How does transcranial magnetic stimulation modify neuronal activity in the brain? Implications for studies of cognition
Transcranial magnetic stimulation (TMS) uses a magnetic field to “carry” a short lasting electrical current pulse into the brain where it stimulates neurones, particularly in superficial regions of cerebral cortex. TMS can interfere with cognitive functions in two ways. A high intensity TMS pulse ca...
Saved in:
Published in | Cortex Vol. 45; no. 9; pp. 1035 - 1042 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Italy
Elsevier Ltd
01.10.2009
|
Subjects | |
Online Access | Get full text |
ISSN | 0010-9452 1973-8102 1973-8102 |
DOI | 10.1016/j.cortex.2009.02.007 |
Cover
Loading…
Abstract | Transcranial magnetic stimulation (TMS) uses a magnetic field to “carry” a short lasting electrical current pulse into the brain where it stimulates neurones, particularly in superficial regions of cerebral cortex. TMS can interfere with cognitive functions in two ways. A high intensity TMS pulse causes a synchronised high frequency burst of discharge in a relatively large population of neurones that is terminated by a long lasting GABAergic inhibition. The combination of artificial synchronisation of activity followed by depression effectively disrupts perceptual, motor and cognitive processes in the human brain. This transient neurodisruption has been termed a “virtual lesion”. Smaller intensities of stimulation produce less activity; in such cases, cognitive operations can probably continue but are disrupted because of the added noisy input from the TMS pulse.
It is usually argued that if a TMS pulse affects performance, then the area stimulated must provide an essential contribution to behaviour being studied. However, there is one exception to this: the pulse could be applied to an area that is not involved in the task but which has projections to the critical site. Activation of outputs from the site of stimulation could potentially disrupt processing at the distant site, interfering with behaviour without having any involvement in the task.
A final important feature of the response to TMS is “context dependency”, which indicates that the response depends on how excitable the cortex is at the time the stimulus is applied: if many neurones are close to firing threshold then the more of them are recruited by the pulse than at rest. Many studies have noted this context-dependent modulation. However, it is often assumed that the excitability of an area has a simple relationship to activity in that area. We argue that this is not necessarily the case. Awareness of the problem may help resolve some apparent anomalies in the literature. |
---|---|
AbstractList | Transcranial magnetic stimulation (TMS) uses a magnetic field to “carry” a short lasting electrical current pulse into the brain where it stimulates neurones, particularly in superficial regions of cerebral cortex. TMS can interfere with cognitive functions in two ways. A high intensity TMS pulse causes a synchronised high frequency burst of discharge in a relatively large population of neurones that is terminated by a long lasting GABAergic inhibition. The combination of artificial synchronisation of activity followed by depression effectively disrupts perceptual, motor and cognitive processes in the human brain. This transient neurodisruption has been termed a “virtual lesion”. Smaller intensities of stimulation produce less activity; in such cases, cognitive operations can probably continue but are disrupted because of the added noisy input from the TNS pulse.
It is usually argued that if a TMS pulse affects performance, then the area stimulated must provide an essential contribution to behaviour being studied. However, there is one exception to this: the pulse could be applied to an area that is not involved in the task but which has projections to the critical site. Activation of outputs from the site of stimulation could potentially disrupt processing at the distant site, interfering with behaviour without having any involvement in the task.
A final important feature of the response to TMS is “context dependency”, which indicates that the response depends on how excitable the cortex is at the time the stimulus is applied: if many neurones are close to firing threshold then the more of them are recruited by the pulse than at rest. Many studies have noted this context-dependent modulation. However, it is often assumed that the
excitability
of an area has a simple relationship to
activity
in that area. We argue that this is not necessarily the case. Awareness of the problem may help resolve some apparent anomalies in the literature. Transcranial magnetic stimulation (TMS) uses a magnetic field to "carry" a short lasting electrical current pulse into the brain where it stimulates neurones, particularly in superficial regions of cerebral cortex. TMS can interfere with cognitive functions in two ways. A high intensity TMS pulse causes a synchronised high frequency burst of discharge in a relatively large population of neurones that is terminated by a long lasting GABAergic inhibition. The combination of artificial synchronisation of activity followed by depression effectively disrupts perceptual, motor and cognitive processes in the human brain. This transient neurodisruption has been termed a "virtual lesion". Smaller intensities of stimulation produce less activity; in such cases, cognitive operations can probably continue but are disrupted because of the added noisy input from the TMS pulse. It is usually argued that if a TMS pulse affects performance, then the area stimulated must provide an essential contribution to behaviour being studied. However, there is one exception to this: the pulse could be applied to an area that is not involved in the task but which has projections to the critical site. Activation of outputs from the site of stimulation could potentially disrupt processing at the distant site, interfering with behaviour without having any involvement in the task. A final important feature of the response to TMS is "context dependency", which indicates that the response depends on how excitable the cortex is at the time the stimulus is applied: if many neurones are close to firing threshold then the more of them are recruited by the pulse than at rest. Many studies have noted this context-dependent modulation. However, it is often assumed that the excitability of an area has a simple relationship to activity in that area. We argue that this is not necessarily the case. Awareness of the problem may help resolve some apparent anomalies in the literature. Transcranial magnetic stimulation (TMS) uses a magnetic field to “carry” a short lasting electrical current pulse into the brain where it stimulates neurones, particularly in superficial regions of cerebral cortex. TMS can interfere with cognitive functions in two ways. A high intensity TMS pulse causes a synchronised high frequency burst of discharge in a relatively large population of neurones that is terminated by a long lasting GABAergic inhibition. The combination of artificial synchronisation of activity