never been explored. Now, by selecting designed precursors and topology diagrams, 2D and 3D porphyrinic COFs (2D-PdPor-COF and 3D-PdPor-COF) are synthesized. By model building and Rietveld refinement of powder X-ray diffraction, 2D-PdPor-COF crystallizes as 2D sheets while 3D-PdPor-COF adopts a five-fold interpenetrated pts topology. Interestingly, compared with 2D-PdPor-COF, 3D-PdPor-COF showed interesting properties, including 1) higher CO2 adsorption capacity; 2) better photocatalytic performance; and 3) size-selective photocatalysis. Based on this study, we believe that with the incorporation of functional moieties, the dimensionality of COFs can definitely influence their functionalities. The construction of 2D and 3D covalent organic frameworks (COFs) from functional moieties for desired properties has gained much attention. However, the influence of COFs dimensionality on their functionalities, which can further assist in COF design, has never been explored. Now, by selecting designed precursors and topology diagrams, 2D and 3D porphyrinic COFs (2D-PdPor-COF and 3D-PdPor-COF) are synthesized. By model building and Rietveld refinement of powder X-ray diffraction, 2D-PdPor-COF crystallizes as 2D sheets while 3D-PdPor-COF adopts a five-fold interpenetrated pts topology. Interestingly, compared with 2D-PdPor-COF, 3D-PdPor-COF showed interesting properties, including 1) higher CO2 adsorption capacity; 2) better photocatalytic performance; and 3) size-selective photocatalysis. Based on this study, we believe that with the incorporation of functional moieties, the dimensionality of COFs can definitely influence their functionalities. The construction of 2D and 3D covalent organic frameworks (COFs) from functional moieties for desired properties has gained much attention. However, the influence of COFs dimensionality on their functionalities, which can further assist in COF design, has never been explored. Now, by selecting designed precursors and topology diagrams, 2D and 3D porphyrinic COFs (2D‐PdPor‐COF and 3D‐PdPor‐COF) are synthesized. By model building and Rietveld refinement of powder X‐ray diffraction, 2D‐PdPor‐COF crystallizes as 2D sheets while 3D‐PdPor‐COF adopts a five‐fold interpenetrated pts topology. Interestingly, compared with 2D‐PdPor‐COF, 3D‐PdPor‐COF showed interesting properties, including 1) higher CO2 adsorption capacity; 2) better photocatalytic performance; and 3) size‐selective photocatalysis. Based on this study, we believe that with the incorporation of functional moieties, the dimensionality of COFs can definitely influence their functionalities. 2D vs. 3D COFs: To demonstrate the influence of dimensionality on COF functionality, 2D‐PdPor‐COF and 3D‐PdPor‐COF were synthesized. The results showed that, compared to 2D‐PdPor‐COF, 3D‐PdPor‐COF not only displays higher CO2 adsorption capacity but also exhibits better photocatalytic performance and size selectivity. The construction of 2D and 3D covalent organic frameworks (COFs) from functional moieties for desired properties has gained much attention. However, the influence of COFs dimensionality on their functionalities, which can further assist in COF design, has never been explored. Now, by selecting designed precursors and topology diagrams, 2D and 3D porphyrinic COFs (2D‐PdPor‐COF and 3D‐PdPor‐COF) are synthesized. By model building and Rietveld refinement of powder X‐ray diffraction, 2D‐PdPor‐COF crystallizes as 2D sheets while 3D‐PdPor‐COF adopts a five‐fold interpenetrated pts topology. Interestingly, compared with 2D‐PdPor‐COF, 3D‐PdPor‐COF showed interesting properties, including 1) higher CO 2 adsorption capacity; 2) better photocatalytic performance; and 3) size‐selective photocatalysis. Based on this study, we believe that with the incorporation of functional moieties, the dimensionality of COFs can definitely influence their functionalities. The construction of 2D and 3D covalent organic frameworks (COFs) from functional moieties for desired properties has gained much attention. However, the influence of COFs dimensionality on their functionalities, which can further assist in COF design, has never been explored. Now, by selecting designed precursors and topology diagrams, 2D and 3D porphyrinic COFs (2D-PdPor-COF and 3D-PdPor-COF) are synthesized. By model building and Rietveld refinement of powder X-ray diffraction, 2D-PdPor-COF crystallizes as 2D sheets while 3D-PdPor-COF adopts a five-fold interpenetrated pts topology. Interestingly, compared with 2D-PdPor-COF, 3D-PdPor-COF showed interesting properties, including 1) higher CO adsorption capacity; 2) better photocatalytic performance; and 3) size-selective photocatalysis. Based on this study, we believe that with the incorporation of functional moieties, the dimensionality of COFs can definitely influence their functionalities. |
Author | Chen, Wei Meng, Yi Ding, Huimin Lang, Xianjun Wang, Cheng Luo, Yi Shi, Ji‐Long Sun, Junliang Zheng, Anmin |
Author_xml | – sequence: 1 givenname: Yi surname: Meng fullname: Meng, Yi organization: Wuhan University – sequence: 2 givenname: Yi surname: Luo fullname: Luo, Yi organization: Stockholm University – sequence: 3 givenname: Ji‐Long surname: Shi fullname: Shi, Ji‐Long organization: Wuhan University – sequence: 4 givenname: Huimin surname: Ding fullname: Ding, Huimin organization: Wuhan University – sequence: 5 givenname: Xianjun orcidid: 0000-0001-7479-9044 surname: Lang fullname: Lang, Xianjun organization: Wuhan University – sequence: 6 givenname: Wei surname: Chen fullname: Chen, Wei organization: Chinese Academy of Sciences – sequence: 7 givenname: Anmin surname: Zheng fullname: Zheng, Anmin organization: Chinese Academy of Sciences – sequence: 8 givenname: Junliang surname: Sun fullname: Sun, Junliang email: junliang.sun@pku.edu.cn organization: Stockholm University – sequence: 9 givenname: Cheng orcidid: 0000-0003-0326-2674 surname: Wang fullname: Wang, Cheng email: chengwang@whu.edu.cn organization: Wuhan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31773844$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-178802$$DView record from Swedish Publication Index |
BookMark | eNqN0s1v0zAYB2ALDbEPuHJElrggQYo_4trhVqUrVJoYh8HVchx780jszk6o-t_jqF2RJiHIxZH1_Pzar95zcOKDNwC8xmiGESIflXdmRhCuMEUVfgbOMCO4oJzTk_xfUlpwwfApOE_pPnsh0PwFOKU4A1GWZ0CTJVS-hXQJv4W4udtF552GdfilOuMHeB1v1bSxiqo32xB_pk_w5s7AtbfdaLw2MFi4dL3xyQWvOjfsYPBwNXo9PG68BM-t6pJ5dVgvwPfV5U39pbi6_ryuF1eFZpjiQiHB5oI1CKOmrRpUKSoa0VQCKdu0batsyZjl2gqLFcKG8xKLqiyVIURnQC_Ah_25aWs2YyM30fUq7mRQTi7dj4UM8VamUWKe20Ayf7fnmxgeRpMG2bukTdcpb8KYJKG5qxWfc5rp2yf0Powxv25SjIkSUY6yenNQY9Ob9lj_sdsZiD3YmibYpN3UwCNDCDEkCM6Xyx-u3aCmFtZh9EOOvv__aNazvdYxpBSNPUqM5DQ3cpobeZybHCifBPSh_BCV6_4eqw63cp3Z_aOIXHxdX_7J_gZWYNRz |
CitedBy_id | crossref_primary_10_1002_anie_202306135 crossref_primary_10_1002_ange_202314988 crossref_primary_10_1039_D1CC06184D crossref_primary_10_1039_D1SC01692J crossref_primary_10_1002_aoc_6820 crossref_primary_10_1016_j_nanoen_2024_110073 crossref_primary_10_1002_ange_202204899 crossref_primary_10_1002_adma_202502155 crossref_primary_10_1002_ange_202207130 crossref_primary_10_3390_nano12183197 crossref_primary_10_1039_D1CC01830B crossref_primary_10_1007_s11426_023_1853_x crossref_primary_10_1002_anie_202218742 crossref_primary_10_1002_adfm_202310195 crossref_primary_10_1016_j_apcatb_2022_121335 crossref_primary_10_1021_acsanm_1c00282 crossref_primary_10_1039_D2QM00949H crossref_primary_10_1021_acs_chemmater_4c01338 crossref_primary_10_1002_ange_202309820 crossref_primary_10_1007_s11426_022_1350_1 crossref_primary_10_1016_j_jece_2024_112681 crossref_primary_10_1021_jacs_3c08712 crossref_primary_10_1039_D1MA00234A crossref_primary_10_1016_j_seppur_2025_132485 crossref_primary_10_1039_D1CS00983D crossref_primary_10_1002_cctc_202200186 crossref_primary_10_1021_jacs_0c06605 crossref_primary_10_1039_D0NA00537A crossref_primary_10_1039_D2SC02503E crossref_primary_10_1002_ange_202101646 crossref_primary_10_1016_j_cclet_2022_02_065 crossref_primary_10_1016_j_mtchem_2022_100953 crossref_primary_10_1021_acs_langmuir_1c01801 crossref_primary_10_1021_jacs_4c12757 crossref_primary_10_1016_j_seppur_2024_126636 crossref_primary_10_1002_adfm_202000516 crossref_primary_10_1016_j_ccr_2023_215644 crossref_primary_10_1002_anie_202004796 crossref_primary_10_1039_D3QM01315D crossref_primary_10_1002_ange_202117668 crossref_primary_10_1039_D2TA08435J crossref_primary_10_1002_anie_202405476 crossref_primary_10_1002_anie_202204326 crossref_primary_10_1007_s11426_024_2327_5 crossref_primary_10_1038_s41467_022_31524_9 crossref_primary_10_1016_j_apcatb_2020_119027 crossref_primary_10_3390_catal14070429 crossref_primary_10_1021_acssuschemeng_1c04787 crossref_primary_10_1039_D3GC01149F crossref_primary_10_1002_anie_202207043 crossref_primary_10_1021_acs_jpcc_2c07472 crossref_primary_10_1002_anie_202424860 crossref_primary_10_1002_marc_202200715 crossref_primary_10_1016_j_cej_2022_137148 crossref_primary_10_1016_j_jcis_2021_12_170 crossref_primary_10_1016_j_cej_2024_157874 crossref_primary_10_1002_smtd_202200306 crossref_primary_10_1007_s40242_022_1494_2 crossref_primary_10_1016_j_mtchem_2022_101357 crossref_primary_10_1021_acsami_0c20203 crossref_primary_10_1021_acsami_3c17662 crossref_primary_10_1016_j_jes_2023_06_037 crossref_primary_10_1021_acscatal_0c01242 crossref_primary_10_1039_C9CS00911F crossref_primary_10_1002_chem_202404272 crossref_primary_10_1039_D2CC03148E crossref_primary_10_1016_j_jcis_2024_12_205 crossref_primary_10_1038_s44160_025_00742_6 crossref_primary_10_1016_j_seppur_2025_132102 crossref_primary_10_1016_j_ccr_2023_215097 crossref_primary_10_1002_ange_202319885 crossref_primary_10_1246_bcsj_20200389 crossref_primary_10_1021_jacs_0c12505 crossref_primary_10_1002_adma_202312889 crossref_primary_10_3762_bjoc_16_83 crossref_primary_10_1002_anie_202107915 crossref_primary_10_6023_cjoc202207007 crossref_primary_10_1016_j_jcis_2024_03_077 crossref_primary_10_1016_j_talanta_2021_122343 crossref_primary_10_1016_j_jece_2025_115881 crossref_primary_10_3390_catal10070720 crossref_primary_10_1016_j_ccr_2021_214259 crossref_primary_10_1016_j_bios_2020_112638 crossref_primary_10_1002_anie_202000723 crossref_primary_10_1016_j_envres_2025_121166 crossref_primary_10_1002_cnma_202000591 crossref_primary_10_1039_D0PY01643H crossref_primary_10_1016_j_jphotochem_2024_116072 crossref_primary_10_1021_jacs_2c10509 crossref_primary_10_1002_ange_202004796 crossref_primary_10_1002_smll_202302045 crossref_primary_10_1002_ange_202213203 crossref_primary_10_1016_j_apcatb_2022_121772 crossref_primary_10_1021_jacs_2c07596 crossref_primary_10_1021_jacs_3c09729 crossref_primary_10_1016_j_foodchem_2023_135562 crossref_primary_10_1021_acs_macromol_1c00190 crossref_primary_10_1002_ange_202424860 crossref_primary_10_1039_D2MA00600F crossref_primary_10_1016_j_cej_2021_134288 crossref_primary_10_6023_A23040178 crossref_primary_10_1021_acscatal_4c03149 crossref_primary_10_1021_acs_analchem_2c04482 crossref_primary_10_3390_bios12080625 crossref_primary_10_1021_acscatal_4c01720 crossref_primary_10_1002_cjoc_202100929 crossref_primary_10_1016_j_ccr_2025_216614 crossref_primary_10_1016_j_chempr_2022_10_013 crossref_primary_10_1002_ange_202319732 crossref_primary_10_1016_j_isci_2021_102526 crossref_primary_10_1021_acsami_0c14678 crossref_primary_10_1021_jacsau_4c00539 crossref_primary_10_1039_D3CC02285D crossref_primary_10_1016_j_cej_2021_132332 crossref_primary_10_1039_D1TA08146B crossref_primary_10_1016_j_est_2023_109405 crossref_primary_10_1016_j_apcatb_2022_121630 crossref_primary_10_1039_D2QI01234K crossref_primary_10_1063_5_0189579 crossref_primary_10_1021_acsami_1c03083 crossref_primary_10_1016_j_ccst_2025_100370 crossref_primary_10_3390_polym15051279 crossref_primary_10_1039_D2TA04541A crossref_primary_10_1016_j_enchem_2022_100094 crossref_primary_10_1016_j_snb_2022_131813 crossref_primary_10_1002_ange_202000723 crossref_primary_10_1038_s41467_024_47377_3 crossref_primary_10_1039_D0CS00620C crossref_primary_10_1002_smll_202301044 crossref_primary_10_1016_j_apcatb_2021_120238 crossref_primary_10_1016_j_mtchem_2024_102439 crossref_primary_10_1016_j_chroma_2023_464234 crossref_primary_10_1021_acs_analchem_4c01604 crossref_primary_10_1016_j_ccr_2024_215909 crossref_primary_10_20517_cs_2023_61 crossref_primary_10_1021_jacs_4c05705 crossref_primary_10_1002_anie_202113852 crossref_primary_10_1002_cssc_202202082 crossref_primary_10_1039_D0TA10757C crossref_primary_10_1002_smll_202200736 crossref_primary_10_1002_chem_202005167 crossref_primary_10_1016_j_chroma_2022_463419 crossref_primary_10_1002_ange_202405476 crossref_primary_10_1016_j_surfin_2023_102709 crossref_primary_10_1007_s40242_022_2001_5 crossref_primary_10_1002_ange_202107915 crossref_primary_10_1016_j_cej_2023_146623 crossref_primary_10_1016_j_ccr_2024_215659 crossref_primary_10_1002_ange_202302808 crossref_primary_10_1016_j_ijft_2023_100531 crossref_primary_10_1002_adts_202200588 crossref_primary_10_1016_j_ccr_2024_215894 crossref_primary_10_1016_j_cej_2024_157486 crossref_primary_10_1002_adfm_202309367 crossref_primary_10_1007_s41061_025_00494_z crossref_primary_10_1002_anie_202319732 crossref_primary_10_1007_s11426_020_9931_4 crossref_primary_10_1016_j_jcis_2024_02_127 crossref_primary_10_1002_smll_202410544 crossref_primary_10_1021_acs_cgd_3c00390 crossref_primary_10_1039_D3CS00287J crossref_primary_10_1002_anie_202309820 crossref_primary_10_1016_j_chroma_2023_464334 crossref_primary_10_1002_cctc_202401362 crossref_primary_10_1039_D4EE03704A crossref_primary_10_1002_cssc_202401229 crossref_primary_10_1016_j_aca_2023_341993 crossref_primary_10_1021_acsmacrolett_2c00035 crossref_primary_10_1021_acsmaterialslett_2c00236 crossref_primary_10_1039_D0TA10024B crossref_primary_10_1007_s10118_024_3133_5 crossref_primary_10_1002_anie_202415759 crossref_primary_10_3390_ijms232416121 crossref_primary_10_1039_D2CS00289B crossref_primary_10_1021_jacs_0c09727 crossref_primary_10_3390_bios12090704 crossref_primary_10_1016_j_mser_2024_100771 crossref_primary_10_1142_S1088424621300056 crossref_primary_10_1021_acsami_0c21370 crossref_primary_10_1016_j_cjsc_2024_100299 crossref_primary_10_1002_anie_202101646 crossref_primary_10_1002_ange_202010829 crossref_primary_10_1016_j_foodchem_2024_140882 crossref_primary_10_1039_D1CY00293G crossref_primary_10_1016_j_jcat_2022_07_023 crossref_primary_10_1016_j_checat_2022_06_006 crossref_primary_10_1016_j_jddst_2024_106320 crossref_primary_10_1002_anie_202117668 crossref_primary_10_1002_anie_202314988 crossref_primary_10_1039_D1TA03951B crossref_primary_10_1016_j_cclet_2022_107856 crossref_primary_10_1016_j_mattod_2022_02_001 crossref_primary_10_1002_anie_202319885 crossref_primary_10_1016_j_cej_2021_131040 crossref_primary_10_1002_anie_202213203 crossref_primary_10_6023_A22070303 crossref_primary_10_1007_s11426_022_1366_y crossref_primary_10_1002_ange_202218742 crossref_primary_10_1016_j_cis_2025_103427 crossref_primary_10_1021_acs_jpcc_3c03036 crossref_primary_10_3390_cryst12101350 crossref_primary_10_1002_cjoc_202100680 crossref_primary_10_1016_j_cej_2024_155968 crossref_primary_10_1016_j_psep_2024_04_144 crossref_primary_10_1002_anie_202010829 crossref_primary_10_1002_adma_202415574 crossref_primary_10_26599_NRE_2024_9120149 crossref_primary_10_1016_j_jallcom_2022_164369 crossref_primary_10_1016_j_seppur_2022_122004 crossref_primary_10_1016_j_mtchem_2022_101178 crossref_primary_10_1039_D0CS00445F crossref_primary_10_1039_D0EE02309D