From Discovery to the First Month of the Type II Supernova 2023ixf: High and Variable Mass Loss in the Final Year before Explosion

We present the discovery of the Type II supernova SN 2023ixf in M101 and follow-up photometric and spectroscopic observations, respectively, in the first month and week of its evolution. Our discovery was made within a day of estimated first light, and the following light curve is characterized by a...

Full description

Saved in:
Bibliographic Details
Published inAstrophysical journal. Letters Vol. 955; no. 1; p. L8
Main Authors Hiramatsu, Daichi, Tsuna, Daichi, Berger, Edo, Itagaki, Koichi, Goldberg, Jared A., Gomez, Sebastian, Kishalay De, Hosseinzadeh, Griffin, Bostroem, K. Azalee, Brown, Peter J., Arcavi, Iair, Bieryla, Allyson, Blanchard, Peter K., Esquerdo, Gilbert A., Farah, Joseph, Howell, D. Andrew, Matsumoto, Tatsuya, McCully, Curtis, Newsome, Megan, Gonzalez, Estefania Padilla, Pellegrino, Craig, Rhee, Jaehyon, Terreran, Giacomo, Vinkó, József, Wheeler, J. Craig
Format Journal Article
LanguageEnglish
Published Austin The American Astronomical Society 01.09.2023
IOP Publishing
Subjects
Online AccessGet full text
ISSN2041-8205
2041-8213
DOI10.3847/2041-8213/acf299

Cover

Abstract We present the discovery of the Type II supernova SN 2023ixf in M101 and follow-up photometric and spectroscopic observations, respectively, in the first month and week of its evolution. Our discovery was made within a day of estimated first light, and the following light curve is characterized by a rapid rise (≈5 days) to a luminous peak ( M V ≈ − 18.2 mag) and plateau ( M V ≈ − 17.6 mag) extending to 30 days with a fast decline rate of ≈0.03 mag day −1 . During the rising phase, U − V color shows blueward evolution, followed by redward evolution in the plateau phase. Prominent flash features of hydrogen, helium, carbon, and nitrogen dominate the spectra up to ≈5 days after first light, with a transition to a higher ionization state in the first ≈2 days. Both the U − V color and flash ionization states suggest a rise in the temperature, indicative of a delayed shock breakout inside dense circumstellar material (CSM). From the timescales of CSM interaction, we estimate its compact radial extent of ∼(3–7) × 10 14 cm. We then construct numerical light-curve models based on both continuous and eruptive mass-loss scenarios shortly before explosion. For the continuous mass-loss scenario, we infer a range of mass-loss history with 0.1–1.0 M ⊙ yr −1 in the final 2−1 yr before explosion, with a potentially decreasing mass loss of 0.01–0.1 M ⊙ yr −1 in ∼0.7–0.4 yr toward the explosion. For the eruptive mass-loss scenario, we favor eruptions releasing 0.3–1 M ⊙ of the envelope at about a year before explosion, which result in CSM with mass and extent similar to the continuous scenario. We discuss the implications of the available multiwavelength constraints obtained thus far on the progenitor candidate and SN 2023ixf to our variable CSM models.
AbstractList We present the discovery of the Type II supernova SN 2023ixf in M101 and follow-up photometric and spectroscopic observations, respectively, in the first month and week of its evolution. Our discovery was made within a day of estimated first light, and the following light curve is characterized by a rapid rise (≈5 days) to a luminous peak ( M V ≈ − 18.2 mag) and plateau ( M V ≈ − 17.6 mag) extending to 30 days with a fast decline rate of ≈0.03 mag day −1 . During the rising phase, U − V color shows blueward evolution, followed by redward evolution in the plateau phase. Prominent flash features of hydrogen, helium, carbon, and nitrogen dominate the spectra up to ≈5 days after first light, with a transition to a higher ionization state in the first ≈2 days. Both the U − V color and flash ionization states suggest a rise in the temperature, indicative of a delayed shock breakout inside dense circumstellar material (CSM). From the timescales of CSM interaction, we estimate its compact radial extent of ∼(3–7) × 10 14 cm. We then construct numerical light-curve models based on both continuous and eruptive mass-loss scenarios shortly before explosion. For the continuous mass-loss scenario, we infer a range of mass-loss history with 0.1–1.0 M ⊙ yr −1 in the final 2−1 yr before explosion, with a potentially decreasing mass loss of 0.01–0.1 M ⊙ yr −1 in ∼0.7–0.4 yr toward the explosion. For the eruptive mass-loss scenario, we favor eruptions releasing 0.3–1 M ⊙ of the envelope at about a year before explosion, which result in CSM with mass and extent similar to the continuous scenario. We discuss the implications of the available multiwavelength constraints obtained thus far on the progenitor candidate and SN 2023ixf to our variable CSM models.
We present the discovery of the Type II supernova SN 2023ixf in M101 and follow-up photometric and spectroscopic observations, respectively, in the first month and week of its evolution. Our discovery was made within a day of estimated first light, and the following light curve is characterized by a rapid rise (≈5 days) to a luminous peak (MV ≈ − 18.2 mag) and plateau (MV ≈ − 17.6 mag) extending to 30 days with a fast decline rate of ≈0.03 mag day−1. During the rising phase, U − V color shows blueward evolution, followed by redward evolution in the plateau phase. Prominent flash features of hydrogen, helium, carbon, and nitrogen dominate the spectra up to ≈5 days after first light, with a transition to a higher ionization state in the first ≈2 days. Both the U−V color and flash ionization states suggest a rise in the temperature, indicative of a delayed shock breakout inside dense circumstellar material (CSM). From the timescales of CSM interaction, we estimate its compact radial extent of ∼(3–7) × 1014 cm. We then construct numerical light-curve models based on both continuous and eruptive mass-loss scenarios shortly before explosion. For the continuous mass-loss scenario, we infer a range of mass-loss history with 0.1–1.0 M⊙ yr−1 in the final 2−1 yr before explosion, with a potentially decreasing mass loss of 0.01–0.1 M⊙ yr−1 in ∼0.7–0.4 yr toward the explosion. For the eruptive mass-loss scenario, we favor eruptions releasing 0.3–1 M⊙ of the envelope at about a year before explosion, which result in CSM with mass and extent similar to the continuous scenario. We discuss the implications of the available multiwavelength constraints obtained thus far on the progenitor candidate and SN 2023ixf to our variable CSM models.
We present the discovery of the Type II supernova SN 2023ixf in M101 and follow-up photometric and spectroscopic observations, respectively, in the first month and week of its evolution. Our discovery was made within a day of estimated first light, and the following light curve is characterized by a rapid rise (≈5 days) to a luminous peak ( M _V ≈ − 18.2 mag) and plateau ( M _V ≈ − 17.6 mag) extending to 30 days with a fast decline rate of ≈0.03 mag day ^−1 . During the rising phase, U − V color shows blueward evolution, followed by redward evolution in the plateau phase. Prominent flash features of hydrogen, helium, carbon, and nitrogen dominate the spectra up to ≈5 days after first light, with a transition to a higher ionization state in the first ≈2 days. Both the U − V color and flash ionization states suggest a rise in the temperature, indicative of a delayed shock breakout inside dense circumstellar material (CSM). From the timescales of CSM interaction, we estimate its compact radial extent of ∼(3–7) × 10 ^14 cm. We then construct numerical light-curve models based on both continuous and eruptive mass-loss scenarios shortly before explosion. For the continuous mass-loss scenario, we infer a range of mass-loss history with 0.1–1.0 M _⊙ yr ^−1 in the final 2−1 yr before explosion, with a potentially decreasing mass loss of 0.01–0.1 M _⊙ yr ^−1 in ∼0.7–0.4 yr toward the explosion. For the eruptive mass-loss scenario, we favor eruptions releasing 0.3–1 M _⊙ of the envelope at about a year before explosion, which result in CSM with mass and extent similar to the continuous scenario. We discuss the implications of the available multiwavelength constraints obtained thus far on the progenitor candidate and SN 2023ixf to our variable CSM models.
