How does transcranial magnetic stimulation modify neuronal activity in the brain? Implications for studies of cognition

Transcranial magnetic stimulation (TMS) uses a magnetic field to “carry” a short lasting electrical current pulse into the brain where it stimulates neurones, particularly in superficial regions of cerebral cortex. TMS can interfere with cognitive functions in two ways. A high intensity TMS pulse ca...

Full description

Saved in:
Bibliographic Details
Published inCortex Vol. 45; no. 9; pp. 1035 - 1042
Main Authors Siebner, Hartwig R., Hartwigsen, Gesa, Kassuba, Tanja, Rothwell, John C.
Format Journal Article
LanguageEnglish
Published Italy Elsevier Ltd 01.10.2009
Subjects
Online AccessGet full text
ISSN0010-9452
1973-8102
1973-8102
DOI10.1016/j.cortex.2009.02.007

Cover

Loading…
Abstract Transcranial magnetic stimulation (TMS) uses a magnetic field to “carry” a short lasting electrical current pulse into the brain where it stimulates neurones, particularly in superficial regions of cerebral cortex. TMS can interfere with cognitive functions in two ways. A high intensity TMS pulse causes a synchronised high frequency burst of discharge in a relatively large population of neurones that is terminated by a long lasting GABAergic inhibition. The combination of artificial synchronisation of activity followed by depression effectively disrupts perceptual, motor and cognitive processes in the human brain. This transient neurodisruption has been termed a “virtual lesion”. Smaller intensities of stimulation produce less activity; in such cases, cognitive operations can probably continue but are disrupted because of the added noisy input from the TMS pulse. It is usually argued that if a TMS pulse affects performance, then the area stimulated must provide an essential contribution to behaviour being studied. However, there is one exception to this: the pulse could be applied to an area that is not involved in the task but which has projections to the critical site. Activation of outputs from the site of stimulation could potentially disrupt processing at the distant site, interfering with behaviour without having any involvement in the task. A final important feature of the response to TMS is “context dependency”, which indicates that the response depends on how excitable the cortex is at the time the stimulus is applied: if many neurones are close to firing threshold then the more of them are recruited by the pulse than at rest. Many studies have noted this context-dependent modulation. However, it is often assumed that the excitability of an area has a simple relationship to activity in that area. We argue that this is not necessarily the case. Awareness of the problem may help resolve some apparent anomalies in the literature.
AbstractList Transcranial magnetic stimulation (TMS) uses a magnetic field to “carry” a short lasting electrical current pulse into the brain where it stimulates neurones, particularly in superficial regions of cerebral cortex. TMS can interfere with cognitive functions in two ways. A high intensity TMS pulse causes a synchronised high frequency burst of discharge in a relatively large population of neurones that is terminated by a long lasting GABAergic inhibition. The combination of artificial synchronisation of activity followed by depression effectively disrupts perceptual, motor and cognitive processes in the human brain. This transient neurodisruption has been termed a “virtual lesion”. Smaller intensities of stimulation produce less activity; in such cases, cognitive operations can probably continue but are disrupted because of the added noisy input from the TNS pulse. It is usually argued that if a TMS pulse affects performance, then the area stimulated must provide an essential contribution to behaviour being studied. However, there is one exception to this: the pulse could be applied to an area that is not involved in the task but which has projections to the critical site. Activation of outputs from the site of stimulation could potentially disrupt processing at the distant site, interfering with behaviour without having any involvement in the task. A final important feature of the response to TMS is “context dependency”, which indicates that the response depends on how excitable the cortex is at the time the stimulus is applied: if many neurones are close to firing threshold then the more of them are recruited by the pulse than at rest. Many studies have noted this context-dependent modulation. However, it is often assumed that the excitability of an area has a simple relationship to activity in that area. We argue that this is not necessarily the case. Awareness of the problem may help resolve some apparent anomalies in the literature.
Transcranial magnetic stimulation (TMS) uses a magnetic field to "carry" a short lasting electrical current pulse into the brain where it stimulates neurones, particularly in superficial regions of cerebral cortex. TMS can interfere with cognitive functions in two ways. A high intensity TMS pulse causes a synchronised high frequency burst of discharge in a relatively large population of neurones that is terminated by a long lasting GABAergic inhibition. The combination of artificial synchronisation of activity followed by depression effectively disrupts perceptual, motor and cognitive processes in the human brain. This transient neurodisruption has been termed a "virtual lesion". Smaller intensities of stimulation produce less activity; in such cases, cognitive operations can probably continue but are disrupted because of the added noisy input from the TMS pulse. It is usually argued that if a TMS pulse affects performance, then the area stimulated must provide an essential contribution to behaviour being studied. However, there is one exception to this: the pulse could be applied to an area that is not involved in the task but which has projections to the critical site. Activation of outputs from the site of stimulation could potentially disrupt processing at the distant site, interfering with behaviour without having any involvement in the task. A final important feature of the response to TMS is "context dependency", which indicates that the response depends on how excitable the cortex is at the time the stimulus is applied: if many neurones are close to firing threshold then the more of them are recruited by the pulse than at rest. Many studies have noted this context-dependent modulation. However, it is often assumed that the excitability of an area has a simple relationship to activity in that area. We argue that this is not necessarily the case. Awareness of the problem may help resolve some apparent anomalies in the literature.
Transcranial magnetic stimulation (TMS) uses a magnetic field to “carry” a short lasting electrical current pulse into the brain where it stimulates neurones, particularly in superficial regions of cerebral cortex. TMS can interfere with cognitive functions in two ways. A high intensity TMS pulse causes a synchronised high frequency burst of discharge in a relatively large population of neurones that is terminated by a long lasting GABAergic inhibition. The combination of artificial synchronisation of activity followed by depression effectively disrupts perceptual, motor and cognitive processes in the human brain. This transient neurodisruption has been termed a “virtual lesion”. Smaller intensities of stimulation produce less activity; in such cases, cognitive operations can probably continue but are disrupted because of the added noisy input from the TMS pulse. It is usually argued that if a TMS pulse affects performance, then the area stimulated must provide an essential contribution to behaviour being studied. However, there is one exception to this: the pulse could be applied to an area that is not involved in the task but which has projections to the critical site. Activation of outputs from the site of stimulation could potentially disrupt processing at the distant site, interfering with behaviour without having any involvement in the task. A final important feature of the response to TMS is “context dependency”, which indicates that the response depends on how excitable the cortex is at the time the stimulus is applied: if many neurones are close to firing threshold then the more of them are recruited by the pulse than at rest. Many studies have noted this context-dependent modulation. However, it is often assumed that the excitability of an area has a simple relationship to activity in that area. We argue that this is not necessarily the case. Awareness of the problem may help resolve some apparent anomalies in the literature.