followed by depression effectively disrupts perceptual, motor and cognitive processes in the human brain. This transient neurodisruption has been termed a “virtual lesion”. Smaller intensities of stimulation produce less activity; in such cases, cognitive operations can probably continue but are disrupted because of the added noisy input from the TMS pulse. It is usually argued that if a TMS pulse affects performance, then the area stimulated must provide an essential contribution to behaviour being studied. However, there is one exception to this: the pulse could be applied to an area that is not involved in the task but which has projections to the critical site. Activation of outputs from the site of stimulation could potentially disrupt processing at the distant site, interfering with behaviour without having any involvement in the task. A final important feature of the response to TMS is “context dependency”, which indicates that the response depends on how excitable the cortex is at the time the stimulus is applied: if many neurones are close to firing threshold then the more of them are recruited by the pulse than at rest. Many studies have noted this context-dependent modulation. However, it is often assumed that the excitability of an area has a simple relationship to activity in that area. We argue that this is not necessarily the case. Awareness of the problem may help resolve some apparent anomalies in the literature. Transcranial magnetic stimulation (TMS) uses a magnetic field to "carry" a short lasting electrical current pulse into the brain where it stimulates neurones, particularly in superficial regions of cerebral cortex. TMS can interfere with cognitive functions in two ways. A high intensity TMS pulse causes a synchronised high frequency burst of discharge in a relatively large population of neurones that is terminated by a long lasting GABAergic inhibition. The combination of artificial synchronisation of activity followed by depression effectively disrupts perceptual, motor and cognitive processes in the human brain. This transient neurodisruption has been termed a "virtual lesion". Smaller intensities of stimulation produce less activity; in such cases, cognitive operations can probably continue but are disrupted because of the added noisy input from the TMS pulse. It is usually argued that if a TMS pulse affects performance, then the area stimulated must provide an essential contribution to behaviour being studied. However, there is one exception to this: the pulse could be applied to an area that is not involved in the task but which has projections to the critical site. Activation of outputs from the site of stimulation could potentially disrupt processing at the distant site, interfering with behaviour without having any involvement in the task. A final important feature of the response to TMS is "context dependency", which indicates that the response depends on how excitable the cortex is at the time the stimulus is applied: if many neurones are close to firing threshold then the more of them are recruited by the pulse than at rest. Many studies have noted this context-dependent modulation. However, it is often assumed that the excitability of an area has a simple relationship to activity in that area. We argue that this is not necessarily the case. Awareness of the problem may help resolve some apparent anomalies in the literature.Transcranial magnetic stimulation (TMS) uses a magnetic field to "carry" a short lasting electrical current pulse into the brain where it stimulates neurones, particularly in superficial regions of cerebral cortex. TMS can interfere with cognitive functions in two ways. A high intensity TMS pulse causes a synchronised high frequency burst of discharge in a relatively large population of neurones that is terminated by a long lasting GABAergic inhibition. The combination of artificial synchronisation of activity followed by depression effectively disrupts perceptual, motor and cognitive processes in the human brain. This transient neurodisruption has been termed a "virtual lesion". Smaller intensities of stimulation produce less activity; in such cases, cognitive operations can probably continue but are disrupted because of the added noisy input from the TMS pulse. It is usually argued that if a TMS pulse affects performance, then the area stimulated must provide an essential contribution to behaviour being studied. However, there is one exception to this: the pulse could be applied to an area that is not involved in the task but which has projections to the critical site. Activation of outputs from the site of stimulation could potentially disrupt processing at the distant site, interfering with behaviour without having any involvement in the task. A final important feature of the response to TMS is "context dependency", which indicates that the response depends on how excitable the cortex is at the time the stimulus is applied: if many neurones are close to firing threshold then the more of them are recruited by the pulse than at rest. Many studies have noted this context-dependent modulation. However, it is often assumed that the excitability of an area has a simple relationship to activity in that area. We argue that this is not necessarily the case. Awareness of the problem may help resolve some apparent anomalies in the literature. |
Author | Rothwell, John C. Siebner, Hartwig R. Hartwigsen, Gesa Kassuba, Tanja |
AuthorAffiliation | 1 Danish Research Centre for Magnetic Resonance, Hvidovre University Hospital, Copenhagen, Denmark 3 NeuroImageNord Hamburg-Kiel-Lübeck, Germany 2 Department of Neurology, Christian-Albrechts-University Kiel, Germany 4 Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College of London, London, UK |
AuthorAffiliation_xml | – name: 4 Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College of London, London, UK – name: 3 NeuroImageNord Hamburg-Kiel-Lübeck, Germany – name: 1 Danish Research Centre for Magnetic Resonance, Hvidovre University Hospital, Copenhagen, Denmark – name: 2 Department of Neurology, Christian-Albrechts-University Kiel, Germany |
Author_xml | – sequence: 1 givenname: Hartwig R. surname: Siebner fullname: Siebner, Hartwig R. email: hartwig.siebner@drcmr.dk organization: Danish Research Centre for Magnetic Resonance, Hvidovre University Hospital, Copenhagen, Denmark – sequence: 2 givenname: Gesa surname: Hartwigsen fullname: Hartwigsen, Gesa organization: Department of Neurology, Christian-Albrechts-University Kiel, Germany – sequence: 3 givenname: Tanja surname: Kassuba fullname: Kassuba, Tanja organization: Department of Neurology, Christian-Albrechts-University Kiel, Germany – sequence: 4 givenname: John C. surname: Rothwell fullname: Rothwell, John C. organization: Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College of London, London, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19371866$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1vEzEQhi1URNPCP0DIJ25Zxt7shzmAqqqllSpxgbPl-COdaNcOtjcl_x6nCZ8HerEP88zrGT9n5MQHbwl5zaBiwNp360qHmO33igOICngF0D0jMya6et4z4CdkBsBgLhYNPyVnKa0BOPRN84KcMlF3rG_bGXm4CQ_UBJtojsonXQ5UAx3VytuMmqaM4zSojMHTMRh0O-rtFIMvkNIZt5h3FD3N95Yuo0L_kd6OmwH1Y0uiLsSSMRksLwRHdVh53FdekudODcm-Ot7n5Ov11ZfLm_nd50-3lxd3c90wnucOalh2Bjrm6kVrhNGq6fvegFOGO65aZrlZNq5d2IKAqhe9Y0o1oreN1p2qz8mHQ-5mWo7WaOvLnoPcRBxV3MmgUP5d8XgvV2EruRBdK3gJeHsMiOHbZFOWIyZth0F5G6Yk265pGyHaJ0HOGIeO78E3f470a5afUgqwOAA6hpSidb8RkHv3ci0P7uXevQQui_vS9v6fNo35UUNZDIenmo__ZIuMLdook0brtTUYrc7SBPx_wA_IKtGD |
CitedBy_id | crossref_primary_10_1016_j_cortex_2020_09_002 crossref_primary_10_1080_23273798_2016_1257816 crossref_primary_10_1002_hbm_22288 crossref_primary_10_1002_mds_23706 crossref_primary_10_1016_j_brs_2017_04_130 crossref_primary_10_1523_JNEUROSCI_0173_24_2025 crossref_primary_10_1002_hbm_26086 crossref_primary_10_1093_cercor_bhu186 crossref_primary_10_1177_1073858416631966 crossref_primary_10_1016_j_neuroimage_2010_08_047 crossref_primary_10_1016_j_tics_2018_01_010 crossref_primary_10_3389_fneur_2018_00825 crossref_primary_10_1007_s11469_023_01120_z crossref_primary_10_1016_j_brs_2025_02_018 crossref_primary_10_1016_j_brs_2017_12_010 crossref_primary_10_1016_j_neuropsychologia_2014_06_025 crossref_primary_10_1111_ppc_12596 crossref_primary_10_1016_j_neuroimage_2023_120242 crossref_primary_10_1016_j_bandl_2011_07_005 crossref_primary_10_1016_j_expneurol_2012_11_003 crossref_primary_10_1016_j_pneurobio_2010_10_003 crossref_primary_10_3390_brainsci12080982 crossref_primary_10_1038_s41598_023_32065_x crossref_primary_10_1016_j_brainresbull_2025_111258 crossref_primary_10_1080_09602011_2011_574050 crossref_primary_10_1098_rstb_2024_0186 crossref_primary_10_1016_j_brs_2021_02_006 crossref_primary_10_1002_wcs_1469 crossref_primary_10_1002_hbm_23236 crossref_primary_10_1523_JNEUROSCI_6751_10_2011 crossref_primary_10_1044_sasd19_1_10 crossref_primary_10_1016_j_neuroimage_2019_116486 crossref_primary_10_1111_joor_12603 crossref_primary_10_3390_neurosci3030037 crossref_primary_10_1523_JNEUROSCI_1010_12_2012 crossref_primary_10_1371_journal_pone_0184910 crossref_primary_10_1111_j_1460_9568_2009_06911_x crossref_primary_10_1523_JNEUROSCI_0784_23_2024 crossref_primary_10_1016_j_neuroimage_2020_117449 crossref_primary_10_1016_j_brs_2018_09_009 crossref_primary_10_1096_fj_11_194878 crossref_primary_10_1016_j_neucli_2018_12_005 crossref_primary_10_1038_srep22302 crossref_primary_10_1177_1550059412445657 crossref_primary_10_1002_hbm_24597 crossref_primary_10_1089_neu_2012_2760 crossref_primary_10_1111_psyp_14631 crossref_primary_10_1021_acs_nanolett_3c03899 crossref_primary_10_1007_s00221_016_4649_x crossref_primary_10_1093_cercor_bhaa224 crossref_primary_10_1007_s00221_021_06044_5 crossref_primary_10_1093_cercor_bhac404 crossref_primary_10_1016_j_neuroscience_2021_03_001 crossref_primary_10_1016_j_celrep_2022_110951 crossref_primary_10_1016_j_cortex_2009_02_020 crossref_primary_10_1002_jnr_25062 crossref_primary_10_1007_s40473_018_0153_x crossref_primary_10_1186_s12877_021_02636_6 crossref_primary_10_1016_j_neuroimage_2023_120433 crossref_primary_10_1093_scan_nsad046 crossref_primary_10_1016_j_neuroimage_2017_01_013 crossref_primary_10_1016_j_conb_2017_03_019 crossref_primary_10_1016_j_cortex_2008_10_012 crossref_primary_10_1016_j_cortex_2020_08_004 crossref_primary_10_1007_s11910_015_0575_8 crossref_primary_10_1016_j_cortex_2011_03_008 crossref_primary_10_1162_jocn_a_01923 crossref_primary_10_1523_JNEUROSCI_4792_11_2012 crossref_primary_10_7554_eLife_13598 crossref_primary_10_1016_j_brs_2017_05_005 crossref_primary_10_1016_j_neurom_2024_09_003 crossref_primary_10_1093_cercor_bhab292 crossref_primary_10_3389_fneur_2020_566731 crossref_primary_10_1093_cercor_bhs110 crossref_primary_10_1523_JNEUROSCI_0697_11_2011 crossref_primary_10_3758_s13423_022_02107_y crossref_primary_10_2217_cns_14_25 crossref_primary_10_1007_s10548_010_0169_3 crossref_primary_10_1016_j_clinph_2010_10_026 crossref_primary_10_1016_j_cortex_2010_01_004 crossref_primary_10_1016_j_cortex_2015_05_007 crossref_primary_10_1155_2014_349718 crossref_primary_10_1523_JNEUROSCI_4863_10_2011 crossref_primary_10_1109_TMAG_2018_2850328 crossref_primary_10_1109_TMTT_2021_3075726 crossref_primary_10_1177_1094428116658960 crossref_primary_10_1016_j_cortex_2023_01_005 crossref_primary_10_7554_eLife_54687 crossref_primary_10_1016_j_neuropsychologia_2010_06_032 crossref_primary_10_1016_j_psc_2020_02_004 crossref_primary_10_1162_jocn_2010_21449 crossref_primary_10_1152_jn_00406_2019 crossref_primary_10_1016_j_janxdis_2016_07_002 crossref_primary_10_1016_j_ijpsycho_2022_08_005 crossref_primary_10_1097_PR9_0000000000000760 crossref_primary_10_3389_fnhum_2022_1027446 crossref_primary_10_1016_j_neulet_2020_134760 crossref_primary_10_1016_j_neuroimage_2012_03_084 crossref_primary_10_1097_YCT_0000000000001087 crossref_primary_10_1016_j_brs_2014_01_060 crossref_primary_10_1016_j_neubiorev_2010_06_005 crossref_primary_10_3389_fnhum_2020_00179 crossref_primary_10_1162_jocn_a_01466 crossref_primary_10_3758_s13415_016_0419_2 crossref_primary_10_1093_cercor_bhw294 crossref_primary_10_3390_jpm11050388 crossref_primary_10_1186_1471_2202_14_89 crossref_primary_10_1016_j_bandl_2014_10_007 crossref_primary_10_1080_02643294_2011_557231 crossref_primary_10_1016_j_cortex_2009_05_001 crossref_primary_10_1016_j_expneurol_2010_11_020 crossref_primary_10_1016_j_schres_2018_06_051 crossref_primary_10_1177_1073858411401413 crossref_primary_10_17116_neiro201882470 crossref_primary_10_3390_brainsci9080208 crossref_primary_10_1162_jocn_a_01591 crossref_primary_10_1371_journal_pone_0175230 crossref_primary_10_1016_j_cortex_2010_06_007 crossref_primary_10_1177_10738584221113806 crossref_primary_10_1371_journal_pone_0195739 crossref_primary_10_1016_j_cortex_2021_09_008 crossref_primary_10_1016_j_neuroscience_2019_05_063 crossref_primary_10_1016_j_biopsych_2018_06_003 crossref_primary_10_1523_JNEUROSCI_1644_10_2010 crossref_primary_10_1007_s40501_021_00238_y crossref_primary_10_1080_02687038_2011_589892 crossref_primary_10_1016_j_arr_2018_03_001 crossref_primary_10_1016_j_neuroimage_2016_02_012 crossref_primary_10_1016_j_pneurobio_2012_07_001 crossref_primary_10_1088_1361_6560_aae932 crossref_primary_10_1101_lm_048033_118 crossref_primary_10_1016_j_clinph_2018_04_749 crossref_primary_10_3389_fnhum_2018_00150 crossref_primary_10_1002_hbm_25700 crossref_primary_10_1177_1545968313508471 crossref_primary_10_1016_j_cortex_2009_11_010 crossref_primary_10_3390_s24206645 crossref_primary_10_1093_cercor_bht242 crossref_primary_10_1016_j_brs_2013_06_004 crossref_primary_10_1155_2015_287843 crossref_primary_10_1016_j_bbr_2014_12_032 crossref_primary_10_1155_2016_9674790 crossref_primary_10_1016_j_neuropsychologia_2012_01_016 crossref_primary_10_3233_JAD_150067 crossref_primary_10_1016_j_neuroimage_2022_118975 crossref_primary_10_1192_bjp_bp_115_168203 crossref_primary_10_1093_scan_nsx002 crossref_primary_10_1177_0333102412446313 crossref_primary_10_1016_j_neuroimage_2020_117041 crossref_primary_10_1016_j_tins_2016_09_001 crossref_primary_10_1016_j_brs_2021_03_017 crossref_primary_10_1186_s12871_022_01655_z crossref_primary_10_1016_j_tics_2018_07_014 crossref_primary_10_1162_jocn_a_00340 crossref_primary_10_1016_j_nicl_2019_101910 crossref_primary_10_1016_j_neuroscience_2020_04_016 crossref_primary_10_58563_dkyad_2024_72_5 crossref_primary_10_1038_s41598_024_73245_7 crossref_primary_10_1177_1545968315586464 crossref_primary_10_1016_j_cortex_2021_05_001 crossref_primary_10_1016_j_neuroimage_2020_117279 crossref_primary_10_1093_brain_awx087 crossref_primary_10_1016_j_pnpbp_2016_07_006 crossref_primary_10_1523_JNEUROSCI_0859_14_2015 crossref_primary_10_1016_j_neuropsychologia_2012_12_007 crossref_primary_10_1080_02687038_2011_619515 crossref_primary_10_1007_s00221_023_06575_z crossref_primary_10_1186_s12984_022_01094_4 crossref_primary_10_1007_s00701_014_2316_1 crossref_primary_10_1523_JNEUROSCI_2214_13_2014 crossref_primary_10_1016_j_neuropsychologia_2014_11_002 crossref_primary_10_1016_j_neubiorev_2021_04_038 crossref_primary_10_1016_j_jneumeth_2022_109485 crossref_primary_10_1080_02687038_2011_590573 crossref_primary_10_1016_j_neuroimage_2015_06_070 crossref_primary_10_1152_jn_00985_2011 crossref_primary_10_1177_1545968312469837 crossref_primary_10_1016_j_psychres_2017_12_063 crossref_primary_10_1007_s00429_021_02410_9 crossref_primary_10_1016_j_brs_2017_07_011 crossref_primary_10_1146_annurev_psych_081120_013144 crossref_primary_10_1093_cercor_bhaa240 crossref_primary_10_1007_s00429_022_02512_y crossref_primary_10_1063_5_0043648 crossref_primary_10_1016_j_cognition_2016_01_008 crossref_primary_10_1016_j_neuroimage_2023_120282 crossref_primary_10_52586_S561 crossref_primary_10_3724_SP_J_1042_2019_01093 crossref_primary_10_1111_psyp_14650 crossref_primary_10_1002_ejp_715 crossref_primary_10_1523_JNEUROSCI_2249_20_2021 crossref_primary_10_1007_s00115_015_4316_7 crossref_primary_10_3389_fneur_2020_582489 crossref_primary_10_1523_JNEUROSCI_3224_17_2018 crossref_primary_10_1016_j_msard_2019_101494 crossref_primary_10_3389_fnins_2023_1198222 crossref_primary_10_1007_s10548_021_00867_9 crossref_primary_10_1016_j_bandc_2015_05_003 crossref_primary_10_1016_j_cortex_2019_01_010 crossref_primary_10_1016_j_cortex_2009_03_004 crossref_primary_10_1162_jocn_a_02270 crossref_primary_10_1152_physrev_00033_2019 crossref_primary_10_1152_jn_00658_2016 crossref_primary_10_3233_RNN_170735 crossref_primary_10_3389_fbioe_2020_587680 crossref_primary_10_1016_j_neuroimage_2018_06_051 crossref_primary_10_1007_s11548_023_03023_9 crossref_primary_10_14814_phy2_13387 crossref_primary_10_1016_j_neurobiolaging_2015_05_001 crossref_primary_10_1038_s41583_022_00598_1 crossref_primary_10_1073_pnas_1008121107 crossref_primary_10_1016_j_brs_2019_01_021 crossref_primary_10_1016_j_brs_2012_03_012 crossref_primary_10_1016_j_isci_2024_111155 crossref_primary_10_1155_np_7853199 crossref_primary_10_3389_fnhum_2020_586448 crossref_primary_10_1016_j_neuroimage_2011_03_059 crossref_primary_10_1016_j_neuroimage_2018_09_002 crossref_primary_10_3390_ijerph17165851 crossref_primary_10_1227_NEU_0b013e31820b528c crossref_primary_10_1016_j_neuroimage_2021_118863 crossref_primary_10_1152_jn_00800_2018 crossref_primary_10_1371_journal_pone_0242941 crossref_primary_10_1113_jphysiol_2011_206573 crossref_primary_10_3389_fnins_2017_00710 |
Cites_doi | 10.1523/JNEUROSCI.0598-07.2007 10.1007/s00221-006-0551-2 10.1111/j.1469-7793.1999.0867p.x 10.1016/S0006-8993(01)02369-1 10.1007/s00221-002-1234-2 10.1007/s00221-004-1851-z 10.1111/j.1460-9568.2007.05440.x 10.1016/j.tics.2007.12.002 10.1113/jphysiol.2003.050153 10.1016/j.brs.2008.06.006 10.1113/jphysiol.1993.sp019732 10.1002/(SICI)1097-4598(199809)21:9<1209::AID-MUS15>3.0.CO;2-M 10.1016/S1388-2457(02)00373-5 10.1093/brain/120.5.839 10.1016/0168-5597(92)90081-L 10.1016/S1047-9651(03)00105-0 10.1097/00001756-200105250-00038 10.1097/00001756-200009280-00041 10.1097/00001756-200007140-00044 10.1007/s00221-006-0359-0 10.1016/0168-5597(89)90036-1 10.1016/j.neuroimage.2005.05.013 10.1016/S0959-4388(00)00081-7 10.1016/0168-5597(93)90100-4 10.1016/j.neuroimage.2007.03.001 10.1073/pnas.0409182102 10.1126/science.1117256 10.1016/j.clinph.2003.10.009 10.1016/j.biopsych.2008.05.026 10.1007/s00221-007-0991-3 10.1016/j.cub.2006.11.063 10.1016/S0140-6736(85)92413-4 10.1152/jn.2001.86.4.1983 10.1109/IEMBS.2006.259398 10.1093/cercor/bhm229 10.1097/00006123-198701000-00031 10.1162/jocn.2008.20048 10.1016/0168-5597(92)90096-T 10.1002/ana.10848 10.1007/s002210050648 10.1111/j.1469-7793.1998.571bb.x 10.1113/jphysiol.1992.sp019243 |
ContentType | Journal Article |
Copyright | 2009 Elsevier Srl |
Copyright_xml | – notice: 2009 Elsevier Srl |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
DOI | 10.1016/j.cortex.2009.02.007 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1973-8102 |
EndPage | 1042 |
ExternalDocumentID | PMC2997692 19371866 10_1016_j_cortex_2009_02_007 S001094520900063X |
Genre | Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: G0500258 – fundername: Medical Research Council : grantid: G0500258(74086) || MRC_ |
GroupedDBID | --- --K --M --Z .GJ .~1 0R~ 1B1 1~. 1~5 4.4 41~ 457 4G. 4H- 53G 5GY 5RE 5VS 6PF 7-5 71M 85S 8P~ AABNK AACTN AADFP AADPK AAEDT AAEDW AAGJA AAGUQ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYJJ ABCQJ ABFNM ABIVO ABJNI ABMAC ABOYX ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD ADRHT AEBSH AEKER AENEX AETEA AFKWA AFTJW AFXIZ AFYLN AGHFR AGUBO AGWIK AGYEJ AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 E3Z EBS EFJIC EFLBG EJD EO9 EP2 EP3 F5P FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN GBLVA HVGLF HZ~ H~9 IHE J1W KOM M41 MO0 MOBAO N9A O-L O9- OAUVE OHT OKEIE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEL SES SJN SPCBC SSB SSN SSY SSZ T5K TN5 UAP VH1 WH7 XOL XSB ZA5 ZGI ZKB ZXP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c512t-f030b7d071f346d9dca5888d0fad2f2a61e2db5f64e71f0a348f1aa598e5cc7a3 |
IEDL.DBID | AIKHN |
ISSN | 0010-9452 1973-8102 |
IngestDate | Thu Aug 21 18:08:58 EDT 2025 Fri Jul 11 03:46:03 EDT 2025 Fri Jul 11 08:36:31 EDT 2025 Mon Jul 21 05:29:16 EDT 2025 Tue Jul 01 02:48:23 EDT 2025 Thu Apr 24 23:13:04 EDT 2025 Fri Feb 23 02:30:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | State dependency Cognition Physiology Transcranial magnetic stimulation Cortex |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c512t-f030b7d071f346d9dca5888d0fad2f2a61e2db5f64e71f0a348f1aa598e5cc7a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 19371866 |
PQID | 21120726 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2997692 proquest_miscellaneous_67565996 proquest_miscellaneous_21120726 pubmed_primary_19371866 crossref_primary_10_1016_j_cortex_2009_02_007 crossref_citationtrail_10_1016_j_cortex_2009_02_007 elsevier_sciencedirect_doi_10_1016_j_cortex_2009_02_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-10-01 |
PublicationDateYYYYMMDD | 2009-10-01 |
PublicationDate_xml | – month: 10 year: 2009 text: 2009-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Italy |
PublicationPlace_xml | – name: Italy |
PublicationTitle | Cortex |
PublicationTitleAlternate | Cortex |
PublicationYear | 2009 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Maccabee, Nagarajan, Amassian, Durand, Szabo, Ahad (bib25) 1998; 513 Murase, Duque, Mazzocchio, Cohen (bib30) 2004; 55 Siebner, Dressnandt, Auer, Conrad (bib34) 1998; 21 Mills, Boniface, Schubert (bib28) 1992; 85 Bestmann, Ruff, Blakemore, Driver, Thilo (bib5) 2007; 17 Stinear, Byblow (bib38) 2003; 114 Fuggetta, Fiaschi, Manganotti (bib13) 2005; 27 Cattaneo, Voss, Brochier, Prabhu, Wolpert, Lemon (bib8) 2005; 102 Koch, Franca, Albrecht, Caltagirone, Rothwell (bib20) 2006; 172 Edgley, Eyre, Lemon, Miller (bib11) 1997; 120 Barker, Jalinous, Freeston (bib4) 1985; 1 Ferbert, Priori, Rothwell, Day, Colebatch, Marsden (bib12) 1992; 453 Kujirai, Sato, Rothwell, Cohen (bib23) 1993; 89 Silvanto, Muggleton, Cowey, Walsh (bib36) 2007; 25 Pascual-Leone, Walsh, Rothwell (bib31) 2000; 10 Lewis, Byblow, Carson (bib24) 2001; 900 Strafella, Paus (bib40) 2000; 11 Ziemann, Paulus, Nitsche, Pascual-Leone, Byblow, Berardelli (bib43) 2008; 1 Stinear, Byblow (bib39) 2004; 157 Bestmann (bib7) 2008; 12 Inghilleri, Berardelli, Cruccu, Manfredi (bib18) 1993; 466 Hill, Davey, Kennard (bib17) 2000; 11 Moliadze, Zhao, Eysel, Funke (bib29) 2003; 553 Amassian, Cracco (bib1) 1987; 20 Di Lazzaro, Oliviero, Pilato, Saturno, Dileone, Mazzone (bib10) 2004; 115 Harris, Clifford, Miniussi (bib15) 2008; 20 Koch, Fernandez Del Olmo, Cheeran, Ruge, Schippling, Caltagirone (bib21) 2007; 27 Koch, Ribolsi, Mori, Sacchetti, Codeca, Rubino (bib22) 2008 Haug, Schonle, Knobloch, Kohne (bib16) 1992; 85 Van Der Werf, Paus (bib42) 2006; 175 Paus, Sipila, Strafella (bib32) 2001; 86 Amassian, Cracco, Maccabee, Cracco, Rudell, Eberle (bib2) 1989; 74 Thickbroom (bib41) 2007; 180 Di Lazzaro, Oliviero, Profice, Insola, Mazzone, Tonali (bib9) 1999; 124 Massimini, Ferrarelli, Huber, Esser, Singh, Tononi (bib26) 2005; 309 Siebner, Rothwell (bib35) 2003; 148 Romei, Brodbeck, Michel, Amedi, Pascual-Leone, Thut (bib33) 2008; 18 Amassian, Maccabee (bib3) 2006; 1 Matthews (bib27) 1999; 518 Bestmann, Swayne, Blankenburg, Ruff, Haggard, Weiskopf (bib6) 2007 Gangitano, Mottaghy, Pascual-Leone (bib14) 2001; 12 Kammer, Vorwerg, Herrnberger (bib19) 2007; 36 Sohn, Hallett (bib37) 2004; 15 Hill (10.1016/j.cortex.2009.02.007_bib17) 2000; 11 Sohn (10.1016/j.cortex.2009.02.007_bib37) 2004; 15 Koch (10.1016/j.cortex.2009.02.007_bib22) 2008 Paus (10.1016/j.cortex.2009.02.007_bib32) 2001; 86 Edgley (10.1016/j.cortex.2009.02.007_bib11) 1997; 120 Bestmann (10.1016/j.cortex.2009.02.007_bib7) 2008; 12 Inghilleri (10.1016/j.cortex.2009.02.007_bib18) 1993; 466 Fuggetta (10.1016/j.cortex.2009.02.007_bib13) 2005; 27 Di Lazzaro (10.1016/j.cortex.2009.02.007_bib9) 1999; 124 Silvanto (10.1016/j.cortex.2009.02.007_bib36) 2007; 25 Amassian (10.1016/j.cortex.2009.02.007_bib2) 1989; 74 Lewis (10.1016/j.cortex.2009.02.007_bib24) 2001; 900 Matthews (10.1016/j.cortex.2009.02.007_bib27) 1999; 518 Mills (10.1016/j.cortex.2009.02.007_bib28) 1992; 85 Romei (10.1016/j.cortex.2009.02.007_bib33) 2008; 18 Kujirai (10.1016/j.cortex.2009.02.007_bib23) 1993; 89 Ferbert (10.1016/j.cortex.2009.02.007_bib12) 1992; 453 Pascual-Leone (10.1016/j.cortex.2009.02.007_bib31) 2000; 10 Stinear (10.1016/j.cortex.2009.02.007_bib38) 2003; 114 Harris (10.1016/j.cortex.2009.02.007_bib15) 2008; 20 Bestmann (10.1016/j.cortex.2009.02.007_bib5) 2007; 17 Kammer (10.1016/j.cortex.2009.02.007_bib19) 2007; 36 Moliadze (10.1016/j.cortex.2009.02.007_bib29) 2003; 553 Gangitano (10.1016/j.cortex.2009.02.007_bib14) 2001; 12 Koch (10.1016/j.cortex.2009.02.007_bib20) 2006; 172 Thickbroom (10.1016/j.cortex.2009.02.007_bib41) 2007; 180 Di Lazzaro (10.1016/j.cortex.2009.02.007_bib10) 2004; 115 Cattaneo (10.1016/j.cortex.2009.02.007_bib8) 2005; 102 Barker (10.1016/j.cortex.2009.02.007_bib4) 1985; 1 Maccabee (10.1016/j.cortex.2009.02.007_bib25) 1998; 513 Haug (10.1016/j.cortex.2009.02.007_bib16) 1992; 85 Amassian (10.1016/j.cortex.2009.02.007_bib1) 1987; 20 Massimini (10.1016/j.cortex.2009.02.007_bib26) 2005; 309 Siebner (10.1016/j.cortex.2009.02.007_bib35) 2003; 148 Strafella (10.1016/j.cortex.2009.02.007_bib40) 2000; 11 Siebner (10.1016/j.cortex.2009.02.007_bib34) 1998; 21 Amassian (10.1016/j.cortex.2009.02.007_bib3) 2006; 1 Murase (10.1016/j.cortex.2009.02.007_bib30) 2004; 55 Stinear (10.1016/j.cortex.2009.02.007_bib39) 2004; 157 Bestmann (10.1016/j.cortex.2009.02.007_bib6) 2007 Koch (10.1016/j.cortex.2009.02.007_bib21) 2007; 27 Van Der Werf (10.1016/j.cortex.2009.02.007_bib42) 2006; 175 Ziemann (10.1016/j.cortex.2009.02.007_bib43) 2008; 1 |
References_xml | – volume: 85 start-page: 17 year: 1992 end-page: 21 ident: bib28 article-title: Magnetic brain stimulation with a double coil: the importance of coil orientation publication-title: Electroencephalography and Clinical Neurophysiology – volume: 27 start-page: 6815 year: 2007 end-page: 6822 ident: bib21 article-title: Focal stimulation of the posterior parietal cortex increases the excitability of the ipsilateral motor cortex publication-title: The Journal of Neuroscience – volume: 114 start-page: 909 year: 2003 end-page: 914 ident: bib38 article-title: Motor imagery of phasic thumb abduction temporally and spatially modulates corticospinal excitability publication-title: Clinical Neurophysiology – volume: 102 start-page: 898 year: 2005 end-page: 903 ident: bib8 article-title: A cortico-cortical mechanism mediating object-driven grasp in humans publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 513 start-page: 571 year: 1998 end-page: 585 ident: bib25 article-title: Influence of pulse sequence, polarity and amplitude on magnetic stimulation of human and porcine peripheral nerve publication-title: The Journal of Physiology – volume: 11 start-page: 2289 year: 2000 end-page: 2292 ident: bib40 article-title: Modulation of cortical excitability during action observation: a transcranial magnetic stimulation study publication-title: Neuroreport – volume: 10 start-page: 232 year: 2000 end-page: 237 ident: bib31 article-title: Transcranial magnetic stimulation in cognitive neuroscience–virtual lesion, chronometry, and functional connectivity publication-title: Current Opinion in Neurobiology – volume: 900 start-page: 282 year: 2001 end-page: 294 ident: bib24 article-title: Phasic modulation of corticomotor excitability during passive movement of the upper limb: effects of movement frequency and muscle specificity publication-title: Brain Research – volume: 518 start-page: 867 year: 1999 end-page: 882 ident: bib27 article-title: The effect of firing on the excitability of a model motoneurone and its implications for cortical stimulation publication-title: The Journal of Physiology – volume: 74 start-page: 458 year: 1989 end-page: 462 ident: bib2 article-title: Suppression of visual perception by magnetic coil stimulation of human occipital cortex publication-title: Electroencephalography and Clinical Neurophysiology – volume: 55 start-page: 400 year: 2004 end-page: 409 ident: bib30 article-title: Influence of interhemispheric interactions on motor function in chronic stroke publication-title: Annals of Neurology – volume: 25 start-page: 1874 year: 2007 end-page: 1881 ident: bib36 article-title: Neural adaptation reveals state-dependent effects of transcranial magnetic stimulation publication-title: European Journal of Neuroscience – volume: 12 start-page: 81 year: 2008 end-page: 83 ident: bib7 article-title: The physiological basis of transcranial magnetic stimulation publication-title: Trends in Cognitive Sciences – volume: 17 start-page: 134 year: 2007 end-page: 139 ident: bib5 article-title: Spatial attention changes excitability of human visual cortex to direct stimulation publication-title: Current Biology – volume: 18 start-page: 2010 year: 2008 end-page: 2018 ident: bib33 article-title: Spontaneous fluctuations in posterior alpha-band eeg activity reflect variability in excitability of human visual areas publication-title: Cerebral Cortex – volume: 27 start-page: 896 year: 2005 end-page: 908 ident: bib13 article-title: Modulation of cortical oscillatory activities induced by varying single-pulse transcranial magnetic stimulation intensity over the left primary motor area: a combined eeg and tms study publication-title: Neuroimage – volume: 157 start-page: 351 year: 2004 end-page: 358 ident: bib39 article-title: Modulation of corticospinal excitability and intracortical inhibition during motor imagery is task-dependent publication-title: Experimental Brain Research – volume: 180 start-page: 583 year: 2007 end-page: 593 ident: bib41 article-title: Transcranial magnetic stimulation and synaptic plasticity: experimental framework and human models publication-title: Experimental Brain Research – year: 2008 ident: bib22 article-title: Connectivity between posterior parietal cortex and ipsilateral motor cortex is altered in schizophrenia publication-title: Biological Psychiatry – volume: 172 start-page: 416 year: 2006 end-page: 424 ident: bib20 article-title: Effects of paired pulse tms of primary somatosensory cortex on perception of a peripheral electrical stimulus publication-title: Experimental Brain Research – volume: 175 start-page: 231 year: 2006 end-page: 245 ident: bib42 article-title: The neural response to transcranial magnetic stimulation of the human motor cortex. I. Intracortical and cortico-cortical contributions publication-title: Experimental Brain Research – volume: 309 start-page: 2228 year: 2005 end-page: 2232 ident: bib26 article-title: Breakdown of cortical effective connectivity during sleep publication-title: Science – volume: 466 start-page: 521 year: 1993 end-page: 534 ident: bib18 article-title: Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction publication-title: The Journal of Physiology – volume: 11 start-page: 3257 year: 2000 end-page: 3259 ident: bib17 article-title: Current orientation induced by magnetic stimulation influences a cognitive task publication-title: Neuroreport – volume: 20 start-page: 148 year: 1987 end-page: 155 ident: bib1 article-title: Human cerebral cortical responses to contralateral transcranial stimulation publication-title: Neurosurgery – year: 2007 ident: bib6 article-title: Dorsal premotor cortex exerts state-dependent causal influences on activity in contralateral primary motor and dorsal premotor cortex publication-title: Cerebral Cortex – volume: 553 start-page: 665 year: 2003 end-page: 679 ident: bib29 article-title: Effect of transcranial magnetic stimulation on single-unit activity in the cat primary visual cortex publication-title: The Journal of Physiology – volume: 20 start-page: 734 year: 2008 end-page: 740 ident: bib15 article-title: The functional effect of transcranial magnetic stimulation: signal suppression or neural noise generation? publication-title: Journal of Cognitive Neuroscience – volume: 21 start-page: 1209 year: 1998 end-page: 1212 ident: bib34 article-title: Continuous intrathecal baclofen infusions induced a marked increase of the transcranially evoked silent period in a patient with generalized dystonia publication-title: Muscle & Nerve – volume: 148 start-page: 1 year: 2003 end-page: 16 ident: bib35 article-title: Transcranial magnetic stimulation: new insights into representational cortical plasticity publication-title: Experimental Brain Research – volume: 453 start-page: 525 year: 1992 end-page: 546 ident: bib12 article-title: Interhemispheric inhibition of the human motor cortex publication-title: The Journal of Physiology – volume: 89 start-page: 227 year: 1993 end-page: 234 ident: bib23 article-title: The effect of transcranial magnetic stimulation on median nerve somatosensory evoked potentials publication-title: Electroencephalography and Clinical Neurophysiology – volume: 15 start-page: 117 year: 2004 end-page: 131 ident: bib37 article-title: Motor evoked potentials publication-title: Physical Medicine and Rehabilitation Clinics of North America – volume: 36 start-page: 313 year: 2007 end-page: 321 ident: bib19 article-title: Anisotropy in the visual cortex investigated by neuronavigated transcranial magnetic stimulation publication-title: Neuroimage – volume: 120 start-page: 839 year: 1997 end-page: 853 ident: bib11 article-title: Comparison of activation of corticospinal neurons and spinal motor neurons by magnetic and electrical transcranial stimulation in the lumbosacral cord of the anaesthetized monkey publication-title: Brain – volume: 12 start-page: 1489 year: 2001 end-page: 1492 ident: bib14 article-title: Phase-specific modulation of cortical motor output during movement observation publication-title: Neuroreport – volume: 1 start-page: 1106 year: 1985 end-page: 1107 ident: bib4 article-title: Non-invasive magnetic stimulation of human motor cortex publication-title: Lancet – volume: 86 start-page: 1983 year: 2001 end-page: 1990 ident: bib32 article-title: Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an eeg study publication-title: Journal of Neurophysiology – volume: 1 start-page: 164 year: 2008 end-page: 182 ident: bib43 article-title: Consensus: motor cortex plasticity protocols publication-title: Brain Stimulation – volume: 85 start-page: 158 year: 1992 end-page: 160 ident: bib16 article-title: Silent period measurement revives as a valuable diagnostic tool with transcranial magnetic stimulation publication-title: Electroencephalography and Clinical Neurophysiology – volume: 1 start-page: 1620 year: 2006 end-page: 1623 ident: bib3 article-title: Transcranial magnetic stimulation publication-title: Conference Proceedings: IEEE Engineering in Medicine and Biology Society – volume: 115 start-page: 255 year: 2004 end-page: 266 ident: bib10 article-title: The physiological basis of transcranial motor cortex stimulation in conscious humans publication-title: Clinical Neurophysiology – volume: 124 start-page: 520 year: 1999 end-page: 524 ident: bib9 article-title: Direct demonstration of interhemispheric inhibition of the human motor cortex produced by transcranial magnetic stimulation publication-title: Experimental Brain Research – volume: 27 start-page: 6815 year: 2007 ident: 10.1016/j.cortex.2009.02.007_bib21 article-title: Focal stimulation of the posterior parietal cortex increases the excitability of the ipsilateral motor cortex publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.0598-07.2007 – volume: 175 start-page: 231 year: 2006 ident: 10.1016/j.cortex.2009.02.007_bib42 article-title: The neural response to transcranial magnetic stimulation of the human motor cortex. I. Intracortical and cortico-cortical contributions publication-title: Experimental Brain Research doi: 10.1007/s00221-006-0551-2 – volume: 518 start-page: 867 year: 1999 ident: 10.1016/j.cortex.2009.02.007_bib27 article-title: The effect of firing on the excitability of a model motoneurone and its implications for cortical stimulation publication-title: The Journal of Physiology doi: 10.1111/j.1469-7793.1999.0867p.x – year: 2007 ident: 10.1016/j.cortex.2009.02.007_bib6 article-title: Dorsal premotor cortex exerts state-dependent causal influences on activity in contralateral primary motor and dorsal premotor cortex publication-title: Cerebral Cortex – volume: 900 start-page: 282 year: 2001 ident: 10.1016/j.cortex.2009.02.007_bib24 article-title: Phasic modulation of corticomotor excitability during passive movement of the upper limb: effects of movement frequency and muscle specificity publication-title: Brain Research doi: 10.1016/S0006-8993(01)02369-1 – volume: 148 start-page: 1 year: 2003 ident: 10.1016/j.cortex.2009.02.007_bib35 article-title: Transcranial magnetic stimulation: new insights into representational cortical plasticity publication-title: Experimental Brain Research doi: 10.1007/s00221-002-1234-2 – volume: 157 start-page: 351 year: 2004 ident: 10.1016/j.cortex.2009.02.007_bib39 article-title: Modulation of corticospinal excitability and intracortical inhibition during motor imagery is task-dependent publication-title: Experimental Brain Research doi: 10.1007/s00221-004-1851-z – volume: 25 start-page: 1874 year: 2007 ident: 10.1016/j.cortex.2009.02.007_bib36 article-title: Neural adaptation reveals state-dependent effects of transcranial magnetic stimulation publication-title: European Journal of Neuroscience doi: 10.1111/j.1460-9568.2007.05440.x – volume: 12 start-page: 81 year: 2008 ident: 10.1016/j.cortex.2009.02.007_bib7 article-title: The physiological basis of transcranial magnetic stimulation publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2007.12.002 – volume: 553 start-page: 665 year: 2003 ident: 10.1016/j.cortex.2009.02.007_bib29 article-title: Effect of transcranial magnetic stimulation on single-unit activity in the cat primary visual cortex publication-title: The Journal of Physiology doi: 10.1113/jphysiol.2003.050153 – volume: 1 start-page: 164 year: 2008 ident: 10.1016/j.cortex.2009.02.007_bib43 article-title: Consensus: motor cortex plasticity protocols publication-title: Brain Stimulation doi: 10.1016/j.brs.2008.06.006 – volume: 466 start-page: 521 year: 1993 ident: 10.1016/j.cortex.2009.02.007_bib18 article-title: Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction publication-title: The Journal of Physiology doi: 10.1113/jphysiol.1993.sp019732 – volume: 21 start-page: 1209 year: 1998 ident: 10.1016/j.cortex.2009.02.007_bib34 article-title: Continuous intrathecal baclofen infusions induced a marked increase of the transcranially evoked silent period in a patient with generalized dystonia publication-title: Muscle & Nerve doi: 10.1002/(SICI)1097-4598(199809)21:9<1209::AID-MUS15>3.0.CO;2-M – volume: 114 start-page: 909 year: 2003 ident: 10.1016/j.cortex.2009.02.007_bib38 article-title: Motor imagery of phasic thumb abduction temporally and spatially modulates corticospinal excitability publication-title: Clinical Neurophysiology doi: 10.1016/S1388-2457(02)00373-5 – volume: 120 start-page: 839 year: 1997 ident: 10.1016/j.cortex.2009.02.007_bib11 article-title: Comparison of activation of corticospinal neurons and spinal motor neurons by magnetic and electrical transcranial stimulation in the lumbosacral cord of the anaesthetized monkey publication-title: Brain doi: 10.1093/brain/120.5.839 – volume: 85 start-page: 158 year: 1992 ident: 10.1016/j.cortex.2009.02.007_bib16 article-title: Silent period measurement revives as a valuable diagnostic tool with transcranial magnetic stimulation publication-title: Electroencephalography and Clinical Neurophysiology doi: 10.1016/0168-5597(92)90081-L – volume: 15 start-page: 117 year: 2004 ident: 10.1016/j.cortex.2009.02.007_bib37 article-title: Motor evoked potentials publication-title: Physical Medicine and Rehabilitation Clinics of North America doi: 10.1016/S1047-9651(03)00105-0 – volume: 12 start-page: 1489 year: 2001 ident: 10.1016/j.cortex.2009.02.007_bib14 article-title: Phase-specific modulation of cortical motor output during movement observation publication-title: Neuroreport doi: 10.1097/00001756-200105250-00038 – volume: 11 start-page: 3257 year: 2000 ident: 10.1016/j.cortex.2009.02.007_bib17 article-title: Current orientation induced by magnetic stimulation influences a cognitive task publication-title: Neuroreport doi: 10.1097/00001756-200009280-00041 – volume: 11 start-page: 2289 year: 2000 ident: 10.1016/j.cortex.2009.02.007_bib40 article-title: Modulation of cortical excitability during action observation: a transcranial magnetic stimulation study publication-title: Neuroreport doi: 10.1097/00001756-200007140-00044 – volume: 172 start-page: 416 year: 2006 ident: 10.1016/j.cortex.2009.02.007_bib20 article-title: Effects of paired pulse tms of primary somatosensory cortex on perception of a peripheral electrical stimulus publication-title: Experimental Brain Research doi: 10.1007/s00221-006-0359-0 – volume: 74 start-page: 458 year: 1989 ident: 10.1016/j.cortex.2009.02.007_bib2 article-title: Suppression of visual perception by magnetic coil stimulation of human occipital cortex publication-title: Electroencephalography and Clinical Neurophysiology doi: 10.1016/0168-5597(89)90036-1 – volume: 27 start-page: 896 year: 2005 ident: 10.1016/j.cortex.2009.02.007_bib13 article-title: Modulation of cortical oscillatory activities induced by varying single-pulse transcranial magnetic stimulation intensity over the left primary motor area: a combined eeg and tms study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.05.013 – volume: 10 start-page: 232 year: 2000 ident: 10.1016/j.cortex.2009.02.007_bib31 article-title: Transcranial magnetic stimulation in cognitive neuroscience–virtual lesion, chronometry, and functional connectivity publication-title: Current Opinion in Neurobiology doi: 10.1016/S0959-4388(00)00081-7 – volume: 89 start-page: 227 year: 1993 ident: 10.1016/j.cortex.2009.02.007_bib23 article-title: The effect of transcranial magnetic stimulation on median nerve somatosensory evoked potentials publication-title: Electroencephalography and Clinical Neurophysiology doi: 10.1016/0168-5597(93)90100-4 – volume: 36 start-page: 313 year: 2007 ident: 10.1016/j.cortex.2009.02.007_bib19 article-title: Anisotropy in the visual cortex investigated by neuronavigated transcranial magnetic stimulation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.03.001 – volume: 102 start-page: 898 year: 2005 ident: 10.1016/j.cortex.2009.02.007_bib8 article-title: A cortico-cortical mechanism mediating object-driven grasp in humans publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0409182102 – volume: 309 start-page: 2228 year: 2005 ident: 10.1016/j.cortex.2009.02.007_bib26 article-title: Breakdown of cortical effective connectivity during sleep publication-title: Science doi: 10.1126/science.1117256 – volume: 115 start-page: 255 year: 2004 ident: 10.1016/j.cortex.2009.02.007_bib10 article-title: The physiological basis of transcranial motor cortex stimulation in conscious humans publication-title: Clinical Neurophysiology doi: 10.1016/j.clinph.2003.10.009 – year: 2008 ident: 10.1016/j.cortex.2009.02.007_bib22 article-title: Connectivity between posterior parietal cortex and ipsilateral motor cortex is altered in schizophrenia publication-title: Biological Psychiatry doi: 10.1016/j.biopsych.2008.05.026 – volume: 180 start-page: 583 year: 2007 ident: 10.1016/j.cortex.2009.02.007_bib41 article-title: Transcranial magnetic stimulation and synaptic plasticity: experimental framework and human models publication-title: Experimental Brain Research doi: 10.1007/s00221-007-0991-3 – volume: 17 start-page: 134 year: 2007 ident: 10.1016/j.cortex.2009.02.007_bib5 article-title: Spatial attention changes excitability of human visual cortex to direct stimulation publication-title: Current Biology doi: 10.1016/j.cub.2006.11.063 – volume: 1 start-page: 1106 year: 1985 ident: 10.1016/j.cortex.2009.02.007_bib4 article-title: Non-invasive magnetic stimulation of human motor cortex publication-title: Lancet doi: 10.1016/S0140-6736(85)92413-4 – volume: 86 start-page: 1983 year: 2001 ident: 10.1016/j.cortex.2009.02.007_bib32 article-title: Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an eeg study publication-title: Journal of Neurophysiology doi: 10.1152/jn.2001.86.4.1983 – volume: 1 start-page: 1620 year: 2006 ident: 10.1016/j.cortex.2009.02.007_bib3 article-title: Transcranial magnetic stimulation publication-title: Conference Proceedings: IEEE Engineering in Medicine and Biology Society doi: 10.1109/IEMBS.2006.259398 – volume: 18 start-page: 2010 year: 2008 ident: 10.1016/j.cortex.2009.02.007_bib33 article-title: Spontaneous fluctuations in posterior alpha-band eeg activity reflect variability in excitability of human visual areas publication-title: Cerebral Cortex doi: 10.1093/cercor/bhm229 – volume: 20 start-page: 148 year: 1987 ident: 10.1016/j.cortex.2009.02.007_bib1 article-title: Human cerebral cortical responses to contralateral transcranial stimulation publication-title: Neurosurgery doi: 10.1097/00006123-198701000-00031 – volume: 20 start-page: 734 year: 2008 ident: 10.1016/j.cortex.2009.02.007_bib15 article-title: The functional effect of transcranial magnetic stimulation: signal suppression or neural noise generation? publication-title: Journal of Cognitive Neuroscience doi: 10.1162/jocn.2008.20048 – volume: 85 start-page: 17 year: 1992 ident: 10.1016/j.cortex.2009.02.007_bib28 article-title: Magnetic brain stimulation with a double coil: the importance of coil orientation publication-title: Electroencephalography and Clinical Neurophysiology doi: 10.1016/0168-5597(92)90096-T – volume: 55 start-page: 400 year: 2004 ident: 10.1016/j.cortex.2009.02.007_bib30 article-title: Influence of interhemispheric interactions on motor function in chronic stroke publication-title: Annals of Neurology doi: 10.1002/ana.10848 – volume: 124 start-page: 520 year: 1999 ident: 10.1016/j.cortex.2009.02.007_bib9 article-title: Direct demonstration of interhemispheric inhibition of the human motor cortex produced by transcranial magnetic stimulation publication-title: Experimental Brain Research doi: 10.1007/s002210050648 – volume: 513 start-page: 571 year: 1998 ident: 10.1016/j.cortex.2009.02.007_bib25 article-title: Influence of pulse sequence, polarity and amplitude on magnetic stimulation of human and porcine peripheral nerve publication-title: The Journal of Physiology doi: 10.1111/j.1469-7793.1998.571bb.x – volume: 453 start-page: 525 year: 1992 ident: 10.1016/j.cortex.2009.02.007_bib12 article-title: Interhemispheric inhibition of the human motor cortex publication-title: The Journal of Physiology doi: 10.1113/jphysiol.1992.sp019243 |
SSID | ssj0020855 |
Score | 2.4000876 |
Snippet | Transcranial magnetic stimulation (TMS) uses a magnetic field to “carry” a short lasting electrical current pulse into the brain where it stimulates neurones,... Transcranial magnetic stimulation (TMS) uses a magnetic field to "carry" a short lasting electrical current pulse into the brain where it stimulates neurones,... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1035 |
SubjectTerms | Action Potentials - physiology Brain Mapping Cerebral Cortex - physiology Cognition Cognition - physiology Cortex Humans Models, Neurological Nerve Net - physiology Neural Conduction - physiology Neurons - physiology Physiology State dependency Transcranial Magnetic Stimulation |
Title | How does transcranial magnetic stimulation modify neuronal activity in the brain? Implications for studies of cognition |
URI | https://dx.doi.org/10.1016/j.cortex.2009.02.007 https://www.ncbi.nlm.nih.gov/pubmed/19371866 https://www.proquest.com/docview/21120726 https://www.proquest.com/docview/67565996 https://pubmed.ncbi.nlm.nih.gov/PMC2997692 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELb6kBAXBC2P5bH4gLiFOk7sJCe0WlFtgVYIUWlvlp8liE0qdqvSC7-dmcRZuqCqEpccElt5eB7fxN_MEPLKMa_By5rE-pIluUlB57gPiWA6CCF8kDkmOB-fyNlp_n4u5ltkOuTCIK0y2v7epnfWOp45iF_z4LyuMcc3hdgEaRydo51vk12eVRJEe3dy9GF2so67kIrVG2SW4IQhg66jeVnktP6MhSuxeGdxk4f6F4H-TaS85pkO75N7EVLSSf_UD8iWb_bI_qSBcHpxRV_TjuTZ_T3fI3eO4176PrmctZfUtX5JV-ivLBxAFulCnzWY2EhB9xextxddtK4OV7Qrfon3wmwIbDpB64YCgqQGG028pUfX6OkU0DBd9ixF2gYaeUpt85CcHr77Mp0lsQ1DYgENrJIAdsAUDrBIyHLpKme1gLjZsaAdD1zL1HNnBKyqhyFMZ3kZUq1FVXphbaGzR2SnaRv_hFCJfW6KwABzmjwYY4TPHUAey1zpcuZHJBs-vbKxRjm2yviuBjLaN9UvGLbPrBTjChZsRJL1rPO-Rsct44thVdWGrClwI7fMfDkIgQI1xL0V3fj2Yqkgjuas4PLmERCZSayFMyKPe6H586xYk7CUcKXYEKf1ACwBvnmlqb92pcABTBSy4k__-42ekbvd_lhHT3xOdlY_LvwLgFkrMybbb36lY1Cm6eePn8ZRqX4D8esuow |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkYALgpbH8qoPiFuoN2s72ROqKqotdHtqpb1ZfkIQ61Tdrdpe-O3MOM7SBVWVuOSQTJTEnvF8E38zQ8h7x7wGL2sK62tWcDMEmyt9KATTQQjhg-SY4Dw9lpNT_mUmZhtkv8-FQVplXvu7NT2t1vnMbh7N3bOmwRzfIcQmSONIjnZ2j9znYL5onR9_rXge2IMytzFgBYr3-XOJ5GWR0XqVy1Zi6c7qNv_0L_78m0Z5wy8dPCGPM6Cke907PyUbPm6R7b0IwfT8mn6gieKZ_p1vkQfTvJO-TS4n7SV1rV_QJXorCwfQRDrX3yKmNVKw_Hnu7EXnrWvCNU2lL_FZmAuBLSdoEyngR2qwzcQneniDnE4BC9NFx1GkbaCZpdTGZ-T04PPJ_qTITRgKC1hgWQRYBUzlAImEEZdu7KwWEDU7FrQrQ6nl0JfOCJhTDyJMj3gdhlqLce2FtZUePSebsY3-JaESu9xUgQHiNDwYY4TnDgCPZa52nPkBGfVDr2yuUI6NMn6qnor2Q3UThs0zx4qVCiZsQIrVXWddhY475Kt-VtWapilwInfcudMrgQIjxJ0VHX17sVAQRZesKuXtEhCXSayEMyAvOqX5865YkbCWcKVaU6eVABYAX78Sm--pEDhAiUqOy1f__UU75OHkZHqkjg6Pv74mj9JOWSIqviGby_ML_xYA19K8Swb1Gwl5LdI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+does+transcranial+magnetic+stimulation+modify+neuronal+activity+in+the+brain%3F+Implications+for+studies+of+cognition&rft.jtitle=Cortex&rft.au=Siebner%2C+Hartwig+R&rft.au=Hartwigsen%2C+Gesa&rft.au=Kassuba%2C+Tanja&rft.au=Rothwell%2C+John+C&rft.date=2009-10-01&rft.eissn=1973-8102&rft.volume=45&rft.issue=9&rft.spage=1035&rft_id=info:doi/10.1016%2Fj.cortex.2009.02.007&rft_id=info%3Apmid%2F19371866&rft.externalDocID=19371866 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-9452&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-9452&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-9452&client=summon |