Author Gonzalez, Estefania Padilla
Arcavi, Iair
Tsuna, Daichi
Pellegrino, Craig
Esquerdo, Gilbert A.
Terreran, Giacomo
Wheeler, J. Craig
Itagaki, Koichi
Hosseinzadeh, Griffin
Bieryla, Allyson
Goldberg, Jared A.
Kishalay De
Blanchard, Peter K.
McCully, Curtis
Rhee, Jaehyon
Berger, Edo
Gomez, Sebastian
Farah, Joseph
Vinkó, József
Newsome, Megan
Brown, Peter J.
Howell, D. Andrew
Hiramatsu, Daichi
Bostroem, K. Azalee
Matsumoto, Tatsuya
Author_xml – sequence: 1
  givenname: Daichi
  orcidid: 0000-0002-1125-9187
  surname: Hiramatsu
  fullname: Hiramatsu, Daichi
  organization: The NSF AI Institute for Artificial Intelligence and Fundamental Interactions , USA
– sequence: 2
  givenname: Daichi
  orcidid: 0000-0002-6347-3089
  surname: Tsuna
  fullname: Tsuna, Daichi
  organization: The University of Tokyo Research Center for the Early Universe, School of Science, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
– sequence: 3
  givenname: Edo
  orcidid: 0000-0002-9392-9681
  surname: Berger
  fullname: Berger, Edo
  organization: The NSF AI Institute for Artificial Intelligence and Fundamental Interactions , USA
– sequence: 4
  givenname: Koichi
  surname: Itagaki
  fullname: Itagaki, Koichi
  organization: Itagaki Astronomical Observatory , Yamagata 990-2492, Japan
– sequence: 5
  givenname: Jared A.
  orcidid: 0000-0003-1012-3031
  surname: Goldberg
  fullname: Goldberg, Jared A.
  organization: Flatiron Institute Center for Computational Astrophysics, 162 5th Avenue, New York, NY 10010-5902, USA
– sequence: 6
  givenname: Sebastian
  orcidid: 0000-0001-6395-6702
  surname: Gomez
  fullname: Gomez, Sebastian
  organization: Space Telescope Science Institute , 3700 San Martin Drive, Baltimore, MD 21218-2410, USA
– sequence: 7
  orcidid: 0000-0002-8989-0542
  surname: Kishalay De
  fullname: Kishalay De
  organization: MIT-Kavli Institute for Astrophysics and Space Research , 77 Massachusetts Ave., Cambridge, MA 02139, USA
– sequence: 8
  givenname: Griffin
  orcidid: 0000-0002-0832-2974
  surname: Hosseinzadeh
  fullname: Hosseinzadeh, Griffin
  organization: University of Arizona Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA
– sequence: 9
  givenname: K. Azalee
  orcidid: 0000-0002-4924-444X
  surname: Bostroem
  fullname: Bostroem, K. Azalee
  organization: University of Arizona Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA
– sequence: 10
  givenname: Peter J.
  orcidid: 0000-0001-6272-5507
  surname: Brown
  fullname: Brown, Peter J.
  organization: George P. and Cynthia Woods Mitchell Institute for Fundamental Physics & Astronomy , College Station, TX 77843, USA
– sequence: 11
  givenname: Iair
  orcidid: 0000-0001-7090-4898
  surname: Arcavi
  fullname: Arcavi, Iair
  organization: Tel Aviv University School of Physics and Astronomy, Tel Aviv 69978, Israel
– sequence: 12
  givenname: Allyson
  orcidid: 0000-0001-6637-5401
  surname: Bieryla
  fullname: Bieryla, Allyson
  organization: Center for Astrophysics ∣ Harvard & Smithsonian , 60 Garden Street, Cambridge, MA 02138-1516, USA
– sequence: 13
  givenname: Peter K.
  orcidid: 0000-0003-0526-2248
  surname: Blanchard
  fullname: Blanchard, Peter K.
  organization: Northwestern University Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, 1800 Sherman Avenue, 8th Floor, Evanston, IL 60201, USA
– sequence: 14
  givenname: Gilbert A.
  orcidid: 0000-0002-9789-5474
  surname: Esquerdo
  fullname: Esquerdo, Gilbert A.
  organization: Center for Astrophysics ∣ Harvard & Smithsonian , 60 Garden Street, Cambridge, MA 02138-1516, USA
– sequence: 15
  givenname: Joseph
  orcidid: 0000-0003-4914-5625
  surname: Farah
  fullname: Farah, Joseph
  organization: University of California Department of Physics, Santa Barbara, CA 93106-9530, USA
– sequence: 16
  givenname: D. Andrew
  orcidid: 0000-0003-4253-656X
  surname: Howell
  fullname: Howell, D. Andrew
  organization: University of California Department of Physics, Santa Barbara, CA 93106-9530, USA
– sequence: 17
  givenname: Tatsuya
  orcidid: 0000-0002-9350-6793
  surname: Matsumoto
  fullname: Matsumoto, Tatsuya
  organization: Columbia University Department of Physics and Columbia Astrophysics Laboratory, Pupin Hall, New York, NY 10027, USA
– sequence: 18
  givenname: Curtis
  orcidid: 0000-0001-5807-7893
  surname: McCully
  fullname: McCully, Curtis
  organization: University of California Department of Physics, Santa Barbara, CA 93106-9530, USA
– sequence: 19
  givenname: Megan
  orcidid: 0000-0001-9570-0584
  surname: Newsome
  fullname: Newsome, Megan
  organization: University of California Department of Physics, Santa Barbara, CA 93106-9530, USA
– sequence: 20
  givenname: Estefania Padilla
  orcidid: 0000-0003-0209-9246
  surname: Gonzalez
  fullname: Gonzalez, Estefania Padilla
  organization: University of California Department of Physics, Santa Barbara, CA 93106-9530, USA
– sequence: 21
  givenname: Craig
  orcidid: 0000-0002-7472-1279
  surname: Pellegrino
  fullname: Pellegrino, Craig
  organization: University of California Department of Physics, Santa Barbara, CA 93106-9530, USA
– sequence: 22
  givenname: Jaehyon
  orcidid: 0000-0001-9214-7437
  surname: Rhee
  fullname: Rhee, Jaehyon
  organization: Yonsei University Department of Physics, Seoul 03722, Republic of Korea
– sequence: 23
  givenname: Giacomo
  orcidid: 0000-0003-0794-5982
  surname: Terreran
  fullname: Terreran, Giacomo
  organization: University of California Department of Physics, Santa Barbara, CA 93106-9530, USA
– sequence: 24
  givenname: József
  orcidid: 0000-0001-8764-7832
  surname: Vinkó
  fullname: Vinkó, József
  organization: University of Szeged Department of Experimental Physics, Dóm tér 9, Szeged, 6720, Hungary
– sequence: 25
  givenname: J. Craig
  orcidid: 0000-0003-1349-6538
  surname: Wheeler
  fullname: Wheeler, J. Craig
  organization: University of Texas at Austin , 1 University Station C1400, Austin, TX 78712-0259, USA
BookMark eNp9UUtPGzEYtBCVePXeo6WKW1P82o3dW0UJRArqAajUk-X1fiaOlvXWdhC59pfjsBQkVHHxZ41m5nvMAdrtQw8IfaLkK5diesKIoBPJKD8x1jGldtD-C7T78ifVHjpIaUUIIzWV--jvLIY7_MMnG-4hbnAOOC8Bz3xMGV-GPi9xcE_Q9WYAPJ_jq_UAsQ_3BjPCuH9w3_CFv11i07f4l4neNB3gS5MSXoTy-P7ZsDcd_g0m4gZciIDPHoYuJB_6I_TBmS7Bx-d6iG5mZ9enF5PFz_P56ffFxFaU5YnjUHMrFFinnGAwJdY11lHqaOu4oOCANtZKOaWKOVWpSrbCtFxyxeWUc36I5qNvG8xKD9HfmbjRwXj9BIR4q03M3naghQWm6qZmpYOgjZKsGLvW1W1VvKQqXp9HryGGP2tIWa_COpYVk2ayrgUnjG071iPLxnKKCE5bn00uO-dofKcp0dvs9DYcvQ1Kj9kVIXkj_DfuO5Ivo8SH4XWYd-jH_6GbYdVpVVWa6oXUQ7nrI9sLuA4
CitedBy_id crossref_primary_10_3847_1538_4357_ad4a2a
crossref_primary_10_1093_mnras_staf312
crossref_primary_10_1088_1475_7516_2024_04_083
crossref_primary_10_3847_2041_8213_ad6907
crossref_primary_10_1051_0004_6361_202348642
crossref_primary_10_1051_0004_6361_202453003
crossref_primary_10_3847_1538_4357_ad8bc5
crossref_primary_10_3847_2041_8213_ad5da4
crossref_primary_10_1038_s41586_024_07116_6
crossref_primary_10_3847_1538_4357_ad414b
crossref_primary_10_1051_0004_6361_202451735
crossref_primary_10_1051_0004_6361_202450608
crossref_primary_10_3847_1538_4357_ada555
crossref_primary_10_3847_2041_8213_ad0da8
crossref_primary_10_3847_1538_4357_ad9a62
crossref_primary_10_3847_1538_4357_ad5fe8
crossref_primary_10_3847_2515_5172_ad9eae
crossref_primary_10_3847_1538_4357_ad7955
crossref_primary_10_3847_1538_4357_ad2df7
crossref_primary_10_3847_1538_4357_ad8d5a
crossref_primary_10_3847_1538_4357_ad2704
crossref_primary_10_1007_s11433_023_2267_0
crossref_primary_10_3847_1538_4357_ad5c64
crossref_primary_10_1103_PhysRevD_109_103020
crossref_primary_10_3847_1538_4357_ad11e1
crossref_primary_10_1051_0004_6361_202452758
crossref_primary_10_1093_mnras_stae2012
crossref_primary_10_1051_0004_6361_202349061
crossref_primary_10_1051_0004_6361_202348183
crossref_primary_10_3847_1538_4357_ad4be3
crossref_primary_10_3847_1538_4357_ad8ac8
crossref_primary_10_1051_0004_6361_202348142
crossref_primary_10_1093_mnras_stae2784
crossref_primary_10_1093_pasj_psae070
crossref_primary_10_3847_1538_4357_acef22
crossref_primary_10_3847_2041_8213_ad62f7
crossref_primary_10_3847_2041_8213_ad7855
crossref_primary_10_3847_1538_4357_ad5666
crossref_primary_10_3847_2041_8213_ada1cd
crossref_primary_10_5817_OEJV2024_0247
crossref_primary_10_3847_2041_8213_acf9a4
crossref_primary_10_3847_1538_4357_ad0da4
crossref_primary_10_3847_1538_4357_ad2a49
crossref_primary_10_3847_1538_4357_ad973d
crossref_primary_10_3847_1538_4357_ad9bad
crossref_primary_10_3847_2041_8213_ad275d
crossref_primary_10_3847_2041_8213_adbb63
crossref_primary_10_3847_1538_4357_ad7de3
crossref_primary_10_3847_1538_4357_ad8cd8
crossref_primary_10_3847_1538_4357_adb0bb
crossref_primary_10_3847_1538_4357_ad3de8
crossref_primary_10_1051_0004_6361_202450440
crossref_primary_10_1038_s41586_023_06843_6
crossref_primary_10_3847_1538_4357_ad87f4
Cites_doi 10.1051/0004-6361/201730942
10.3847/1538-4357/abf6d6
10.1088/1538-3873/aabadf
10.1086/306571
10.3847/1538-4357/ac892c
10.1088/0004-637X/789/2/104
10.3847/1538-4365/aa8992
10.1088/1538-3873/ab6069
10.1093/mnras/sty475
10.1146/annurev-astro-082708-101737
10.3847/2041-8213/acef20
10.1088/1538-3873/ab936e
10.1086/173557
10.1093/pasj/psab063
10.1134/1.1958107
10.1088/1538-3873/128/969/115005
10.3847/1538-4357/abe2b1
10.1088/0004-637X/780/1/21
10.3847/2041-8213/ace4ca
10.1088/0004-6256/147/5/108
10.1086/113329
10.3847/1538-4357/acc536
10.3847/1538-4357/ac90c0
10.1093/mnras/staa1540
10.1088/1538-3873/ab006c
10.1086/670067
10.1088/0004-637X/792/1/30
10.26131/IRSA525
10.3847/1538-4357/abe938
10.1088/0004-637X/725/1/904
10.3847/1538-4357/ab1c61
10.3847/0004-637X/830/1/27
10.5281/zenodo.6825092
10.3847/2041-8213/ace4c4
10.3847/1538-4365/ab2241
10.1117/12.2055117
10.1088/0004-637X/786/1/67
10.1093/mnras/stac2427
10.3847/1538-4357/ac60fe
10.1086/116242
10.3847/1538-4357/acbbc6
10.5281/zenodo.3629446
10.1088/0004-6256/140/6/1868
10.1088/0004-6256/145/2/44
10.1093/mnras/sty1966
10.3847/1538-4357/aaa6ca
10.3847/1538-4357/abbf49
10.1051/aas:1996164
10.1086/173117
10.1088/1538-3873/aaecbe
10.1088/0004-637X/720/2/1118
10.3847/2041-8213/ace88b
10.1088/0067-0049/192/1/3
10.1051/0004-6361/201833779
10.1038/nphys4025
10.3847/1538-4357/ac83bc
10.3847/1538-3881/aabc4f
10.3847/2041-8213/ace618
10.1088/2041-8205/808/2/L51
10.1093/mnras/staa255
10.1088/1538-3873/aaa53f
10.1086/305375
10.1088/0004-637X/737/2/103
10.1007/s10509-014-2059-8
10.1038/nature11877
10.1088/0067-0049/220/1/15
10.3847/1538-4365/aaa5a8
10.1088/0004-637X/759/2/108
10.5281/zenodo.1257560
10.1017/pasa.2015.17
10.1117/12.316766
10.1023/B:ASTR.0000022161.03559.42
10.3847/1538-4357/abd032
10.1117/12.551456
10.1111/j.1365-2966.2012.21796.x
10.1051/0004-6361/201937226
10.1038/s41550-018-0563-4
10.1109/MCSE.2007.55
10.3847/0004-637X/821/1/38
10.1086/316293
10.1086/673168
10.3847/1538-4357/ac3820
10.3847/2041-8213/ace0c4
10.1088/0004-637X/703/2/2205
10.1088/0004-637X/814/1/63
10.3847/2041-8213/acdf4e
10.3847/2041-8213/ab77c8
10.1088/0067-0049/208/1/4
10.1093/mnras/sty3185
10.1093/pasj/psad051
10.3847/1538-4357/ab22b6
10.1038/s41550-021-01384-2
10.1086/316111
10.1093/mnras/stw870
10.1088/2041-8205/717/1/L62
10.1093/mnras/stw2708
10.3847/1538-4365/abb82d
10.1051/0004-6361:20054594
10.1038/nature13304
10.1093/mnras/stx291
10.3847/2041-8213/ac5c5b
10.1088/1538-3873/aae8ac
10.3847/1538-4357/aab9a6
10.3847/1538-4357/acdb71
10.1086/308588
10.1038/s41592-019-0686-2
10.3847/2041-8213/ab9300
10.3847/1538-4357/ac3f3a
10.3847/1538-3881/aacbcd
ContentType Journal Article
Copyright 2023. The Author(s). Published by the American Astronomical Society.
2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. The Author(s). Published by the American Astronomical Society.
– notice: 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOA
DOI 10.3847/2041-8213/acf299
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef
Aerospace Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 2041-8213
ExternalDocumentID oai_doaj_org_article_4ce296b62fbc41b982cc8fdf6d538789
10_3847_2041_8213_acf299
apjlacf299
GroupedDBID 1JI
2FS
4.4
6J9
AAFWJ
AAGCD
AAJIO
ABDNZ
ABHWH
ACGFS
ACHIP
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
EBS
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
N5L
O3W
O43
OK1
PJBAE
RIN
ROL
SY9
T37
TSCCA
~02
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
ID FETCH-LOGICAL-c512t-f3e63c49ecf9f42e70cfbcf11f1df341efe1bcc887192f95958d4ad3839387333
IEDL.DBID O3W
ISSN 2041-8205
IngestDate Wed Aug 27 01:32:08 EDT 2025
Wed Aug 13 04:21:56 EDT 2025
Thu Apr 24 23:14:06 EDT 2025
Tue Jul 01 04:12:05 EDT 2025
Wed Aug 21 03:40:49 EDT 2024
Wed Sep 27 04:07:33 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-f3e63c49ecf9f42e70cfbcf11f1df341efe1bcc887192f95958d4ad3839387333
Notes High-Energy Phenomena and Fundamental Physics
AAS48051
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8764-7832
0000-0003-0526-2248
0000-0003-4914-5625
0000-0003-0794-5982
0000-0001-7090-4898
0000-0001-9214-7437
0000-0001-6637-5401
0000-0003-4253-656X
0000-0002-0832-2974
0000-0002-8989-0542
0000-0002-9789-5474
0000-0002-7472-1279
0000-0001-5807-7893
0000-0001-9570-0584
0000-0003-1349-6538
0000-0001-6272-5507
0000-0002-9392-9681
0000-0001-6395-6702
0000-0002-4924-444X
0000-0003-0209-9246
0000-0002-9350-6793
0000-0002-1125-9187
0000-0002-6347-3089
0000-0003-1012-3031
OpenAccessLink https://iopscience.iop.org/article/10.3847/2041-8213/acf299
PQID 2866430223
PQPubID 4562431
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_4ce296b62fbc41b982cc8fdf6d538789
crossref_citationtrail_10_3847_2041_8213_acf299
proquest_journals_2866430223
crossref_primary_10_3847_2041_8213_acf299
iop_journals_10_3847_2041_8213_acf299
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Austin
PublicationPlace_xml – name: Austin
PublicationTitle Astrophysical journal. Letters
PublicationTitleAbbrev APJL
PublicationTitleAlternate Astrophys. J. Lett
PublicationYear 2023
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Berger (apjlacf299bib8) 2023; 951
Khatami (apjlacf299bib61) 2023
Baklanov (apjlacf299bib5) 2005; 31
Yaron (apjlacf299bib144) 2023; 2023-126
Soraisam (apjlacf299bib117) 2023
Global Supernova Project (apjlacf299bib52) 2017; 230
Landolt (apjlacf299bib67) 1983; 88
Beasor (apjlacf299bib6) 2020; 492
Fitzpatrick (apjlacf299bib34) 1999; 111
Pledger (apjlacf299bib103) 2023; 953
Blinnikov (apjlacf299bib12) 2004; 290
Haynie (apjlacf299bib47) 2021; 910
Hu (apjlacf299bib53) 2018; 854
Morozova (apjlacf299bib85) 2020; 891
Hosseinzadeh (apjlacf299bib51) 2023; 953
Smartt (apjlacf299bib113) 2009; 47
Hunter (apjlacf299bib54) 2007; 9
Mink (apjlacf299bib82) 2007
Smith (apjlacf299bib116) 2023
De (apjlacf299bib28) 2020; 132
Piro (apjlacf299bib102) 2021; 909
Breeveld (apjlacf299bib19) 2011
Piascik (apjlacf299bib100) 2014; 9147
Graham (apjlacf299bib45) 2019; 131
Paxton (apjlacf299bib94) 2013; 208
Piro (apjlacf299bib101) 2015; 808
Chevalier (apjlacf299bib25) 1994; 420
Terreran (apjlacf299bib128) 2022; 926
Lundquist (apjlacf299bib70) 2023; 160
Smartt (apjlacf299bib114) 2015; 32
Masci (apjlacf299bib75) 2023
Szentgyorgyi (apjlacf299bib124) 2007
Zhang (apjlacf299bib149) 2023; 132
de Vaucouleurs (apjlacf299bib29) 1991
Smith (apjlacf299bib115) 2020; 132
Goldberg (apjlacf299bib41) 2019; 879
Zacharias (apjlacf299bib147) 2013; 145
Margutti (apjlacf299bib73) 2014; 780
Vasylyev (apjlacf299bib138) 2023
Goldman (apjlacf299bib42) 2017; 465
Chufarin (apjlacf299bib26) 2023; 150
Kasen (apjlacf299bib60) 2009; 703
Mainzer (apjlacf299bib71) 2014; 792
UnWISE Team (apjlacf299bib135) 2021
Sgro (apjlacf299bib110) 2023; 7
Nakar (apjlacf299bib88) 2010; 725
Flewelling (apjlacf299bib35) 2020; 251
Johnson (apjlacf299bib59) 2018; 480
Riess (apjlacf299bib106) 2022; 934
Singh Teja (apjlacf299bib112) 2023; 954
Waskom (apjlacf299bib141) 2020
Astropy Collaboration (apjlacf299bib4) 2018; 156
Davies (apjlacf299bib27) 2022; 517
Oliphant (apjlacf299bib92) 2006
Virtanen (apjlacf299bib139) 2020; 17
Matsumoto (apjlacf299bib76) 2022; 936
Steele (apjlacf299bib118) 2004; 5489
Perley (apjlacf299bib98) 2023; 119
Hiramatsu (apjlacf299bib48) 2021; 913
Landolt (apjlacf299bib68) 1992; 104
Arcavi (apjlacf299bib2) 2017
Morozova (apjlacf299bib86) 2015; 814
Hiramatsu (apjlacf299bib49) 2021; 5
Paxton (apjlacf299bib97) 2019; 243
Itagaki (apjlacf299bib55) 2023; 2023-1158
Kozyreva (apjlacf299bib65) 2019; 483
Takei (apjlacf299bib126) 2022; 929
Fabricant (apjlacf299bib31) 1998; 110
Fan (apjlacf299bib32) 2016; 128
Paxton (apjlacf299bib93) 2011; 192
Blinnikov (apjlacf299bib13) 1998; 496
Valenti (apjlacf299bib136) 2016; 459
Chambers (apjlacf299bib23) 2016
Wright (apjlacf299bib142) 2010; 140
Brown (apjlacf299bib20) 2014; 354
Yamanaka (apjlacf299bib143) 2023
Blinnikov (apjlacf299bib14) 2006; 453
Perley (apjlacf299bib99) 2023; 120
Ofek (apjlacf299bib90) 2013; 494
Fulton (apjlacf299bib38) 2023; 124
Bellm (apjlacf299bib7) 2019; 131
Bostroem (apjlacf299bib17) 2023
McCully (apjlacf299bib79) 2018
Grefenstette (apjlacf299bib46) 2023; 952
Dessart (apjlacf299bib30) 2017; 605
Gomez (apjlacf299bib43) 2020; 904
Bertin (apjlacf299bib9) 1996; 117
Kochanek (apjlacf299bib63) 2017; 467
Tsuna (apjlacf299bib132) 2023; 952
Tonry (apjlacf299bib130) 2018; 130
Tsuna (apjlacf299bib134) 2023; 945
Goldberg (apjlacf299bib40) 2020; 895
Gomez (apjlacf299bib44) 2023; 949
Masci (apjlacf299bib74) 2019; 131
Boian (apjlacf299bib15) 2019; 621
Matthews (apjlacf299bib77) 2023; 16091
Arcavi (apjlacf299bib3) 2022; 937
Brown (apjlacf299bib21) 2013; 125
Lang (apjlacf299bib69) 2014; 147
Mao (apjlacf299bib72) 2023; 130
Hiramatsu (apjlacf299bib50) 2023
Kilpatrick (apjlacf299bib62) 2023; 952
Jacobson-Galan (apjlacf299bib57) 2023
SDSS Collaboration (apjlacf299bib109) 2017; 233
Szentgyorgyi (apjlacf299bib123) 1998; 3355
VanDyk (apjlacf299bib137) 2017
Jencson (apjlacf299bib58) 2023; 952
Boian (apjlacf299bib16) 2020; 496
Wang (apjlacf299bib140) 2019; 877
Paxton (apjlacf299bib95) 2015; 220
Koltenbah (apjlacf299bib64) 2023; 144
Poznanski (apjlacf299bib105) 2012; 426
Tsang (apjlacf299bib131) 2022; 936
Mink (apjlacf299bib83) 2005
Yaron (apjlacf299bib145) 2017; 13
Meisner (apjlacf299bib80) 2018; 156
Ofek (apjlacf299bib91) 2014; 789
Zackay (apjlacf299bib148) 2016; 830
Sukhbold (apjlacf299bib121) 2016; 821
Bradley (apjlacf299bib18) 2022
Blinnikov (apjlacf299bib11) 2000; 532
Mink (apjlacf299bib81) 2011
Strotjohann (apjlacf299bib120) 2021; 907
Schlafly (apjlacf299bib107) 2011; 737
Shingles (apjlacf299bib111) 2021; 7
Chevalier (apjlacf299bib24) 2017
Tokarz (apjlacf299bib129) 1997
Jacobson-Galán (apjlacf299bib56) 2022; 924
Moriya (apjlacf299bib84) 2018; 476
Anderson (apjlacf299bib1) 2014; 786
Yoon (apjlacf299bib146) 2010; 717
Kuriyama (apjlacf299bib66) 2020; 635
Popov (apjlacf299bib104) 1993; 414
Science Software Branch at STScI (apjlacf299bib108) 2012
Buchhave (apjlacf299bib22) 2010; 720
Paxton (apjlacf299bib96) 2018; 234
Stritzinger (apjlacf299bib119) 2023; 145
Blagorodnova (apjlacf299bib10) 2018; 130
Svirski (apjlacf299bib122) 2012; 759
Szentgyorgyi (apjlacf299bib125) 2005; 207
Teja (apjlacf299bib127) 2023; 2023-123
Matzner (apjlacf299bib78) 1999; 510
Gal-Yam (apjlacf299bib39) 2014; 509
Förster (apjlacf299bib37) 2018; 2
Foreman-Mackey (apjlacf299bib36) 2013; 125
Neustadt (apjlacf299bib89) 2023
Tsuna (apjlacf299bib133) 2021; 73
Filippenko (apjlacf299bib33) 2023; 123
Morozova (apjlacf299bib87) 2018; 858
References_xml – volume: 605
  start-page: A83
  year: 2017
  ident: apjlacf299bib30
  publication-title: A&A
  doi: 10.1051/0004-6361/201730942
– volume: 913
  start-page: 55
  year: 2021
  ident: apjlacf299bib48
  publication-title: ApJ
  doi: 10.3847/1538-4357/abf6d6
– volume: 2023-1158
  start-page: 1
  year: 2023
  ident: apjlacf299bib55
  publication-title: TNSTR
– volume: 130
  start-page: 064505
  year: 2018
  ident: apjlacf299bib130
  publication-title: PASP
  doi: 10.1088/1538-3873/aabadf
– volume: 510
  start-page: 379
  year: 1999
  ident: apjlacf299bib78
  publication-title: ApJ
  doi: 10.1086/306571
– year: 2023
  ident: apjlacf299bib61
– volume: 936
  start-page: 114
  year: 2022
  ident: apjlacf299bib76
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac892c
– volume: 789
  start-page: 104
  year: 2014
  ident: apjlacf299bib91
  publication-title: ApJ
  doi: 10.1088/0004-637X/789/2/104
– volume: 233
  start-page: 25
  year: 2017
  ident: apjlacf299bib109
  publication-title: ApJS
  doi: 10.3847/1538-4365/aa8992
– volume: 132
  start-page: 025001
  year: 2020
  ident: apjlacf299bib28
  publication-title: PASP
  doi: 10.1088/1538-3873/ab6069
– volume: 476
  start-page: 2840
  year: 2018
  ident: apjlacf299bib84
  publication-title: MNRAS
  doi: 10.1093/mnras/sty475
– volume: 47
  start-page: 63
  year: 2009
  ident: apjlacf299bib113
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-082708-101737
– volume: 132
  start-page: 1
  year: 2023
  ident: apjlacf299bib149
  publication-title: TNSAN
– volume: 954
  start-page: L12
  year: 2023
  ident: apjlacf299bib112
  publication-title: ApJL
  doi: 10.3847/2041-8213/acef20
– volume: 132
  start-page: 085002
  year: 2020
  ident: apjlacf299bib115
  publication-title: PASP
  doi: 10.1088/1538-3873/ab936e
– volume: 420
  start-page: 268
  year: 1994
  ident: apjlacf299bib25
  publication-title: ApJ
  doi: 10.1086/173557
– volume: 73
  start-page: 1128
  year: 2021
  ident: apjlacf299bib133
  publication-title: PASJ
  doi: 10.1093/pasj/psab063
– year: 2023
  ident: apjlacf299bib50
– volume: 31
  start-page: 429
  year: 2005
  ident: apjlacf299bib5
  publication-title: AstL
  doi: 10.1134/1.1958107
– volume: 128
  start-page: 115005
  year: 2016
  ident: apjlacf299bib32
  publication-title: PASP
  doi: 10.1088/1538-3873/128/969/115005
– volume: 909
  start-page: 209
  year: 2021
  ident: apjlacf299bib102
  publication-title: ApJ
  doi: 10.3847/1538-4357/abe2b1
– volume: 780
  start-page: 21
  year: 2014
  ident: apjlacf299bib73
  publication-title: ApJ
  doi: 10.1088/0004-637X/780/1/21
– volume: 952
  start-page: L23
  year: 2023
  ident: apjlacf299bib62
  publication-title: ApJL
  doi: 10.3847/2041-8213/ace4ca
– start-page: 228
  year: 2005
  ident: apjlacf299bib83
– volume: 147
  start-page: 108
  year: 2014
  ident: apjlacf299bib69
  publication-title: AJ
  doi: 10.1088/0004-6256/147/5/108
– volume: 88
  start-page: 439
  year: 1983
  ident: apjlacf299bib67
  publication-title: AJ
  doi: 10.1086/113329
– volume: 949
  start-page: 114
  year: 2023
  ident: apjlacf299bib44
  publication-title: ApJ
  doi: 10.3847/1538-4357/acc536
– volume: 119
  start-page: 1
  year: 2023
  ident: apjlacf299bib98
  publication-title: TNSAN
– volume: 145
  start-page: 1
  year: 2023
  ident: apjlacf299bib119
  publication-title: TNSAN
– volume: 937
  start-page: 75
  year: 2022
  ident: apjlacf299bib3
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac90c0
– volume: 496
  start-page: 1325
  year: 2020
  ident: apjlacf299bib16
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1540
– volume: 131
  start-page: 078001
  year: 2019
  ident: apjlacf299bib45
  publication-title: PASP
  doi: 10.1088/1538-3873/ab006c
– volume: 125
  start-page: 306
  year: 2013
  ident: apjlacf299bib36
  publication-title: PASP
  doi: 10.1086/670067
– volume: 792
  start-page: 30
  year: 2014
  ident: apjlacf299bib71
  publication-title: ApJ
  doi: 10.1088/0004-637X/792/1/30
– year: 2021
  ident: apjlacf299bib135
  publication-title: unWISE Catalog, IPAC
  doi: 10.26131/IRSA525
– volume: 910
  start-page: 128
  year: 2021
  ident: apjlacf299bib47
  publication-title: ApJ
  doi: 10.3847/1538-4357/abe938
– volume: 725
  start-page: 904
  year: 2010
  ident: apjlacf299bib88
  publication-title: ApJ
  doi: 10.1088/0004-637X/725/1/904
– volume: 150
  start-page: 1
  year: 2023
  ident: apjlacf299bib26
  publication-title: TNSAN
– start-page: 239
  year: 2017
  ident: apjlacf299bib2
– volume: 877
  start-page: 116
  year: 2019
  ident: apjlacf299bib140
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab1c61
– volume: 830
  start-page: 27
  year: 2016
  ident: apjlacf299bib148
  publication-title: ApJ
  doi: 10.3847/0004-637X/830/1/27
– year: 2022
  ident: apjlacf299bib18
  doi: 10.5281/zenodo.6825092
– volume: 130
  start-page: 1
  year: 2023
  ident: apjlacf299bib72
  publication-title: TNSAN
– volume: 953
  start-page: L16
  year: 2023
  ident: apjlacf299bib51
  publication-title: ApJL
  doi: 10.3847/2041-8213/ace4c4
– volume: 243
  start-page: 10
  year: 2019
  ident: apjlacf299bib97
  publication-title: ApJS
  doi: 10.3847/1538-4365/ab2241
– year: 2023
  ident: apjlacf299bib138
– volume: 9147
  start-page: 91478H
  year: 2014
  ident: apjlacf299bib100
  publication-title: Proc. SPIE
  doi: 10.1117/12.2055117
– volume: 786
  start-page: 67
  year: 2014
  ident: apjlacf299bib1
  publication-title: ApJ
  doi: 10.1088/0004-637X/786/1/67
– volume: 517
  start-page: 1483
  year: 2022
  ident: apjlacf299bib27
  publication-title: MNRAS
  doi: 10.1093/mnras/stac2427
– volume: 929
  start-page: 177
  year: 2022
  ident: apjlacf299bib126
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac60fe
– volume: 104
  start-page: 340
  year: 1992
  ident: apjlacf299bib68
  publication-title: AJ
  doi: 10.1086/116242
– volume: 124
  start-page: 1
  year: 2023
  ident: apjlacf299bib38
  publication-title: TNSAN
– volume: 945
  start-page: 104
  year: 2023
  ident: apjlacf299bib134
  publication-title: ApJ
  doi: 10.3847/1538-4357/acbbc6
– year: 2020
  ident: apjlacf299bib141
  doi: 10.5281/zenodo.3629446
– volume: 140
  start-page: 1868
  year: 2010
  ident: apjlacf299bib142
  publication-title: AJ
  doi: 10.1088/0004-6256/140/6/1868
– volume: 16091
  start-page: 1
  year: 2023
  ident: apjlacf299bib77
  publication-title: ATel
– volume: 145
  start-page: 44
  year: 2013
  ident: apjlacf299bib147
  publication-title: AJ
  doi: 10.1088/0004-6256/145/2/44
– volume: 480
  start-page: 1696
  year: 2018
  ident: apjlacf299bib59
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1966
– volume: 854
  start-page: 68
  year: 2018
  ident: apjlacf299bib53
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaa6ca
– year: 2023
  ident: apjlacf299bib17
– volume: 904
  start-page: 74
  year: 2020
  ident: apjlacf299bib43
  publication-title: ApJ
  doi: 10.3847/1538-4357/abbf49
– volume: 117
  start-page: 393
  year: 1996
  ident: apjlacf299bib9
  publication-title: A&AS
  doi: 10.1051/aas:1996164
– volume: 414
  start-page: 712
  year: 1993
  ident: apjlacf299bib104
  publication-title: ApJ
  doi: 10.1086/173117
– volume: 131
  start-page: 018002
  year: 2019
  ident: apjlacf299bib7
  publication-title: PASP
  doi: 10.1088/1538-3873/aaecbe
– volume: 720
  start-page: 1118
  year: 2010
  ident: apjlacf299bib22
  publication-title: ApJ
  doi: 10.1088/0004-637X/720/2/1118
– volume: 207
  start-page: 110.10
  year: 2005
  ident: apjlacf299bib125
  publication-title: AAS Meeting Abstracts
– start-page: 875
  year: 2017
  ident: apjlacf299bib24
– volume: 953
  start-page: L14
  year: 2023
  ident: apjlacf299bib103
  publication-title: ApJL
  doi: 10.3847/2041-8213/ace88b
– volume: 192
  start-page: 3
  year: 2011
  ident: apjlacf299bib93
  publication-title: ApJS
  doi: 10.1088/0067-0049/192/1/3
– volume: 123
  start-page: 1
  year: 2023
  ident: apjlacf299bib33
  publication-title: TNSAN
– volume: 621
  start-page: A109
  year: 2019
  ident: apjlacf299bib15
  publication-title: A&A
  doi: 10.1051/0004-6361/201833779
– volume: 7
  start-page: 1
  year: 2021
  ident: apjlacf299bib111
  publication-title: TNSAN
– volume: 13
  start-page: 510
  year: 2017
  ident: apjlacf299bib145
  publication-title: NatPh
  doi: 10.1038/nphys4025
– year: 2016
  ident: apjlacf299bib23
– volume: 936
  start-page: 28
  year: 2022
  ident: apjlacf299bib131
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac83bc
– volume: 156
  start-page: 123
  year: 2018
  ident: apjlacf299bib4
  publication-title: AJ
  doi: 10.3847/1538-3881/aabc4f
– volume: 952
  start-page: L30
  year: 2023
  ident: apjlacf299bib58
  publication-title: ApJL
  doi: 10.3847/2041-8213/ace618
– volume: 808
  start-page: L51
  year: 2015
  ident: apjlacf299bib101
  publication-title: ApJL
  doi: 10.1088/2041-8205/808/2/L51
– volume: 492
  start-page: 5994
  year: 2020
  ident: apjlacf299bib6
  publication-title: MNRAS
  doi: 10.1093/mnras/staa255
– volume: 130
  start-page: 035003
  year: 2018
  ident: apjlacf299bib10
  publication-title: PASP
  doi: 10.1088/1538-3873/aaa53f
– volume: 496
  start-page: 454
  year: 1998
  ident: apjlacf299bib13
  publication-title: ApJ
  doi: 10.1086/305375
– volume: 737
  start-page: 103
  year: 2011
  ident: apjlacf299bib107
  publication-title: ApJ
  doi: 10.1088/0004-637X/737/2/103
– volume: 354
  start-page: 89
  year: 2014
  ident: apjlacf299bib20
  publication-title: Ap&SS
  doi: 10.1007/s10509-014-2059-8
– volume: 494
  start-page: 65
  year: 2013
  ident: apjlacf299bib90
  publication-title: Natur
  doi: 10.1038/nature11877
– volume: 220
  start-page: 15
  year: 2015
  ident: apjlacf299bib95
  publication-title: ApJS
  doi: 10.1088/0067-0049/220/1/15
– volume: 234
  start-page: 34
  year: 2018
  ident: apjlacf299bib96
  publication-title: ApJS
  doi: 10.3847/1538-4365/aaa5a8
– volume: 759
  start-page: 108
  year: 2012
  ident: apjlacf299bib122
  publication-title: ApJ
  doi: 10.1088/0004-637X/759/2/108
– year: 2018
  ident: apjlacf299bib79
  doi: 10.5281/zenodo.1257560
– year: 2006
  ident: apjlacf299bib92
– volume: 32
  start-page: e016
  year: 2015
  ident: apjlacf299bib114
  publication-title: PASA
  doi: 10.1017/pasa.2015.17
– volume: 3355
  start-page: 242
  year: 1998
  ident: apjlacf299bib123
  publication-title: Proc. SPIE
  doi: 10.1117/12.316766
– volume: 290
  start-page: 13
  year: 2004
  ident: apjlacf299bib12
  publication-title: Ap&SS
  doi: 10.1023/B:ASTR.0000022161.03559.42
– volume: 907
  start-page: 99
  year: 2021
  ident: apjlacf299bib120
  publication-title: ApJ
  doi: 10.3847/1538-4357/abd032
– volume: 5489
  start-page: 679
  year: 2004
  ident: apjlacf299bib118
  publication-title: Proc. SPIE
  doi: 10.1117/12.551456
– start-page: 129
  year: 2007
  ident: apjlacf299bib124
– volume: 426
  start-page: 1465
  year: 2012
  ident: apjlacf299bib105
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21796.x
– volume: 635
  start-page: A127
  year: 2020
  ident: apjlacf299bib66
  publication-title: A&A
  doi: 10.1051/0004-6361/201937226
– volume: 2
  start-page: 808
  year: 2018
  ident: apjlacf299bib37
  publication-title: NatAs
  doi: 10.1038/s41550-018-0563-4
– volume: 9
  start-page: 90
  year: 2007
  ident: apjlacf299bib54
  publication-title: CSE
  doi: 10.1109/MCSE.2007.55
– start-page: 249
  year: 2007
  ident: apjlacf299bib82
– volume: 7
  start-page: 141
  year: 2023
  ident: apjlacf299bib110
  publication-title: RNAAS
– volume: 821
  start-page: 38
  year: 2016
  ident: apjlacf299bib121
  publication-title: ApJ
  doi: 10.3847/0004-637X/821/1/38
– volume: 160
  start-page: 1
  year: 2023
  ident: apjlacf299bib70
  publication-title: TNSAN
– volume: 111
  start-page: 63
  year: 1999
  ident: apjlacf299bib34
  publication-title: PASP
  doi: 10.1086/316293
– volume: 125
  start-page: 1031
  year: 2013
  ident: apjlacf299bib21
  publication-title: PASP
  doi: 10.1086/673168
– volume: 926
  start-page: 20
  year: 2022
  ident: apjlacf299bib128
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac3820
– volume: 951
  start-page: L31
  year: 2023
  ident: apjlacf299bib8
  publication-title: ApJL
  doi: 10.3847/2041-8213/ace0c4
– volume: 703
  start-page: 2205
  year: 2009
  ident: apjlacf299bib60
  publication-title: ApJ
  doi: 10.1088/0004-637X/703/2/2205
– volume: 814
  start-page: 63
  year: 2015
  ident: apjlacf299bib86
  publication-title: ApJ
  doi: 10.1088/0004-637X/814/1/63
– volume: 952
  start-page: L3
  year: 2023
  ident: apjlacf299bib46
  publication-title: ApJL
  doi: 10.3847/2041-8213/acdf4e
– volume: 891
  start-page: L32
  year: 2020
  ident: apjlacf299bib85
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab77c8
– volume: 120
  start-page: 1
  year: 2023
  ident: apjlacf299bib99
  publication-title: TNSAN
– year: 2012
  ident: apjlacf299bib108
– volume: 144
  start-page: 1
  year: 2023
  ident: apjlacf299bib64
  publication-title: TNSAN
– year: 2023
  ident: apjlacf299bib116
– start-page: 140
  year: 1997
  ident: apjlacf299bib129
– volume: 208
  start-page: 4
  year: 2013
  ident: apjlacf299bib94
  publication-title: ApJS
  doi: 10.1088/0067-0049/208/1/4
– volume: 483
  start-page: 1211
  year: 2019
  ident: apjlacf299bib65
  publication-title: MNRAS
  doi: 10.1093/mnras/sty3185
– year: 2023
  ident: apjlacf299bib143
  publication-title: PASJ
  doi: 10.1093/pasj/psad051
– volume: 879
  start-page: 3
  year: 2019
  ident: apjlacf299bib41
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab22b6
– volume: 5
  start-page: 903
  year: 2021
  ident: apjlacf299bib49
  publication-title: NatAs
  doi: 10.1038/s41550-021-01384-2
– volume: 110
  start-page: 79
  year: 1998
  ident: apjlacf299bib31
  publication-title: PASP
  doi: 10.1086/316111
– volume: 459
  start-page: 3939
  year: 2016
  ident: apjlacf299bib136
  publication-title: MNRAS
  doi: 10.1093/mnras/stw870
– volume: 717
  start-page: L62
  year: 2010
  ident: apjlacf299bib146
  publication-title: ApJL
  doi: 10.1088/2041-8205/717/1/L62
– year: 2023
  ident: apjlacf299bib75
– volume: 465
  start-page: 403
  year: 2017
  ident: apjlacf299bib42
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2708
– volume: 251
  start-page: 7
  year: 2020
  ident: apjlacf299bib35
  publication-title: ApJS
  doi: 10.3847/1538-4365/abb82d
– volume: 453
  start-page: 229
  year: 2006
  ident: apjlacf299bib14
  publication-title: A&A
  doi: 10.1051/0004-6361:20054594
– volume: 509
  start-page: 471
  year: 2014
  ident: apjlacf299bib39
  publication-title: Natur
  doi: 10.1038/nature13304
– volume: 467
  start-page: 3347
  year: 2017
  ident: apjlacf299bib63
  publication-title: MNRAS
  doi: 10.1093/mnras/stx291
– volume: 934
  start-page: L7
  year: 2022
  ident: apjlacf299bib106
  publication-title: ApJL
  doi: 10.3847/2041-8213/ac5c5b
– year: 2023
  ident: apjlacf299bib57
– volume: 131
  start-page: 018003
  year: 2019
  ident: apjlacf299bib74
  publication-title: PASP
  doi: 10.1088/1538-3873/aae8ac
– volume: 858
  start-page: 15
  year: 2018
  ident: apjlacf299bib87
  publication-title: ApJ
  doi: 10.3847/1538-4357/aab9a6
– volume: 230
  start-page: 318.03
  year: 2017
  ident: apjlacf299bib52
  publication-title: AAS Meeting Abstracts
– year: 2023
  ident: apjlacf299bib117
– volume: 2023-123
  start-page: 1
  year: 2023
  ident: apjlacf299bib127
  publication-title: TNSCR
– volume: 952
  start-page: 115
  year: 2023
  ident: apjlacf299bib132
  publication-title: ApJ
  doi: 10.3847/1538-4357/acdb71
– volume: 532
  start-page: 1132
  year: 2000
  ident: apjlacf299bib11
  publication-title: ApJ
  doi: 10.1086/308588
– year: 1991
  ident: apjlacf299bib29
– start-page: 305
  year: 2011
  ident: apjlacf299bib81
– year: 2023
  ident: apjlacf299bib89
– volume: 17
  start-page: 261
  year: 2020
  ident: apjlacf299bib139
  publication-title: NatMe
  doi: 10.1038/s41592-019-0686-2
– start-page: 373
  year: 2011
  ident: apjlacf299bib19
– start-page: 693
  year: 2017
  ident: apjlacf299bib137
– volume: 2023-126
  start-page: 1
  year: 2023
  ident: apjlacf299bib144
  publication-title: TNSCR
– volume: 895
  start-page: L45
  year: 2020
  ident: apjlacf299bib40
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab9300
– volume: 924
  start-page: 15
  year: 2022
  ident: apjlacf299bib56
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac3f3a
– volume: 156
  start-page: 69
  year: 2018
  ident: apjlacf299bib80
  publication-title: AJ
  doi: 10.3847/1538-3881/aacbcd
SSID ssj0020618
Score 2.6512506
Snippet We present the discovery of the Type II supernova SN 2023ixf in M101 and follow-up photometric and spectroscopic observations, respectively, in the first month...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage L8
SubjectTerms Circumstellar matter
Core-collapse supernovae
Evolution
Explosions
Helium
Ionization
Light curve
Massive stars
Red supergiant stars
Spectroscopic observation
Stellar mass loss
Supergiant stars
Supernova
Supernovae
Type II supernovae
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQT3WhVHMAJA7RJraTjXsrj1WLWi5QVE6WXyNStUm0m0rtlV_O2Mm2IKRy4ZZYTjKaR-YbezzD2Ctj4m6MUxlayTNZFiJTZRmyPAhbGvIflsfTyMefq4MT-em0PP2t1VfMCRvLA4-Mm0sXuKpsxdE6WVhVc-dq9Fh5MtVFnY7u5SrfBFNTqEVeKvWiy2WRkY8rxw1KQb_i-TRWiLlxyFPN11uHlOr2k5tpuv6vn3PyOMuH7MEEFWF_JPERuxfax2x7fx0Xr7uLa3gD6Xpcm1g_YT-Xq-4CPjRrF9Myr2HogNAdLBsCeEC2O_yADtNQDD7h8BC-XPZhFbuiQmxv3lzhHsS8DzCth28URMdjVXBM8BqOiHRo2umFkazvZCJgA2HeACmRLy67PWUny49f3x9kU4uFzJGnHzIUoRJOquBQoeRhkTviMxYFFh7JwQUMhSWGU1ilOKpSlbWXxlNYq4j7QohnbKvt2rDNQHgpJFJ0iAalq6paGm7oxi-s42rhZ2y-4bN2U_3x2AbjXFMcEiWjo2R0lIweJTNjb2-e6MfaG3fMfRdFdzMvVs1OA6RLetIl_S9dmrHXJHg9WfH6jo_t_jHP9GfnmlRcF_qo1r3HGdvZ6M7tLF5XBP8IM4nn_4PYF-x-1I0x322HbQ2ry_CSANJgd5Mt_AICkAoM
  priority: 102
  providerName: Directory of Open Access Journals
Title From Discovery to the First Month of the Type II Supernova 2023ixf: High and Variable Mass Loss in the Final Year before Explosion
URI https://iopscience.iop.org/article/10.3847/2041-8213/acf299
https://www.proquest.com/docview/2866430223
https://doaj.org/article/4ce296b62fbc41b982cc8fdf6d538789
Volume 955
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKuXBBPNUtZTUHQOIQurGdrA2n8lh1UUuRoFBOlp9iUZtEu6lEr_xyZpJ0UQWquERJNLGdzOsbx55h7Im19DfG6yw5yTNZ5CLTRRGzSRSusOg_HKfdyIcfyv1j-f6kONlgr9Z7YepmMP0v8LRPFNx_QtJvgbYUw3WZZ4rnYtf6hNb0BrspVKlIK4_E13W0hY6qK0fXU0-K_h_lP1u44pO61P3oabD7v-xz53Rmd9jtAS3CXj-2u2wjVvfY1t6K5q_rswt4Bt15Pz2xus9-zZb1GbxdrDytzLyAtgYEeDBbIMYDVN_2O9Spu0XxJ8zn8Om8iUsqjApU4XzxM70EWvoBtgrwBeNo2lkFh4iw4QCHDotqaJCG9Q21BFxE2BuhW8tHM28P2PHs3ec3-9lQZSHz6OzbLIlYCi919EknyeN04pPzKc9THhL6uJhi7rxHY4RgMOlCFypIGzCy1UJNhRAP2WZVV3GLgQhSyIQBYrJJ-rJU0nKLF2HqPNfTMGK7l9_Z-CEFOVXCODUYihBnDHHGEGdMz5kRe75-ounTb1xD-5pYt6ajxNndDRQiMwiRkT5yXbqS4zvK3GnF8dVSSGVAyz9V2MhTZLwZFHl1TWfjK3S2-XFqUMpNbg6UaUIasZ1L2flDxVWJCBBhk9j-z34esVvE_n5V2w7bbJfn8THCoNaNu-kDPM6PPo470f8NZRwBGQ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSIgL4qkulDIHQOIQdmM7D3MrlKgL24IEhXKy_FQXtclqN5XolV_OTJIuqkAVNyfye8Yz3_gxw9gzY-g0xqkkWskTmaUiUVkWkkkQNjOoPyyn18j7B_neoXx_lB0NcU67tzDNYhD9rzDZOwrup5DWt0BZiua6TJOSp2JsXERpOl74eJ3dyESekfP8j-Lb2uJCZdWFpOtLTLL-nPKftVzSS537ftQ22IW_ZHSneKo77PaAGGGn799ddi3U99jmzor2sJvTc3gBXbrfoljdZ7-qZXMKu_OVo9uZ59A2gCAPqjniPMAl3B5DE7tfZIPCdAqfzxZhScFRgaKcz3_G10DXP8DUHr6iLU2vq2AfUTbMsOswr4cKqVvfcaWADQh9A3T3-Wj37QE7rN59ebuXDJEWEocKv02iCLlwUgUXVZQ8FBMXrYtpGlMfUc-FGFLrHAokBIRRZSorvTQerVslykII8ZBt1E0dNhkIL4WMaCRGE6XL81IabvDDF9ZxVfgRG1_Ms3aDG3KKhnGi0RwhymiijCbK6J4yI_ZyXWLRu-C4Iu8bIt06HznP7n4gI-mBkbR0gavc5hzHKFOrSo5Diz7mHqV_UWIlz5HweljMqysa276Uzyx-nGjkdJ3qWamRK0ds64J3_uTiZY4oEKGTePSf7TxlNz_tVno2PfjwmN0iTugvuW2xjXZ5Fp4gKmrtdsf5vwE9EgMT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+Discovery+to+the+First+Month+of+the+Type+II+Supernova+2023ixf%3A+High+and+Variable+Mass+Loss+in+the+Final+Year+before+Explosion&rft.jtitle=Astrophysical+journal.+Letters&rft.au=Hiramatsu%2C+Daichi&rft.au=Tsuna%2C+Daichi&rft.au=Berger%2C+Edo&rft.au=Itagaki%2C+Koichi&rft.date=2023-09-01&rft.pub=The+American+Astronomical+Society&rft.issn=2041-8205&rft.eissn=2041-8213&rft.volume=955&rft.issue=1&rft_id=info:doi/10.3847%2F2041-8213%2Facf299&rft.externalDocID=apjlacf299
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-8205&client=summon