crossref_primary_10_1002_cssc_202101504 crossref_primary_10_1002_adfm_202404289 crossref_primary_10_1016_j_trechm_2022_01_002 crossref_primary_10_1039_D1CC06572F crossref_primary_10_1021_acsanm_2c04652 crossref_primary_10_1021_jacs_2c10471 crossref_primary_10_1039_D2CS00465H crossref_primary_10_1016_j_dyepig_2024_112148 crossref_primary_10_1016_j_ensm_2023_103014 crossref_primary_10_1021_acsmacrolett_3c00624 crossref_primary_10_1016_j_ccr_2022_214774 crossref_primary_10_1002_anie_202302808 crossref_primary_10_1016_j_chempr_2022_07_016 crossref_primary_10_1038_s41467_021_21527_3 crossref_primary_10_1002_ange_202415759 crossref_primary_10_1021_jacs_4c12286 crossref_primary_10_1039_D4QM00499J crossref_primary_10_1016_j_scib_2021_07_016 crossref_primary_10_1002_cjoc_202400139 crossref_primary_10_1016_j_comptc_2024_114503 crossref_primary_10_1039_D4NR03204G crossref_primary_10_1016_j_cis_2025_103399 crossref_primary_10_1021_acsami_1c02120 crossref_primary_10_3390_cryst12101405 crossref_primary_10_1002_smll_202100756 crossref_primary_10_1002_adfm_202401562 crossref_primary_10_1002_anie_202415624 crossref_primary_10_1016_j_ccr_2022_214889 crossref_primary_10_1002_ange_202204326 crossref_primary_10_1021_jacs_1c03042 crossref_primary_10_1021_acsami_2c21304 crossref_primary_10_1093_nsr_nwae396 crossref_primary_10_1002_ange_202207043 crossref_primary_10_1021_acsami_4c01165 crossref_primary_10_1039_D3CS00053B crossref_primary_10_1016_j_est_2023_108006 crossref_primary_10_1039_D1TA07810K crossref_primary_10_1016_j_mtnano_2022_100236 crossref_primary_10_1039_D1GC01902C crossref_primary_10_1016_j_mtchem_2021_100534 crossref_primary_10_1002_anie_202114244 crossref_primary_10_1016_j_ccr_2023_215566 crossref_primary_10_1039_D1TA10991J crossref_primary_10_1016_j_apsusc_2023_156335 crossref_primary_10_1039_D3TB02787B crossref_primary_10_1021_acsami_2c04331 crossref_primary_10_1016_j_envres_2023_118018 crossref_primary_10_1039_D3CC05558B crossref_primary_10_1016_j_dyepig_2022_110935 crossref_primary_10_1002_adma_202209475 crossref_primary_10_1021_jacs_3c14230 crossref_primary_10_1021_acsami_4c12813 crossref_primary_10_1016_j_seppur_2024_129378 crossref_primary_10_1002_ange_202113852 crossref_primary_10_1002_ange_202403878 crossref_primary_10_1007_s10562_022_04162_5 crossref_primary_10_1007_s42114_024_01177_x crossref_primary_10_1021_jacs_3c01070 crossref_primary_10_1002_ange_202306135 crossref_primary_10_1016_j_apcatb_2024_123698 crossref_primary_10_1039_D2TA09375H crossref_primary_10_3390_bios12100904 crossref_primary_10_1002_cctc_202001179 crossref_primary_10_1016_j_commatsci_2024_113555 crossref_primary_10_1016_j_matchemphys_2023_128158 crossref_primary_10_1016_j_jhazmat_2021_127850 crossref_primary_10_1039_D0CS00793E crossref_primary_10_1039_D2EE02449G crossref_primary_10_1039_D2TA01441F crossref_primary_10_1002_ange_202114244 crossref_primary_10_1002_anie_202204899 crossref_primary_10_3389_fchem_2021_708312 crossref_primary_10_1039_D2CS00123C crossref_primary_10_1021_acsami_1c21575 crossref_primary_10_1021_acs_macromol_1c00574 crossref_primary_10_1002_anie_202207130 crossref_primary_10_1016_j_ccr_2025_216580 crossref_primary_10_1002_adma_202312960 crossref_primary_10_1002_anie_202403878 crossref_primary_10_1021_acs_accounts_0c00357 crossref_primary_10_1002_ange_202415624 crossref_primary_10_1016_j_micromeso_2025_113516 |
Cites_doi | 10.1002/adfm.201705553 10.1038/s41557-018-0141-5 10.1021/ja206029a 10.1021/jacs.8b05136 10.1039/C4CS00524D 10.1021/acs.chemrev.6b00021 10.1524/zkri.2007.222.3-4.105 10.1038/s41570-017-0056 10.1002/aenm.201601250 10.1002/ange.201310500 10.1073/pnas.1221824110 10.1021/jacs.8b01774 10.1002/ange.201904291 10.1021/acscentsci.6b00220 10.1039/C5CS00878F 10.1038/s41467-018-04769-6 10.1002/anie.201708526 10.1002/ange.201902543 10.1246/cl.1993.949 10.1016/j.trechm.2019.03.001 10.1126/science.aan0202 10.1002/ange.201905591 10.1039/C3CS60443H 10.1021/jacs.7b04008 10.1002/ange.201509014 10.1021/jacs.7b02648 10.1038/nmat4611 10.1039/C4SC00016A 10.1039/C8SC03393E 10.1002/anie.201310500 10.1126/science.aac8343 10.1021/jacs.5b10754 10.1021/acscatal.5b00941 10.1002/adsc.201800730 10.1002/adma.201505004 10.1021/jacs.7b04141 10.1021/cr900147h 10.1002/anie.201509014 10.1038/s42004-018-0098-8 10.1002/anie.201902543 10.1126/science.aat7679 10.1021/jacs.9b00485 10.1107/S0021889869006558 10.1002/anie.201905591 10.1126/science.aal1585 10.1021/jacs.7b12110 10.1002/adma.201705479 10.1038/nchem.695 10.1002/anie.201600405 10.1021/jacs.8b08380 10.1021/acs.chemmater.5b04947 10.1039/C3CC47652A 10.1021/acs.chemmater.5b02902 10.1107/S1600576718000183 10.1126/science.1139915 10.1039/C7CC03180G 10.1002/aenm.201700387 10.1021/ja5092936 10.1021/jacs.7b01097 10.1021/jacs.8b06291 10.1021/jacs.6b00652 10.1038/s41467-018-05462-4 10.1021/jacs.6b10316 10.1038/s41467-018-07670-4 10.1021/ja206846p 10.1038/natrevmats.2016.68 10.1039/C8TA05508D 10.1021/jacs.7b02303 10.1021/acs.chemmater.8b03897 10.1002/ange.201600405 10.1021/jacs.8b08088 10.1107/S0021889813027714 10.1021/ja053689m 10.1126/science.1120411 10.1038/s41467-019-10504-6 10.1002/ange.201708526 10.1039/C2CS35072F 10.1039/C5SC00512D 10.1021/jacs.5b13490 10.1039/c7cc03180g 10.1039/c2cs35072f 10.1039/c5sc00512d 10.1039/c8sc03393e 10.1039/c4cs00524d 10.1038/NCHEM.695 10.1039/c8ta05508d 10.1039/c4sc00016a 10.1002/ANGE.201310500 10.1039/c3cs60443h 10.1039/c3cc47652a 10.1038/NMAT4611 10.1039/c5cs00878f |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 17B 1KM AOWDO BLEPL DTL EGQ NPM 7TM K9. 7X8 ADTPV AOWAS DG7 |
DOI | 10.1002/anie.201913091 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science - Science Citation Index Expanded - 2020 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic SwePub SwePub Articles SWEPUB Stockholms universitet |
DatabaseTitle | CrossRef Web of Science PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Web of Science CrossRef PubMed ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 3629 |
ExternalDocumentID | oai_DiVA_org_su_178802 31773844 000508218800001 10_1002_anie_201913091 ANIE201913091 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21572170, 21772149; 21871009, 21621061 and 21527803 – fundername: Funds for Creative Research Groups of Hubei Province grantid: 2017CFA002 – fundername: Fundamental Research Funds for the Central Universities – fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC) grantid: 21871009; 21621061; 21527803 – fundername: Swedish Research Council – fundername: Knut and Alice Wallenberg Foundation; Knut & Alice Wallenberg Foundation – fundername: National Natural Science Foundation of China grantid: 21572170, 21772149 – fundername: National Natural Science Foundation of China grantid: 21871009, 21621061 and 21527803 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 17B 1KM BLEPL DTL GROUPED_WOS_WEB_OF_SCIENCE NPM YIN 7TM K9. 7X8 .GJ .HR .Y3 186 31~ 9M8 AAMMB AANHP AAYJJ ABDPE ABEFU ACBWZ ACRPL ACYXJ ADNMO ADTPV ADXHL AEFGJ AETEA AGCDD AGQPQ AGXDD AI. AIDQK AIDYY AOWAS ASPBG AVWKF AZFZN DG7 EJD FEDTE HF~ HVGLF H~9 LW6 MVM NHB OHT PALCI RIWAO RJQFR RWH S10 SAMSI VH1 WHG XOL YYP ZCG ZE2 ZGI ZXP ZY4 |
ID | FETCH-LOGICAL-c5131-a085685b010bd9b09a38b8b980afbdddaf455f7cf8f1a01e77418944ae22cbdd3 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 311 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000508218800001 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Aug 21 07:03:46 EDT 2025 Fri Jul 11 11:49:18 EDT 2025 Fri Jul 25 10:39:18 EDT 2025 Wed Feb 19 02:31:42 EST 2025 Fri Aug 29 16:06:07 EDT 2025 Wed Jul 09 19:09:06 EDT 2025 Tue Jul 01 02:27:03 EDT 2025 Thu Apr 24 22:51:13 EDT 2025 Wed Jan 22 16:34:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | CATALYSIS METALATION COFs dimensionality effect functional moieties PORES SULFOXIDES DIFFERENT KINDS CONSTRUCTION AEROBIC OXIDATION DIFFRACTION size-selective catalysis CRYSTALLINE CO2 adsorption |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c5131-a085685b010bd9b09a38b8b980afbdddaf455f7cf8f1a01e77418944ae22cbdd3 |
Notes | These authors contributed equally to this work. Dedicated to Professor Jean‐Pierre Sauvage on the occasion of his 75th birthday ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0326-2674 0000-0001-7479-9044 0000-0002-8955-9497 0000-0002-6468-2990 |
PMID | 31773844 |
PQID | 2355840370 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2319197673 crossref_primary_10_1002_anie_201913091 crossref_citationtrail_10_1002_anie_201913091 swepub_primary_oai_DiVA_org_su_178802 webofscience_primary_000508218800001 pubmed_primary_31773844 wiley_primary_10_1002_anie_201913091_ANIE201913091 proquest_journals_2355840370 webofscience_primary_000508218800001CitationCount |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 24, 2020 |
PublicationDateYYYYMMDD | 2020-02-24 |
PublicationDate_xml | – month: 02 year: 2020 text: February 24, 2020 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2020 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2018; 361 2017; 7 2007; 222 2017; 1 2018; 360 2019; 10 1993; 22 2015; 349 2017; 355 2017; 357 2014; 136 2017; 117 2018; 6 2018; 9 2014; 5 2019 2019 2018; 1 1969; 2 2018 2018; 57 130 2015; 44 2010; 110 2018; 30 2013; 110 2010; 2 2014; 50 2016; 45 2018; 28 2015; 6 2015; 5 2018; 140 2019; 31 2005; 310 2013; 46 2019; 1 2013; 42 2019; 141 2016; 15 2019 2019; 58 131 2011; 133 2017; 139 2016; 6 2017; 53 2007; 316 2016 2016; 55 128 2016; 1 2016; 2 2005; 127 2016; 138 2018; 51 2016; 28 2018; 10 e_1_2_6_74_1 e_1_2_6_51_2 e_1_2_6_72_2 e_1_2_6_76_1 e_1_2_6_53_2 e_1_2_6_30_2 e_1_2_6_70_2 e_1_2_6_17_3 e_1_2_6_19_2 e_1_2_6_34_3 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_59_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_55_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_57_2 e_1_2_6_78_2 e_1_2_6_62_2 e_1_2_6_87_1 e_1_2_6_64_2 e_1_2_6_85_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_83_1 e_1_2_6_60_2 e_1_2_6_81_2 e_1_2_6_9_1 e_1_2_6_7_2 e_1_2_6_3_3 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_47_2 e_1_2_6_24_1 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_66_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_68_2 e_1_2_6_89_2 e_1_2_6_50_2 e_1_2_6_73_2 e_1_2_6_50_3 e_1_2_6_52_2 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_31_2 e_1_2_6_71_1 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_58_2 e_1_2_6_35_1 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_10_3 e_1_2_6_39_2 e_1_2_6_77_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_16_1 e_1_2_6_79_1 e_1_2_6_61_2 e_1_2_6_84_2 e_1_2_6_61_3 e_1_2_6_63_1 e_1_2_6_86_2 e_1_2_6_42_2 e_1_2_6_84_3 e_1_2_6_80_1 e_1_2_6_82_2 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_69_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_29_1 e_1_2_6_65_2 e_1_2_6_88_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_67_1 e_1_2_6_46_1 e_1_2_6_25_2 Jiang, D. (000508218800001.34) 2019 Ding, SY (WOS:000371945800035) 2016; 138 OSUKA, A (WOS:A1993LH55800008) 1993 Johnson, JA (WOS:000361089700035) 2015; 5 Ma, XJ (WOS:000462676500001) 2018; 1 Meng, Z (WOS:000458937800021) 2019; 31 Diercks, CS (WOS:000395181700031) 2017; 355 Gao, C (WOS:000476615900008) 2019; 58 Qian, C (WOS:000401781900037) 2017; 139 Chandra, S (WOS:000371852000031) 2016; 28 Meng, Y (WOS:000445218000050) 2018; 6 Li, X (WOS:000435082400012) 2018; 9 Wang, XY (WOS:000450790300005) 2018; 10 Chen, RF (WOS:000471976400053) 2019; 58 Li, ZP (WOS:000446920100015) 2018; 140 Lohse, MS (WOS:000445192400001) 2018; 28 Bi, S (WOS:000470248000001) 2019; 10 Gao, C. (000508218800001.24) 2019; 131 Ganesan, P (WOS:000232780900001) 2005; 127 Fang, QR (WOS:000332270000006) 2014; 53 Zhou, TY (WOS:000344906100020) 2014; 136 Wang, S (WOS:000398247100006) 2017; 139 Coelho, AA (WOS:000424121500024) 2018; 51 Segura, JL (WOS:000385181300007) 2016; 45 Lin, GQ (WOS:000404809600048) 2017; 139 (000508218800001.6) 2019; 131 Gole, B (WOS:000419594700043) 2018; 57 Ding, HM (WOS:000452633000002) 2018; 9 Hang, X (WOS:000423496700010) 2018; 140 Xu, H (WOS:000378347800019) 2016; 15 Ma, YX (WOS:000399353800004) 2017; 139 Wu, CY (WOS:000441475800030) 2018; 140 Ding, SY (WOS:000298719800048) 2011; 133 Wan, W (WOS:000327070000039) 2013; 46 Wang, P (WOS:000450436100009) 2018; 9 Lin, S (WOS:000360968400039) 2015; 349 RIETVELD, HM (WOS:A1969D497600005) 1969; 2 Huang, N (WOS:000386259300004) 2016; 1 Lee, CY (WOS:000296036700017) 2011; 133 Sipos, G (WOS:000355485900020) 2015; 44 Kang, ZX (WOS:000371852000006) 2016; 28 Wojaczynska, E (WOS:000280140400014) 2010; 110 Du, Y (WOS:000369854000023) 2016; 55 Han, X (WOS:000404809600046) 2017; 139 Yan, SC (WOS:000459642000025) 2019; 141 Ding, YB (WOS:000394829000002) 2017; 117 Jiang, D. (000508218800001.32) 2019 Côté, AP (WOS:000233437300040) 2005; 310 Sun, Q (WOS:000431961600003) 2018; 30 Zeng, YF (WOS:000374336700001) 2016; 28 Bertrand, GHV (WOS:000318031900025) 2013; 110 Yahiaoui, O (WOS:000431095100003) 2018; 140 Stegbauer, L (WOS:000337108200024) 2014; 5 Du, Y. (000508218800001.17) 2016; 128 Tanaka, T (WOS:000349317100008) 2015; 44 Lang, X. (000508218800001.41) 2016; 128 Medina, DD (WOS:000408246300010) 2017; 7 Lyle, S. J. (000508218800001.50) 2019; 1 Fan, HW (WOS:000442183700008) 2018; 140 Jiang, J (WOS:000450364400017) 2018; 360 Ding, SY (WOS:000312460600010) 2013; 42 Spitler, EL (WOS:000280199500019) 2010; 2 Cerny, R (WOS:000245194900002) 2007; 222 El-Kaderi, HM (WOS:000245654500048) 2007; 316 Das, G (WOS:000356176200034) 2015; 6 Keller, N (WOS:000452693800026) 2018; 140 Lang, XJ (WOS:000373615900011) 2016; 55 Baldwin, LA (WOS:000388913600010) 2016; 138 FANG Q (WOS:000508218800001.21) 2014; 126 Ghazi, ZA (WOS:000396320500012) 2016; 6 Jin, YH (WOS:000415236400006) 2017; 1 (000508218800001.28) 2018; 130 Ma, TQ (WOS:000437467100057) 2018; 361 Lin, GQ (WOS:000372477700011) 2016; 138 Wang, YC (WOS:000404466200008) 2017; 53 Mulzer, CR (WOS:000384750900017) 2016; 2 Li, XL (WOS:000440280700003) 2018; 9 Song, JR (WOS:000328884500006) 2014; 50 Ma, HP (WOS:000375889100031) 2016; 138 Jin, EQ (WOS:000407793600031) 2017; 357 |
References_xml | – volume: 5 start-page: 2789 year: 2014 end-page: 2793 publication-title: Chem. Sci. – volume: 140 start-page: 10094 year: 2018 end-page: 10098 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 667 year: 2016 end-page: 673 publication-title: ACS Cent. Sci. – volume: 51 start-page: 210 year: 2018 end-page: 218 publication-title: J. Appl. Crystallogr. – volume: 42 start-page: 548 year: 2013 end-page: 568 publication-title: Chem. Soc. Rev. – volume: 117 start-page: 2203 year: 2017 end-page: 2256 publication-title: Chem. Rev. – year: 2019 2019 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 140 start-page: 10016 year: 2018 end-page: 10024 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 1863 year: 2013 end-page: 1873 publication-title: J. Appl. Crystallogr. – volume: 55 128 start-page: 4697 4775 year: 2016 2016 end-page: 4700 4778 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 360 start-page: 4402 year: 2018 end-page: 4411 publication-title: Adv. Synth. Catal. – volume: 136 start-page: 15885 year: 2014 end-page: 15888 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 4995 year: 2017 end-page: 4998 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 6736 year: 2017 end-page: 6743 publication-title: J. Am. Chem. Soc. – volume: 361 start-page: 48 year: 2018 end-page: 52 publication-title: Science – volume: 44 start-page: 943 year: 2015 end-page: 969 publication-title: Chem. Soc. Rev. – volume: 1 start-page: 98 year: 2018 publication-title: Commun. Chem. – volume: 355 start-page: 1585 year: 2017 publication-title: Science – volume: 139 start-page: 4258 year: 2017 end-page: 4261 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 2335 year: 2018 publication-title: Nat. Commun. – volume: 30 start-page: 1705479 year: 2018 publication-title: Adv. Mater. – volume: 133 start-page: 15858 year: 2011 end-page: 15861 publication-title: J. Am. Chem. Soc. – volume: 133 start-page: 19816 year: 2011 end-page: 19822 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 2920 year: 2019 end-page: 2924 publication-title: J. Am. Chem. Soc. – volume: 53 126 start-page: 2878 2922 year: 2014 2014 end-page: 2882 2926 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 846 856 year: 2018 2018 end-page: 850 860 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 22 start-page: 949 year: 1993 publication-title: Chem. Lett. – volume: 1 start-page: 0056 year: 2017 publication-title: Nat. Rev. Chem. – volume: 53 start-page: 7018 year: 2017 end-page: 7021 publication-title: Chem. Commun. – volume: 28 start-page: 2855 year: 2016 end-page: 2873 publication-title: Adv. Mater. – volume: 58 131 start-page: 9770 9872 year: 2019 2019 end-page: 9775 9877 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 131 start-page: 6430 6496 year: 2019 2019 end-page: 6434 6500 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 2 start-page: 672 year: 2010 end-page: 677 publication-title: Nat. Chem. – volume: 1 start-page: 16068 year: 2016 publication-title: Nat. Rev. Mater. – volume: 9 start-page: 8402 year: 2018 end-page: 8408 publication-title: Chem. Sci. – volume: 10 start-page: 2467 year: 2019 publication-title: Nat. Commun. – volume: 28 start-page: 1489 year: 2016 end-page: 1494 publication-title: Chem. Mater. – volume: 139 start-page: 8705 year: 2017 end-page: 8709 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 17186 year: 2018 end-page: 17191 publication-title: J. Mater. Chem. A – volume: 28 start-page: 1277 year: 2016 end-page: 1285 publication-title: Chem. Mater. – volume: 140 start-page: 16544 year: 2018 end-page: 16552 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 5330 year: 2018 end-page: 5333 publication-title: J. Am. Chem. Soc. – volume: 127 start-page: 14530 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 8693 year: 2017 end-page: 8697 publication-title: J. Am. Chem. Soc. – volume: 31 start-page: 819 year: 2019 end-page: 825 publication-title: Chem. Mater. – volume: 10 start-page: 1180 year: 2018 end-page: 1189 publication-title: Nat. Chem. – volume: 138 start-page: 3302 year: 2016 end-page: 3305 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 3031 year: 2016 end-page: 3037 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 172 year: 2019 end-page: 184 publication-title: Trends Chem. – volume: 310 start-page: 1166 year: 2005 end-page: 1170 publication-title: Science – volume: 15 start-page: 722 year: 2016 end-page: 726 publication-title: Nat. Mater. – volume: 9 start-page: 5234 year: 2018 publication-title: Nat. Commun. – volume: 28 start-page: 1705553 year: 2018 publication-title: Adv. Funct. Mater. – volume: 110 start-page: 4923 year: 2013 end-page: 4928 publication-title: Proc. Natl. Acad. Sci. USA – volume: 2 start-page: 65 year: 1969 end-page: 71 publication-title: J. Appl. Crystallogr. – volume: 357 start-page: 673 year: 2017 end-page: 676 publication-title: Science – volume: 138 start-page: 15134 year: 2016 end-page: 15137 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 1601250 year: 2016 publication-title: Adv. Energy Mater. – volume: 349 start-page: 1208 year: 2015 end-page: 1213 publication-title: Science – volume: 138 start-page: 5897 year: 2016 end-page: 5903 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 2998 year: 2018 publication-title: Nat. Commun. – volume: 222 start-page: 105 year: 2007 end-page: 113 publication-title: Z. Kristallogr. – volume: 140 start-page: 12374 year: 2018 end-page: 12377 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 5283 year: 2015 end-page: 5291 publication-title: ACS Catal. – volume: 7 start-page: 1700387 year: 2017 publication-title: Adv. Energy Mater. – volume: 316 start-page: 268 year: 2007 end-page: 272 publication-title: Science – volume: 110 start-page: 4303 year: 2010 end-page: 4356 publication-title: Chem. Rev. – volume: 140 start-page: 892 year: 2018 end-page: 895 publication-title: J. Am. Chem. Soc. – volume: 55 128 start-page: 1737 1769 year: 2016 2016 end-page: 1741 1773 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 45 start-page: 5635 year: 2016 end-page: 5671 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 3931 year: 2015 end-page: 3939 publication-title: Chem. Sci. – volume: 50 start-page: 788 year: 2014 end-page: 791 publication-title: Chem. Commun. – volume: 44 start-page: 3834 year: 2015 end-page: 3860 publication-title: Chem. Soc. Rev. – ident: e_1_2_6_4_2 doi: 10.1002/adfm.201705553 – ident: e_1_2_6_19_2 doi: 10.1038/s41557-018-0141-5 – ident: e_1_2_6_66_2 doi: 10.1021/ja206029a – ident: e_1_2_6_11_2 doi: 10.1021/jacs.8b05136 – ident: e_1_2_6_76_1 – ident: e_1_2_6_85_2 doi: 10.1039/C4CS00524D – ident: e_1_2_6_64_2 doi: 10.1021/acs.chemrev.6b00021 – ident: e_1_2_6_40_1 – ident: e_1_2_6_77_2 doi: 10.1524/zkri.2007.222.3-4.105 – ident: e_1_2_6_6_2 doi: 10.1038/s41570-017-0056 – ident: e_1_2_6_29_1 – ident: e_1_2_6_33_2 doi: 10.1002/aenm.201601250 – ident: e_1_2_6_61_3 doi: 10.1002/ange.201310500 – ident: e_1_2_6_44_2 doi: 10.1073/pnas.1221824110 – ident: e_1_2_6_71_1 – ident: e_1_2_6_57_2 doi: 10.1021/jacs.8b01774 – ident: e_1_2_6_3_3 doi: 10.1002/ange.201904291 – ident: e_1_2_6_32_2 doi: 10.1021/acscentsci.6b00220 – ident: e_1_2_6_5_2 doi: 10.1039/C5CS00878F – ident: e_1_2_6_67_1 – ident: e_1_2_6_48_2 doi: 10.1038/s41467-018-04769-6 – ident: e_1_2_6_63_1 – ident: e_1_2_6_50_2 doi: 10.1002/anie.201708526 – ident: e_1_2_6_17_3 doi: 10.1002/ange.201902543 – ident: e_1_2_6_74_1 doi: 10.1246/cl.1993.949 – ident: e_1_2_6_2_2 doi: 10.1016/j.trechm.2019.03.001 – ident: e_1_2_6_42_2 doi: 10.1126/science.aan0202 – ident: e_1_2_6_83_1 – ident: e_1_2_6_80_1 – ident: e_1_2_6_10_3 doi: 10.1002/ange.201905591 – ident: e_1_2_6_65_2 doi: 10.1039/C3CS60443H – ident: e_1_2_6_20_2 doi: 10.1021/jacs.7b04008 – ident: e_1_2_6_34_3 doi: 10.1002/ange.201509014 – ident: e_1_2_6_31_2 doi: 10.1021/jacs.7b02648 – ident: e_1_2_6_37_2 doi: 10.1038/nmat4611 – ident: e_1_2_6_22_2 doi: 10.1039/C4SC00016A – ident: e_1_2_6_25_2 doi: 10.1039/C8SC03393E – ident: e_1_2_6_61_2 doi: 10.1002/anie.201310500 – ident: e_1_2_6_21_2 doi: 10.1126/science.aac8343 – ident: e_1_2_6_27_2 doi: 10.1021/jacs.5b10754 – ident: e_1_2_6_89_2 doi: 10.1021/acscatal.5b00941 – ident: e_1_2_6_88_2 doi: 10.1002/adsc.201800730 – ident: e_1_2_6_13_2 doi: 10.1002/adma.201505004 – ident: e_1_2_6_9_1 – ident: e_1_2_6_72_2 doi: 10.1021/jacs.7b04141 – ident: e_1_2_6_86_2 doi: 10.1021/cr900147h – ident: e_1_2_6_34_2 doi: 10.1002/anie.201509014 – ident: e_1_2_6_68_2 doi: 10.1038/s42004-018-0098-8 – ident: e_1_2_6_3_2 doi: 10.1002/ange.201904291 – ident: e_1_2_6_17_2 doi: 10.1002/anie.201902543 – ident: e_1_2_6_55_2 doi: 10.1126/science.aat7679 – ident: e_1_2_6_18_2 doi: 10.1021/jacs.9b00485 – ident: e_1_2_6_78_2 doi: 10.1107/S0021889869006558 – ident: e_1_2_6_10_2 doi: 10.1002/anie.201905591 – ident: e_1_2_6_69_2 doi: 10.1126/science.aal1585 – ident: e_1_2_6_56_2 doi: 10.1021/jacs.7b12110 – ident: e_1_2_6_1_1 – ident: e_1_2_6_12_2 doi: 10.1002/adma.201705479 – ident: e_1_2_6_45_2 doi: 10.1038/nchem.695 – ident: e_1_2_6_84_2 doi: 10.1002/anie.201600405 – ident: e_1_2_6_87_1 – ident: e_1_2_6_26_2 doi: 10.1021/jacs.8b08380 – ident: e_1_2_6_39_2 doi: 10.1021/acs.chemmater.5b04947 – ident: e_1_2_6_15_2 doi: 10.1039/C3CC47652A – ident: e_1_2_6_14_2 doi: 10.1021/acs.chemmater.5b02902 – ident: e_1_2_6_79_1 doi: 10.1107/S1600576718000183 – ident: e_1_2_6_62_2 doi: 10.1126/science.1139915 – ident: e_1_2_6_81_2 doi: 10.1039/C7CC03180G – ident: e_1_2_6_43_2 doi: 10.1002/aenm.201700387 – ident: e_1_2_6_53_2 doi: 10.1021/ja5092936 – ident: e_1_2_6_59_2 doi: 10.1021/jacs.7b01097 – ident: e_1_2_6_58_2 doi: 10.1021/jacs.8b06291 – ident: e_1_2_6_73_2 doi: 10.1021/jacs.6b00652 – ident: e_1_2_6_49_2 doi: 10.1038/s41467-018-05462-4 – ident: e_1_2_6_60_2 doi: 10.1021/jacs.6b10316 – ident: e_1_2_6_41_2 doi: 10.1038/s41467-018-07670-4 – ident: e_1_2_6_23_2 doi: 10.1021/ja206846p – ident: e_1_2_6_70_2 doi: 10.1038/natrevmats.2016.68 – ident: e_1_2_6_30_2 doi: 10.1039/C8TA05508D – ident: e_1_2_6_52_2 doi: 10.1021/jacs.7b02303 – ident: e_1_2_6_36_2 doi: 10.1021/acs.chemmater.8b03897 – ident: e_1_2_6_24_1 – ident: e_1_2_6_84_3 doi: 10.1002/ange.201600405 – ident: e_1_2_6_16_1 – ident: e_1_2_6_51_2 doi: 10.1021/jacs.8b08088 – ident: e_1_2_6_46_1 – ident: e_1_2_6_82_2 doi: 10.1107/S0021889813027714 – ident: e_1_2_6_75_1 doi: 10.1021/ja053689m – ident: e_1_2_6_8_1 doi: 10.1126/science.1120411 – ident: e_1_2_6_47_2 doi: 10.1038/s41467-019-10504-6 – ident: e_1_2_6_35_1 – ident: e_1_2_6_50_3 doi: 10.1002/ange.201708526 – ident: e_1_2_6_54_1 – ident: e_1_2_6_7_2 doi: 10.1039/C2CS35072F – ident: e_1_2_6_28_2 doi: 10.1039/C5SC00512D – ident: e_1_2_6_38_2 doi: 10.1021/jacs.5b13490 – volume: 9 start-page: ARTN 5234 year: 2018 ident: WOS:000452633000002 article-title: An AIEgen-based 3D covalent organic framework for white light-emitting diodes publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-018-07670-4 – volume: 53 start-page: 7018 year: 2017 ident: WOS:000404466200008 article-title: Elucidation of the elusive structure and formula of the active pharmaceutical ingredient bismuth subgallate by continuous rotation electron diffraction publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c7cc03180g – volume: 42 start-page: 548 year: 2013 ident: WOS:000312460600010 article-title: Covalent organic frameworks (COFs): from design to applications publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c2cs35072f – volume: 138 start-page: 3031 year: 2016 ident: WOS:000371945800035 article-title: Thioether-Based Fluorescent Covalent Organic Framework for Selective Detection and Facile Removal of Mercury(II) publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.5b10754 – volume: 30 start-page: ARTN 1705479 year: 2018 ident: WOS:000431961600003 article-title: Covalent Organic Frameworks as a Decorating Platform for Utilization and Affinity Enhancement of Chelating Sites for Radionuclide Sequestration publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201705479 – volume: 360 start-page: 4402 year: 2018 ident: WOS:000450364400017 article-title: Photocatalytic Properties and Mechanistic Insights into Visible Light-Promoted Aerobic Oxidation of Sulfides to Sulfoxides via Tin Porphyrin-Based Porous Aromatic Frameworks publication-title: ADVANCED SYNTHESIS & CATALYSIS doi: 10.1002/adsc.201800730 – volume: 110 start-page: 4923 year: 2013 ident: WOS:000318031900025 article-title: Thiophene-based covalent organic frameworks publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA doi: 10.1073/pnas.1221824110 – volume: 7 start-page: ARTN 1700387 year: 2017 ident: WOS:000408246300010 article-title: Photoactive and Conducting Covalent Organic Frameworks publication-title: ADVANCED ENERGY MATERIALS doi: 10.1002/aenm.201700387 – volume: 2 start-page: 667 year: 2016 ident: WOS:000384750900017 article-title: Superior Charge Storage and Power Density of a Conducting Polymer-Modified Covalent Organic Framework publication-title: ACS CENTRAL SCIENCE doi: 10.1021/acscentsci.6b00220 – volume: 139 start-page: 6736 year: 2017 ident: WOS:000401781900037 article-title: Toward Covalent Organic Frameworks Bearing Three Different Kinds of Pores: The Strategy for Construction and COF-to-COF Transformation via Heterogeneous Linker Exchange publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b02303 – volume: 138 start-page: 5897 year: 2016 ident: WOS:000375889100031 article-title: Cationic Covalent Organic Frameworks: A Simple Platform of Anionic Exchange for Porosity Tuning and Proton Conduction publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.5b13490 – volume: 58 start-page: 9770 year: 2019 ident: WOS:000476615900008 article-title: Isostructural Three-Dimensional Covalent Organic Frameworks publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201905591 – volume: 133 start-page: 15858 year: 2011 ident: WOS:000296036700017 article-title: Light-Harvesting Metal-Organic Frameworks (MOFs): Efficient Strut-to-Strut Energy Transfer in Bodipy and Porphyrin-Based MOFs publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja206029a – volume: 28 start-page: ARTN 1705553 year: 2018 ident: WOS:000445192400001 article-title: Covalent Organic Frameworks: Structures, Synthesis, and Applications publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.201705553 – volume: 6 start-page: 3931 year: 2015 ident: WOS:000356176200034 article-title: Chemical sensing in two dimensional porous covalent organic nanosheets publication-title: CHEMICAL SCIENCE doi: 10.1039/c5sc00512d – start-page: 949 year: 1993 ident: WOS:A1993LH55800008 article-title: AN EFFICIENT ONE-POT SYNTHETIC PROCEDURE OF MULTIPLE PORPHYRIN-CYCLIZATION publication-title: CHEMISTRY LETTERS – volume: 9 start-page: ARTN 2998 year: 2018 ident: WOS:000440280700003 article-title: Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-018-05462-4 – volume: 55 start-page: 4697 year: 2016 ident: WOS:000373615900011 article-title: Visible-Light-Induced Photoredox Catalysis of Dye-Sensitized Titanium Dioxide: Selective Aerobic Oxidation of Organic Sulfides publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201600405 – volume: 28 start-page: 2855 year: 2016 ident: WOS:000374336700001 article-title: Covalent Organic Frameworks for CO2 Capture publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201505004 – volume: 9 start-page: 8402 year: 2018 ident: WOS:000450436100009 article-title: Ultrathin two-dimensional covalent organic framework nanoprobe for interference-resistant two-photon fluorescence bioimaging publication-title: CHEMICAL SCIENCE doi: 10.1039/c8sc03393e – volume: 5 start-page: 5283 year: 2015 ident: WOS:000361089700035 article-title: Porphyrin-Metalation-Mediated Tuning of Photoredox Catalytic Properties in Metal-Organic Frameworks publication-title: ACS CATALYSIS doi: 10.1021/acscatal.5b00941 – volume: 117 start-page: 2203 year: 2017 ident: WOS:000394829000002 article-title: Development of Ion Chemosensors Based on Porphyrin Analogues publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.6b00021 – volume: 316 start-page: 268 year: 2007 ident: WOS:000245654500048 article-title: Designed synthesis of 3D covalent organic frameworks publication-title: SCIENCE doi: 10.1126/science.1139915 – volume: 1 start-page: ARTN 0056 year: 2017 ident: WOS:000415236400006 article-title: Tessellated multiporous two-dimensional covalent organic frameworks publication-title: NATURE REVIEWS CHEMISTRY doi: 10.1038/s41570-017-0056 – volume: 44 start-page: 3834 year: 2015 ident: WOS:000355485900020 article-title: The emergence of sulfoxides as efficient ligands in transition metal catalysis publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c4cs00524d – volume: 2 start-page: 65 year: 1969 ident: WOS:A1969D497600005 article-title: A PROFILE REFINEMENT METHOD FOR NUCLEAR AND MAGNETIC STRUCTURES publication-title: JOURNAL OF APPLIED CRYSTALLOGRAPHY – volume: 31 start-page: 819 year: 