From Discovery to the First Month of the Type II Supernova 2023ixf: High and Variable Mass Loss in the Final Year before Explosion
We present the discovery of the Type II supernova SN 2023ixf in M101 and follow-up photometric and spectroscopic observations, respectively, in the first month and week of its evolution. Our discovery was made within a day of estimated first light, and the following light curve is characterized by a...
Saved in:
Published in | Astrophysical journal. Letters Vol. 955; no. 1; p. L8 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Austin
The American Astronomical Society
01.09.2023
IOP Publishing |
Subjects | |
Online Access | Get full text |
ISSN | 2041-8205 2041-8213 |
DOI | 10.3847/2041-8213/acf299 |
Cover
Abstract | We present the discovery of the Type II supernova SN 2023ixf in M101 and follow-up photometric and spectroscopic observations, respectively, in the first month and week of its evolution. Our discovery was made within a day of estimated first light, and the following light curve is characterized by a rapid rise (≈5 days) to a luminous peak (
M
V
≈ − 18.2 mag) and plateau (
M
V
≈ − 17.6 mag) extending to 30 days with a fast decline rate of ≈0.03 mag day
−1
. During the rising phase,
U
−
V
color shows blueward evolution, followed by redward evolution in the plateau phase. Prominent flash features of hydrogen, helium, carbon, and nitrogen dominate the spectra up to ≈5 days after first light, with a transition to a higher ionization state in the first ≈2 days. Both the
U
−
V
color and flash ionization states suggest a rise in the temperature, indicative of a delayed shock breakout inside dense circumstellar material (CSM). From the timescales of CSM interaction, we estimate its compact radial extent of ∼(3–7) × 10
14
cm. We then construct numerical light-curve models based on both continuous and eruptive mass-loss scenarios shortly before explosion. For the continuous mass-loss scenario, we infer a range of mass-loss history with 0.1–1.0
M
⊙
yr
−1
in the final 2−1 yr before explosion, with a potentially decreasing mass loss of 0.01–0.1
M
⊙
yr
−1
in ∼0.7–0.4 yr toward the explosion. For the eruptive mass-loss scenario, we favor eruptions releasing 0.3–1
M
⊙
of the envelope at about a year before explosion, which result in CSM with mass and extent similar to the continuous scenario. We discuss the implications of the available multiwavelength constraints obtained thus far on the progenitor candidate and SN 2023ixf to our variable CSM models. |
---|---|
AbstractList | We present the discovery of the Type II supernova SN 2023ixf in M101 and follow-up photometric and spectroscopic observations, respectively, in the first month and week of its evolution. Our discovery was made within a day of estimated first light, and the following light curve is characterized by a rapid rise (≈5 days) to a luminous peak (
M
V
≈ − 18.2 mag) and plateau (
M
V
≈ − 17.6 mag) extending to 30 days with a fast decline rate of ≈0.03 mag day
−1
. During the rising phase,
U
−
V
color shows blueward evolution, followed by redward evolution in the plateau phase. Prominent flash features of hydrogen, helium, carbon, and nitrogen dominate the spectra up to ≈5 days after first light, with a transition to a higher ionization state in the first ≈2 days. Both the
U
−
V
color and flash ionization states suggest a rise in the temperature, indicative of a delayed shock breakout inside dense circumstellar material (CSM). From the timescales of CSM interaction, we estimate its compact radial extent of ∼(3–7) × 10
14
cm. We then construct numerical light-curve models based on both continuous and eruptive mass-loss scenarios shortly before explosion. For the continuous mass-loss scenario, we infer a range of mass-loss history with 0.1–1.0
M
⊙
yr
−1
in the final 2−1 yr before explosion, with a potentially decreasing mass loss of 0.01–0.1
M
⊙
yr
−1
in ∼0.7–0.4 yr toward the explosion. For the eruptive mass-loss scenario, we favor eruptions releasing 0.3–1
M
⊙
of the envelope at about a year before explosion, which result in CSM with mass and extent similar to the continuous scenario. We discuss the implications of the available multiwavelength constraints obtained thus far on the progenitor candidate and SN 2023ixf to our variable CSM models. We present the discovery of the Type II supernova SN 2023ixf in M101 and follow-up photometric and spectroscopic observations, respectively, in the first month and week of its evolution. Our discovery was made within a day of estimated first light, and the following light curve is characterized by a rapid rise (≈5 days) to a luminous peak (MV ≈ − 18.2 mag) and plateau (MV ≈ − 17.6 mag) extending to 30 days with a fast decline rate of ≈0.03 mag day−1. During the rising phase, U − V color shows blueward evolution, followed by redward evolution in the plateau phase. Prominent flash features of hydrogen, helium, carbon, and nitrogen dominate the spectra up to ≈5 days after first light, with a transition to a higher ionization state in the first ≈2 days. Both the U−V color and flash ionization states suggest a rise in the temperature, indicative of a delayed shock breakout inside dense circumstellar material (CSM). From the timescales of CSM interaction, we estimate its compact radial extent of ∼(3–7) × 1014 cm. We then construct numerical light-curve models based on both continuous and eruptive mass-loss scenarios shortly before explosion. For the continuous mass-loss scenario, we infer a range of mass-loss history with 0.1–1.0 M⊙ yr−1 in the final 2−1 yr before explosion, with a potentially decreasing mass loss of 0.01–0.1 M⊙ yr−1 in ∼0.7–0.4 yr toward the explosion. For the eruptive mass-loss scenario, we favor eruptions releasing 0.3–1 M⊙ of the envelope at about a year before explosion, which result in CSM with mass and extent similar to the continuous scenario. We discuss the implications of the available multiwavelength constraints obtained thus far on the progenitor candidate and SN 2023ixf to our variable CSM models. We present the discovery of the Type II supernova SN 2023ixf in M101 and follow-up photometric and spectroscopic observations, respectively, in the first month and week of its evolution. Our discovery was made within a day of estimated first light, and the following light curve is characterized by a rapid rise (≈5 days) to a luminous peak ( M _V ≈ − 18.2 mag) and plateau ( M _V ≈ − 17.6 mag) extending to 30 days with a fast decline rate of ≈0.03 mag day ^−1 . During the rising phase, U − V color shows blueward evolution, followed by redward evolution in the plateau phase. Prominent flash features of hydrogen, helium, carbon, and nitrogen dominate the spectra up to ≈5 days after first light, with a transition to a higher ionization state in the first ≈2 days. Both the U − V color and flash ionization states suggest a rise in the temperature, indicative of a delayed shock breakout inside dense circumstellar material (CSM). From the timescales of CSM interaction, we estimate its compact radial extent of ∼(3–7) × 10 ^14 cm. We then construct numerical light-curve models based on both continuous and eruptive mass-loss scenarios shortly before explosion. For the continuous mass-loss scenario, we infer a range of mass-loss history with 0.1–1.0 M _⊙ yr ^−1 in the final 2−1 yr before explosion, with a potentially decreasing mass loss of 0.01–0.1 M _⊙ yr ^−1 in ∼0.7–0.4 yr toward the explosion. For the eruptive mass-loss scenario, we favor eruptions releasing 0.3–1 M _⊙ of the envelope at about a year before explosion, which result in CSM with mass and extent similar to the continuous scenario. We discuss the implications of the available multiwavelength constraints obtained thus far on the progenitor candidate and SN 2023ixf to our variable CSM models. |
Author | Gonzalez, Estefania Padilla Arcavi, Iair Tsuna, Daichi Pellegrino, Craig Esquerdo, Gilbert A. Terreran, Giacomo Wheeler, J. Craig Itagaki, Koichi Hosseinzadeh, Griffin Bieryla, Allyson Goldberg, Jared A. Kishalay De Blanchard, Peter K. McCully, Curtis Rhee, Jaehyon Berger, Edo Gomez, Sebastian Farah, Joseph Vinkó, József Newsome, Megan Brown, Peter J. Howell, D. Andrew Hiramatsu, Daichi Bostroem, K. Azalee Matsumoto, Tatsuya |
Author_xml | – sequence: 1 givenname: Daichi orcidid: 0000-0002-1125-9187 surname: Hiramatsu fullname: Hiramatsu, Daichi organization: The NSF AI Institute for Artificial Intelligence and Fundamental Interactions , USA – sequence: 2 givenname: Daichi orcidid: 0000-0002-6347-3089 surname: Tsuna fullname: Tsuna, Daichi organization: The University of Tokyo Research Center for the Early Universe, School of Science, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan – sequence: 3 givenname: Edo orcidid: 0000-0002-9392-9681 surname: Berger fullname: Berger, Edo organization: The NSF AI Institute for Artificial Intelligence and Fundamental Interactions , USA – sequence: 4 givenname: Koichi surname: Itagaki fullname: Itagaki, Koichi organization: Itagaki Astronomical Observatory , Yamagata 990-2492, Japan – sequence: 5 givenname: Jared A. orcidid: 0000-0003-1012-3031 surname: Goldberg fullname: Goldberg, Jared A. organization: Flatiron Institute Center for Computational Astrophysics, 162 5th Avenue, New York, NY 10010-5902, USA – sequence: 6 givenname: Sebastian orcidid: 0000-0001-6395-6702 surname: Gomez fullname: Gomez, Sebastian organization: Space Telescope Science Institute , 3700 San Martin Drive, Baltimore, MD 21218-2410, USA – sequence: 7 orcidid: 0000-0002-8989-0542 surname: Kishalay De fullname: Kishalay De organization: MIT-Kavli Institute for Astrophysics and Space Research , 77 Massachusetts Ave., Cambridge, MA 02139, USA – sequence: 8 givenname: Griffin orcidid: 0000-0002-0832-2974 surname: Hosseinzadeh fullname: Hosseinzadeh, Griffin organization: University of Arizona Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA – sequence: 9 givenname: K. Azalee orcidid: 0000-0002-4924-444X surname: Bostroem fullname: Bostroem, K. Azalee organization: University of Arizona Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA – sequence: 10 givenname: Peter J. orcidid: 0000-0001-6272-5507 surname: Brown fullname: Brown, Peter J. organization: George P. and Cynthia Woods Mitchell Institute for Fundamental Physics & Astronomy , College Station, TX 77843, USA – sequence: 11 givenname: Iair orcidid: 0000-0001-7090-4898 surname: Arcavi fullname: Arcavi, Iair organization: Tel Aviv University School of Physics and Astronomy, Tel Aviv 69978, Israel – sequence: 12 givenname: Allyson orcidid: 0000-0001-6637-5401 surname: Bieryla fullname: Bieryla, Allyson organization: Center for Astrophysics ∣ Harvard & Smithsonian , 60 Garden Street, Cambridge, MA 02138-1516, USA – sequence: 13 givenname: Peter K. orcidid: 0000-0003-0526-2248 surname: Blanchard fullname: Blanchard, Peter K. organization: Northwestern University Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, 1800 Sherman Avenue, 8th Floor, Evanston, IL 60201, USA – sequence: 14 givenname: Gilbert A. orcidid: 0000-0002-9789-5474 surname: Esquerdo fullname: Esquerdo, Gilbert A. organization: Center for Astrophysics ∣ Harvard & Smithsonian , 60 Garden Street, Cambridge, MA 02138-1516, USA – sequence: 15 givenname: Joseph orcidid: 0000-0003-4914-5625 surname: Farah fullname: Farah, Joseph organization: University of California Department of Physics, Santa Barbara, CA 93106-9530, USA – sequence: 16 givenname: D. Andrew orcidid: 0000-0003-4253-656X surname: Howell fullname: Howell, D. Andrew organization: University of California Department of Physics, Santa Barbara, CA 93106-9530, USA – sequence: 17 givenname: Tatsuya orcidid: 0000-0002-9350-6793 surname: Matsumoto fullname: Matsumoto, Tatsuya organization: Columbia University Department of Physics and Columbia Astrophysics Laboratory, Pupin Hall, New York, NY 10027, USA – sequence: 18 givenname: Curtis orcidid: 0000-0001-5807-7893 surname: McCully fullname: McCully, Curtis organization: University of California Department of Physics, Santa Barbara, CA 93106-9530, USA – sequence: 19 givenname: Megan orcidid: 0000-0001-9570-0584 surname: Newsome fullname: Newsome, Megan organization: University of California Department of Physics, Santa Barbara, CA 93106-9530, USA – sequence: 20 givenname: Estefania Padilla orcidid: 0000-0003-0209-9246 surname: Gonzalez fullname: Gonzalez, Estefania Padilla organization: University of California Department of Physics, Santa Barbara, CA 93106-9530, USA – sequence: 21 givenname: Craig orcidid: 0000-0002-7472-1279 surname: Pellegrino fullname: Pellegrino, Craig organization: University of California Department of Physics, Santa Barbara, CA 93106-9530, USA – sequence: 22 givenname: Jaehyon orcidid: 0000-0001-9214-7437 surname: Rhee fullname: Rhee, Jaehyon organization: Yonsei University Department of Physics, Seoul 03722, Republic of Korea – sequence: 23 givenname: Giacomo orcidid: 0000-0003-0794-5982 surname: Terreran fullname: Terreran, Giacomo organization: University of California Department of Physics, Santa Barbara, CA 93106-9530, USA – sequence: 24 givenname: József orcidid: 0000-0001-8764-7832 surname: Vinkó fullname: Vinkó, József organization: University of Szeged Department of Experimental Physics, Dóm tér 9, Szeged, 6720, Hungary – sequence: 25 givenname: J. Craig orcidid: 0000-0003-1349-6538 surname: Wheeler fullname: Wheeler, J. Craig organization: University of Texas at Austin , 1 University Station C1400, Austin, TX 78712-0259, USA |
BookMark | eNp9UUtPGzEYtBCVePXeo6WKW1P82o3dW0UJRArqAajUk-X1fiaOlvXWdhC59pfjsBQkVHHxZ41m5nvMAdrtQw8IfaLkK5diesKIoBPJKD8x1jGldtD-C7T78ifVHjpIaUUIIzWV--jvLIY7_MMnG-4hbnAOOC8Bz3xMGV-GPi9xcE_Q9WYAPJ_jq_UAsQ_3BjPCuH9w3_CFv11i07f4l4neNB3gS5MSXoTy-P7ZsDcd_g0m4gZciIDPHoYuJB_6I_TBmS7Bx-d6iG5mZ9enF5PFz_P56ffFxFaU5YnjUHMrFFinnGAwJdY11lHqaOu4oOCANtZKOaWKOVWpSrbCtFxyxeWUc36I5qNvG8xKD9HfmbjRwXj9BIR4q03M3naghQWm6qZmpYOgjZKsGLvW1W1VvKQqXp9HryGGP2tIWa_COpYVk2ayrgUnjG071iPLxnKKCE5bn00uO-dofKcp0dvs9DYcvQ1Kj9kVIXkj_DfuO5Ivo8SH4XWYd-jH_6GbYdVpVVWa6oXUQ7nrI9sLuA4 |
CitedBy_id | crossref_primary_10_3847_1538_4357_ad4a2a crossref_primary_10_1093_mnras_staf312 crossref_primary_10_1088_1475_7516_2024_04_083 crossref_primary_10_3847_2041_8213_ad6907 crossref_primary_10_1051_0004_6361_202348642 crossref_primary_10_1051_0004_6361_202453003 crossref_primary_10_3847_1538_4357_ad8bc5 crossref_primary_10_3847_2041_8213_ad5da4 crossref_primary_10_1038_s41586_024_07116_6 crossref_primary_10_3847_1538_4357_ad414b crossref_primary_10_1051_0004_6361_202451735 crossref_primary_10_1051_0004_6361_202450608 crossref_primary_10_3847_1538_4357_ada555 crossref_primary_10_3847_2041_8213_ad0da8 crossref_primary_10_3847_1538_4357_ad9a62 crossref_primary_10_3847_1538_4357_ad5fe8 crossref_primary_10_3847_2515_5172_ad9eae crossref_primary_10_3847_1538_4357_ad7955 crossref_primary_10_3847_1538_4357_ad2df7 crossref_primary_10_3847_1538_4357_ad8d5a crossref_primary_10_3847_1538_4357_ad2704 crossref_primary_10_1007_s11433_023_2267_0 crossref_primary_10_3847_1538_4357_ad5c64 crossref_primary_10_1103_PhysRevD_109_103020 crossref_primary_10_3847_1538_4357_ad11e1 crossref_primary_10_1051_0004_6361_202452758 crossref_primary_10_1093_mnras_stae2012 crossref_primary_10_1051_0004_6361_202349061 crossref_primary_10_1051_0004_6361_202348183 crossref_primary_10_3847_1538_4357_ad4be3 crossref_primary_10_3847_1538_4357_ad8ac8 crossref_primary_10_1051_0004_6361_202348142 crossref_primary_10_1093_mnras_stae2784 crossref_primary_10_1093_pasj_psae070 crossref_primary_10_3847_1538_4357_acef22 crossref_primary_10_3847_2041_8213_ad62f7 crossref_primary_10_3847_2041_8213_ad7855 crossref_primary_10_3847_1538_4357_ad5666 crossref_primary_10_3847_2041_8213_ada1cd crossref_primary_10_5817_OEJV2024_0247 crossref_primary_10_3847_2041_8213_acf9a4 crossref_primary_10_3847_1538_4357_ad0da4 crossref_primary_10_3847_1538_4357_ad2a49 crossref_primary_10_3847_1538_4357_ad973d crossref_primary_10_3847_1538_4357_ad9bad crossref_primary_10_3847_2041_8213_ad275d crossref_primary_10_3847_2041_8213_adbb63 crossref_primary_10_3847_1538_4357_ad7de3 crossref_primary_10_3847_1538_4357_ad8cd8 crossref_primary_10_3847_1538_4357_adb0bb crossref_primary_10_3847_1538_4357_ad3de8 crossref_primary_10_1051_0004_6361_202450440 crossref_primary_10_1038_s41586_023_06843_6 crossref_primary_10_3847_1538_4357_ad87f4 |
Cites_doi | 10.1051/0004-6361/201730942 10.3847/1538-4357/abf6d6 10.1088/1538-3873/aabadf 10.1086/306571 10.3847/1538-4357/ac892c 10.1088/0004-637X/789/2/104 10.3847/1538-4365/aa8992 10.1088/1538-3873/ab6069 10.1093/mnras/sty475 10.1146/annurev-astro-082708-101737 10.3847/2041-8213/acef20 10.1088/1538-3873/ab936e 10.1086/173557 10.1093/pasj/psab063 10.1134/1.1958107 10.1088/1538-3873/128/969/115005 10.3847/1538-4357/abe2b1 10.1088/0004-637X/780/1/21 10.3847/2041-8213/ace4ca 10.1088/0004-6256/147/5/108 10.1086/113329 10.3847/1538-4357/acc536 10.3847/1538-4357/ac90c0 10.1093/mnras/staa1540 10.1088/1538-3873/ab006c 10.1086/670067 10.1088/0004-637X/792/1/30 10.26131/IRSA525 10.3847/1538-4357/abe938 10.1088/0004-637X/725/1/904 10.3847/1538-4357/ab1c61 10.3847/0004-637X/830/1/27 10.5281/zenodo.6825092 10.3847/2041-8213/ace4c4 10.3847/1538-4365/ab2241 10.1117/12.2055117 10.1088/0004-637X/786/1/67 10.1093/mnras/stac2427 10.3847/1538-4357/ac60fe 10.1086/116242 10.3847/1538-4357/acbbc6 10.5281/zenodo.3629446 10.1088/0004-6256/140/6/1868 10.1088/0004-6256/145/2/44 10.1093/mnras/sty1966 10.3847/1538-4357/aaa6ca 10.3847/1538-4357/abbf49 10.1051/aas:1996164 10.1086/173117 10.1088/1538-3873/aaecbe 10.1088/0004-637X/720/2/1118 10.3847/2041-8213/ace88b 10.1088/0067-0049/192/1/3 10.1051/0004-6361/201833779 10.1038/nphys4025 10.3847/1538-4357/ac83bc 10.3847/1538-3881/aabc4f 10.3847/2041-8213/ace618 10.1088/2041-8205/808/2/L51 10.1093/mnras/staa255 10.1088/1538-3873/aaa53f 10.1086/305375 10.1088/0004-637X/737/2/103 10.1007/s10509-014-2059-8 10.1038/nature11877 10.1088/0067-0049/220/1/15 10.3847/1538-4365/aaa5a8 10.1088/0004-637X/759/2/108 10.5281/zenodo.1257560 10.1017/pasa.2015.17 10.1117/12.316766 10.1023/B:ASTR.0000022161.03559.42 10.3847/1538-4357/abd032 10.1117/12.551456 10.1111/j.1365-2966.2012.21796.x 10.1051/0004-6361/201937226 10.1038/s41550-018-0563-4 10.1109/MCSE.2007.55 10.3847/0004-637X/821/1/38 10.1086/316293 10.1086/673168 10.3847/1538-4357/ac3820 10.3847/2041-8213/ace0c4 10.1088/0004-637X/703/2/2205 10.1088/0004-637X/814/1/63 10.3847/2041-8213/acdf4e 10.3847/2041-8213/ab77c8 10.1088/0067-0049/208/1/4 10.1093/mnras/sty3185 10.1093/pasj/psad051 10.3847/1538-4357/ab22b6 10.1038/s41550-021-01384-2 10.1086/316111 10.1093/mnras/stw870 10.1088/2041-8205/717/1/L62 10.1093/mnras/stw2708 10.3847/1538-4365/abb82d 10.1051/0004-6361:20054594 10.1038/nature13304 10.1093/mnras/stx291 10.3847/2041-8213/ac5c5b 10.1088/1538-3873/aae8ac 10.3847/1538-4357/aab9a6 10.3847/1538-4357/acdb71 10.1086/308588 10.1038/s41592-019-0686-2 10.3847/2041-8213/ab9300 10.3847/1538-4357/ac3f3a 10.3847/1538-3881/aacbcd |
ContentType | Journal Article |
Copyright | 2023. The Author(s). Published by the American Astronomical Society. 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. The Author(s). Published by the American Astronomical Society. – notice: 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 7TG 8FD H8D KL. L7M DOA |
DOI | 10.3847/2041-8213/acf299 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 2041-8213 |
ExternalDocumentID | oai_doaj_org_article_4ce296b62fbc41b982cc8fdf6d538789 10_3847_2041_8213_acf299 apjlacf299 |
GroupedDBID | 1JI 2FS 4.4 6J9 AAFWJ AAGCD AAJIO ABDNZ ABHWH ACGFS ACHIP AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU EBS FRP GROUPED_DOAJ IJHAN IOP KOT N5L O3W O43 OK1 PJBAE RIN ROL SY9 T37 TSCCA ~02 AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M |
ID | FETCH-LOGICAL-c512t-f3e63c49ecf9f42e70cfbcf11f1df341efe1bcc887192f95958d4ad3839387333 |
IEDL.DBID | O3W |
ISSN | 2041-8205 |
IngestDate | Wed Aug 27 01:32:08 EDT 2025 Wed Aug 13 04:21:56 EDT 2025 Thu Apr 24 23:14:06 EDT 2025 Tue Jul 01 04:12:05 EDT 2025 Wed Aug 21 03:40:49 EDT 2024 Wed Sep 27 04:07:33 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c512t-f3e63c49ecf9f42e70cfbcf11f1df341efe1bcc887192f95958d4ad3839387333 |
Notes | High-Energy Phenomena and Fundamental Physics AAS48051 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8764-7832 0000-0003-0526-2248 0000-0003-4914-5625 0000-0003-0794-5982 0000-0001-7090-4898 0000-0001-9214-7437 0000-0001-6637-5401 0000-0003-4253-656X 0000-0002-0832-2974 0000-0002-8989-0542 0000-0002-9789-5474 0000-0002-7472-1279 0000-0001-5807-7893 0000-0001-9570-0584 0000-0003-1349-6538 0000-0001-6272-5507 0000-0002-9392-9681 0000-0001-6395-6702 0000-0002-4924-444X 0000-0003-0209-9246 0000-0002-9350-6793 0000-0002-1125-9187 0000-0002-6347-3089 0000-0003-1012-3031 |
OpenAccessLink | https://iopscience.iop.org/article/10.3847/2041-8213/acf299 |
PQID | 2866430223 |
PQPubID | 4562431 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4ce296b62fbc41b982cc8fdf6d538789 crossref_citationtrail_10_3847_2041_8213_acf299 proquest_journals_2866430223 crossref_primary_10_3847_2041_8213_acf299 iop_journals_10_3847_2041_8213_acf299 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Austin |
PublicationPlace_xml | – name: Austin |
PublicationTitle | Astrophysical journal. Letters |
PublicationTitleAbbrev | APJL |
PublicationTitleAlternate | Astrophys. J. Lett |
PublicationYear | 2023 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Berger (apjlacf299bib8) 2023; 951 Khatami (apjlacf299bib61) 2023 Baklanov (apjlacf299bib5) 2005; 31 Yaron (apjlacf299bib144) 2023; 2023-126 Soraisam (apjlacf299bib117) 2023 Global Supernova Project (apjlacf299bib52) 2017; 230 Landolt (apjlacf299bib67) 1983; 88 Beasor (apjlacf299bib6) 2020; 492 Fitzpatrick (apjlacf299bib34) 1999; 111 Pledger (apjlacf299bib103) 2023; 953 Blinnikov (apjlacf299bib12) 2004; 290 Haynie (apjlacf299bib47) 2021; 910 Hu (apjlacf299bib53) 2018; 854 Morozova (apjlacf299bib85) 2020; 891 Hosseinzadeh (apjlacf299bib51) 2023; 953 Smartt (apjlacf299bib113) 2009; 47 Hunter (apjlacf299bib54) 2007; 9 Mink (apjlacf299bib82) 2007 Smith (apjlacf299bib116) 2023 De (apjlacf299bib28) 2020; 132 Piro (apjlacf299bib102) 2021; 909 Breeveld (apjlacf299bib19) 2011 Piascik (apjlacf299bib100) 2014; 9147 Graham (apjlacf299bib45) 2019; 131 Paxton (apjlacf299bib94) 2013; 208 Piro (apjlacf299bib101) 2015; 808 Chevalier (apjlacf299bib25) 1994; 420 Terreran (apjlacf299bib128) 2022; 926 Lundquist (apjlacf299bib70) 2023; 160 Smartt (apjlacf299bib114) 2015; 32 Masci (apjlacf299bib75) 2023 Szentgyorgyi (apjlacf299bib124) 2007 Zhang (apjlacf299bib149) 2023; 132 de Vaucouleurs (apjlacf299bib29) 1991 Smith (apjlacf299bib115) 2020; 132 Goldberg (apjlacf299bib41) 2019; 879 Zacharias (apjlacf299bib147) 2013; 145 Margutti (apjlacf299bib73) 2014; 780 Vasylyev (apjlacf299bib138) 2023 Goldman (apjlacf299bib42) 2017; 465 Chufarin (apjlacf299bib26) 2023; 150 Kasen (apjlacf299bib60) 2009; 703 Mainzer (apjlacf299bib71) 2014; 792 UnWISE Team (apjlacf299bib135) 2021 Sgro (apjlacf299bib110) 2023; 7 Nakar (apjlacf299bib88) 2010; 725 Flewelling (apjlacf299bib35) 2020; 251 Johnson (apjlacf299bib59) 2018; 480 Riess (apjlacf299bib106) 2022; 934 Singh Teja (apjlacf299bib112) 2023; 954 Waskom (apjlacf299bib141) 2020 Astropy Collaboration (apjlacf299bib4) 2018; 156 Davies (apjlacf299bib27) 2022; 517 Oliphant (apjlacf299bib92) 2006 Virtanen (apjlacf299bib139) 2020; 17 Matsumoto (apjlacf299bib76) 2022; 936 Steele (apjlacf299bib118) 2004; 5489 Perley (apjlacf299bib98) 2023; 119 Hiramatsu (apjlacf299bib48) 2021; 913 Landolt (apjlacf299bib68) 1992; 104 Arcavi (apjlacf299bib2) 2017 Morozova (apjlacf299bib86) 2015; 814 Hiramatsu (apjlacf299bib49) 2021; 5 Paxton (apjlacf299bib97) 2019; 243 Itagaki (apjlacf299bib55) 2023; 2023-1158 Kozyreva (apjlacf299bib65) 2019; 483 Takei (apjlacf299bib126) 2022; 929 Fabricant (apjlacf299bib31) 1998; 110 Fan (apjlacf299bib32) 2016; 128 Paxton (apjlacf299bib93) 2011; 192 Blinnikov (apjlacf299bib13) 1998; 496 Valenti (apjlacf299bib136) 2016; 459 Chambers (apjlacf299bib23) 2016 Wright (apjlacf299bib142) 2010; 140 Brown (apjlacf299bib20) 2014; 354 Yamanaka (apjlacf299bib143) 2023 Blinnikov (apjlacf299bib14) 2006; 453 Perley (apjlacf299bib99) 2023; 120 Ofek (apjlacf299bib90) 2013; 494 Fulton (apjlacf299bib38) 2023; 124 Bellm (apjlacf299bib7) 2019; 131 Bostroem (apjlacf299bib17) 2023 McCully (apjlacf299bib79) 2018 Grefenstette (apjlacf299bib46) 2023; 952 Dessart (apjlacf299bib30) 2017; 605 Gomez (apjlacf299bib43) 2020; 904 Bertin (apjlacf299bib9) 1996; 117 Kochanek (apjlacf299bib63) 2017; 467 Tsuna (apjlacf299bib132) 2023; 952 Tonry (apjlacf299bib130) 2018; 130 Tsuna (apjlacf299bib134) 2023; 945 Goldberg (apjlacf299bib40) 2020; 895 Gomez (apjlacf299bib44) 2023; 949 Masci (apjlacf299bib74) 2019; 131 Boian (apjlacf299bib15) 2019; 621 Matthews (apjlacf299bib77) 2023; 16091 Arcavi (apjlacf299bib3) 2022; 937 Brown (apjlacf299bib21) 2013; 125 Lang (apjlacf299bib69) 2014; 147 Mao (apjlacf299bib72) 2023; 130 Hiramatsu (apjlacf299bib50) 2023 Kilpatrick (apjlacf299bib62) 2023; 952 Jacobson-Galan (apjlacf299bib57) 2023 SDSS Collaboration (apjlacf299bib109) 2017; 233 Szentgyorgyi (apjlacf299bib123) 1998; 3355 VanDyk (apjlacf299bib137) 2017 Jencson (apjlacf299bib58) 2023; 952 Boian (apjlacf299bib16) 2020; 496 Wang (apjlacf299bib140) 2019; 877 Paxton (apjlacf299bib95) 2015; 220 Koltenbah (apjlacf299bib64) 2023; 144 Poznanski (apjlacf299bib105) 2012; 426 Tsang (apjlacf299bib131) 2022; 936 Mink (apjlacf299bib83) 2005 Yaron (apjlacf299bib145) 2017; 13 Meisner (apjlacf299bib80) 2018; 156 Ofek (apjlacf299bib91) 2014; 789 Zackay (apjlacf299bib148) 2016; 830 Sukhbold (apjlacf299bib121) 2016; 821 Bradley (apjlacf299bib18) 2022 Blinnikov (apjlacf299bib11) 2000; 532 Mink (apjlacf299bib81) 2011 Strotjohann (apjlacf299bib120) 2021; 907 Schlafly (apjlacf299bib107) 2011; 737 Shingles (apjlacf299bib111) 2021; 7 Chevalier (apjlacf299bib24) 2017 Tokarz (apjlacf299bib129) 1997 Jacobson-Galán (apjlacf299bib56) 2022; 924 Moriya (apjlacf299bib84) 2018; 476 Anderson (apjlacf299bib1) 2014; 786 Yoon (apjlacf299bib146) 2010; 717 Kuriyama (apjlacf299bib66) 2020; 635 Popov (apjlacf299bib104) 1993; 414 Science Software Branch at STScI (apjlacf299bib108) 2012 Buchhave (apjlacf299bib22) 2010; 720 Paxton (apjlacf299bib96) 2018; 234 Stritzinger (apjlacf299bib119) 2023; 145 Blagorodnova (apjlacf299bib10) 2018; 130 Svirski (apjlacf299bib122) 2012; 759 Szentgyorgyi (apjlacf299bib125) 2005; 207 Teja (apjlacf299bib127) 2023; 2023-123 Matzner (apjlacf299bib78) 1999; 510 Gal-Yam (apjlacf299bib39) 2014; 509 Förster (apjlacf299bib37) 2018; 2 Foreman-Mackey (apjlacf299bib36) 2013; 125 Neustadt (apjlacf299bib89) 2023 Tsuna (apjlacf299bib133) 2021; 73 Filippenko (apjlacf299bib33) 2023; 123 Morozova (apjlacf299bib87) 2018; 858 |
References_xml | – volume: 605 start-page: A83 year: 2017 ident: apjlacf299bib30 publication-title: A&A doi: 10.1051/0004-6361/201730942 – volume: 913 start-page: 55 year: 2021 ident: apjlacf299bib48 publication-title: ApJ doi: 10.3847/1538-4357/abf6d6 – volume: 2023-1158 start-page: 1 year: 2023 ident: apjlacf299bib55 publication-title: TNSTR – volume: 130 start-page: 064505 year: 2018 ident: apjlacf299bib130 publication-title: PASP doi: 10.1088/1538-3873/aabadf – volume: 510 start-page: 379 year: 1999 ident: apjlacf299bib78 publication-title: ApJ doi: 10.1086/306571 – year: 2023 ident: apjlacf299bib61 – volume: 936 start-page: 114 year: 2022 ident: apjlacf299bib76 publication-title: ApJ doi: 10.3847/1538-4357/ac892c – volume: 789 start-page: 104 year: 2014 ident: apjlacf299bib91 publication-title: ApJ doi: 10.1088/0004-637X/789/2/104 – volume: 233 start-page: 25 year: 2017 ident: apjlacf299bib109 publication-title: ApJS doi: 10.3847/1538-4365/aa8992 – volume: 132 start-page: 025001 year: 2020 ident: apjlacf299bib28 publication-title: PASP doi: 10.1088/1538-3873/ab6069 – volume: 476 start-page: 2840 year: 2018 ident: apjlacf299bib84 publication-title: MNRAS doi: 10.1093/mnras/sty475 – volume: 47 start-page: 63 year: 2009 ident: apjlacf299bib113 publication-title: ARA&A doi: 10.1146/annurev-astro-082708-101737 – volume: 132 start-page: 1 year: 2023 ident: apjlacf299bib149 publication-title: TNSAN – volume: 954 start-page: L12 year: 2023 ident: apjlacf299bib112 publication-title: ApJL doi: 10.3847/2041-8213/acef20 – volume: 132 start-page: 085002 year: 2020 ident: apjlacf299bib115 publication-title: PASP doi: 10.1088/1538-3873/ab936e – volume: 420 start-page: 268 year: 1994 ident: apjlacf299bib25 publication-title: ApJ doi: 10.1086/173557 – volume: 73 start-page: 1128 year: 2021 ident: apjlacf299bib133 publication-title: PASJ doi: 10.1093/pasj/psab063 – year: 2023 ident: apjlacf299bib50 – volume: 31 start-page: 429 year: 2005 ident: apjlacf299bib5 publication-title: AstL doi: 10.1134/1.1958107 – volume: 128 start-page: 115005 year: 2016 ident: apjlacf299bib32 publication-title: PASP doi: 10.1088/1538-3873/128/969/115005 – volume: 909 start-page: 209 year: 2021 ident: apjlacf299bib102 publication-title: ApJ doi: 10.3847/1538-4357/abe2b1 – volume: 780 start-page: 21 year: 2014 ident: apjlacf299bib73 publication-title: ApJ doi: 10.1088/0004-637X/780/1/21 – volume: 952 start-page: L23 year: 2023 ident: apjlacf299bib62 publication-title: ApJL doi: 10.3847/2041-8213/ace4ca – start-page: 228 year: 2005 ident: apjlacf299bib83 – volume: 147 start-page: 108 year: 2014 ident: apjlacf299bib69 publication-title: AJ doi: 10.1088/0004-6256/147/5/108 – volume: 88 start-page: 439 year: 1983 ident: apjlacf299bib67 publication-title: AJ doi: 10.1086/113329 – volume: 949 start-page: 114 year: 2023 ident: apjlacf299bib44 publication-title: ApJ doi: 10.3847/1538-4357/acc536 – volume: 119 start-page: 1 year: 2023 ident: apjlacf299bib98 publication-title: TNSAN – volume: 145 start-page: 1 year: 2023 ident: apjlacf299bib119 publication-title: TNSAN – volume: 937 start-page: 75 year: 2022 ident: apjlacf299bib3 publication-title: ApJ doi: 10.3847/1538-4357/ac90c0 – volume: 496 start-page: 1325 year: 2020 ident: apjlacf299bib16 publication-title: MNRAS doi: 10.1093/mnras/staa1540 – volume: 131 start-page: 078001 year: 2019 ident: apjlacf299bib45 publication-title: PASP doi: 10.1088/1538-3873/ab006c – volume: 125 start-page: 306 year: 2013 ident: apjlacf299bib36 publication-title: PASP doi: 10.1086/670067 – volume: 792 start-page: 30 year: 2014 ident: apjlacf299bib71 publication-title: ApJ doi: 10.1088/0004-637X/792/1/30 – year: 2021 ident: apjlacf299bib135 publication-title: unWISE Catalog, IPAC doi: 10.26131/IRSA525 – volume: 910 start-page: 128 year: 2021 ident: apjlacf299bib47 publication-title: ApJ doi: 10.3847/1538-4357/abe938 – volume: 725 start-page: 904 year: 2010 ident: apjlacf299bib88 publication-title: ApJ doi: 10.1088/0004-637X/725/1/904 – volume: 150 start-page: 1 year: 2023 ident: apjlacf299bib26 publication-title: TNSAN – start-page: 239 year: 2017 ident: apjlacf299bib2 – volume: 877 start-page: 116 year: 2019 ident: apjlacf299bib140 publication-title: ApJ doi: 10.3847/1538-4357/ab1c61 – volume: 830 start-page: 27 year: 2016 ident: apjlacf299bib148 publication-title: ApJ doi: 10.3847/0004-637X/830/1/27 – year: 2022 ident: apjlacf299bib18 doi: 10.5281/zenodo.6825092 – volume: 130 start-page: 1 year: 2023 ident: apjlacf299bib72 publication-title: TNSAN – volume: 953 start-page: L16 year: 2023 ident: apjlacf299bib51 publication-title: ApJL doi: 10.3847/2041-8213/ace4c4 – volume: 243 start-page: 10 year: 2019 ident: apjlacf299bib97 publication-title: ApJS doi: 10.3847/1538-4365/ab2241 – year: 2023 ident: apjlacf299bib138 – volume: 9147 start-page: 91478H year: 2014 ident: apjlacf299bib100 publication-title: Proc. SPIE doi: 10.1117/12.2055117 – volume: 786 start-page: 67 year: 2014 ident: apjlacf299bib1 publication-title: ApJ doi: 10.1088/0004-637X/786/1/67 – volume: 517 start-page: 1483 year: 2022 ident: apjlacf299bib27 publication-title: MNRAS doi: 10.1093/mnras/stac2427 – volume: 929 start-page: 177 year: 2022 ident: apjlacf299bib126 publication-title: ApJ doi: 10.3847/1538-4357/ac60fe – volume: 104 start-page: 340 year: 1992 ident: apjlacf299bib68 publication-title: AJ doi: 10.1086/116242 – volume: 124 start-page: 1 year: 2023 ident: apjlacf299bib38 publication-title: TNSAN – volume: 945 start-page: 104 year: 2023 ident: apjlacf299bib134 publication-title: ApJ doi: 10.3847/1538-4357/acbbc6 – year: 2020 ident: apjlacf299bib141 doi: 10.5281/zenodo.3629446 – volume: 140 start-page: 1868 year: 2010 ident: apjlacf299bib142 publication-title: AJ doi: 10.1088/0004-6256/140/6/1868 – volume: 16091 start-page: 1 year: 2023 ident: apjlacf299bib77 publication-title: ATel – volume: 145 start-page: 44 year: 2013 ident: apjlacf299bib147 publication-title: AJ doi: 10.1088/0004-6256/145/2/44 – volume: 480 start-page: 1696 year: 2018 ident: apjlacf299bib59 publication-title: MNRAS doi: 10.1093/mnras/sty1966 – volume: 854 start-page: 68 year: 2018 ident: apjlacf299bib53 publication-title: ApJ doi: 10.3847/1538-4357/aaa6ca – year: 2023 ident: apjlacf299bib17 – volume: 904 start-page: 74 year: 2020 ident: apjlacf299bib43 publication-title: ApJ doi: 10.3847/1538-4357/abbf49 – volume: 117 start-page: 393 year: 1996 ident: apjlacf299bib9 publication-title: A&AS doi: 10.1051/aas:1996164 – volume: 414 start-page: 712 year: 1993 ident: apjlacf299bib104 publication-title: ApJ doi: 10.1086/173117 – volume: 131 start-page: 018002 year: 2019 ident: apjlacf299bib7 publication-title: PASP doi: 10.1088/1538-3873/aaecbe – volume: 720 start-page: 1118 year: 2010 ident: apjlacf299bib22 publication-title: ApJ doi: 10.1088/0004-637X/720/2/1118 – volume: 207 start-page: 110.10 year: 2005 ident: apjlacf299bib125 publication-title: AAS Meeting Abstracts – start-page: 875 year: 2017 ident: apjlacf299bib24 – volume: 953 start-page: L14 year: 2023 ident: apjlacf299bib103 publication-title: ApJL doi: 10.3847/2041-8213/ace88b – volume: 192 start-page: 3 year: 2011 ident: apjlacf299bib93 publication-title: ApJS doi: 10.1088/0067-0049/192/1/3 – volume: 123 start-page: 1 year: 2023 ident: apjlacf299bib33 publication-title: TNSAN – volume: 621 start-page: A109 year: 2019 ident: apjlacf299bib15 publication-title: A&A doi: 10.1051/0004-6361/201833779 – volume: 7 start-page: 1 year: 2021 ident: apjlacf299bib111 publication-title: TNSAN – volume: 13 start-page: 510 year: 2017 ident: apjlacf299bib145 publication-title: NatPh doi: 10.1038/nphys4025 – year: 2016 ident: apjlacf299bib23 – volume: 936 start-page: 28 year: 2022 ident: apjlacf299bib131 publication-title: ApJ doi: 10.3847/1538-4357/ac83bc – volume: 156 start-page: 123 year: 2018 ident: apjlacf299bib4 publication-title: AJ doi: 10.3847/1538-3881/aabc4f – volume: 952 start-page: L30 year: 2023 ident: apjlacf299bib58 publication-title: ApJL doi: 10.3847/2041-8213/ace618 – volume: 808 start-page: L51 year: 2015 ident: apjlacf299bib101 publication-title: ApJL doi: 10.1088/2041-8205/808/2/L51 – volume: 492 start-page: 5994 year: 2020 ident: apjlacf299bib6 publication-title: MNRAS doi: 10.1093/mnras/staa255 – volume: 130 start-page: 035003 year: 2018 ident: apjlacf299bib10 publication-title: PASP doi: 10.1088/1538-3873/aaa53f – volume: 496 start-page: 454 year: 1998 ident: apjlacf299bib13 publication-title: ApJ doi: 10.1086/305375 – volume: 737 start-page: 103 year: 2011 ident: apjlacf299bib107 publication-title: ApJ doi: 10.1088/0004-637X/737/2/103 – volume: 354 start-page: 89 year: 2014 ident: apjlacf299bib20 publication-title: Ap&SS doi: 10.1007/s10509-014-2059-8 – volume: 494 start-page: 65 year: 2013 ident: apjlacf299bib90 publication-title: Natur doi: 10.1038/nature11877 – volume: 220 start-page: 15 year: 2015 ident: apjlacf299bib95 publication-title: ApJS doi: 10.1088/0067-0049/220/1/15 – volume: 234 start-page: 34 year: 2018 ident: apjlacf299bib96 publication-title: ApJS doi: 10.3847/1538-4365/aaa5a8 – volume: 759 start-page: 108 year: 2012 ident: apjlacf299bib122 publication-title: ApJ doi: 10.1088/0004-637X/759/2/108 – year: 2018 ident: apjlacf299bib79 doi: 10.5281/zenodo.1257560 – year: 2006 ident: apjlacf299bib92 – volume: 32 start-page: e016 year: 2015 ident: apjlacf299bib114 publication-title: PASA doi: 10.1017/pasa.2015.17 – volume: 3355 start-page: 242 year: 1998 ident: apjlacf299bib123 publication-title: Proc. SPIE doi: 10.1117/12.316766 – volume: 290 start-page: 13 year: 2004 ident: apjlacf299bib12 publication-title: Ap&SS doi: 10.1023/B:ASTR.0000022161.03559.42 – volume: 907 start-page: 99 year: 2021 ident: apjlacf299bib120 publication-title: ApJ doi: 10.3847/1538-4357/abd032 – volume: 5489 start-page: 679 year: 2004 ident: apjlacf299bib118 publication-title: Proc. SPIE doi: 10.1117/12.551456 – start-page: 129 year: 2007 ident: apjlacf299bib124 – volume: 426 start-page: 1465 year: 2012 ident: apjlacf299bib105 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21796.x – volume: 635 start-page: A127 year: 2020 ident: apjlacf299bib66 publication-title: A&A doi: 10.1051/0004-6361/201937226 – volume: 2 start-page: 808 year: 2018 ident: apjlacf299bib37 publication-title: NatAs doi: 10.1038/s41550-018-0563-4 – volume: 9 start-page: 90 year: 2007 ident: apjlacf299bib54 publication-title: CSE doi: 10.1109/MCSE.2007.55 – start-page: 249 year: 2007 ident: apjlacf299bib82 – volume: 7 start-page: 141 year: 2023 ident: apjlacf299bib110 publication-title: RNAAS – volume: 821 start-page: 38 year: 2016 ident: apjlacf299bib121 publication-title: ApJ doi: 10.3847/0004-637X/821/1/38 – volume: 160 start-page: 1 year: 2023 ident: apjlacf299bib70 publication-title: TNSAN – volume: 111 start-page: 63 year: 1999 ident: apjlacf299bib34 publication-title: PASP doi: 10.1086/316293 – volume: 125 start-page: 1031 year: 2013 ident: apjlacf299bib21 publication-title: PASP doi: 10.1086/673168 – volume: 926 start-page: 20 year: 2022 ident: apjlacf299bib128 publication-title: ApJ doi: 10.3847/1538-4357/ac3820 – volume: 951 start-page: L31 year: 2023 ident: apjlacf299bib8 publication-title: ApJL doi: 10.3847/2041-8213/ace0c4 – volume: 703 start-page: 2205 year: 2009 ident: apjlacf299bib60 publication-title: ApJ doi: 10.1088/0004-637X/703/2/2205 – volume: 814 start-page: 63 year: 2015 ident: apjlacf299bib86 publication-title: ApJ doi: 10.1088/0004-637X/814/1/63 – volume: 952 start-page: L3 year: 2023 ident: apjlacf299bib46 publication-title: ApJL doi: 10.3847/2041-8213/acdf4e – volume: 891 start-page: L32 year: 2020 ident: apjlacf299bib85 publication-title: ApJL doi: 10.3847/2041-8213/ab77c8 – volume: 120 start-page: 1 year: 2023 ident: apjlacf299bib99 publication-title: TNSAN – year: 2012 ident: apjlacf299bib108 – volume: 144 start-page: 1 year: 2023 ident: apjlacf299bib64 publication-title: TNSAN – year: 2023 ident: apjlacf299bib116 – start-page: 140 year: 1997 ident: apjlacf299bib129 – volume: 208 start-page: 4 year: 2013 ident: apjlacf299bib94 publication-title: ApJS doi: 10.1088/0067-0049/208/1/4 – volume: 483 start-page: 1211 year: 2019 ident: apjlacf299bib65 publication-title: MNRAS doi: 10.1093/mnras/sty3185 – year: 2023 ident: apjlacf299bib143 publication-title: PASJ doi: 10.1093/pasj/psad051 – volume: 879 start-page: 3 year: 2019 ident: apjlacf299bib41 publication-title: ApJ doi: 10.3847/1538-4357/ab22b6 – volume: 5 start-page: 903 year: 2021 ident: apjlacf299bib49 publication-title: NatAs doi: 10.1038/s41550-021-01384-2 – volume: 110 start-page: 79 year: 1998 ident: apjlacf299bib31 publication-title: PASP doi: 10.1086/316111 – volume: 459 start-page: 3939 year: 2016 ident: apjlacf299bib136 publication-title: MNRAS doi: 10.1093/mnras/stw870 – volume: 717 start-page: L62 year: 2010 ident: apjlacf299bib146 publication-title: ApJL doi: 10.1088/2041-8205/717/1/L62 – year: 2023 ident: apjlacf299bib75 – volume: 465 start-page: 403 year: 2017 ident: apjlacf299bib42 publication-title: MNRAS doi: 10.1093/mnras/stw2708 – volume: 251 start-page: 7 year: 2020 ident: apjlacf299bib35 publication-title: ApJS doi: 10.3847/1538-4365/abb82d – volume: 453 start-page: 229 year: 2006 ident: apjlacf299bib14 publication-title: A&A doi: 10.1051/0004-6361:20054594 – volume: 509 start-page: 471 year: 2014 ident: apjlacf299bib39 publication-title: Natur doi: 10.1038/nature13304 – volume: 467 start-page: 3347 year: 2017 ident: apjlacf299bib63 publication-title: MNRAS doi: 10.1093/mnras/stx291 – volume: 934 start-page: L7 year: 2022 ident: apjlacf299bib106 publication-title: ApJL doi: 10.3847/2041-8213/ac5c5b – year: 2023 ident: apjlacf299bib57 – volume: 131 start-page: 018003 year: 2019 ident: apjlacf299bib74 publication-title: PASP doi: 10.1088/1538-3873/aae8ac – volume: 858 start-page: 15 year: 2018 ident: apjlacf299bib87 publication-title: ApJ doi: 10.3847/1538-4357/aab9a6 – volume: 230 start-page: 318.03 year: 2017 ident: apjlacf299bib52 publication-title: AAS Meeting Abstracts – year: 2023 ident: apjlacf299bib117 – volume: 2023-123 start-page: 1 year: 2023 ident: apjlacf299bib127 publication-title: TNSCR – volume: 952 start-page: 115 year: 2023 ident: apjlacf299bib132 publication-title: ApJ doi: 10.3847/1538-4357/acdb71 – volume: 532 start-page: 1132 year: 2000 ident: apjlacf299bib11 publication-title: ApJ doi: 10.1086/308588 – year: 1991 ident: apjlacf299bib29 – start-page: 305 year: 2011 ident: apjlacf299bib81 – year: 2023 ident: apjlacf299bib89 – volume: 17 start-page: 261 year: 2020 ident: apjlacf299bib139 publication-title: NatMe doi: 10.1038/s41592-019-0686-2 – start-page: 373 year: 2011 ident: apjlacf299bib19 – start-page: 693 year: 2017 ident: apjlacf299bib137 – volume: 2023-126 start-page: 1 year: 2023 ident: apjlacf299bib144 publication-title: TNSCR – volume: 895 start-page: L45 year: 2020 ident: apjlacf299bib40 publication-title: ApJL doi: 10.3847/2041-8213/ab9300 – volume: 924 start-page: 15 year: 2022 ident: apjlacf299bib56 publication-title: ApJ doi: 10.3847/1538-4357/ac3f3a – volume: 156 start-page: 69 year: 2018 ident: apjlacf299bib80 publication-title: AJ doi: 10.3847/1538-3881/aacbcd |
SSID | ssj0020618 |
Score | 2.6512506 |
Snippet | We present the discovery of the Type II supernova SN 2023ixf in M101 and follow-up photometric and spectroscopic observations, respectively, in the first month... |
SourceID | doaj proquest crossref iop |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | L8 |
SubjectTerms | Circumstellar matter Core-collapse supernovae Evolution Explosions Helium Ionization Light curve Massive stars Red supergiant stars Spectroscopic observation Stellar mass loss Supergiant stars Supernova Supernovae Type II supernovae |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQT3WhVHMAJA7RJraTjXsrj1WLWi5QVE6WXyNStUm0m0rtlV_O2Mm2IKRy4ZZYTjKaR-YbezzD2Ctj4m6MUxlayTNZFiJTZRmyPAhbGvIflsfTyMefq4MT-em0PP2t1VfMCRvLA4-Mm0sXuKpsxdE6WVhVc-dq9Fh5MtVFnY7u5SrfBFNTqEVeKvWiy2WRkY8rxw1KQb_i-TRWiLlxyFPN11uHlOr2k5tpuv6vn3PyOMuH7MEEFWF_JPERuxfax2x7fx0Xr7uLa3gD6Xpcm1g_YT-Xq-4CPjRrF9Myr2HogNAdLBsCeEC2O_yADtNQDD7h8BC-XPZhFbuiQmxv3lzhHsS8DzCth28URMdjVXBM8BqOiHRo2umFkazvZCJgA2HeACmRLy67PWUny49f3x9kU4uFzJGnHzIUoRJOquBQoeRhkTviMxYFFh7JwQUMhSWGU1ilOKpSlbWXxlNYq4j7QohnbKvt2rDNQHgpJFJ0iAalq6paGm7oxi-s42rhZ2y-4bN2U_3x2AbjXFMcEiWjo2R0lIweJTNjb2-e6MfaG3fMfRdFdzMvVs1OA6RLetIl_S9dmrHXJHg9WfH6jo_t_jHP9GfnmlRcF_qo1r3HGdvZ6M7tLF5XBP8IM4nn_4PYF-x-1I0x322HbQ2ry_CSANJgd5Mt_AICkAoM priority: 102 providerName: Directory of Open Access Journals |
Title | From Discovery to the First Month of the Type II Supernova 2023ixf: High and Variable Mass Loss in the Final Year before Explosion |
URI | https://iopscience.iop.org/article/10.3847/2041-8213/acf299 https://www.proquest.com/docview/2866430223 https://doaj.org/article/4ce296b62fbc41b982cc8fdf6d538789 |
Volume | 955 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKuXBBPNUtZTUHQOIQurGdrA2n8lh1UUuRoFBOlp9iUZtEu6lEr_xyZpJ0UQWquERJNLGdzOsbx55h7Im19DfG6yw5yTNZ5CLTRRGzSRSusOg_HKfdyIcfyv1j-f6kONlgr9Z7YepmMP0v8LRPFNx_QtJvgbYUw3WZZ4rnYtf6hNb0BrspVKlIK4_E13W0hY6qK0fXU0-K_h_lP1u44pO61P3oabD7v-xz53Rmd9jtAS3CXj-2u2wjVvfY1t6K5q_rswt4Bt15Pz2xus9-zZb1GbxdrDytzLyAtgYEeDBbIMYDVN_2O9Spu0XxJ8zn8Om8iUsqjApU4XzxM70EWvoBtgrwBeNo2lkFh4iw4QCHDotqaJCG9Q21BFxE2BuhW8tHM28P2PHs3ec3-9lQZSHz6OzbLIlYCi919EknyeN04pPzKc9THhL6uJhi7rxHY4RgMOlCFypIGzCy1UJNhRAP2WZVV3GLgQhSyIQBYrJJ-rJU0nKLF2HqPNfTMGK7l9_Z-CEFOVXCODUYihBnDHHGEGdMz5kRe75-ounTb1xD-5pYt6ajxNndDRQiMwiRkT5yXbqS4zvK3GnF8dVSSGVAyz9V2MhTZLwZFHl1TWfjK3S2-XFqUMpNbg6UaUIasZ1L2flDxVWJCBBhk9j-z34esVvE_n5V2w7bbJfn8THCoNaNu-kDPM6PPo470f8NZRwBGQ |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSIgL4qkulDIHQOIQdmM7D3MrlKgL24IEhXKy_FQXtclqN5XolV_OTJIuqkAVNyfye8Yz3_gxw9gzY-g0xqkkWskTmaUiUVkWkkkQNjOoPyyn18j7B_neoXx_lB0NcU67tzDNYhD9rzDZOwrup5DWt0BZiua6TJOSp2JsXERpOl74eJ3dyESekfP8j-Lb2uJCZdWFpOtLTLL-nPKftVzSS537ftQ22IW_ZHSneKo77PaAGGGn799ddi3U99jmzor2sJvTc3gBXbrfoljdZ7-qZXMKu_OVo9uZ59A2gCAPqjniPMAl3B5DE7tfZIPCdAqfzxZhScFRgaKcz3_G10DXP8DUHr6iLU2vq2AfUTbMsOswr4cKqVvfcaWADQh9A3T3-Wj37QE7rN59ebuXDJEWEocKv02iCLlwUgUXVZQ8FBMXrYtpGlMfUc-FGFLrHAokBIRRZSorvTQerVslykII8ZBt1E0dNhkIL4WMaCRGE6XL81IabvDDF9ZxVfgRG1_Ms3aDG3KKhnGi0RwhymiijCbK6J4yI_ZyXWLRu-C4Iu8bIt06HznP7n4gI-mBkbR0gavc5hzHKFOrSo5Diz7mHqV_UWIlz5HweljMqysa276Uzyx-nGjkdJ3qWamRK0ds64J3_uTiZY4oEKGTePSf7TxlNz_tVno2PfjwmN0iTugvuW2xjXZ5Fp4gKmrtdsf5vwE9EgMT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+Discovery+to+the+First+Month+of+the+Type+II+Supernova+2023ixf%3A+High+and+Variable+Mass+Loss+in+the+Final+Year+before+Explosion&rft.jtitle=Astrophysical+journal.+Letters&rft.au=Hiramatsu%2C+Daichi&rft.au=Tsuna%2C+Daichi&rft.au=Berger%2C+Edo&rft.au=Itagaki%2C+Koichi&rft.date=2023-09-01&rft.pub=The+American+Astronomical+Society&rft.issn=2041-8205&rft.eissn=2041-8213&rft.volume=955&rft.issue=1&rft_id=info:doi/10.3847%2F2041-8213%2Facf299&rft.externalDocID=apjlacf299 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-8205&client=summon |