Transcranial magnetic stimulation (TMS) uses a magnetic field to "carry" a short lasting electrical current pulse into the brain where it stimulates neurones, particularly in superficial regions of cerebral cortex. TMS can interfere with cognitive functions in two ways. A high intensity TMS pulse causes a synchronised high frequency burst of discharge in a relatively large population of neurones that is terminated by a long lasting GABAergic inhibition. The combination of artificial synchronisation of activity followed by depression effectively disrupts perceptual, motor and cognitive processes in the human brain. This transient neurodisruption has been termed a "virtual lesion". Smaller intensities of stimulation produce less activity; in such cases, cognitive operations can probably continue but are disrupted because of the added noisy input from the TMS pulse. It is usually argued that if a TMS pulse affects performance, then the area stimulated must provide an essential contribution to behaviour being studied. However, there is one exception to this: the pulse could be applied to an area that is not involved in the task but which has projections to the critical site. Activation of outputs from the site of stimulation could potentially disrupt processing at the distant site, interfering with behaviour without having any involvement in the task. A final important feature of the response to TMS is "context dependency", which indicates that the response depends on how excitable the cortex is at the time the stimulus is applied: if many neurones are close to firing threshold then the more of them are recruited by the pulse than at rest. Many studies have noted this context-dependent modulation. However, it is often assumed that the excitability of an area has a simple relationship to activity in that area. We argue that this is not necessarily the case. Awareness of the problem may help resolve some apparent anomalies in the literature.Transcranial magnetic stimulation (TMS) uses a magnetic field to "carry" a short lasting electrical current pulse into the brain where it stimulates neurones, particularly in superficial regions of cerebral cortex. TMS can interfere with cognitive functions in two ways. A high intensity TMS pulse causes a synchronised high frequency burst of discharge in a relatively large population of neurones that is terminated by a long lasting GABAergic inhibition. The combination of artificial synchronisation of activity followed by depression effectively disrupts perceptual, motor and cognitive processes in the human brain. This transient neurodisruption has been termed a "virtual lesion". Smaller intensities of stimulation produce less activity; in such cases, cognitive operations can probably continue but are disrupted because of the added noisy input from the TMS pulse. It is usually argued that if a TMS pulse affects performance, then the area stimulated must provide an essential contribution to behaviour being studied. However, there is one exception to this: the pulse could be applied to an area that is not involved in the task but which has projections to the critical site. Activation of outputs from the site of stimulation could potentially disrupt processing at the distant site, interfering with behaviour without having any involvement in the task. A final important feature of the response to TMS is "context dependency", which indicates that the response depends on how excitable the cortex is at the time the stimulus is applied: if many neurones are close to firing threshold then the more of them are recruited by the pulse than at rest. Many studies have noted this context-dependent modulation. However, it is often assumed that the excitability of an area has a simple relationship to activity in that area. We argue that this is not necessarily the case. Awareness of the problem may help resolve some apparent anomalies in the literature.
Author Rothwell, John C.
Siebner, Hartwig R.
Hartwigsen, Gesa
Kassuba, Tanja
AuthorAffiliation 1 Danish Research Centre for Magnetic Resonance, Hvidovre University Hospital, Copenhagen, Denmark
3 NeuroImageNord Hamburg-Kiel-Lübeck, Germany
2 Department of Neurology, Christian-Albrechts-University Kiel, Germany
4 Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College of London, London, UK
AuthorAffiliation_xml – name: 4 Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College of London, London, UK
– name: 3 NeuroImageNord Hamburg-Kiel-Lübeck, Germany
– name: 1 Danish Research Centre for Magnetic Resonance, Hvidovre University Hospital, Copenhagen, Denmark
– name: 2 Department of Neurology, Christian-Albrechts-University Kiel, Germany
Author_xml – sequence: 1
  givenname: Hartwig R.
  surname: Siebner
  fullname: Siebner, Hartwig R.
  email: hartwig.siebner@drcmr.dk
  organization: Danish Research Centre for Magnetic Resonance, Hvidovre University Hospital, Copenhagen, Denmark
– sequence: 2
  givenname: Gesa
  surname: Hartwigsen
  fullname: Hartwigsen, Gesa
  organization: Department of Neurology, Christian-Albrechts-University Kiel, Germany
– sequence: 3
  givenname: Tanja
  surname: Kassuba
  fullname: Kassuba, Tanja
  organization: Department of Neurology, Christian-Albrechts-University Kiel, Germany
– sequence: 4
  givenname: John C.
  surname: Rothwell
  fullname: Rothwell, John C.
  organization: Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College of London, London, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19371866$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEQhi1URNPCP0DIJ25Zxt7shzmAqqqllSpxgbPl-COdaNcOtjcl_x6nCZ8HerEP88zrGT9n5MQHbwl5zaBiwNp360qHmO33igOICngF0D0jMya6et4z4CdkBsBgLhYNPyVnKa0BOPRN84KcMlF3rG_bGXm4CQ_UBJtojsonXQ5UAx3VytuMmqaM4zSojMHTMRh0O-rtFIMvkNIZt5h3FD3N95Yuo0L_kd6OmwH1Y0uiLsSSMRksLwRHdVh53FdekudODcm-Ot7n5Ov11ZfLm_nd50-3lxd3c90wnucOalh2Bjrm6kVrhNGq6fvegFOGO65aZrlZNq5d2IKAqhe9Y0o1oreN1p2qz8mHQ-5mWo7WaOvLnoPcRBxV3MmgUP5d8XgvV2EruRBdK3gJeHsMiOHbZFOWIyZth0F5G6Yk265pGyHaJ0HOGIeO78E3f470a5afUgqwOAA6hpSidb8RkHv3ci0P7uXevQQui_vS9v6fNo35UUNZDIenmo__ZIuMLdook0brtTUYrc7SBPx_wA_IKtGD
CitedBy_id crossref_primary_10_1016_j_cortex_2020_09_002
crossref_primary_10_1080_23273798_2016_1257816
crossref_primary_10_1002_hbm_22288
crossref_primary_10_1002_mds_23706
crossref_primary_10_1016_j_brs_2017_04_130
crossref_primary_10_1523_JNEUROSCI_0173_24_2025
crossref_primary_10_1002_hbm_26086
crossref_primary_10_1093_cercor_bhu186
crossref_primary_10_1177_1073858416631966
crossref_primary_10_1016_j_neuroimage_2010_08_047
crossref_primary_10_1016_j_tics_2018_01_010
crossref_primary_10_3389_fneur_2018_00825
crossref_primary_10_1007_s11469_023_01120_z
crossref_primary_10_1016_j_brs_2025_02_018
crossref_primary_10_1016_j_brs_2017_12_010
crossref_primary_10_1016_j_neuropsychologia_2014_06_025
crossref_primary_10_1111_ppc_12596
crossref_primary_10_1016_j_neuroimage_2023_120242
crossref_primary_10_1016_j_bandl_2011_07_005
crossref_primary_10_1016_j_expneurol_2012_11_003
crossref_primary_10_1016_j_pneurobio_2010_10_003
crossref_primary_10_3390_brainsci12080982
crossref_primary_10_1038_s41598_023_32065_x
crossref_primary_10_1016_j_brainresbull_2025_111258
crossref_primary_10_1080_09602011_2011_574050
crossref_primary_10_1098_rstb_2024_0186
crossref_primary_10_1016_j_brs_2021_02_006
crossref_primary_10_1002_wcs_1469
crossref_primary_10_1002_hbm_23236
crossref_primary_10_1523_JNEUROSCI_6751_10_2011
crossref_primary_10_1044_sasd19_1_10
crossref_primary_10_1016_j_neuroimage_2019_116486
crossref_primary_10_1111_joor_12603
crossref_primary_10_3390_neurosci3030037
crossref_primary_10_1523_JNEUROSCI_1010_12_2012
crossref_primary_10_1371_journal_pone_0184910
crossref_primary_10_1111_j_1460_9568_2009_06911_x
crossref_primary_10_1523_JNEUROSCI_0784_23_2024
crossref_primary_10_1016_j_neuroimage_2020_117449
crossref_primary_10_1016_j_brs_2018_09_009
crossref_primary_10_1096_fj_11_194878
crossref_primary_10_1016_j_neucli_2018_12_005
crossref_primary_10_1038_srep22302
crossref_primary_10_1177_1550059412445657
crossref_primary_10_1002_hbm_24597
crossref_primary_10_1089_neu_2012_2760
crossref_primary_10_1111_psyp_14631
crossref_primary_10_1021_acs_nanolett_3c03899
crossref_primary_10_1007_s00221_016_4649_x
crossref_primary_10_1093_cercor_bhaa224
crossref_primary_10_1007_s00221_021_06044_5
crossref_primary_10_1093_cercor_bhac404
crossref_primary_10_1016_j_neuroscience_2021_03_001
crossref_primary_10_1016_j_celrep_2022_110951
crossref_primary_10_1016_j_cortex_2009_02_020
crossref_primary_10_1002_jnr_25062
crossref_primary_10_1007_s40473_018_0153_x
crossref_primary_10_1186_s12877_021_02636_6
crossref_primary_10_1016_j_neuroimage_2023_120433
crossref_primary_10_1093_scan_nsad046
crossref_primary_10_1016_j_neuroimage_2017_01_013
crossref_primary_10_1016_j_conb_2017_03_019
crossref_primary_10_1016_j_cortex_2008_10_012
crossref_primary_10_1016_j_cortex_2020_08_004
crossref_primary_10_1007_s11910_015_0575_8
crossref_primary_10_1016_j_cortex_2011_03_008
crossref_primary_10_1162_jocn_a_01923
crossref_primary_10_1523_JNEUROSCI_4792_11_2012
crossref_primary_10_7554_eLife_13598
crossref_primary_10_1016_j_brs_2017_05_005
crossref_primary_10_1016_j_neurom_2024_09_003
crossref_primary_10_1093_cercor_bhab292
crossref_primary_10_3389_fneur_2020_566731
crossref_primary_10_1093_cercor_bhs110
crossref_primary_10_1523_JNEUROSCI_0697_11_2011
crossref_primary_10_3758_s13423_022_02107_y
crossref_primary_10_2217_cns_14_25
crossref_primary_10_1007_s10548_010_0169_3
crossref_primary_10_1016_j_clinph_2010_10_026
crossref_primary_10_1016_j_cortex_2010_01_004
crossref_primary_10_1016_j_cortex_2015_05_007
crossref_primary_10_1155_2014_349718
crossref_primary_10_1523_JNEUROSCI_4863_10_2011
crossref_primary_10_1109_TMAG_2018_2850328
crossref_primary_10_1109_TMTT_2021_3075726
crossref_primary_10_1177_1094428116658960
crossref_primary_10_1016_j_cortex_2023_01_005
crossref_primary_10_7554_eLife_54687
crossref_primary_10_1016_j_neuropsychologia_2010_06_032
crossref_primary_10_1016_j_psc_2020_02_004
crossref_primary_10_1162_jocn_2010_21449
crossref_primary_10_1152_jn_00406_2019
crossref_primary_10_1016_j_janxdis_2016_07_002
crossref_primary_10_1016_j_ijpsycho_2022_08_005
crossref_primary_10_1097_PR9_0000000000000760
crossref_primary_10_3389_fnhum_2022_1027446
crossref_primary_10_1016_j_neulet_2020_134760
crossref_primary_10_1016_j_neuroimage_2012_03_084
crossref_primary_10_1097_YCT_0000000000001087
crossref_primary_10_1016_j_brs_2014_01_060
crossref_primary_10_1016_j_neubiorev_2010_06_005
crossref_primary_10_3389_fnhum_2020_00179
crossref_primary_10_1162_jocn_a_01466
crossref_primary_10_3758_s13415_016_0419_2
crossref_primary_10_1093_cercor_bhw294
crossref_primary_10_3390_jpm11050388
crossref_primary_10_1186_1471_2202_14_89
crossref_primary_10_1016_j_bandl_2014_10_007
crossref_primary_10_1080_02643294_2011_557231
crossref_primary_10_1016_j_cortex_2009_05_001
crossref_primary_10_1016_j_expneurol_2010_11_020
crossref_primary_10_1016_j_schres_2018_06_051
crossref_primary_10_1177_1073858411401413
crossref_primary_10_17116_neiro201882470
crossref_primary_10_3390_brainsci9080208
crossref_primary_10_1162_jocn_a_01591
crossref_primary_10_1371_journal_pone_0175230
crossref_primary_10_1016_j_cortex_2010_06_007
crossref_primary_10_1177_10738584221113806
crossref_primary_10_1371_journal_pone_0195739
crossref_primary_10_1016_j_cortex_2021_09_008
crossref_primary_10_1016_j_neuroscience_2019_05_063
crossref_primary_10_1016_j_biopsych_2018_06_003
crossref_primary_10_1523_JNEUROSCI_1644_10_2010
crossref_primary_10_1007_s40501_021_00238_y
crossref_primary_10_1080_02687038_2011_589892
crossref_primary_10_1016_j_arr_2018_03_001
crossref_primary_10_1016_j_neuroimage_2016_02_012
crossref_primary_10_1016_j_pneurobio_2012_07_001
crossref_primary_10_1088_1361_6560_aae932
crossref_primary_10_1101_lm_048033_118
crossref_primary_10_1016_j_clinph_2018_04_749
crossref_primary_10_3389_fnhum_2018_00150
crossref_primary_10_1002_hbm_25700
crossref_primary_10_1177_1545968313508471
crossref_primary_10_1016_j_cortex_2009_11_010
crossref_primary_10_3390_s24206645
crossref_primary_10_1093_cercor_bht242
crossref_primary_10_1016_j_brs_2013_06_004
crossref_primary_10_1155_2015_287843
crossref_primary_10_1016_j_bbr_2014_12_032
crossref_primary_10_1155_2016_9674790
crossref_primary_10_1016_j_neuropsychologia_2012_01_016
crossref_primary_10_3233_JAD_150067
crossref_primary_10_1016_j_neuroimage_2022_118975
crossref_primary_10_1192_bjp_bp_115_168203
crossref_primary_10_1093_scan_nsx002
crossref_primary_10_1177_0333102412446313
crossref_primary_10_1016_j_neuroimage_2020_117041
crossref_primary_10_1016_j_tins_2016_09_001
crossref_primary_10_1016_j_brs_2021_03_017
crossref_primary_10_1186_s12871_022_01655_z
crossref_primary_10_1016_j_tics_2018_07_014
crossref_primary_10_1162_jocn_a_00340
crossref_primary_10_1016_j_nicl_2019_101910
crossref_primary_10_1016_j_neuroscience_2020_04_016
crossref_primary_10_58563_dkyad_2024_72_5
crossref_primary_10_1038_s41598_024_73245_7
crossref_primary_10_1177_1545968315586464
crossref_primary_10_1016_j_cortex_2021_05_001
crossref_primary_10_1016_j_neuroimage_2020_117279
crossref_primary_10_1093_brain_awx087
crossref_primary_10_1016_j_pnpbp_2016_07_006
crossref_primary_10_1523_JNEUROSCI_0859_14_2015
crossref_primary_10_1016_j_neuropsychologia_2012_12_007
crossref_primary_10_1080_02687038_2011_619515
crossref_primary_10_1007_s00221_023_06575_z
crossref_primary_10_1186_s12984_022_01094_4
crossref_primary_10_1007_s00701_014_2316_1
crossref_primary_10_1523_JNEUROSCI_2214_13_2014
crossref_primary_10_1016_j_neuropsychologia_2014_11_002
crossref_primary_10_1016_j_neubiorev_2021_04_038
crossref_primary_10_1016_j_jneumeth_2022_109485
crossref_primary_10_1080_02687038_2011_590573
crossref_primary_10_1016_j_neuroimage_2015_06_070
crossref_primary_10_1152_jn_00985_2011
crossref_primary_10_1177_1545968312469837
crossref_primary_10_1016_j_psychres_2017_12_063
crossref_primary_10_1007_s00429_021_02410_9
crossref_primary_10_1016_j_brs_2017_07_011
crossref_primary_10_1146_annurev_psych_081120_013144
crossref_primary_10_1093_cercor_bhaa240
crossref_primary_10_1007_s00429_022_02512_y
crossref_primary_10_1063_5_0043648
crossref_primary_10_1016_j_cognition_2016_01_008
crossref_primary_10_1016_j_neuroimage_2023_120282
crossref_primary_10_52586_S561
crossref_primary_10_3724_SP_J_1042_2019_01093
crossref_primary_10_1111_psyp_14650
crossref_primary_10_1002_ejp_715
crossref_primary_10_1523_JNEUROSCI_2249_20_2021
crossref_primary_10_1007_s00115_015_4316_7
crossref_primary_10_3389_fneur_2020_582489
crossref_primary_10_1523_JNEUROSCI_3224_17_2018
crossref_primary_10_1016_j_msard_2019_101494
crossref_primary_10_3389_fnins_2023_1198222
crossref_primary_10_1007_s10548_021_00867_9
crossref_primary_10_1016_j_bandc_2015_05_003
crossref_primary_10_1016_j_cortex_2019_01_010
crossref_primary_10_1016_j_cortex_2009_03_004
crossref_primary_10_1162_jocn_a_02270
crossref_primary_10_1152_physrev_00033_2019
crossref_primary_10_1152_jn_00658_2016
crossref_primary_10_3233_RNN_170735
crossref_primary_10_3389_fbioe_2020_587680
crossref_primary_10_1016_j_neuroimage_2018_06_051
crossref_primary_10_1007_s11548_023_03023_9
crossref_primary_10_14814_phy2_13387
crossref_primary_10_1016_j_neurobiolaging_2015_05_001
crossref_primary_10_1038_s41583_022_00598_1
crossref_primary_10_1073_pnas_1008121107
crossref_primary_10_1016_j_brs_2019_01_021
crossref_primary_10_1016_j_brs_2012_03_012
crossref_primary_10_1016_j_isci_2024_111155
crossref_primary_10_1155_np_7853199
crossref_primary_10_3389_fnhum_2020_586448
crossref_primary_10_1016_j_neuroimage_2011_03_059
crossref_primary_10_1016_j_neuroimage_2018_09_002
crossref_primary_10_3390_ijerph17165851
crossref_primary_10_1227_NEU_0b013e31820b528c
crossref_primary_10_1016_j_neuroimage_2021_118863
crossref_primary_10_1152_jn_00800_2018
crossref_primary_10_1371_journal_pone_0242941
crossref_primary_10_1113_jphysiol_2011_206573
crossref_primary_10_3389_fnins_2017_00710
Cites_doi 10.1523/JNEUROSCI.0598-07.2007
10.1007/s00221-006-0551-2
10.1111/j.1469-7793.1999.0867p.x
10.1016/S0006-8993(01)02369-1
10.1007/s00221-002-1234-2
10.1007/s00221-004-1851-z
10.1111/j.1460-9568.2007.05440.x
10.1016/j.tics.2007.12.002
10.1113/jphysiol.2003.050153
10.1016/j.brs.2008.06.006
10.1113/jphysiol.1993.sp019732
10.1002/(SICI)1097-4598(199809)21:9<1209::AID-MUS15>3.0.CO;2-M
10.1016/S1388-2457(02)00373-5
10.1093/brain/120.5.839
10.1016/0168-5597(92)90081-L
10.1016/S1047-9651(03)00105-0
10.1097/00001756-200105250-00038
10.1097/00001756-200009280-00041
10.1097/00001756-200007140-00044
10.1007/s00221-006-0359-0
10.1016/0168-5597(89)90036-1
10.1016/j.neuroimage.2005.05.013
10.1016/S0959-4388(00)00081-7
10.1016/0168-5597(93)90100-4
10.1016/j.neuroimage.2007.03.001
10.1073/pnas.0409182102
10.1126/science.1117256
10.1016/j.clinph.2003.10.009
10.1016/j.biopsych.2008.05.026
10.1007/s00221-007-0991-3
10.1016/j.cub.2006.11.063
10.1016/S0140-6736(85)92413-4
10.1152/jn.2001.86.4.1983
10.1109/IEMBS.2006.259398
10.1093/cercor/bhm229
10.1097/00006123-198701000-00031
10.1162/jocn.2008.20048
10.1016/0168-5597(92)90096-T
10.1002/ana.10848
10.1007/s002210050648
10.1111/j.1469-7793.1998.571bb.x
10.1113/jphysiol.1992.sp019243
ContentType Journal Article
Copyright 2009 Elsevier Srl
Copyright_xml – notice: 2009 Elsevier Srl
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
DOI 10.1016/j.cortex.2009.02.007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
Neurosciences Abstracts
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1973-8102
EndPage 1042
ExternalDocumentID PMC2997692
19371866
10_1016_j_cortex_2009_02_007
S001094520900063X
Genre Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: G0500258
– fundername: Medical Research Council :
  grantid: G0500258(74086) || MRC_
GroupedDBID ---
--K
--M
--Z
.GJ
.~1
0R~
1B1
1~.
1~5
4.4
41~
457
4G.
4H-
53G
5GY
5RE
5VS
6PF
7-5
71M
85S
8P~
AABNK
AACTN
AADFP
AADPK
AAEDT
AAEDW
AAGJA
AAGUQ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYJJ
ABCQJ
ABFNM
ABIVO
ABJNI
ABMAC
ABOYX
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADRHT
AEBSH
AEKER
AENEX
AETEA
AFKWA
AFTJW
AFXIZ
AFYLN
AGHFR
AGUBO
AGWIK
AGYEJ
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
E3Z
EBS
EFJIC
EFLBG
EJD
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OHT
OKEIE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEL
SES
SJN
SPCBC
SSB
SSN
SSY
SSZ
T5K
TN5
UAP
VH1
WH7
XOL
XSB
ZA5
ZGI
ZKB
ZXP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7TK
7X8
5PM
ID FETCH-LOGICAL-c512t-f030b7d071f346d9dca5888d0fad2f2a61e2db5f64e71f0a348f1aa598e5cc7a3
IEDL.DBID AIKHN
ISSN 0010-9452
1973-8102
IngestDate Thu Aug 21 18:08:58 EDT 2025
Fri Jul 11 03:46:03 EDT 2025
Fri Jul 11 08:36:31 EDT 2025
Mon Jul 21 05:29:16 EDT 2025
Tue Jul 01 02:48:23 EDT 2025
Thu Apr 24 23:13:04 EDT 2025
Fri Feb 23 02:30:13 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords State dependency
Cognition
Physiology
Transcranial magnetic stimulation
Cortex
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-f030b7d071f346d9dca5888d0fad2f2a61e2db5f64e71f0a348f1aa598e5cc7a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 19371866
PQID 21120726
PQPubID 23462
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2997692
proquest_miscellaneous_67565996
proquest_miscellaneous_21120726
pubmed_primary_19371866
crossref_primary_10_1016_j_cortex_2009_02_007
crossref_citationtrail_10_1016_j_cortex_2009_02_007
elsevier_sciencedirect_doi_10_1016_j_cortex_2009_02_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-10-01
PublicationDateYYYYMMDD 2009-10-01
PublicationDate_xml – month: 10
  year: 2009
  text: 2009-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Italy
PublicationPlace_xml – name: Italy
PublicationTitle Cortex
PublicationTitleAlternate Cortex
PublicationYear 2009
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Maccabee, Nagarajan, Amassian, Durand, Szabo, Ahad (bib25) 1998; 513
Murase, Duque, Mazzocchio, Cohen (bib30) 2004; 55
Siebner, Dressnandt, Auer, Conrad (bib34) 1998; 21
Mills, Boniface, Schubert (bib28) 1992; 85
Bestmann, Ruff, Blakemore, Driver, Thilo (bib5) 2007; 17
Stinear, Byblow (bib38) 2003; 114
Fuggetta, Fiaschi, Manganotti (bib13) 2005; 27
Cattaneo, Voss, Brochier, Prabhu, Wolpert, Lemon (bib8) 2005; 102
Koch, Franca, Albrecht, Caltagirone, Rothwell (bib20) 2006; 172
Edgley, Eyre, Lemon, Miller (bib11) 1997; 120
Barker, Jalinous, Freeston (bib4) 1985; 1
Ferbert, Priori, Rothwell, Day, Colebatch, Marsden (bib12) 1992; 453
Kujirai, Sato, Rothwell, Cohen (bib23) 1993; 89
Silvanto, Muggleton, Cowey, Walsh (bib36) 2007; 25
Pascual-Leone, Walsh, Rothwell (bib31) 2000; 10
Lewis, Byblow, Carson (bib24) 2001; 900
Strafella, Paus (bib40) 2000; 11
Ziemann, Paulus, Nitsche, Pascual-Leone, Byblow, Berardelli (bib43) 2008; 1
Stinear, Byblow (bib39) 2004; 157
Bestmann (bib7) 2008; 12
Inghilleri, Berardelli, Cruccu, Manfredi (bib18) 1993; 466
Hill, Davey, Kennard (bib17) 2000; 11
Moliadze, Zhao, Eysel, Funke (bib29) 2003; 553
Amassian, Cracco (bib1) 1987; 20
Di Lazzaro, Oliviero, Pilato, Saturno, Dileone, Mazzone (bib10) 2004; 115
Harris, Clifford, Miniussi (bib15) 2008; 20
Koch, Fernandez Del Olmo, Cheeran, Ruge, Schippling, Caltagirone (bib21) 2007; 27
Koch, Ribolsi, Mori, Sacchetti, Codeca, Rubino (bib22) 2008
Haug, Schonle, Knobloch, Kohne (bib16) 1992; 85
Van Der Werf, Paus (bib42) 2006; 175
Paus, Sipila, Strafella (bib32) 2001; 86
Amassian, Cracco, Maccabee, Cracco, Rudell, Eberle (bib2) 1989; 74
Thickbroom (bib41) 2007; 180
Di Lazzaro, Oliviero, Profice, Insola, Mazzone, Tonali (bib9) 1999; 124
Massimini, Ferrarelli, Huber, Esser, Singh, Tononi (bib26) 2005; 309
Siebner, Rothwell (bib35) 2003; 148
Romei, Brodbeck, Michel, Amedi, Pascual-Leone, Thut (bib33) 2008; 18
Amassian, Maccabee (bib3) 2006; 1
Matthews (bib27) 1999; 518
Bestmann, Swayne, Blankenburg, Ruff, Haggard, Weiskopf (bib6) 2007
Gangitano, Mottaghy, Pascual-Leone (bib14) 2001; 12
Kammer, Vorwerg, Herrnberger (bib19) 2007; 36
Sohn, Hallett (bib37) 2004; 15
Hill (10.1016/j.cortex.2009.02.007_bib17) 2000; 11
Sohn (10.1016/j.cortex.2009.02.007_bib37) 2004; 15
Koch (10.1016/j.cortex.2009.02.007_bib22) 2008
Paus (10.1016/j.cortex.2009.02.007_bib32) 2001; 86
Edgley (10.1016/j.cortex.2009.02.007_bib11) 1997; 120
Bestmann (10.1016/j.cortex.2009.02.007_bib7) 2008; 12
Inghilleri (10.1016/j.cortex.2009.02.007_bib18) 1993; 466
Fuggetta (10.1016/j.cortex.2009.02.007_bib13) 2005; 27
Di Lazzaro (10.1016/j.cortex.2009.02.007_bib9) 1999; 124
Silvanto (10.1016/j.cortex.2009.02.007_bib36) 2007; 25
Amassian (10.1016/j.cortex.2009.02.007_bib2) 1989; 74
Lewis (10.1016/j.cortex.2009.02.007_bib24) 2001; 900
Matthews (10.1016/j.cortex.2009.02.007_bib27) 1999; 518
Mills (10.1016/j.cortex.2009.02.007_bib28) 1992; 85
Romei (10.1016/j.cortex.2009.02.007_bib33) 2008; 18
Kujirai (10.1016/j.cortex.2009.02.007_bib23) 1993; 89
Ferbert (10.1016/j.cortex.2009.02.007_bib12) 1992; 453
Pascual-Leone (10.1016/j.cortex.2009.02.007_bib31) 2000; 10
Stinear (10.1016/j.cortex.2009.02.007_bib38) 2003; 114
Harris (10.1016/j.cortex.2009.02.007_bib15) 2008; 20
Bestmann (10.1016/j.cortex.2009.02.007_bib5) 2007; 17
Kammer (10.1016/j.cortex.2009.02.007_bib19) 2007; 36
Moliadze (10.1016/j.cortex.2009.02.007_bib29) 2003; 553
Gangitano (10.1016/j.cortex.2009.02.007_bib14) 2001; 12
Koch (10.1016/j.cortex.2009.02.007_bib20) 2006; 172
Thickbroom (10.1016/j.cortex.2009.02.007_bib41) 2007; 180
Di Lazzaro (10.1016/j.cortex.2009.02.007_bib10) 2004; 115
Cattaneo (10.1016/j.cortex.2009.02.007_bib8) 2005; 102
Barker (10.1016/j.cortex.2009.02.007_bib4) 1985; 1
Maccabee (10.1016/j.cortex.2009.02.007_bib25) 1998; 513
Haug (10.1016/j.cortex.2009.02.007_bib16) 1992; 85
Amassian (10.1016/j.cortex.2009.02.007_bib1) 1987; 20
Massimini (10.1016/j.cortex.2009.02.007_bib26) 2005; 309
Siebner (10.1016/j.cortex.2009.02.007_bib35) 2003; 148
Strafella (10.1016/j.cortex.2009.02.007_bib40) 2000; 11
Siebner (10.1016/j.cortex.2009.02.007_bib34) 1998; 21
Amassian (10.1016/j.cortex.2009.02.007_bib3) 2006; 1
Murase (10.1016/j.cortex.2009.02.007_bib30) 2004; 55
Stinear (10.1016/j.cortex.2009.02.007_bib39) 2004; 157
Bestmann (10.1016/j.cortex.2009.02.007_bib6) 2007
Koch (10.1016/j.cortex.2009.02.007_bib21) 2007; 27
Van Der Werf (10.1016/j.cortex.2009.02.007_bib42) 2006; 175
Ziemann (10.1016/j.cortex.2009.02.007_bib43) 2008; 1
References_xml – volume: 85
  start-page: 17
  year: 1992
  end-page: 21
  ident: bib28
  article-title: Magnetic brain stimulation with a double coil: the importance of coil orientation
  publication-title: Electroencephalography and Clinical Neurophysiology
– volume: 27
  start-page: 6815
  year: 2007
  end-page: 6822
  ident: bib21
  article-title: Focal stimulation of the posterior parietal cortex increases the excitability of the ipsilateral motor cortex
  publication-title: The Journal of Neuroscience
– volume: 114
  start-page: 909
  year: 2003
  end-page: 914
  ident: bib38
  article-title: Motor imagery of phasic thumb abduction temporally and spatially modulates corticospinal excitability
  publication-title: Clinical Neurophysiology
– volume: 102
  start-page: 898
  year: 2005
  end-page: 903
  ident: bib8
  article-title: A cortico-cortical mechanism mediating object-driven grasp in humans
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 513
  start-page: 571
  year: 1998
  end-page: 585
  ident: bib25
  article-title: Influence of pulse sequence, polarity and amplitude on magnetic stimulation of human and porcine peripheral nerve
  publication-title: The Journal of Physiology
– volume: 11
  start-page: 2289
  year: 2000
  end-page: 2292
  ident: bib40
  article-title: Modulation of cortical excitability during action observation: a transcranial magnetic stimulation study
  publication-title: Neuroreport
– volume: 10
  start-page: 232
  year: 2000
  end-page: 237
  ident: bib31
  article-title: Transcranial magnetic stimulation in cognitive neuroscience–virtual lesion, chronometry, and functional connectivity
  publication-title: Current Opinion in Neurobiology
– volume: 900
  start-page: 282
  year: 2001
  end-page: 294
  ident: bib24
  article-title: Phasic modulation of corticomotor excitability during passive movement of the upper limb: effects of movement frequency and muscle specificity
  publication-title: Brain Research
– volume: 518
  start-page: 867
  year: 1999
  end-page: 882
  ident: bib27
  article-title: The effect of firing on the excitability of a model motoneurone and its implications for cortical stimulation
  publication-title: The Journal of Physiology
– volume: 74
  start-page: 458
  year: 1989
  end-page: 462
  ident: bib2
  article-title: Suppression of visual perception by magnetic coil stimulation of human occipital cortex
  publication-title: Electroencephalography and Clinical Neurophysiology
– volume: 55
  start-page: 400
  year: 2004
  end-page: 409
  ident: bib30
  article-title: Influence of interhemispheric interactions on motor function in chronic stroke
  publication-title: Annals of Neurology
– volume: 25
  start-page: 1874
  year: 2007
  end-page: 1881
  ident: bib36
  article-title: Neural adaptation reveals state-dependent effects of transcranial magnetic stimulation
  publication-title: European Journal of Neuroscience
– volume: 12
  start-page: 81
  year: 2008
  end-page: 83
  ident: bib7
  article-title: The physiological basis of transcranial magnetic stimulation
  publication-title: Trends in Cognitive Sciences
– volume: 17
  start-page: 134
  year: 2007
  end-page: 139
  ident: bib5
  article-title: Spatial attention changes excitability of human visual cortex to direct stimulation
  publication-title: Current Biology
– volume: 18
  start-page: 2010
  year: 2008
  end-page: 2018
  ident: bib33
  article-title: Spontaneous fluctuations in posterior alpha-band eeg activity reflect variability in excitability of human visual areas
  publication-title: Cerebral Cortex
– volume: 27
  start-page: 896
  year: 2005
  end-page: 908
  ident: bib13
  article-title: Modulation of cortical oscillatory activities induced by varying single-pulse transcranial magnetic stimulation intensity over the left primary motor area: a combined eeg and tms study
  publication-title: Neuroimage
– volume: 157
  start-page: 351
  year: 2004
  end-page: 358
  ident: bib39
  article-title: Modulation of corticospinal excitability and intracortical inhibition during motor imagery is task-dependent
  publication-title: Experimental Brain Research
– volume: 180
  start-page: 583
  year: 2007
  end-page: 593
  ident: bib41
  article-title: Transcranial magnetic stimulation and synaptic plasticity: experimental framework and human models
  publication-title: Experimental Brain Research
– year: 2008
  ident: bib22
  article-title: Connectivity between posterior parietal cortex and ipsilateral motor cortex is altered in schizophrenia
  publication-title: Biological Psychiatry
– volume: 172
  start-page: 416
  year: 2006
  end-page: 424
  ident: bib20
  article-title: Effects of paired pulse tms of primary somatosensory cortex on perception of a peripheral electrical stimulus
  publication-title: Experimental Brain Research
– volume: 175
  start-page: 231
  year: 2006
  end-page: 245
  ident: bib42
  article-title: The neural response to transcranial magnetic stimulation of the human motor cortex. I. Intracortical and cortico-cortical contributions
  publication-title: Experimental Brain Research
– volume: 309
  start-page: 2228
  year: 2005
  end-page: 2232
  ident: bib26
  article-title: Breakdown of cortical effective connectivity during sleep
  publication-title: Science
– volume: 466
  start-page: 521
  year: 1993
  end-page: 534
  ident: bib18
  article-title: Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction
  publication-title: The Journal of Physiology
– volume: 11
  start-page: 3257
  year: 2000
  end-page: 3259
  ident: bib17
  article-title: Current orientation induced by magnetic stimulation influences a cognitive task
  publication-title: Neuroreport
– volume: 20
  start-page: 148
  year: 1987
  end-page: 155
  ident: bib1
  article-title: Human cerebral cortical responses to contralateral transcranial stimulation
  publication-title: Neurosurgery
– year: 2007
  ident: bib6
  article-title: Dorsal premotor cortex exerts state-dependent causal influences on activity in contralateral primary motor and dorsal premotor cortex
  publication-title: Cerebral Cortex
– volume: 553
  start-page: 665
  year: 2003
  end-page: 679
  ident: bib29
  article-title: Effect of transcranial magnetic stimulation on single-unit activity in the cat primary visual cortex
  publication-title: The Journal of Physiology
– volume: 20
  start-page: 734
  year: 2008
  end-page: 740
  ident: bib15
  article-title: The functional effect of transcranial magnetic stimulation: signal suppression or neural noise generation?
  publication-title: Journal of Cognitive Neuroscience
– volume: 21
  start-page: 1209
  year: 1998
  end-page: 1212
  ident: bib34
  article-title: Continuous intrathecal baclofen infusions induced a marked increase of the transcranially evoked silent period in a patient with generalized dystonia
  publication-title: Muscle & Nerve
– volume: 148
  start-page: 1
  year: 2003
  end-page: 16
  ident: bib35
  article-title: Transcranial magnetic stimulation: new insights into representational cortical plasticity
  publication-title: Experimental Brain Research
– volume: 453
  start-page: 525
  year: 1992
  end-page: 546
  ident: bib12
  article-title: Interhemispheric inhibition of the human motor cortex
  publication-title: The Journal of Physiology
– volume: 89
  start-page: 227
  year: 1993
  end-page: 234
  ident: bib23
  article-title: The effect of transcranial magnetic stimulation on median nerve somatosensory evoked potentials
  publication-title: Electroencephalography and Clinical Neurophysiology
– volume: 15
  start-page: 117
  year: 2004
  end-page: 131
  ident: bib37
  article-title: Motor evoked potentials
  publication-title: Physical Medicine and Rehabilitation Clinics of North America
– volume: 36
  start-page: 313
  year: 2007
  end-page: 321
  ident: bib19
  article-title: Anisotropy in the visual cortex investigated by neuronavigated transcranial magnetic stimulation
  publication-title: Neuroimage
– volume: 120
  start-page: 839
  year: 1997
  end-page: 853
  ident: bib11
  article-title: Comparison of activation of corticospinal neurons and spinal motor neurons by magnetic and electrical transcranial stimulation in the lumbosacral cord of the anaesthetized monkey
  publication-title: Brain
– volume: 12
  start-page: 1489
  year: 2001
  end-page: 1492
  ident: bib14
  article-title: Phase-specific modulation of cortical motor output during movement observation
  publication-title: Neuroreport
– volume: 1
  start-page: 1106
  year: 1985
  end-page: 1107
  ident: bib4
  article-title: Non-invasive magnetic stimulation of human motor cortex
  publication-title: Lancet
– volume: 86
  start-page: 1983
  year: 2001
  end-page: 1990
  ident: bib32
  article-title: Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an eeg study
  publication-title: Journal of Neurophysiology
– volume: 1
  start-page: 164
  year: 2008
  end-page: 182
  ident: bib43
  article-title: Consensus: motor cortex plasticity protocols
  publication-title: Brain Stimulation
– volume: 85
  start-page: 158
  year: 1992
  end-page: 160
  ident: bib16
  article-title: Silent period measurement revives as a valuable diagnostic tool with transcranial magnetic stimulation
  publication-title: Electroencephalography and Clinical Neurophysiology
– volume: 1
  start-page: 1620
  year: 2006
  end-page: 1623
  ident: bib3
  article-title: Transcranial magnetic stimulation
  publication-title: Conference Proceedings: IEEE Engineering in Medicine and Biology Society
– volume: 115
  start-page: 255
  year: 2004
  end-page: 266
  ident: bib10
  article-title: The physiological basis of transcranial motor cortex stimulation in conscious humans
  publication-title: Clinical Neurophysiology
– volume: 124
  start-page: 520
  year: 1999
  end-page: 524
  ident: bib9
  article-title: Direct demonstration of interhemispheric inhibition of the human motor cortex produced by transcranial magnetic stimulation
  publication-title: Experimental Brain Research
– volume: 27
  start-page: 6815
  year: 2007
  ident: 10.1016/j.cortex.2009.02.007_bib21
  article-title: Focal stimulation of the posterior parietal cortex increases the excitability of the ipsilateral motor cortex
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.0598-07.2007
– volume: 175
  start-page: 231
  year: 2006
  ident: 10.1016/j.cortex.2009.02.007_bib42
  article-title: The neural response to transcranial magnetic stimulation of the human motor cortex. I. Intracortical and cortico-cortical contributions
  publication-title: Experimental Brain Research
  doi: 10.1007/s00221-006-0551-2
– volume: 518
  start-page: 867
  year: 1999
  ident: 10.1016/j.cortex.2009.02.007_bib27
  article-title: The effect of firing on the excitability of a model motoneurone and its implications for cortical stimulation
  publication-title: The Journal of Physiology
  doi: 10.1111/j.1469-7793.1999.0867p.x
– year: 2007
  ident: 10.1016/j.cortex.2009.02.007_bib6
  article-title: Dorsal premotor cortex exerts state-dependent causal influences on activity in contralateral primary motor and dorsal premotor cortex
  publication-title: Cerebral Cortex
– volume: 900
  start-page: 282
  year: 2001
  ident: 10.1016/j.cortex.2009.02.007_bib24
  article-title: Phasic modulation of corticomotor excitability during passive movement of the upper limb: effects of movement frequency and muscle specificity
  publication-title: Brain Research
  doi: 10.1016/S0006-8993(01)02369-1
– volume: 148
  start-page: 1
  year: 2003
  ident: 10.1016/j.cortex.2009.02.007_bib35
  article-title: Transcranial magnetic stimulation: new insights into representational cortical plasticity
  publication-title: Experimental Brain Research
  doi: 10.1007/s00221-002-1234-2
– volume: 157
  start-page: 351
  year: 2004
  ident: 10.1016/j.cortex.2009.02.007_bib39
  article-title: Modulation of corticospinal excitability and intracortical inhibition during motor imagery is task-dependent
  publication-title: Experimental Brain Research
  doi: 10.1007/s00221-004-1851-z
– volume: 25
  start-page: 1874
  year: 2007
  ident: 10.1016/j.cortex.2009.02.007_bib36
  article-title: Neural adaptation reveals state-dependent effects of transcranial magnetic stimulation
  publication-title: European Journal of Neuroscience
  doi: 10.1111/j.1460-9568.2007.05440.x
– volume: 12
  start-page: 81
  year: 2008
  ident: 10.1016/j.cortex.2009.02.007_bib7
  article-title: The physiological basis of transcranial magnetic stimulation
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2007.12.002
– volume: 553
  start-page: 665
  year: 2003
  ident: 10.1016/j.cortex.2009.02.007_bib29
  article-title: Effect of transcranial magnetic stimulation on single-unit activity in the cat primary visual cortex
  publication-title: The Journal of Physiology
  doi: 10.1113/jphysiol.2003.050153
– volume: 1
  start-page: 164
  year: 2008
  ident: 10.1016/j.cortex.2009.02.007_bib43
  article-title: Consensus: motor cortex plasticity protocols
  publication-title: Brain Stimulation
  doi: 10.1016/j.brs.2008.06.006
– volume: 466
  start-page: 521
  year: 1993
  ident: 10.1016/j.cortex.2009.02.007_bib18
  article-title: Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction
  publication-title: The Journal of Physiology
  doi: 10.1113/jphysiol.1993.sp019732
– volume: 21
  start-page: 1209
  year: 1998
  ident: 10.1016/j.cortex.2009.02.007_bib34
  article-title: Continuous intrathecal baclofen infusions induced a marked increase of the transcranially evoked silent period in a patient with generalized dystonia
  publication-title: Muscle & Nerve
  doi: 10.1002/(SICI)1097-4598(199809)21:9<1209::AID-MUS15>3.0.CO;2-M
– volume: 114
  start-page: 909
  year: 2003
  ident: 10.1016/j.cortex.2009.02.007_bib38
  article-title: Motor imagery of phasic thumb abduction temporally and spatially modulates corticospinal excitability
  publication-title: Clinical Neurophysiology
  doi: 10.1016/S1388-2457(02)00373-5
– volume: 120
  start-page: 839
  year: 1997
  ident: 10.1016/j.cortex.2009.02.007_bib11
  article-title: Comparison of activation of corticospinal neurons and spinal motor neurons by magnetic and electrical transcranial stimulation in the lumbosacral cord of the anaesthetized monkey
  publication-title: Brain
  doi: 10.1093/brain/120.5.839
– volume: 85
  start-page: 158
  year: 1992
  ident: 10.1016/j.cortex.2009.02.007_bib16
  article-title: Silent period measurement revives as a valuable diagnostic tool with transcranial magnetic stimulation
  publication-title: Electroencephalography and Clinical Neurophysiology
  doi: 10.1016/0168-5597(92)90081-L
– volume: 15
  start-page: 117
  year: 2004
  ident: 10.1016/j.cortex.2009.02.007_bib37
  article-title: Motor evoked potentials
  publication-title: Physical Medicine and Rehabilitation Clinics of North America
  doi: 10.1016/S1047-9651(03)00105-0
– volume: 12
  start-page: 1489
  year: 2001
  ident: 10.1016/j.cortex.2009.02.007_bib14
  article-title: Phase-specific modulation of cortical motor output during movement observation
  publication-title: Neuroreport
  doi: 10.1097/00001756-200105250-00038
– volume: 11
  start-page: 3257
  year: 2000
  ident: 10.1016/j.cortex.2009.02.007_bib17
  article-title: Current orientation induced by magnetic stimulation influences a cognitive task
  publication-title: Neuroreport
  doi: 10.1097/00001756-200009280-00041
– volume: 11
  start-page: 2289
  year: 2000
  ident: 10.1016/j.cortex.2009.02.007_bib40
  article-title: Modulation of cortical excitability during action observation: a transcranial magnetic stimulation study
  publication-title: Neuroreport
  doi: 10.1097/00001756-200007140-00044
– volume: 172
  start-page: 416
  year: 2006
  ident: 10.1016/j.cortex.2009.02.007_bib20
  article-title: Effects of paired pulse tms of primary somatosensory cortex on perception of a peripheral electrical stimulus
  publication-title: Experimental Brain Research
  doi: 10.1007/s00221-006-0359-0
– volume: 74
  start-page: 458
  year: 1989
  ident: 10.1016/j.cortex.2009.02.007_bib2
  article-title: Suppression of visual perception by magnetic coil stimulation of human occipital cortex
  publication-title: Electroencephalography and Clinical Neurophysiology
  doi: 10.1016/0168-5597(89)90036-1
– volume: 27
  start-page: 896
  year: 2005
  ident: 10.1016/j.cortex.2009.02.007_bib13
  article-title: Modulation of cortical oscillatory activities induced by varying single-pulse transcranial magnetic stimulation intensity over the left primary motor area: a combined eeg and tms study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.05.013
– volume: 10
  start-page: 232
  year: 2000
  ident: 10.1016/j.cortex.2009.02.007_bib31
  article-title: Transcranial magnetic stimulation in cognitive neuroscience–virtual lesion, chronometry, and functional connectivity
  publication-title: Current Opinion in Neurobiology
  doi: 10.1016/S0959-4388(00)00081-7
– volume: 89
  start-page: 227
  year: 1993
  ident: 10.1016/j.cortex.2009.02.007_bib23
  article-title: The effect of transcranial magnetic stimulation on median nerve somatosensory evoked potentials
  publication-title: Electroencephalography and Clinical Neurophysiology
  doi: 10.1016/0168-5597(93)90100-4
– volume: 36
  start-page: 313
  year: 2007
  ident: 10.1016/j.cortex.2009.02.007_bib19
  article-title: Anisotropy in the visual cortex investigated by neuronavigated transcranial magnetic stimulation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.03.001
– volume: 102
  start-page: 898
  year: 2005
  ident: 10.1016/j.cortex.2009.02.007_bib8
  article-title: A cortico-cortical mechanism mediating object-driven grasp in humans
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0409182102
– volume: 309
  start-page: 2228
  year: 2005
  ident: 10.1016/j.cortex.2009.02.007_bib26
  article-title: Breakdown of cortical effective connectivity during sleep
  publication-title: Science
  doi: 10.1126/science.1117256
– volume: 115
  start-page: 255
  year: 2004
  ident: 10.1016/j.cortex.2009.02.007_bib10
  article-title: The physiological basis of transcranial motor cortex stimulation in conscious humans
  publication-title: Clinical Neurophysiology
  doi: 10.1016/j.clinph.2003.10.009
– year: 2008
  ident: 10.1016/j.cortex.2009.02.007_bib22
  article-title: Connectivity between posterior parietal cortex and ipsilateral motor cortex is altered in schizophrenia
  publication-title: Biological Psychiatry
  doi: 10.1016/j.biopsych.2008.05.026
– volume: 180
  start-page: 583
  year: 2007
  ident: 10.1016/j.cortex.2009.02.007_bib41
  article-title: Transcranial magnetic stimulation and synaptic plasticity: experimental framework and human models
  publication-title: Experimental Brain Research
  doi: 10.1007/s00221-007-0991-3
– volume: 17
  start-page: 134
  year: 2007
  ident: 10.1016/j.cortex.2009.02.007_bib5
  article-title: Spatial attention changes excitability of human visual cortex to direct stimulation
  publication-title: Current Biology
  doi: 10.1016/j.cub.2006.11.063
– volume: 1
  start-page: 1106
  year: 1985
  ident: 10.1016/j.cortex.2009.02.007_bib4
  article-title: Non-invasive magnetic stimulation of human motor cortex
  publication-title: Lancet
  doi: 10.1016/S0140-6736(85)92413-4
– volume: 86
  start-page: 1983
  year: 2001
  ident: 10.1016/j.cortex.2009.02.007_bib32
  article-title: Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an eeg study
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.2001.86.4.1983
– volume: 1
  start-page: 1620
  year: 2006
  ident: 10.1016/j.cortex.2009.02.007_bib3
  article-title: Transcranial magnetic stimulation
  publication-title: Conference Proceedings: IEEE Engineering in Medicine and Biology Society
  doi: 10.1109/IEMBS.2006.259398
– volume: 18
  start-page: 2010
  year: 2008
  ident: 10.1016/j.cortex.2009.02.007_bib33
  article-title: Spontaneous fluctuations in posterior alpha-band eeg activity reflect variability in excitability of human visual areas
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhm229
– volume: 20
  start-page: 148
  year: 1987
  ident: 10.1016/j.cortex.2009.02.007_bib1
  article-title: Human cerebral cortical responses to contralateral transcranial stimulation
  publication-title: Neurosurgery
  doi: 10.1097/00006123-198701000-00031
– volume: 20
  start-page: 734
  year: 2008
  ident: 10.1016/j.cortex.2009.02.007_bib15
  article-title: The functional effect of transcranial magnetic stimulation: signal suppression or neural noise generation?
  publication-title: Journal of Cognitive Neuroscience
  doi: 10.1162/jocn.2008.20048
– volume: 85
  start-page: 17
  year: 1992
  ident: 10.1016/j.cortex.2009.02.007_bib28
  article-title: Magnetic brain stimulation with a double coil: the importance of coil orientation
  publication-title: Electroencephalography and Clinical Neurophysiology
  doi: 10.1016/0168-5597(92)90096-T
– volume: 55
  start-page: 400
  year: 2004
  ident: 10.1016/j.cortex.2009.02.007_bib30
  article-title: Influence of interhemispheric interactions on motor function in chronic stroke
  publication-title: Annals of Neurology
  doi: 10.1002/ana.10848
– volume: 124
  start-page: 520
  year: 1999
  ident: 10.1016/j.cortex.2009.02.007_bib9
  article-title: Direct demonstration of interhemispheric inhibition of the human motor cortex produced by transcranial magnetic stimulation
  publication-title: Experimental Brain Research
  doi: 10.1007/s002210050648
– volume: 513
  start-page: 571
  year: 1998
  ident: 10.1016/j.cortex.2009.02.007_bib25
  article-title: Influence of pulse sequence, polarity and amplitude on magnetic stimulation of human and porcine peripheral nerve
  publication-title: The Journal of Physiology
  doi: 10.1111/j.1469-7793.1998.571bb.x
– volume: 453
  start-page: 525
  year: 1992
  ident: 10.1016/j.cortex.2009.02.007_bib12
  article-title: Interhemispheric inhibition of the human motor cortex
  publication-title: The Journal of Physiology
  doi: 10.1113/jphysiol.1992.sp019243
SSID ssj0020855
Score 2.4000876
Snippet Transcranial magnetic stimulation (TMS) uses a magnetic field to “carry” a short lasting electrical current pulse into the brain where it stimulates neurones,...
Transcranial magnetic stimulation (TMS) uses a magnetic field to "carry" a short lasting electrical current pulse into the brain where it stimulates neurones,...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1035
SubjectTerms Action Potentials - physiology
Brain Mapping
Cerebral Cortex - physiology
Cognition
Cognition - physiology
Cortex
Humans
Models, Neurological
Nerve Net - physiology
Neural Conduction - physiology
Neurons - physiology
Physiology
State dependency
Transcranial Magnetic Stimulation
Title How does transcranial magnetic stimulation modify neuronal activity in the brain? Implications for studies of cognition
URI https://dx.doi.org/10.1016/j.cortex.2009.02.007
https://www.ncbi.nlm.nih.gov/pubmed/19371866
https://www.proquest.com/docview/21120726
https://www.proquest.com/docview/67565996
https://pubmed.ncbi.nlm.nih.gov/PMC2997692
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELb6kBAXBC2P5bH4gLiFOk7sJCe0WlFtgVYIUWlvlp8liE0qdqvSC7-dmcRZuqCqEpccElt5eB7fxN_MEPLKMa_By5rE-pIluUlB57gPiWA6CCF8kDkmOB-fyNlp_n4u5ltkOuTCIK0y2v7epnfWOp45iF_z4LyuMcc3hdgEaRydo51vk12eVRJEe3dy9GF2so67kIrVG2SW4IQhg66jeVnktP6MhSuxeGdxk4f6F4H-TaS85pkO75N7EVLSSf_UD8iWb_bI_qSBcHpxRV_TjuTZ_T3fI3eO4176PrmctZfUtX5JV-ivLBxAFulCnzWY2EhB9xextxddtK4OV7Qrfon3wmwIbDpB64YCgqQGG028pUfX6OkU0DBd9ixF2gYaeUpt85CcHr77Mp0lsQ1DYgENrJIAdsAUDrBIyHLpKme1gLjZsaAdD1zL1HNnBKyqhyFMZ3kZUq1FVXphbaGzR2SnaRv_hFCJfW6KwABzmjwYY4TPHUAey1zpcuZHJBs-vbKxRjm2yviuBjLaN9UvGLbPrBTjChZsRJL1rPO-Rsct44thVdWGrClwI7fMfDkIgQI1xL0V3fj2Yqkgjuas4PLmERCZSayFMyKPe6H586xYk7CUcKXYEKf1ACwBvnmlqb92pcABTBSy4k__-42ekbvd_lhHT3xOdlY_LvwLgFkrMybbb36lY1Cm6eePn8ZRqX4D8esuow
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkYALgpbH8qoPiFuoN2s72ROqKqotdHtqpb1ZfkIQ61Tdrdpe-O3MOM7SBVWVuOSQTJTEnvF8E38zQ8h7x7wGL2sK62tWcDMEmyt9KATTQQjhg-SY4Dw9lpNT_mUmZhtkv8-FQVplXvu7NT2t1vnMbh7N3bOmwRzfIcQmSONIjnZ2j9znYL5onR9_rXge2IMytzFgBYr3-XOJ5GWR0XqVy1Zi6c7qNv_0L_78m0Z5wy8dPCGPM6Cke907PyUbPm6R7b0IwfT8mn6gieKZ_p1vkQfTvJO-TS4n7SV1rV_QJXorCwfQRDrX3yKmNVKw_Hnu7EXnrWvCNU2lL_FZmAuBLSdoEyngR2qwzcQneniDnE4BC9NFx1GkbaCZpdTGZ-T04PPJ_qTITRgKC1hgWQRYBUzlAImEEZdu7KwWEDU7FrQrQ6nl0JfOCJhTDyJMj3gdhlqLce2FtZUePSebsY3-JaESu9xUgQHiNDwYY4TnDgCPZa52nPkBGfVDr2yuUI6NMn6qnor2Q3UThs0zx4qVCiZsQIrVXWddhY475Kt-VtWapilwInfcudMrgQIjxJ0VHX17sVAQRZesKuXtEhCXSayEMyAvOqX5865YkbCWcKVaU6eVABYAX78Sm--pEDhAiUqOy1f__UU75OHkZHqkjg6Pv74mj9JOWSIqviGby_ML_xYA19K8Swb1Gwl5LdI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+does+transcranial+magnetic+stimulation+modify+neuronal+activity+in+the+brain%3F+Implications+for+studies+of+cognition&rft.jtitle=Cortex&rft.au=Siebner%2C+Hartwig+R&rft.au=Hartwigsen%2C+Gesa&rft.au=Kassuba%2C+Tanja&rft.au=Rothwell%2C+John+C&rft.date=2009-10-01&rft.eissn=1973-8102&rft.volume=45&rft.issue=9&rft.spage=1035&rft_id=info:doi/10.1016%2Fj.cortex.2009.02.007&rft_id=info%3Apmid%2F19371866&rft.externalDocID=19371866
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-9452&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-9452&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-9452&client=summon