2019 ident: WOS:000458937800021 article-title: Proton Conduction in 2D Aza-Fused Covalent Organic Frameworks publication-title: CHEMISTRY OF MATERIALS doi: 10.1021/acs.chemmater.8b03897 – volume: 310 start-page: 1166 year: 2005 ident: WOS:000233437300040 article-title: Porous, crystalline, covalent organic frameworks publication-title: SCIENCE doi: 10.1126/science.1120411 – volume: 57 start-page: 846 year: 2018 ident: WOS:000419594700043 article-title: Microtubular Self-Assembly of Covalent Organic Frameworks publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201708526 – volume: 2 start-page: 672 year: 2010 ident: WOS:000280199500019 article-title: Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks publication-title: NATURE CHEMISTRY doi: 10.1038/NCHEM.695 – volume: 55 start-page: 1737 year: 2016 ident: WOS:000369854000023 article-title: Ionic Covalent Organic Frameworks with Spiroborate Linkage publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201509014 – volume: 139 start-page: 8693 year: 2017 ident: WOS:000404809600046 article-title: Chiral Covalent Organic Frameworks with High Chemical Stability for Heterogeneous Asymmetric Catalysis publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b04008 – volume: 6 start-page: ARTN 1601250 year: 2016 ident: WOS:000396320500012 article-title: Efficient Polysulfide Chemisorption in Covalent Organic Frameworks for High-Performance Lithium-Sulfur Batteries publication-title: ADVANCED ENERGY MATERIALS doi: 10.1002/aenm.201601250 – volume: 6 start-page: 17186 year: 2018 ident: WOS:000445218000050 article-title: Impregnation of sulfur into a 2D pyrene-based covalent organic framework for high-rate lithium-sulfur batteries publication-title: JOURNAL OF MATERIALS CHEMISTRY A doi: 10.1039/c8ta05508d – volume: 349 start-page: 1208 year: 2015 ident: WOS:000360968400039 article-title: Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water publication-title: SCIENCE doi: 10.1126/science.aac8343 – volume: 140 start-page: 892 year: 2018 ident: WOS:000423496700010 article-title: Chiral 3D Covalent Organic Frameworks for High Performance Liquid Chromatographic Enantioseparation publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b12110 – volume: 140 start-page: 10094 year: 2018 ident: WOS:000442183700008 article-title: Covalent Organic Framework-Covalent Organic Framework Bilayer Membranes for Highly Selective Gas Separation publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.8b05136 – volume: 140 start-page: 5330 year: 2018 ident: WOS:000431095100003 article-title: 3D Anionic Silicate Covalent Organic Framework with srs Topology publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.8b01774 – volume: 46 start-page: 1863 year: 2013 ident: WOS:000327070000039 article-title: Three-dimensional rotation electron diffraction: software RED for automated data collection and data processing publication-title: JOURNAL OF APPLIED CRYSTALLOGRAPHY doi: 10.1107/S0021889813027714 – volume: 5 start-page: 2789 year: 2014 ident: WOS:000337108200024 article-title: A hydrazone-based covalent organic framework for photocatalytic hydrogen production publication-title: CHEMICAL SCIENCE doi: 10.1039/c4sc00016a – volume: 126 start-page: 2922 year: 2014 ident: WOS:000508218800001.21 publication-title: ANGEW CHEM doi: 10.1002/ANGE.201310500 – volume: 133 start-page: 19816 year: 2011 ident: WOS:000298719800048 article-title: Construction of Covalent Organic Framework for Catalysis: Pd/COF-LZU1 in Suzuki-Miyaura Coupling Reaction publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja206846p – volume: 139 start-page: 4258 year: 2017 ident: WOS:000398247100006 article-title: Exfoliation of Covalent Organic Frameworks into Few-Layer Redox-Active Nanosheets as Cathode Materials for Lithium-Ion Batteries publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b02648 – volume: 44 start-page: 943 year: 2015 ident: WOS:000349317100008 article-title: Conjugated porphyrin arrays: synthesis, properties and applications for functional materials publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c3cs60443h – volume: 9 start-page: ARTN 2335 year: 2018 ident: WOS:000435082400012 article-title: Tuneable near white-emissive two-dimensional covalent organic frameworks publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-018-04769-6 – year: 2019 ident: 000508218800001.32 publication-title: Angew. Chem. – volume: 139 start-page: 4995 year: 2017 ident: WOS:000399353800004 article-title: A Dynamic Three-Dimensional Covalent Organic Framework publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b01097 – volume: 1 start-page: ARTN 98 year: 2018 ident: WOS:000462676500001 article-title: Approaches and challenges in the synthesis of three-dimensional covalent-organic frameworks publication-title: COMMUNICATIONS CHEMISTRY doi: 10.1038/s42004-018-0098-8 – year: 2019 ident: 000508218800001.34 publication-title: Angew. Chem. Int. Ed. – volume: 140 start-page: 12374 year: 2018 ident: WOS:000446920100015 article-title: Light-Emitting Covalent Organic Frameworks: Fluorescence Improving via Pinpoint Surgery and Selective Switch-On Sensing of Anions publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.8b08380 – volume: 1 start-page: 172 year: 2019 ident: 000508218800001.50 article-title: Covalent Organic Frameworks: Organic Chemistry Extended into Two and Three Dimensions publication-title: Trends in Chemistry – volume: 138 start-page: 3302 year: 2016 ident: WOS:000372477700011 article-title: A Pyrene-Based, Fluorescent Three-Dimensional Covalent Organic Framework publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b00652 – volume: 28 start-page: 1277 year: 2016 ident: WOS:000371852000006 article-title: Mixed Matrix Membranes (MMMs) Comprising Exfoliated 2D Covalent Organic Frameworks (COFs) for Efficient CO2 Separation publication-title: CHEMISTRY OF MATERIALS doi: 10.1021/acs.chemmater.5b02902 – volume: 140 start-page: 10016 year: 2018 ident: WOS:000441475800030 article-title: Highly Conjugated Three-Dimensional Covalent Organic Frameworks Based on Spirobifluorene for Perovskite Solar Cell Enhancement publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.8b06291 – volume: 50 start-page: 788 year: 2014 ident: WOS:000328884500006 article-title: Thermally/hydrolytically stable covalent organic frameworks from a rigid macrocyclic host publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c3cc47652a – volume: 355 start-page: ARTN eaal1585 year: 2017 ident: WOS:000395181700031 article-title: The atom, the molecule, and the covalent organic framework publication-title: SCIENCE doi: 10.1126/science.aal1585 – volume: 131 start-page: 6496 year: 2019 ident: 000508218800001.6 publication-title: Angew. Chem. – volume: 53 start-page: 2878 year: 2014 ident: WOS:000332270000006 article-title: 3D Microporous Base-Functionalized Covalent Organic Frameworks for Size-Selective Catalysis publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201310500 – volume: 10 start-page: ARTN 2467 year: 2019 ident: WOS:000470248000001 article-title: Two-dimensional semiconducting covalent organic frameworks via condensation at arylmethyl carbon atoms publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-019-10504-6 – volume: 357 start-page: 673 year: 2017 ident: WOS:000407793600031 article-title: Two-dimensional sp2 carbon-conjugated covalent organic frameworks publication-title: SCIENCE doi: 10.1126/science.aan0202 – volume: 15 start-page: 722 year: 2016 ident: WOS:000378347800019 article-title: Proton conduction in crystalline and porous covalent organic frameworks publication-title: NATURE MATERIALS doi: 10.1038/NMAT4611 – volume: 139 start-page: 8705 year: 2017 ident: WOS:000404809600048 article-title: 3D Porphyrin-Based Covalent Organic Frameworks publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b04141 – volume: 128 start-page: 4775 year: 2016 ident: 000508218800001.41 publication-title: Angew. Chem. – volume: 361 start-page: 48 year: 2018 ident: WOS:000437467100057 article-title: Single-crystal x-ray diffraction structures of covalent organic frameworks publication-title: SCIENCE doi: 10.1126/science.aat7679 – volume: 10 start-page: 1180 year: 2018 ident: WOS:000450790300005 article-title: Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water publication-title: NATURE CHEMISTRY doi: 10.1038/s41557-018-0141-5 – volume: 130 start-page: 856 year: 2018 ident: 000508218800001.28 publication-title: Angew. Chem. – volume: 131 start-page: 9872 year: 2019 ident: 000508218800001.24 publication-title: Angew. Chem. – volume: 45 start-page: 5635 year: 2016 ident: WOS:000385181300007 article-title: Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c5cs00878f – volume: 140 start-page: 16544 year: 2018 ident: WOS:000452693800026 article-title: Enforcing Extended Porphyrin J-Aggregate Stacking in Covalent Organic Frameworks publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.8b08088 – volume: 51 start-page: 210 year: 2018 ident: WOS:000424121500024 article-title: TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C plus publication-title: JOURNAL OF APPLIED CRYSTALLOGRAPHY doi: 10.1107/S1600576718000183 – volume: 138 start-page: 15134 year: 2016 ident: WOS:000388913600010 article-title: Metalation of a Mesoporous Three-Dimensional Covalent Organic Framework publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b10316 – volume: 28 start-page: 1489 year: 2016 ident: WOS:000371852000031 article-title: Interplaying Intrinsic and Extrinsic Proton Conductivities in Covalent Organic Frameworks publication-title: CHEMISTRY OF MATERIALS doi: 10.1021/acs.chemmater.5b04947 – volume: 110 start-page: 4303 year: 2010 ident: WOS:000280140400014 article-title: Enantioselective Synthesis of Sulfoxides: 2000-2009 publication-title: CHEMICAL REVIEWS doi: 10.1021/cr900147h – volume: 141 start-page: 2920 year: 2019 ident: WOS:000459642000025 article-title: Three-dimensional Salphen-based Covalent Organic Frameworks as Catalytic Antioxidants publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b00485 – volume: 127 start-page: 14530 year: 2005 ident: WOS:000232780900001 article-title: Tetrahedral n-type materials:: Efficient quenching of the excitation of p-type polymers in amorphous films publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja053689m – volume: 1 start-page: ARTN 16068 year: 2016 ident: WOS:000386259300004 article-title: Covalent organic frameworks: a materials platform for structural and functional designs publication-title: NATURE REVIEWS MATERIALS doi: 10.1038/natrevmats.2016.68 – volume: 128 start-page: 1769 year: 2016 ident: 000508218800001.17 article-title: Ionic covalent organic frameworks with spiroborate linkage publication-title: Angew. Chem. – volume: 58 start-page: 6430 year: 2019 ident: WOS:000471976400053 article-title: Designed Synthesis of a 2D Porphyrin-Based sp2 Carbon-Conjugated Covalent Organic Framework for Heterogeneous Photocatalysis publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201902543 – volume: 136 start-page: 15885 year: 2014 ident: WOS:000344906100020 article-title: One-Step Construction of Two Different Kinds of Pores in a 2D Covalent Organic Framework publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja5092936 – volume: 222 start-page: 105 year: 2007 ident: WOS:000245194900002 article-title: Direct space methods of structure determination from powder diffraction: principles, guidelines and perspectives publication-title: ZEITSCHRIFT FUR KRISTALLOGRAPHIE doi: 10.1524/zkri.2007.222.3-4.105 |
SSID | ssj0028806 |
Score | 2.6822317 |
Snippet | The construction of 2D and 3D covalent organic frameworks (COFs) from functional moieties for desired properties has gained much attention. However, the... |
Source | Web of Science |
SourceID | swepub proquest pubmed webofscience crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3624 |
SubjectTerms | Carbon dioxide Chemistry Chemistry, Multidisciplinary CO2 adsorption COFs Construction dimensionality effect functional moieties Photocatalysis Physical Sciences Science & Technology size-selective catalysis Three dimensional models Topology Two dimensional models |
Title | 2D and 3D Porphyrinic Covalent Organic Frameworks: The Influence of Dimensionality on Functionality |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201913091 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000508218800001 https://www.ncbi.nlm.nih.gov/pubmed/31773844 https://www.proquest.com/docview/2355840370 https://www.proquest.com/docview/2319197673 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-178802 |
Volume | 59 |
WOS | 000508218800001 |
WOSCitedRecordID | wos000508218800001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hXuDC-xEoyEhFnNLGj9QJt9VuVy0SFUIU9WbZ3rhCoAR1sxd-PTNxYrpFCATHJJPX5LPns-P5BmBPax-QZSsa5MhcSRVyG6oyx2gdsEvmRaUp3_nd6eHxmXp7Xp5fyeKP-hBpwo1axtBfUwO3bn3wUzSUMrBpaVaNvfCQvk4LtogVfUj6UQLBGdOL8DmoCv2k2liIg-3Tt6PSL1Qz6YheC0_bjHYIScs7YKeXiStRvuxverfvv1_Tefyft70Lt0e-ymYRYPfgRtPeh5vzqUzcA_BiwWy7YnLB3nf00eiXkGfzDiGMAY3FZE_PltMqsPUbhthkJ1N1FNYFtqAaA1EfBEcFrGvZEuNtP-14CGfLo4_z43ys3JD7kkueWyRyh1XpcLDnVrUraisrV7m6Kmxwq9XKBlWWAWFSBW4L3mjS0KmVso0QHg3kI9hpu7Z5AqwUmntupW-0xaF87VytOVoILoPWTcggn76c8aOsOVXX-GqiILMw5DqTXJfB62T_LQp6_NZydwKCGRv22giSo1eF1EUGL9NhdDn9Z7Ft023IBq-ANE_LDB5HAKVbIV3TslIqg1cRUekI6XwvPn-ame7ywqw3hmtEr8hg7yrgkvUg3FMJUtMjmp4B_xuz-egg0jvoMxAD4v7gBjM7PTlKW0__5aRncEvQNAUpAahd2OkvN81z5HK9ezG01x9Jxj41 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcigX3tBAASMVcUobP1In3Fa7Xe1Cu0KoRdws24kRAiWom73w65nJC7YIgeCYZPIaf_bM2J5vAA609gG9bEVBjoyVVCG2IUtjtNYBh2SeZJrync9Wx4sL9fpDOuwmpFyYjh9inHCjntGO19TBaUL66AdrKKVg096sHIdhyl-_TmW926jq3cggJRCeXYIRfgnVoR94GxNxtH3_tl36xdkcmUSvGKhtn7Y1SvNb4Ibf6faifD7cNO7Qf7vC9Phf_3sbbvYuK5t0GLsD18rqLuxOh0px98CLGbNVweSMva2p3WhVyLNpjShGm8a6fE_P5sNGsPUrhvBky6FACqsDm1GZgY4iBAMDVldsjia3GU7ch4v5yfl0EffFG2KPrcBji77ccZY6jPdckbsktzJzmcuzxAZXFIUNKk0DIiUL3Ca81ESjkytlSyE8CsgHsFPVVbkHLBWae26lL7XFaD53LtccJQSXQesyRBAPTWd8z2xOBTa-mI6TWRhSnRlVF8HLUf5rx-nxW8n9AQmm79trI4iRXiVSJxE8Hy-jymmpxVZlvSEZfAJ6elpG8LBD0Pgq9Ni0zJSK4EUHqfEKUX3PPr2fmPryo1lvDNcIXxHBwc-IG6Vb7p5MEKEeeeoR8L8Rm_YKIsqDJgLRQu4PajCT1fJkPHr0Lzc9g93F-dmpOV2u3jyGG4JmLYgYQO3DTnO5KZ-ga9e4p23n_Q4XvkJQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB6hIgEv3EeggJGKeEobH1knvK02jbocqwpR1DfLOYwQKKm62Rd-PTM5TLcIgeAxyeSafPZ8djzfAOxpXTpk2YoGOTJUUrnQuiQOMVo77JJ5lGjKd36_mh2dqDen8emFLP5BH8JPuFHL6PtrauBnlTv4KRpKGdi0NCvFXpjS16-qWZQQrrMPXkBKIDqH_CJ8ECpDP8k2RuJg-_ztsPQL1_RCopfi0zal7WNSfgvs9DbDUpSv-5uu2C-_XxJ6_J_XvQ03R8LK5gPC7sCVurkL1xdTnbh7UIqM2aZiMmPHLX01-idUskWLGMaIxoZsz5Ll0zKw9WuG4GTLqTwKax3LqMjAIBCCwwLWNizHgNtNO-7DSX74cXEUjqUbwjLmkocWmdwsiQsc7RVVWkSplUmRFGkSWVdUVWWdimOHOEkctxGvNYnopErZWogSDeQD2Gnapn4ELBaal9zKstYWx_JpUaSao4Xg0mlduwDC6cuZctQ1p_Ia38ygyCwMuc541wXwytufDYoev7XcnYBgxpa9NoL06FUkdRTAC38YXU4_WmxTtxuywSsgz9MygIcDgPytkK9pmSgVwMsBUf4ICX1nXz7NTXv-2aw3hmtErwhg7yLgvHWv3JMIktMjnh4A_xuzxeggEjzoAhA94v7gBjNfLQ_91uN_Oek5XDvOcvNuuXr7BG4ImrIgVQC1Czvd-aZ-iryuK571TfcHMmtBCA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2D+and+3D+Porphyrinic+Covalent+Organic+Frameworks%3A+The+Influence+of+Dimensionality+on+Functionality&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Meng%2C+Yi&rft.au=Luo%2C+Yi&rft.au=Shi%2C+Ji-Long&rft.au=Ding%2C+Huimin&rft.date=2020-02-24&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=59&rft.issue=9&rft.spage=3624&rft_id=info:doi/10.1002%2Fanie.201913091&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |