A Rapamycin-Sensitive Signaling Pathway Is Essential for the Full Expression of Persistent Pain States

Translational control through the mammalian target of rapamycin (mTOR) is critical for synaptic plasticity, cell growth, and axon guidance. Recently, it was also shown that mTOR signaling was essential for the maintenance of the sensitivity of subsets of adult sensory neurons. Here, we show that per...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 29; no. 47; pp. 15017 - 15027
Main Authors Geranton, Sandrine M, Jimenez-Diaz, Lydia, Torsney, Carole, Tochiki, Keri K, Stuart, Sarah A, Leith, J. Lianne, Lumb, Bridget M, Hunt, Stephen P
Format Journal Article
LanguageEnglish
Published United States Soc Neuroscience 25.11.2009
Society for Neuroscience
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Translational control through the mammalian target of rapamycin (mTOR) is critical for synaptic plasticity, cell growth, and axon guidance. Recently, it was also shown that mTOR signaling was essential for the maintenance of the sensitivity of subsets of adult sensory neurons. Here, we show that persistent pain states, but not acute pain behavior, are substantially alleviated by centrally administered rapamycin, an inhibitor of the mTOR pathway. We demonstrate that rapamycin modulates nociception by acting on subsets of primary afferents and superficial dorsal horn neurons to reduce both primary afferent sensitivity and central plasticity. We found that the active form of mTOR is present in a subpopulation of myelinated dorsal root axons, but rarely in unmyelinated C-fibers, and heavily expressed in the dorsal horn by lamina I/III projection neurons that are known to mediate the induction and maintenance of pain states. Intrathecal injections of rapamycin inhibited the activation of downstream targets of mTOR in dorsal horn and dorsal roots and reduced the thermal sensitivity of A-fibers. Moreover, in vitro studies showed that rapamycin increased the electrical activation threshold of Aδ-fibers in dorsal roots. Together, our results imply that central rapamycin reduces neuropathic pain by acting both on an mTOR-positive subset of A-nociceptors and lamina I projection neurons and suggest a new pharmacological route for therapeutic intervention in persistent pain states.
AbstractList Translational control through the mammalian target of rapamycin (mTOR) is critical for synaptic plasticity, cell growth, and axon guidance. Recently, it was also shown that mTOR signaling was essential for the maintenance of the sensitivity of subsets of adult sensory neurons. Here, we show that persistent pain states, but not acute pain behavior, are substantially alleviated by centrally administered rapamycin, an inhibitor of the mTOR pathway. We demonstrate that rapamycin modulates nociception by acting on subsets of primary afferents and superficial dorsal horn neurons to reduce both primary afferent sensitivity and central plasticity. We found that the active form of mTOR is present in a subpopulation of myelinated dorsal root axons, but rarely in unmyelinated C-fibers, and heavily expressed in the dorsal horn by lamina I/III projection neurons that are known to mediate the induction and maintenance of pain states. Intrathecal injections of rapamycin inhibited the activation of downstream targets of mTOR in dorsal horn and dorsal roots and reduced the thermal sensitivity of A-fibers. Moreover, in vitro studies showed that rapamycin increased the electrical activation threshold of Aδ-fibers in dorsal roots. Together, our results imply that central rapamycin reduces neuropathic pain by acting both on an mTOR-positive subset of A-nociceptors and lamina I projection neurons and suggest a new pharmacological route for therapeutic intervention in persistent pain states.
Translational control through the mammalian target of rapamycin (mTOR) is critical for synaptic plasticity, cell growth, and axon guidance. Recently, it was also shown that mTOR signaling was essential for the maintenance of the sensitivity of subsets of adult sensory neurons. Here, we show that persistent pain states, but not acute pain behavior, are substantially alleviated by centrally administered rapamycin, an inhibitor of the mTOR pathway. We demonstrate that rapamycin modulates nociception by acting on subsets of primary afferents and superficial dorsal horn neurons to reduce both primary afferent sensitivity and central plasticity. We found that the active form of mTOR is present in a subpopulation of myelinated dorsal root axons, but rarely in unmyelinated C-fibers, and heavily expressed in the dorsal horn by lamina I/III projection neurons that are known to mediate the induction and maintenance of pain states. Intrathecal injections of rapamycin inhibited the activation of downstream targets of mTOR in dorsal horn and dorsal roots and reduced the thermal sensitivity of A-fibers. Moreover, in vitro studies showed that rapamycin increased the electrical activation threshold of Adelta-fibers in dorsal roots. Together, our results imply that central rapamycin reduces neuropathic pain by acting both on an mTOR-positive subset of A-nociceptors and lamina I projection neurons and suggest a new pharmacological route for therapeutic intervention in persistent pain states.Translational control through the mammalian target of rapamycin (mTOR) is critical for synaptic plasticity, cell growth, and axon guidance. Recently, it was also shown that mTOR signaling was essential for the maintenance of the sensitivity of subsets of adult sensory neurons. Here, we show that persistent pain states, but not acute pain behavior, are substantially alleviated by centrally administered rapamycin, an inhibitor of the mTOR pathway. We demonstrate that rapamycin modulates nociception by acting on subsets of primary afferents and superficial dorsal horn neurons to reduce both primary afferent sensitivity and central plasticity. We found that the active form of mTOR is present in a subpopulation of myelinated dorsal root axons, but rarely in unmyelinated C-fibers, and heavily expressed in the dorsal horn by lamina I/III projection neurons that are known to mediate the induction and maintenance of pain states. Intrathecal injections of rapamycin inhibited the activation of downstream targets of mTOR in dorsal horn and dorsal roots and reduced the thermal sensitivity of A-fibers. Moreover, in vitro studies showed that rapamycin increased the electrical activation threshold of Adelta-fibers in dorsal roots. Together, our results imply that central rapamycin reduces neuropathic pain by acting both on an mTOR-positive subset of A-nociceptors and lamina I projection neurons and suggest a new pharmacological route for therapeutic intervention in persistent pain states.
Translational control through the mammalian target of rapamycin (mTOR) is critical for synaptic plasticity, cell growth, and axon guidance. Recently, it was also shown that mTOR signaling was essential for the maintenance of the sensitivity of subsets of adult sensory neurons. Here, we show that persistent pain states, but not acute pain behavior, are substantially alleviated by centrally administered rapamycin, an inhibitor of the mTOR pathway. We demonstrate that rapamycin modulates nociception by acting on subsets of primary afferents and superficial dorsal horn neurons to reduce both primary afferent sensitivity and central plasticity. We found that the active form of mTOR is present in a subpopulation of myelinated dorsal root axons, but rarely in unmyelinated C-fibers, and heavily expressed in the dorsal horn by lamina I/III projection neurons that are known to mediate the induction and maintenance of pain states. Intrathecal injections of rapamycin inhibited the activation of downstream targets of mTOR in dorsal horn and dorsal roots and reduced the thermal sensitivity of A-fibers. Moreover, in vitro studies showed that rapamycin increased the electrical activation threshold of Adelta-fibers in dorsal roots. Together, our results imply that central rapamycin reduces neuropathic pain by acting both on an mTOR-positive subset of A-nociceptors and lamina I projection neurons and suggest a new pharmacological route for therapeutic intervention in persistent pain states.
Author Stuart, Sarah A
Geranton, Sandrine M
Jimenez-Diaz, Lydia
Lumb, Bridget M
Tochiki, Keri K
Torsney, Carole
Leith, J. Lianne
Hunt, Stephen P
Author_xml – sequence: 1
  fullname: Geranton, Sandrine M
– sequence: 2
  fullname: Jimenez-Diaz, Lydia
– sequence: 3
  fullname: Torsney, Carole
– sequence: 4
  fullname: Tochiki, Keri K
– sequence: 5
  fullname: Stuart, Sarah A
– sequence: 6
  fullname: Leith, J. Lianne
– sequence: 7
  fullname: Lumb, Bridget M
– sequence: 8
  fullname: Hunt, Stephen P
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19940197$$D View this record in MEDLINE/PubMed
BookMark eNqFUl1v0zAUtdAQ6wZ_YfIbvKTYcZzUEkKaqg6KJjat7Nm6ce3GyHGK7S703-OqowJeeLJ07_m4OscX6MwPXiN0RcmU8pK9__J18fhwt5ovp6zitCBiWhIiXqBJ3oqirAg9QxNSNqSoq6Y6RxcxfieENIQ2r9A5FSIjRDNB5ho_wBb6vbK-WGkfbbJPGq_sxoOzfoPvIXUj7PEy4kWM2icLDpsh4NRpfLNzDi9-boOO0Q4eDwbf6xBtTBmYqdbjVYKk42v00oCL-s3ze4kebxbf5p-L27tPy_n1baE4LVNh2hnXnLemFtywBqCGCgy0SkFr6JpSaJhihrV5ZNaE1aZSopwZs86jigG7RB-Puttd2-u1ymcEcHIbbA9hLwew8u-Nt53cDE-ynDFCKc8Cb58FwvBjp2OSvY1KOwdeD7soG8bIjFNWZuTVn1Ynj9_ZZsCHI0CFIcagjVQ2h5Fzys7WSUrkoUp5qlIeqpREyEOVmV7_Qz85_I_47kjs7KYbbdAy9uBcPpPKcRxLIasmC-SfwH4BDy-1Lg
CitedBy_id crossref_primary_10_3389_fgene_2018_00470
crossref_primary_10_1016_j_ynpai_2018_04_001
crossref_primary_10_1002_ijc_30213
crossref_primary_10_1080_01616412_2018_1531199
crossref_primary_10_1016_j_pain_2011_07_025
crossref_primary_10_1038_ncomms6472
crossref_primary_10_1016_j_ynpai_2018_100026
crossref_primary_10_1016_j_nbd_2016_09_009
crossref_primary_10_1186_1744_8069_10_39
crossref_primary_10_1186_1744_8069_9_50
crossref_primary_10_1007_s11064_018_2470_6
crossref_primary_10_2174_1566524021666210816093111
crossref_primary_10_1016_j_pbb_2013_07_017
crossref_primary_10_1007_s12264_013_1377_0
crossref_primary_10_4196_kjpp_2021_25_4_365
crossref_primary_10_1016_j_brainres_2010_04_010
crossref_primary_10_1016_j_neuroscience_2010_05_067
crossref_primary_10_7717_peerj_18857
crossref_primary_10_1177_1744806918769426
crossref_primary_10_3389_fphar_2020_558474
crossref_primary_10_1093_jmcb_mjw043
crossref_primary_10_1016_j_ejphar_2020_173266
crossref_primary_10_1172_JCI70236
crossref_primary_10_1016_j_brainres_2013_04_003
crossref_primary_10_1038_nrn3210
crossref_primary_10_2147_JPR_S378490
crossref_primary_10_1523_ENEURO_0436_17_2018
crossref_primary_10_1515_tnsci_2016_0008
crossref_primary_10_1016_j_expneurol_2016_11_009
crossref_primary_10_1016_j_neulet_2013_06_060
crossref_primary_10_3344_kjp_23129
crossref_primary_10_1016_j_bcmd_2015_08_001
crossref_primary_10_1016_j_cub_2014_04_011
crossref_primary_10_3389_fnmol_2023_1172366
crossref_primary_10_1016_j_yexcr_2021_112494
crossref_primary_10_1371_journal_pone_0032581
crossref_primary_10_1016_j_neuroscience_2015_09_013
crossref_primary_10_3390_nu14234995
crossref_primary_10_1016_j_pain_2011_11_021
crossref_primary_10_1097_WNR_0000000000001684
crossref_primary_10_1097_PR9_0000000000000562
crossref_primary_10_1016_j_neulet_2016_02_064
crossref_primary_10_1016_j_biopha_2023_114516
crossref_primary_10_1177_1744806919830240
crossref_primary_10_1124_pharmrev_120_000030
crossref_primary_10_1038_sc_2013_166
crossref_primary_10_1177_1744806916656189
crossref_primary_10_1126_sciadv_adh9603
crossref_primary_10_7554_eLife_12002
crossref_primary_10_1002_ijc_29927
crossref_primary_10_1248_bpb_b22_00861
crossref_primary_10_1016_j_ynpai_2018_02_001
crossref_primary_10_1016_j_neuroscience_2014_06_030
crossref_primary_10_2217_pmt_2018_0091
crossref_primary_10_1038_s41419_020_02966_0
crossref_primary_10_1371_journal_pone_0282205
crossref_primary_10_1016_j_jpain_2010_03_013
crossref_primary_10_1016_j_bioorg_2021_105218
crossref_primary_10_1186_s12990_015_0030_5
crossref_primary_10_1186_s13098_024_01450_5
crossref_primary_10_1016_j_pneurobio_2020_101846
crossref_primary_10_1186_1744_8069_7_83
crossref_primary_10_1186_1744_8069_8_5
crossref_primary_10_1016_j_neulet_2010_08_024
crossref_primary_10_1172_jci_insight_159247
crossref_primary_10_1523_JNEUROSCI_2661_18_2018
crossref_primary_10_1016_j_coph_2011_10_005
crossref_primary_10_1152_jn_00539_2015
crossref_primary_10_1186_s12990_015_0067_5
crossref_primary_10_3389_fnmol_2015_00075
crossref_primary_10_1002_jor_23328
crossref_primary_10_1002_dneu_22133
crossref_primary_10_1007_s11011_016_9889_8
crossref_primary_10_1016_j_ynpai_2018_03_002
crossref_primary_10_1186_1744_8069_7_70
crossref_primary_10_1007_s40263_013_0128_0
crossref_primary_10_1038_srep12444
crossref_primary_10_1080_13813455_2018_1489851
crossref_primary_10_1016_j_ynpai_2018_03_003
crossref_primary_10_1016_j_jpain_2013_01_779
crossref_primary_10_1186_1744_8069_9_14
crossref_primary_10_1007_s12031_019_01322_y
crossref_primary_10_1016_j_jpain_2013_01_778
crossref_primary_10_1177_1099800418804896
crossref_primary_10_3390_ijms241813760
crossref_primary_10_1186_s12974_015_0280_1
crossref_primary_10_1016_j_bbr_2016_05_011
crossref_primary_10_1002_ejp_603
crossref_primary_10_1007_s00018_012_0998_1
crossref_primary_10_14412_1996_7012_2020_1_93_100
crossref_primary_10_1016_j_brainres_2017_01_016
crossref_primary_10_1007_s10549_015_3517_x
crossref_primary_10_1097_j_pain_0000000000002191
crossref_primary_10_1016_j_bja_2024_01_007
crossref_primary_10_1093_brain_awac266
crossref_primary_10_1177_1744806916668868
crossref_primary_10_1007_s11064_015_1564_7
crossref_primary_10_1523_JNEUROSCI_2139_10_2011
crossref_primary_10_1002_wrna_1546
crossref_primary_10_1155_2013_298326
crossref_primary_10_1016_j_bioorg_2024_108076
crossref_primary_10_1016_j_ejphar_2013_02_013
crossref_primary_10_1155_2015_394257
crossref_primary_10_1179_1743132815Y_0000000052
crossref_primary_10_1016_j_ynpai_2020_100050
crossref_primary_10_1523_JNEUROSCI_3947_10_2010
crossref_primary_10_1542_peds_2013_1224
crossref_primary_10_1016_j_pain_2013_03_021
crossref_primary_10_1523_JNEUROSCI_6286_10_2011
crossref_primary_10_1016_j_jpain_2011_12_006
crossref_primary_10_3390_ijms232314503
crossref_primary_10_1093_brain_awaf004
crossref_primary_10_1523_JNEUROSCI_6241_10_2011
crossref_primary_10_1261_rna_2386111
crossref_primary_10_1155_2013_849186
crossref_primary_10_1186_1477_5751_12_13
crossref_primary_10_1016_j_biomaterials_2015_02_069
crossref_primary_10_1097_j_pain_0000000000002658
crossref_primary_10_3390_life11080836
crossref_primary_10_1016_j_pain_2010_07_030
crossref_primary_10_1016_j_tics_2021_01_001
crossref_primary_10_1016_j_ynpai_2024_100159
crossref_primary_10_1172_JCI66241
crossref_primary_10_1016_j_jdermsci_2015_01_001
crossref_primary_10_1016_j_brainresbull_2019_04_016
crossref_primary_10_1016_j_jneuroim_2011_12_018
crossref_primary_10_1097_j_pain_0000000000000478
crossref_primary_10_1098_rstb_2019_0289
crossref_primary_10_1186_1744_8069_9_64
crossref_primary_10_1016_j_neulet_2015_05_046
crossref_primary_10_1016_j_tins_2017_11_006
crossref_primary_10_1097_j_pain_0000000000000197
crossref_primary_10_3389_fnmol_2017_00079
Cites_doi 10.1016/S0306-4522(00)00224-4
10.1016/j.pain.2009.02.006
10.1101/lm.661908
10.1016/0304-3959(88)90026-7
10.1126/science.1080659
10.1038/32904
10.1016/j.conb.2004.05.009
10.1016/0006-8993(90)90618-L
10.1126/science.1131693
10.1152/physrev.00002.2008
10.1016/S0165-6147(00)01496-6
10.1523/JNEUROSCI.21-23-09291.2001
10.1016/j.neuron.2008.10.055
10.1523/JNEUROSCI.4235-04.2005
10.1126/science.1127233
10.1016/j.neuron.2005.10.019
10.1523/JNEUROSCI.18-01-00036.1998
10.1016/S0304-3959(00)00276-1
10.1038/nm1788
10.1523/JNEUROSCI.2429-08.2008
10.1186/1744-8069-5-14
10.1093/brain/124.9.1754
10.1186/1744-8069-5-27
10.1126/science.286.5444.1558
10.1523/JNEUROSCI.3623-08.2009
10.1073/pnas.96.14.7687
10.1016/j.tibs.2006.04.003
10.1007/400_2008_29
10.1126/science.278.5336.275
10.1073/pnas.0705924104
10.1523/JNEUROSCI.20-22-08390.2000
10.1016/S0306-4522(98)00282-6
10.4067/S0716-97602001000200014
10.1016/0304-3959(95)00121-2
10.1523/JNEUROSCI.1306-07.2007
10.1523/JNEUROSCI.3073-04.2005
10.1073/pnas.090034797
10.1523/JNEUROSCI.5229-05.2006
10.1038/nrn1557
10.1006/exnr.1997.6688
10.1038/nn966
10.1073/pnas.012605299
10.1523/JNEUROSCI.2586-07.2007
10.1523/JNEUROSCI.4584-05.2006
10.1016/j.jneumeth.2004.03.020
10.1111/j.1460-9568.2009.06786.x
10.1097/NEN.0b013e31819ac71b
10.1523/JNEUROSCI.4383-07.2007
10.1523/JNEUROSCI.4512-03.2004
10.1002/glia.20871
10.1113/jphysiol.2002.036186
10.1038/328632a0
10.1016/S0028-3908(98)00099-9
10.1016/S0896-6273(03)00770-0
10.1016/j.ejpain.2005.06.009
10.1146/annurev.biochem.68.1.913
10.1523/JNEUROSCI.2423-05.2005
10.1073/pnas.2336098100
10.1523/JNEUROSCI.4103-08.2009
10.1016/0165-0270(85)90026-3
10.1006/dbio.2001.0326
10.1523/JNEUROSCI.4209-06.2006
10.1096/fj.06-6155com
10.1113/jphysiol.2002.031963
10.1371/journal.pone.0001961
ContentType Journal Article
Copyright Copyright © 2009 Society for Neuroscience 0270-6474/09/2915017-11$15.00/0 2009
Copyright_xml – notice: Copyright © 2009 Society for Neuroscience 0270-6474/09/2915017-11$15.00/0 2009
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1523/JNEUROSCI.3451-09.2009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 15027
ExternalDocumentID PMC2830115
19940197
10_1523_JNEUROSCI_3451_09_2009
www29_47_15017
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 085566
– fundername: Medical Research Council
  grantid: G0801381
– fundername: Medical Research Council
  grantid: G0801381(87853)
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: G012717
– fundername: Wellcome Trust
  grantid: 080506
– fundername: Wellcome Trust
  grantid: 85566
GroupedDBID -
2WC
34G
39C
3O-
53G
55
5GY
5RE
5VS
ABFLS
ABIVO
ABPTK
ABUFD
ACNCT
ADACO
ADBBV
ADCOW
AENEX
AETEA
AFFNX
AFMIJ
AIZTS
AJYGW
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FA8
FH7
GX1
H13
HYE
H~9
KQ8
L7B
MVM
O0-
OK1
P0W
P2P
QZG
R.V
RHF
RHI
RPM
TFN
UQL
WH7
WOQ
X
X7M
XJT
ZA5
---
-DZ
-~X
.55
18M
AAFWJ
AAJMC
AAYXX
ABBAR
ACGUR
ADHGD
AFCFT
AFOSN
AFSQR
AHWXS
AOIJS
BTFSW
CITATION
TR2
W8F
YBU
YHG
YKV
YNH
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c512t-fb85e55bf695f37aa6a4afabccabf1d11a73c3f3babcfd036f4c928ffd3ba43a3
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 13:57:16 EDT 2025
Fri Jul 11 05:07:36 EDT 2025
Sat May 31 02:12:33 EDT 2025
Tue Jul 01 02:59:09 EDT 2025
Thu Apr 24 22:52:37 EDT 2025
Tue Nov 10 19:20:02 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 47
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c512t-fb85e55bf695f37aa6a4afabccabf1d11a73c3f3babcfd036f4c928ffd3ba43a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
S.M.G. and L.J.-D. contributed equally to this work.
OpenAccessLink https://www.jneurosci.org/content/jneuro/29/47/15017.full.pdf
PMID 19940197
PQID 733085132
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2830115
proquest_miscellaneous_733085132
pubmed_primary_19940197
crossref_citationtrail_10_1523_JNEUROSCI_3451_09_2009
crossref_primary_10_1523_JNEUROSCI_3451_09_2009
highwire_smallpub1_www29_47_15017
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20091125
2009-11-25
2009-Nov-25
PublicationDateYYYYMMDD 2009-11-25
PublicationDate_xml – month: 11
  year: 2009
  text: 20091125
  day: 25
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2009
Publisher Soc Neuroscience
Society for Neuroscience
Publisher_xml – name: Soc Neuroscience
– name: Society for Neuroscience
References Alvarez (2023041303412676000_29.47.15017.1) 2001; 34
Koenig (2023041303412676000_29.47.15017.33) 2000; 20
2023041303412676000_29.47.15017.31
2023041303412676000_29.47.15017.30
2023041303412676000_29.47.15017.32
2023041303412676000_29.47.15017.35
2023041303412676000_29.47.15017.34
2023041303412676000_29.47.15017.37
2023041303412676000_29.47.15017.36
2023041303412676000_29.47.15017.39
2023041303412676000_29.47.15017.38
2023041303412676000_29.47.15017.9
2023041303412676000_29.47.15017.7
2023041303412676000_29.47.15017.8
2023041303412676000_29.47.15017.60
2023041303412676000_29.47.15017.62
2023041303412676000_29.47.15017.61
2023041303412676000_29.47.15017.20
2023041303412676000_29.47.15017.64
2023041303412676000_29.47.15017.63
2023041303412676000_29.47.15017.22
2023041303412676000_29.47.15017.21
2023041303412676000_29.47.15017.65
Zheng (2023041303412676000_29.47.15017.66) 2001; 21
2023041303412676000_29.47.15017.24
2023041303412676000_29.47.15017.23
2023041303412676000_29.47.15017.26
Rasband (2023041303412676000_29.47.15017.53) 1998; 18
2023041303412676000_29.47.15017.25
2023041303412676000_29.47.15017.28
2023041303412676000_29.47.15017.27
2023041303412676000_29.47.15017.29
2023041303412676000_29.47.15017.5
2023041303412676000_29.47.15017.6
2023041303412676000_29.47.15017.3
2023041303412676000_29.47.15017.51
2023041303412676000_29.47.15017.4
2023041303412676000_29.47.15017.50
2023041303412676000_29.47.15017.2
2023041303412676000_29.47.15017.52
2023041303412676000_29.47.15017.11
2023041303412676000_29.47.15017.55
2023041303412676000_29.47.15017.10
2023041303412676000_29.47.15017.54
2023041303412676000_29.47.15017.13
2023041303412676000_29.47.15017.57
2023041303412676000_29.47.15017.12
2023041303412676000_29.47.15017.56
2023041303412676000_29.47.15017.15
2023041303412676000_29.47.15017.59
2023041303412676000_29.47.15017.14
2023041303412676000_29.47.15017.58
2023041303412676000_29.47.15017.17
2023041303412676000_29.47.15017.16
2023041303412676000_29.47.15017.19
2023041303412676000_29.47.15017.18
2023041303412676000_29.47.15017.40
2023041303412676000_29.47.15017.42
2023041303412676000_29.47.15017.41
2023041303412676000_29.47.15017.44
2023041303412676000_29.47.15017.43
2023041303412676000_29.47.15017.46
2023041303412676000_29.47.15017.45
2023041303412676000_29.47.15017.48
2023041303412676000_29.47.15017.47
2023041303412676000_29.47.15017.49
References_xml – ident: 2023041303412676000_29.47.15017.43
  doi: 10.1016/S0306-4522(00)00224-4
– ident: 2023041303412676000_29.47.15017.28
  doi: 10.1016/j.pain.2009.02.006
– ident: 2023041303412676000_29.47.15017.2
  doi: 10.1101/lm.661908
– ident: 2023041303412676000_29.47.15017.20
  doi: 10.1016/0304-3959(88)90026-7
– ident: 2023041303412676000_29.47.15017.24
  doi: 10.1126/science.1080659
– ident: 2023041303412676000_29.47.15017.12
  doi: 10.1038/32904
– ident: 2023041303412676000_29.47.15017.39
  doi: 10.1016/j.conb.2004.05.009
– ident: 2023041303412676000_29.47.15017.15
  doi: 10.1016/0006-8993(90)90618-L
– ident: 2023041303412676000_29.47.15017.51
  doi: 10.1126/science.1131693
– ident: 2023041303412676000_29.47.15017.63
  doi: 10.1152/physrev.00002.2008
– ident: 2023041303412676000_29.47.15017.22
  doi: 10.1016/S0165-6147(00)01496-6
– volume: 21
  start-page: 9291
  year: 2001
  ident: 2023041303412676000_29.47.15017.66
  article-title: A functional role for intra-axonal protein synthesis during axonal regeneration from adult sensory neurons
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.21-23-09291.2001
– ident: 2023041303412676000_29.47.15017.9
  doi: 10.1016/j.neuron.2008.10.055
– ident: 2023041303412676000_29.47.15017.65
  doi: 10.1523/JNEUROSCI.4235-04.2005
– ident: 2023041303412676000_29.47.15017.25
  doi: 10.1126/science.1127233
– ident: 2023041303412676000_29.47.15017.56
  doi: 10.1016/j.neuron.2005.10.019
– volume: 18
  start-page: 36
  year: 1998
  ident: 2023041303412676000_29.47.15017.53
  article-title: Potassium channel distribution, clustering, and function in remyelinating rat axons
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.18-01-00036.1998
– ident: 2023041303412676000_29.47.15017.11
  doi: 10.1016/S0304-3959(00)00276-1
– ident: 2023041303412676000_29.47.15017.14
  doi: 10.1038/nm1788
– ident: 2023041303412676000_29.47.15017.10
  doi: 10.1523/JNEUROSCI.2429-08.2008
– ident: 2023041303412676000_29.47.15017.59
  doi: 10.1186/1744-8069-5-14
– ident: 2023041303412676000_29.47.15017.37
  doi: 10.1093/brain/124.9.1754
– ident: 2023041303412676000_29.47.15017.3
  doi: 10.1186/1744-8069-5-27
– ident: 2023041303412676000_29.47.15017.44
  doi: 10.1126/science.286.5444.1558
– ident: 2023041303412676000_29.47.15017.16
  doi: 10.1523/JNEUROSCI.3623-08.2009
– ident: 2023041303412676000_29.47.15017.62
  doi: 10.1073/pnas.96.14.7687
– ident: 2023041303412676000_29.47.15017.54
  doi: 10.1016/j.tibs.2006.04.003
– ident: 2023041303412676000_29.47.15017.31
  doi: 10.1007/400_2008_29
– ident: 2023041303412676000_29.47.15017.38
  doi: 10.1126/science.278.5336.275
– ident: 2023041303412676000_29.47.15017.41
  doi: 10.1073/pnas.0705924104
– volume: 20
  start-page: 8390
  year: 2000
  ident: 2023041303412676000_29.47.15017.33
  article-title: Cryptic peripheral ribosomal domains distributed intermittently along mammalian myelinated axons
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.20-22-08390.2000
– ident: 2023041303412676000_29.47.15017.32
  doi: 10.1016/S0306-4522(98)00282-6
– volume: 34
  start-page: 103
  year: 2001
  ident: 2023041303412676000_29.47.15017.1
  article-title: The autonomous axon: a model based on local synthesis of proteins
  publication-title: Biol Res
  doi: 10.4067/S0716-97602001000200014
– ident: 2023041303412676000_29.47.15017.50
  doi: 10.1016/0304-3959(95)00121-2
– ident: 2023041303412676000_29.47.15017.17
  doi: 10.1523/JNEUROSCI.1306-07.2007
– ident: 2023041303412676000_29.47.15017.64
  doi: 10.1523/JNEUROSCI.3073-04.2005
– ident: 2023041303412676000_29.47.15017.6
  doi: 10.1073/pnas.090034797
– ident: 2023041303412676000_29.47.15017.21
  doi: 10.1523/JNEUROSCI.5229-05.2006
– ident: 2023041303412676000_29.47.15017.30
  doi: 10.1038/nrn1557
– ident: 2023041303412676000_29.47.15017.47
  doi: 10.1006/exnr.1997.6688
– ident: 2023041303412676000_29.47.15017.57
  doi: 10.1038/nn966
– ident: 2023041303412676000_29.47.15017.58
  doi: 10.1073/pnas.012605299
– ident: 2023041303412676000_29.47.15017.36
  doi: 10.1523/JNEUROSCI.2586-07.2007
– ident: 2023041303412676000_29.47.15017.60
  doi: 10.1523/JNEUROSCI.4584-05.2006
– ident: 2023041303412676000_29.47.15017.40
  doi: 10.1016/j.jneumeth.2004.03.020
– ident: 2023041303412676000_29.47.15017.48
  doi: 10.1111/j.1460-9568.2009.06786.x
– ident: 2023041303412676000_29.47.15017.55
– ident: 2023041303412676000_29.47.15017.61
  doi: 10.1097/NEN.0b013e31819ac71b
– ident: 2023041303412676000_29.47.15017.49
  doi: 10.1523/JNEUROSCI.4383-07.2007
– ident: 2023041303412676000_29.47.15017.13
  doi: 10.1523/JNEUROSCI.4512-03.2004
– ident: 2023041303412676000_29.47.15017.26
  doi: 10.1002/glia.20871
– ident: 2023041303412676000_29.47.15017.34
  doi: 10.1113/jphysiol.2002.036186
– ident: 2023041303412676000_29.47.15017.23
  doi: 10.1038/328632a0
– ident: 2023041303412676000_29.47.15017.29
  doi: 10.1016/S0028-3908(98)00099-9
– ident: 2023041303412676000_29.47.15017.19
  doi: 10.1016/S0896-6273(03)00770-0
– ident: 2023041303412676000_29.47.15017.5
  doi: 10.1016/j.ejpain.2005.06.009
– ident: 2023041303412676000_29.47.15017.18
  doi: 10.1146/annurev.biochem.68.1.913
– ident: 2023041303412676000_29.47.15017.4
  doi: 10.1523/JNEUROSCI.2423-05.2005
– ident: 2023041303412676000_29.47.15017.7
  doi: 10.1073/pnas.2336098100
– ident: 2023041303412676000_29.47.15017.8
  doi: 10.1523/JNEUROSCI.4103-08.2009
– ident: 2023041303412676000_29.47.15017.46
  doi: 10.1016/0165-0270(85)90026-3
– ident: 2023041303412676000_29.47.15017.52
  doi: 10.1006/dbio.2001.0326
– ident: 2023041303412676000_29.47.15017.45
  doi: 10.1523/JNEUROSCI.4209-06.2006
– ident: 2023041303412676000_29.47.15017.42
  doi: 10.1096/fj.06-6155com
– ident: 2023041303412676000_29.47.15017.35
  doi: 10.1113/jphysiol.2002.031963
– ident: 2023041303412676000_29.47.15017.27
  doi: 10.1371/journal.pone.0001961
SSID ssj0007017
Score 2.383892
Snippet Translational control through the mammalian target of rapamycin (mTOR) is critical for synaptic plasticity, cell growth, and axon guidance. Recently, it was...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15017
SubjectTerms Afferent Pathways - cytology
Afferent Pathways - drug effects
Afferent Pathways - metabolism
Animals
Hyperalgesia - metabolism
Hyperalgesia - physiopathology
Immunosuppressive Agents - pharmacology
Male
Nerve Fibers, Myelinated - physiology
Nerve Fibers, Myelinated - ultrastructure
Nociceptors - cytology
Nociceptors - drug effects
Nociceptors - metabolism
Pain - metabolism
Pain - physiopathology
Pain Measurement
Pain Threshold - drug effects
Pain Threshold - physiology
Peripheral Nervous System Diseases - metabolism
Peripheral Nervous System Diseases - physiopathology
Posterior Horn Cells - cytology
Posterior Horn Cells - drug effects
Posterior Horn Cells - metabolism
Protein Kinases - metabolism
Rats
Rats, Sprague-Dawley
Rats, Wistar
Sciatic Neuropathy - metabolism
Sciatic Neuropathy - physiopathology
Sirolimus - pharmacology
Spinal Nerve Roots - cytology
Spinal Nerve Roots - drug effects
Spinal Nerve Roots - metabolism
Spinothalamic Tracts - physiology
TOR Serine-Threonine Kinases
Title A Rapamycin-Sensitive Signaling Pathway Is Essential for the Full Expression of Persistent Pain States
URI http://www.jneurosci.org/cgi/content/abstract/29/47/15017
https://www.ncbi.nlm.nih.gov/pubmed/19940197
https://www.proquest.com/docview/733085132
https://pubmed.ncbi.nlm.nih.gov/PMC2830115
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFAeOScZGREC9TuiWOk_qx2oDRoUmITtpb5FysRWrdqklVdf-D_8s5dm6FIi4vUeTESZTvi3PO8TmfCXnnc1_kXIQul0K4QSiFCz895YosSISELyxLjNrnVXhxHUxu-M1g8L2XtbSukmF6t7eu5H9QhTbAFatk_wHZ9qLQAPuAL2wBYdj-FcbjY1y_fL5NC-2WmIlu8oAwJUPaKnMw7zZyi4uWo0S4rgpbrmisTQy8o8C_TYQ1VuMSg2cAu66ga6GPTbVR2bdfu0oyY8P21DBbgnyyc-8rszqxDTrrDGsMu8DrpJjbk3R-556b3XNpItlftlnR_iimi1VZJ6OZvJS8O5DeFna97Ut4z3WotoldCCzis3XOw7web30zweP1B-Q6BGKJZ_U46-EVrFdb6fnLwM-NAMXkCvMfv519HrKAe-6pqUQS_Q4A4HJu6ICiyGDfRt2PsE1PbA7dI_d98D5w-Lz82onQR_AQdbE53PZk_02NGq29zK7J08hQ73Npfs7M7Zk600fkYY0vHVvCPSaDXD8hh2Mtq8V8S99TkzVspmMOiRrTPRykLQdpzUFalLTlIAUOUuAgRQ7SjoN0oWjHQYocpJaDT8n1xw_Tswu3XrvDTcGErFyVjHjOeaJCwRWLpAxlIJVMYMBIlJd5noxYyhRLoEllYEapIBX-SKkMmgIm2TNyoBc6f0GoxzNPSBZmOZi7iRIj1BCMwM_yFTj30nMIb15vnNbC9ri-yixGBxcQiluEYkQoPhW4-KpwyEnbb2mlXf7Y422DXlzO5WwGYHnxZrPxRRxEsWGnQ2gDawwjNU6_SZ0v1mUcMYb-DfMd8tyi3N22ZopDoh382xNQBH73iC5ujRg8CviBV3f022u-JA-6T-8VOahW6_w1GNJV8sbQ-gdlOsqa
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+rapamycin-sensitive+signaling+pathway+is+essential+for+the+full+expression+of+persistent+pain+states&rft.jtitle=The+Journal+of+neuroscience&rft.au=G%C3%A9ranton%2C+Sandrine+M&rft.au=Jim%C3%A9nez-D%C3%ADaz%2C+Lydia&rft.au=Torsney%2C+Carole&rft.au=Tochiki%2C+Keri+K&rft.date=2009-11-25&rft.eissn=1529-2401&rft.volume=29&rft.issue=47&rft.spage=15017&rft_id=info:doi/10.1523%2FJNEUROSCI.3451-09.2009&rft_id=info%3Apmid%2F19940197&rft.externalDocID=19940197
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon