SIRT3 regulates cancer cell proliferation through deacetylation of PYCR1 in proline metabolism

SIRT3 is a major mitochondrial deacetylase, which regulates various metabolic pathways by deacetylation; however, the effect of SIRT3 on proline metabolism is not reported. Pyrroline-5-carboxylate reductase 1 (PYCR1) participates in proline synthesis process by catalyzing the reduction of P5C to pro...

Full description

Saved in:
Bibliographic Details
Published inNeoplasia (New York, N.Y.) Vol. 21; no. 7; pp. 665 - 675
Main Authors Chen, Shuaiyi, Yang, Xin, Yu, Miao, Wang, Zhe, Liu, Boya, Liu, Minghui, Liu, Lu, Ren, Mengmeng, Qi, Hao, Zou, Junhua, Vucenik, Ivana, Zhu, Wei-Guo, Luo, Jianyuan
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.07.2019
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SIRT3 is a major mitochondrial deacetylase, which regulates various metabolic pathways by deacetylation; however, the effect of SIRT3 on proline metabolism is not reported. Pyrroline-5-carboxylate reductase 1 (PYCR1) participates in proline synthesis process by catalyzing the reduction of P5C to proline with concomitant generation of NAD+ and NADP+. PYCR1 is highly expressed in various cancers, and it can promote the growth of tumor cells. Here, through immunoprecipitation and mass spectrometry, we found that PYCR1 is in SIRT3’s interacting network. PYCR1 directly binds to SIRT3 both in vivo and in vitro. CBP is the acetyltransferase for PYCR1, whereas SIRT3 deacetylates PYCR1. We further identified that K228 is the major acetylation site for PYCR1. Acetylation of PYCR1 at K228 reduced its enzymatic activity by impairing the formation of the decamer of PYCR1. As a result, acetylation of PYCR1 at K228 inhibits cell proliferation, while deacetylation of PYCR1 mediated by SIRT3 increases PYCR1’s activity. Our findings on the regulation of PYCR1 linked proline metabolism with SIRT3, CBP and cell growth, thus providing a potential approach for cancer therapy.
AbstractList SIRT3 is a major mitochondrial deacetylase, which regulates various metabolic pathways by deacetylation; however, the effect of SIRT3 on proline metabolism is not reported. Pyrroline-5-carboxylate reductase 1 (PYCR1) participates in proline synthesis process by catalyzing the reduction of P5C to proline with concomitant generation of NAD+ and NADP+. PYCR1 is highly expressed in various cancers, and it can promote the growth of tumor cells. Here, through immunoprecipitation and mass spectrometry, we found that PYCR1 is in SIRT3’s interacting network. PYCR1 directly binds to SIRT3 both in vivo and in vitro. CBP is the acetyltransferase for PYCR1, whereas SIRT3 deacetylates PYCR1. We further identified that K228 is the major acetylation site for PYCR1. Acetylation of PYCR1 at K228 reduced its enzymatic activity by impairing the formation of the decamer of PYCR1. As a result, acetylation of PYCR1 at K228 inhibits cell proliferation, while deacetylation of PYCR1 mediated by SIRT3 increases PYCR1’s activity. Our findings on the regulation of PYCR1 linked proline metabolism with SIRT3, CBP and cell growth, thus providing a potential approach for cancer therapy.
SIRT3 is a major mitochondrial deacetylase, which regulates various metabolic pathways by deacetylation; however, the effect of SIRT3 on proline metabolism is not reported. Pyrroline-5-carboxylate reductase 1 (PYCR1) participates in proline synthesis process by catalyzing the reduction of P5C to proline with concomitant generation of NAD+ and NADP+. PYCR1 is highly expressed in various cancers, and it can promote the growth of tumor cells. Here, through immunoprecipitation and mass spectrometry, we found that PYCR1 is in SIRT3's interacting network. PYCR1 directly binds to SIRT3 both in vivo and in vitro. CBP is the acetyltransferase for PYCR1, whereas SIRT3 deacetylates PYCR1. We further identified that K228 is the major acetylation site for PYCR1. Acetylation of PYCR1 at K228 reduced its enzymatic activity by impairing the formation of the decamer of PYCR1. As a result, acetylation of PYCR1 at K228 inhibits cell proliferation, while deacetylation of PYCR1 mediated by SIRT3 increases PYCR1's activity. Our findings on the regulation of PYCR1 linked proline metabolism with SIRT3, CBP and cell growth, thus providing a potential approach for cancer therapy.SIRT3 is a major mitochondrial deacetylase, which regulates various metabolic pathways by deacetylation; however, the effect of SIRT3 on proline metabolism is not reported. Pyrroline-5-carboxylate reductase 1 (PYCR1) participates in proline synthesis process by catalyzing the reduction of P5C to proline with concomitant generation of NAD+ and NADP+. PYCR1 is highly expressed in various cancers, and it can promote the growth of tumor cells. Here, through immunoprecipitation and mass spectrometry, we found that PYCR1 is in SIRT3's interacting network. PYCR1 directly binds to SIRT3 both in vivo and in vitro. CBP is the acetyltransferase for PYCR1, whereas SIRT3 deacetylates PYCR1. We further identified that K228 is the major acetylation site for PYCR1. Acetylation of PYCR1 at K228 reduced its enzymatic activity by impairing the formation of the decamer of PYCR1. As a result, acetylation of PYCR1 at K228 inhibits cell proliferation, while deacetylation of PYCR1 mediated by SIRT3 increases PYCR1's activity. Our findings on the regulation of PYCR1 linked proline metabolism with SIRT3, CBP and cell growth, thus providing a potential approach for cancer therapy.
SIRT3 is a major mitochondrial deacetylase, which regulates various metabolic pathways by deacetylation; however, the effect of SIRT3 on proline metabolism is not reported. Pyrroline-5-carboxylate reductase 1 (PYCR1) participates in proline synthesis process by catalyzing the reduction of P5C to proline with concomitant generation of NAD and NADP . PYCR1 is highly expressed in various cancers, and it can promote the growth of tumor cells. Here, through immunoprecipitation and mass spectrometry, we found that PYCR1 is in SIRT3's interacting network. PYCR1 directly binds to SIRT3 both in vivo and in vitro. CBP is the acetyltransferase for PYCR1, whereas SIRT3 deacetylates PYCR1. We further identified that K228 is the major acetylation site for PYCR1. Acetylation of PYCR1 at K228 reduced its enzymatic activity by impairing the formation of the decamer of PYCR1. As a result, acetylation of PYCR1 at K228 inhibits cell proliferation, while deacetylation of PYCR1 mediated by SIRT3 increases PYCR1's activity. Our findings on the regulation of PYCR1 linked proline metabolism with SIRT3, CBP and cell growth, thus providing a potential approach for cancer therapy.
Author Wang, Zhe
Yang, Xin
Yu, Miao
Qi, Hao
Zou, Junhua
Luo, Jianyuan
Ren, Mengmeng
Chen, Shuaiyi
Liu, Minghui
Liu, Boya
Vucenik, Ivana
Liu, Lu
Zhu, Wei-Guo
Author_xml – sequence: 1
  givenname: Shuaiyi
  surname: Chen
  fullname: Chen, Shuaiyi
  organization: Department of Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
– sequence: 2
  givenname: Xin
  surname: Yang
  fullname: Yang, Xin
  organization: Department of Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
– sequence: 3
  givenname: Miao
  surname: Yu
  fullname: Yu, Miao
  organization: Department of Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
– sequence: 4
  givenname: Zhe
  surname: Wang
  fullname: Wang, Zhe
  organization: Department of Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
– sequence: 5
  givenname: Boya
  surname: Liu
  fullname: Liu, Boya
  organization: Department of Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
– sequence: 6
  givenname: Minghui
  surname: Liu
  fullname: Liu, Minghui
  organization: Department of Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
– sequence: 7
  givenname: Lu
  surname: Liu
  fullname: Liu, Lu
  organization: Department of Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
– sequence: 8
  givenname: Mengmeng
  surname: Ren
  fullname: Ren, Mengmeng
  organization: Department of Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
– sequence: 9
  givenname: Hao
  surname: Qi
  fullname: Qi, Hao
  organization: Department of Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
– sequence: 10
  givenname: Junhua
  surname: Zou
  fullname: Zou, Junhua
  organization: Department of Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
– sequence: 11
  givenname: Ivana
  surname: Vucenik
  fullname: Vucenik, Ivana
  organization: Department of Medical and Research Technology, University of Maryland, Baltimore, MD 21201, USA
– sequence: 12
  givenname: Wei-Guo
  surname: Zhu
  fullname: Zhu, Wei-Guo
  organization: Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518060, China
– sequence: 13
  givenname: Jianyuan
  surname: Luo
  fullname: Luo, Jianyuan
  email: luojianyuan@bjmu.edu.cn
  organization: Department of Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31108370$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URH_gAdigLNlMaieOk4gVGgEdqVKrUhZssG7s66mHJC62gzRvX6cpVdVFWfnq6nzH9jnH5GB0IxLyntGcUSZOd_mILi8oa3PKc0qbV-SI8VqsqqoRB0_mQ3Icwo4mhtX1G3JYMkabsqZH5Nf3zdV1mXncTj1EDJmCUaHPFPZ9dutdbw16iNaNWbzxbtreZBpBYdz3y9aZ7PLn-opldlz0I2YDRujSGIa35LWBPuC7h_OE_Pj65Xp9tjq_-LZZfz5fqYoVcYWo69bUWHHVCm34_DpAwAIAKAjTsFK3jdGalwiNbnhXlmg0041RhaK8PCGbxVc72Mlbbwfwe-nAyvuF81sJPlrVo-TAKwHYYaEqjrTthKi5KSouKlMZWievj4tX-s6fCUOUgw1zHpDSnoIsipI1yUPM0g8P0qkbUD9e_C_fJGCLQHkXgkfzKGFUzh3KnUyucu5QUi5Th4mpnzHKxvuwowfbv0h-WkhMUf-16GVQFlOf2npUMWVhX6TbZ7RKbVoF_W_c_4e9A-eNyeg
CitedBy_id crossref_primary_10_1007_s43630_025_00692_0
crossref_primary_10_1021_acs_jmedchem_3c01979
crossref_primary_10_1038_s41419_020_02763_9
crossref_primary_10_3389_fphar_2022_871560
crossref_primary_10_1016_j_bbadis_2025_167691
crossref_primary_10_1016_j_tips_2023_12_005
crossref_primary_10_1021_acsomega_2c07788
crossref_primary_10_1007_s00726_021_02961_5
crossref_primary_10_1016_j_ygeno_2020_10_022
crossref_primary_10_1007_s10735_022_10075_9
crossref_primary_10_18632_aging_204333
crossref_primary_10_1007_s12672_022_00513_1
crossref_primary_10_1016_j_biopha_2022_113923
crossref_primary_10_1007_s00726_021_03060_1
crossref_primary_10_1007_s00449_020_02387_5
crossref_primary_10_3389_fcell_2021_728576
crossref_primary_10_3389_fimmu_2022_977235
crossref_primary_10_1002_jgm_3527
crossref_primary_10_1038_s41598_021_81952_8
crossref_primary_10_3390_ijms26010092
crossref_primary_10_1007_s00432_023_04983_w
crossref_primary_10_1007_s00726_021_02999_5
crossref_primary_10_1007_s00726_021_03047_y
crossref_primary_10_1007_s00726_021_03048_x
crossref_primary_10_1155_2021_9950663
crossref_primary_10_1007_s00726_021_03103_7
crossref_primary_10_1016_j_tranon_2023_101667
crossref_primary_10_1016_j_bbrc_2019_10_059
crossref_primary_10_1038_s41418_023_01185_2
crossref_primary_10_1016_j_biochi_2020_08_021
crossref_primary_10_3390_life13020263
crossref_primary_10_1038_s41392_024_01816_1
crossref_primary_10_1038_s41420_020_00341_8
crossref_primary_10_1016_j_biortech_2023_128806
crossref_primary_10_1016_j_exppara_2024_108712
crossref_primary_10_3389_fonc_2020_00776
crossref_primary_10_1038_s41392_020_00311_7
Cites_doi 10.1074/jbc.M117.780288
10.4161/auto.21152
10.1007/s12032-016-0870-5
10.1128/MCB.01636-07
10.1016/j.molcel.2011.01.002
10.1038/nprot.2009.151
10.1016/j.jmb.2006.04.053
10.1016/j.freeradbiomed.2007.10.054
10.1007/s00726-008-0062-5
10.1155/2017/4184106
10.1038/onc.2016.198
10.1038/ncomms4128
10.1016/j.ymgme.2016.06.013
10.1177/1947601913486351
10.1038/nature10350
10.3892/ijo.2016.3767
10.1038/ng.413
10.1016/j.cell.2009.02.026
10.1016/j.gene.2016.04.023
10.18632/oncotarget.10048
10.1093/carcin/bgx022
10.1002/jcb.25653
10.3389/fonc.2012.00060
10.1016/j.cmet.2011.05.004
10.1016/j.ccr.2011.02.014
10.1074/jbc.M114.562827
10.18632/oncotarget.1561
10.1038/nature16982
ContentType Journal Article
Copyright 2019 The Authors
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 The Authors
– notice: Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1016/j.neo.2019.04.008
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1476-5586
EndPage 675
ExternalDocumentID oai_doaj_org_article_4a456aebe2c54e09b6674f25465f5f07
31108370
10_1016_j_neo_2019_04_008
S1476558618306663
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.1-
.FO
0R~
123
1P~
29M
2WC
36B
4.4
457
53G
AAEDT
AAEDW
AAIKJ
AALRI
AAXUO
AAYWO
ABDBF
ABFRF
ABMAC
ACGFO
ACGFS
ACPRK
ACUHS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEFWE
AENEX
AEUPX
AEVXI
AEXQZ
AFJKZ
AFPUW
AFRHN
AFTJW
AGHFR
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
CAG
COF
CS3
DIK
DU5
E3Z
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FDB
GROUPED_DOAJ
GX1
HYE
IPNFZ
IXB
KQ8
OC~
OK1
OO-
OVT
P2P
RIG
RNS
ROL
RPM
SSZ
SV3
UNMZH
W2D
WOQ
Z5R
0SF
6I.
AACTN
AAFTH
AFCTW
M~E
NCXOZ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c512t-eed79f7e54c96df41083aeae2aaa0a6f813d98fdd43ea8d84b33efd1d8fc2c043
IEDL.DBID DOA
ISSN 1476-5586
IngestDate Wed Aug 27 00:44:16 EDT 2025
Fri Jul 11 08:48:00 EDT 2025
Thu Apr 03 07:08:11 EDT 2025
Thu Apr 24 22:54:06 EDT 2025
Tue Jul 01 01:22:15 EDT 2025
Fri Feb 23 02:28:59 EST 2024
Tue Aug 26 17:10:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-eed79f7e54c96df41083aeae2aaa0a6f813d98fdd43ea8d84b33efd1d8fc2c043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/4a456aebe2c54e09b6674f25465f5f07
PMID 31108370
PQID 2231845667
PQPubID 23479
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_4a456aebe2c54e09b6674f25465f5f07
proquest_miscellaneous_2231845667
pubmed_primary_31108370
crossref_primary_10_1016_j_neo_2019_04_008
crossref_citationtrail_10_1016_j_neo_2019_04_008
elsevier_sciencedirect_doi_10_1016_j_neo_2019_04_008
elsevier_clinicalkey_doi_10_1016_j_neo_2019_04_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2019
2019-07-00
20190701
2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: July 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neoplasia (New York, N.Y.)
PublicationTitleAlternate Neoplasia
PublicationYear 2019
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Xiong, Wang, Zhao, Han, Jia (bb0010) 2016; 49
Xinwen, Dickman, Becker (bb0045) 2014; 289
Li L, Ye Y, Sang P, Yin Y, Hu W, Wang J, Zhang C, Li D, Wan W, Li R (2017). Effect of R119G Mutation on Human P5CR1 Dynamic Property and Enzymatic Activity Biomed Res Int 2017, 4184106.
Tanner (bb0015) 2008; 35
canres.1912.2017.
Yosuke, Tokuzo, Hiroaki, Kazuko, Masato, Hidetoshi, Velasco, De, Hideharu, Takushi (bb0065) 2014; 5
Phang, Liu, Hancock, Christian (bb0060) 2012; 2
Christensen, Patel, Korasick, Campbell, Krause, Becker, Tanner (bb0020) 2017; 292
Nakagawa, Lomb, Haigis, Guarente (bb0125) 2009; 137
Zhaohui, Zhiyong, Zhe, Ming, Xiaodong, Mark, Zihe (bb0025) 2006; 359
Yang X, Wang Z, Li X, Liu B, Liu M, Liu L, Chen S, Ren M, Wang Y, Yu M (2017). SHMT2 desuccinylation by SIRT5 drives cancer cell proliferation
Hallows, Wei, Smith, Devries, Devires, Ellinger, Shinichi, Shortreed, Tomas, Markley (bb0135) 2011; 41
Richard, Marks, Shaul, Pacold, Dohoon, K?Van?, Shalini, Hin-Koon, Jang, Jha (bb0085) 2011; 476
Cai, Miao, Liu, Wu, Shen, Su, Shi (bb0050) 2018; 15
Finley, Carracedo, Lee, Souza, Egia, Zhang, Teruya-Feldstein, Moreira, Cardoso, Clish (bb0145) 2011; 19
Di Martile, Bufalo, Trisciuoglio (bb0165) 2016; 7
Wei, Phang (bb0175) 2012; 8
Jessica, Boris, Richardson, Scott, Pedro, De, Marat, Maurizio, Ze'Ev, Osterman (bb0090) 2012; 7
Vaxevanou (bb0040) 2008; 44
Reversade, Escande (bb0030) 2009; 41
Dutta, Tiu, Sakamoto (bb0170) 2016; 119
Ding, Kuo, Su, Xue, Luh, Zhang, Wang, Lin, Zhang, Chu (bb0100) 2017; 38
Lombard, Alt, Cheng, Bunkenborg, Streeper, Mostoslavsky, Kim, Yancopoulos, Valenzuela, Murphy (bb0130) 2007; 27
Herrera, Finley, Haigis (bb0140) 2012
Liu, Hancock, Fischer, Harman, Phang (bb0035) 2015; 5
Alhazzazi, Kamarajan, Verdin, Kapila (bb0005) 2011; 1816
Zeng, Zhu, Liao, Zhuo, Yang, Wu, Wang (bb0075) 2017; 34
MR, C G, J D (bb0105) 2009; 4
Nilsson, Jain, Madhusudhan, Sheppard, Strittmatter, Kampf, Huang, Asplund, Mootha (bb0070) 2014; 5
Loayza-Puch, Rooijers, Buil, Zijlstra, Oude Vrielink, Lopes, Ugalde, Van, Hofland, Wesseling (bb0080) 2016; 530
Lei, Mostoslavsky (bb0120) 2011; 13
Ratnikov, Scott, Osterman, Smith, Ronai (bb0095) 2016; 36
Igci, Kalender, Borazan, Bozgeyik, Bayraktar, Bozgeyik, Camci, Arslan (bb0160) 2016; 586
Eri Maria, Wagner, Weinert, Amit, Hyun-Seok, Chu-Xia, Chunaram (bb0115) 2012; 7
Torrens-Mas, Pons, Sastre-Serra, Oliver, Roca (bb0155) 2017; 118
Alhazzazi, Kamarajan, Verdin, Kapila (bb0150) 2013; 4
Zhaohui (10.1016/j.neo.2019.04.008_bb0025) 2006; 359
Dutta (10.1016/j.neo.2019.04.008_bb0170) 2016; 119
Nakagawa (10.1016/j.neo.2019.04.008_bb0125) 2009; 137
Nilsson (10.1016/j.neo.2019.04.008_bb0070) 2014; 5
Xinwen (10.1016/j.neo.2019.04.008_bb0045) 2014; 289
MR (10.1016/j.neo.2019.04.008_bb0105) 2009; 4
Jessica (10.1016/j.neo.2019.04.008_bb0090) 2012; 7
Vaxevanou (10.1016/j.neo.2019.04.008_bb0040) 2008; 44
Lei (10.1016/j.neo.2019.04.008_bb0120) 2011; 13
Lombard (10.1016/j.neo.2019.04.008_bb0130) 2007; 27
Eri Maria (10.1016/j.neo.2019.04.008_bb0115) 2012; 7
Torrens-Mas (10.1016/j.neo.2019.04.008_bb0155) 2017; 118
Loayza-Puch (10.1016/j.neo.2019.04.008_bb0080) 2016; 530
Cai (10.1016/j.neo.2019.04.008_bb0050) 2018; 15
Christensen (10.1016/j.neo.2019.04.008_bb0020) 2017; 292
Liu (10.1016/j.neo.2019.04.008_bb0035) 2015; 5
Ratnikov (10.1016/j.neo.2019.04.008_bb0095) 2016; 36
10.1016/j.neo.2019.04.008_bb0055
10.1016/j.neo.2019.04.008_bb0110
Xiong (10.1016/j.neo.2019.04.008_bb0010) 2016; 49
Di Martile (10.1016/j.neo.2019.04.008_bb0165) 2016; 7
Tanner (10.1016/j.neo.2019.04.008_bb0015) 2008; 35
Ding (10.1016/j.neo.2019.04.008_bb0100) 2017; 38
Phang (10.1016/j.neo.2019.04.008_bb0060) 2012; 2
Yosuke (10.1016/j.neo.2019.04.008_bb0065) 2014; 5
Igci (10.1016/j.neo.2019.04.008_bb0160) 2016; 586
Wei (10.1016/j.neo.2019.04.008_bb0175) 2012; 8
Alhazzazi (10.1016/j.neo.2019.04.008_bb0005) 2011; 1816
Hallows (10.1016/j.neo.2019.04.008_bb0135) 2011; 41
Finley (10.1016/j.neo.2019.04.008_bb0145) 2011; 19
Reversade (10.1016/j.neo.2019.04.008_bb0030) 2009; 41
Alhazzazi (10.1016/j.neo.2019.04.008_bb0150) 2013; 4
Zeng (10.1016/j.neo.2019.04.008_bb0075) 2017; 34
Richard (10.1016/j.neo.2019.04.008_bb0085) 2011; 476
Herrera (10.1016/j.neo.2019.04.008_bb0140) 2012
References_xml – reference: Yang X, Wang Z, Li X, Liu B, Liu M, Liu L, Chen S, Ren M, Wang Y, Yu M (2017). SHMT2 desuccinylation by SIRT5 drives cancer cell proliferation
– volume: 7
  year: 2012
  ident: bb0115
  article-title: Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3
  publication-title: Plos One
– volume: 35
  start-page: 719
  year: 2008
  end-page: 730
  ident: bb0015
  article-title: Structural biology of proline catabolism
  publication-title: Amino Acids
– volume: 586
  start-page: 123
  year: 2016
  end-page: 128
  ident: bb0160
  article-title: High-throughput screening of Sirtuin family of genes in breast cancer
  publication-title: Gene
– volume: 292
  start-page: 7233
  year: 2017
  end-page: 7243
  ident: bb0020
  article-title: Resolving the cofactor-binding site in the proline biosynthetic enzyme human pyrroline-5-carboxylate reductase 1
  publication-title: J Biol Chem
– start-page: P18
  year: 2012
  ident: bb0140
  article-title: The role of SIRT3 in regulating cancer cell metabolism
– volume: 8
  start-page: 1407
  year: 2012
  end-page: 1409
  ident: bb0175
  article-title: Proline dehydrogenase (oxidase), a mitochondrial tumor suppressor, and autophagy under the hypoxia microenvironment
  publication-title: Autophagy
– reference: , canres.1912.2017.
– volume: 118
  start-page: 397
  year: 2017
  end-page: 406
  ident: bb0155
  article-title: SIRT3 Silencing Sensitizes Breast Cancer Cells to Cytotoxic Treatments Through an Increment in ROS Production
  publication-title: J Cell Biochem
– volume: 119
  start-page: 37
  year: 2016
  end-page: 43
  ident: bb0170
  article-title: CBP/p300 acetyltransferase activity in hematologic malignancies
  publication-title: Molecular Genetics & Metabolism
– volume: 7
  year: 2012
  ident: bb0090
  article-title: Functional specialization in proline biosynthesis of melanoma
  publication-title: Plos One
– volume: 13
  start-page: 621
  year: 2011
  end-page: 626
  ident: bb0120
  article-title: Fine Tuning Our Cellular Factories: Sirtuins in Mitochondrial Biology
  publication-title: Cell Metab
– volume: 359
  start-page: 1364
  year: 2006
  end-page: 1377
  ident: bb0025
  article-title: Crystal structure of human pyrroline-5-carboxylate reductase
  publication-title: J Mol Biol
– volume: 49
  start-page: 2227
  year: 2016
  ident: bb0010
  article-title: Sirtuin 3: A Janus face in cancer (Review)
  publication-title: Int J Oncol
– volume: 36
  start-page: 147
  year: 2016
  end-page: 157
  ident: bb0095
  article-title: Metabolic rewiring in melanoma
  publication-title: Oncogene
– volume: 289
  start-page: 27794
  year: 2014
  end-page: 27806
  ident: bb0045
  article-title: Proline biosynthesis is required for endoplasmic reticulum stress tolerance in Saccharomyces cerevisiae
  publication-title: J Biol Chem
– volume: 137
  start-page: 560
  year: 2009
  end-page: 570
  ident: bb0125
  article-title: SIRT5 Deacetylates Carbamoyl Phosphate Synthetase 1 and Regulates the Urea Cycle
  publication-title: Cell
– volume: 41
  start-page: 1016
  year: 2009
  ident: bb0030
  article-title: Mutations in PYCR1 cause cutis laxa with progeroid features
  publication-title: Nat Genet
– volume: 34
  start-page: 27
  year: 2017
  ident: bb0075
  article-title: Knockdown of PYCR1 inhibits cell proliferation and colony formation via cell cycle arrest and apoptosis in prostate cancer
  publication-title: Med Oncol
– volume: 38
  start-page: 519
  year: 2017
  end-page: 531
  ident: bb0100
  article-title: Human mitochondrial pyrroline-5-carboxylate reductase 1 promotes invasiveness and impacts survival in breast cancers
  publication-title: Carcinogenesis
– volume: 2
  start-page: 60
  year: 2012
  ident: bb0060
  article-title: The proline regulatory axis and cancer
  publication-title: Front Oncol
– reference: Li L, Ye Y, Sang P, Yin Y, Hu W, Wang J, Zhang C, Li D, Wan W, Li R (2017). Effect of R119G Mutation on Human P5CR1 Dynamic Property and Enzymatic Activity Biomed Res Int 2017, 4184106.
– volume: 19
  start-page: 416
  year: 2011
  end-page: 428
  ident: bb0145
  article-title: SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization
  publication-title: Cancer Cell
– volume: 44
  start-page: 671
  year: 2008
  end-page: 681
  ident: bb0040
  article-title: Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress
  publication-title: Free Radic Biol Med
– volume: 27
  start-page: 8807
  year: 2007
  end-page: 8814
  ident: bb0130
  article-title: Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation
  publication-title: Molecular & Cellular Biology
– volume: 5
  start-page: 3128
  year: 2014
  ident: bb0070
  article-title: Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer
  publication-title: Nat Commun
– volume: 1816
  start-page: 80
  year: 2011
  end-page: 88
  ident: bb0005
  article-title: SIRT3 and cancer: Tumor promoter or suppressor?
  publication-title: BBA - Reviews on Cancer
– volume: 4
  start-page: 1582
  year: 2009
  ident: bb0105
  article-title: Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells
  publication-title: Nat Protoc
– volume: 4
  start-page: 164
  year: 2013
  end-page: 171
  ident: bb0150
  article-title: Sirtuin-3 (SIRT3) and the Hallmarks of Cancer
  publication-title: Genes Cancer
– volume: 7
  start-page: 55789
  year: 2016
  end-page: 55810
  ident: bb0165
  article-title: The multifaceted role of lysine acetylation in cancer prognostic biomarker and therapeutic target
  publication-title: Oncotarget
– volume: 5
  year: 2015
  ident: bb0035
  article-title: Proline biosynthesis augments tumor cell growth and aerobic glycolysis: involvement of pyridine nucleotides
  publication-title: Sci Rep
– volume: 15
  start-page: 731
  year: 2018
  end-page: 740
  ident: bb0050
  article-title: Pyrroline-5-carboxylate reductase 1 promotes proliferation and inhibits apoptosis in non-small cell lung cancer
  publication-title: Oncol Lett
– volume: 476
  start-page: 346
  year: 2011
  end-page: 350
  ident: bb0085
  article-title: Functional genomics reveal that the serine synthesis pathway is essential in breast cancer
  publication-title: Nature
– volume: 5
  start-page: 2962
  year: 2014
  end-page: 2973
  ident: bb0065
  article-title: Frequent amplification of ORAOV1 gene in esophageal squamous cell cancer promotes an aggressive phenotype via proline metabolism and ROS production
  publication-title: Oncotarget
– volume: 530
  start-page: 490
  year: 2016
  end-page: 494
  ident: bb0080
  article-title: Tumour-specific proline vulnerability uncovered by differential ribosome codon reading
  publication-title: Nature
– volume: 41
  start-page: 139
  year: 2011
  end-page: 149
  ident: bb0135
  article-title: Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction
  publication-title: Mol Cell
– volume: 5
  year: 2015
  ident: 10.1016/j.neo.2019.04.008_bb0035
  article-title: Proline biosynthesis augments tumor cell growth and aerobic glycolysis: involvement of pyridine nucleotides
  publication-title: Sci Rep
– volume: 292
  start-page: 7233
  year: 2017
  ident: 10.1016/j.neo.2019.04.008_bb0020
  article-title: Resolving the cofactor-binding site in the proline biosynthetic enzyme human pyrroline-5-carboxylate reductase 1
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M117.780288
– volume: 8
  start-page: 1407
  year: 2012
  ident: 10.1016/j.neo.2019.04.008_bb0175
  article-title: Proline dehydrogenase (oxidase), a mitochondrial tumor suppressor, and autophagy under the hypoxia microenvironment
  publication-title: Autophagy
  doi: 10.4161/auto.21152
– volume: 34
  start-page: 27
  year: 2017
  ident: 10.1016/j.neo.2019.04.008_bb0075
  article-title: Knockdown of PYCR1 inhibits cell proliferation and colony formation via cell cycle arrest and apoptosis in prostate cancer
  publication-title: Med Oncol
  doi: 10.1007/s12032-016-0870-5
– volume: 27
  start-page: 8807
  year: 2007
  ident: 10.1016/j.neo.2019.04.008_bb0130
  article-title: Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation
  publication-title: Molecular & Cellular Biology
  doi: 10.1128/MCB.01636-07
– volume: 15
  start-page: 731
  year: 2018
  ident: 10.1016/j.neo.2019.04.008_bb0050
  article-title: Pyrroline-5-carboxylate reductase 1 promotes proliferation and inhibits apoptosis in non-small cell lung cancer
  publication-title: Oncol Lett
– volume: 41
  start-page: 139
  year: 2011
  ident: 10.1016/j.neo.2019.04.008_bb0135
  article-title: Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2011.01.002
– ident: 10.1016/j.neo.2019.04.008_bb0110
– volume: 4
  start-page: 1582
  year: 2009
  ident: 10.1016/j.neo.2019.04.008_bb0105
  article-title: Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2009.151
– volume: 359
  start-page: 1364
  year: 2006
  ident: 10.1016/j.neo.2019.04.008_bb0025
  article-title: Crystal structure of human pyrroline-5-carboxylate reductase
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2006.04.053
– volume: 44
  start-page: 671
  year: 2008
  ident: 10.1016/j.neo.2019.04.008_bb0040
  article-title: Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress
  publication-title: Free Radic Biol Med
  doi: 10.1016/j.freeradbiomed.2007.10.054
– volume: 35
  start-page: 719
  year: 2008
  ident: 10.1016/j.neo.2019.04.008_bb0015
  article-title: Structural biology of proline catabolism
  publication-title: Amino Acids
  doi: 10.1007/s00726-008-0062-5
– ident: 10.1016/j.neo.2019.04.008_bb0055
  doi: 10.1155/2017/4184106
– volume: 36
  start-page: 147
  year: 2016
  ident: 10.1016/j.neo.2019.04.008_bb0095
  article-title: Metabolic rewiring in melanoma
  publication-title: Oncogene
  doi: 10.1038/onc.2016.198
– volume: 5
  start-page: 3128
  year: 2014
  ident: 10.1016/j.neo.2019.04.008_bb0070
  article-title: Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer
  publication-title: Nat Commun
  doi: 10.1038/ncomms4128
– volume: 119
  start-page: 37
  year: 2016
  ident: 10.1016/j.neo.2019.04.008_bb0170
  article-title: CBP/p300 acetyltransferase activity in hematologic malignancies
  publication-title: Molecular Genetics & Metabolism
  doi: 10.1016/j.ymgme.2016.06.013
– volume: 7
  year: 2012
  ident: 10.1016/j.neo.2019.04.008_bb0115
  article-title: Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3
  publication-title: Plos One
– volume: 4
  start-page: 164
  year: 2013
  ident: 10.1016/j.neo.2019.04.008_bb0150
  article-title: Sirtuin-3 (SIRT3) and the Hallmarks of Cancer
  publication-title: Genes Cancer
  doi: 10.1177/1947601913486351
– volume: 7
  year: 2012
  ident: 10.1016/j.neo.2019.04.008_bb0090
  article-title: Functional specialization in proline biosynthesis of melanoma
  publication-title: Plos One
– volume: 476
  start-page: 346
  year: 2011
  ident: 10.1016/j.neo.2019.04.008_bb0085
  article-title: Functional genomics reveal that the serine synthesis pathway is essential in breast cancer
  publication-title: Nature
  doi: 10.1038/nature10350
– volume: 49
  start-page: 2227
  year: 2016
  ident: 10.1016/j.neo.2019.04.008_bb0010
  article-title: Sirtuin 3: A Janus face in cancer (Review)
  publication-title: Int J Oncol
  doi: 10.3892/ijo.2016.3767
– volume: 41
  start-page: 1016
  year: 2009
  ident: 10.1016/j.neo.2019.04.008_bb0030
  article-title: Mutations in PYCR1 cause cutis laxa with progeroid features
  publication-title: Nat Genet
  doi: 10.1038/ng.413
– volume: 137
  start-page: 560
  year: 2009
  ident: 10.1016/j.neo.2019.04.008_bb0125
  article-title: SIRT5 Deacetylates Carbamoyl Phosphate Synthetase 1 and Regulates the Urea Cycle
  publication-title: Cell
  doi: 10.1016/j.cell.2009.02.026
– volume: 586
  start-page: 123
  year: 2016
  ident: 10.1016/j.neo.2019.04.008_bb0160
  article-title: High-throughput screening of Sirtuin family of genes in breast cancer
  publication-title: Gene
  doi: 10.1016/j.gene.2016.04.023
– volume: 1816
  start-page: 80
  year: 2011
  ident: 10.1016/j.neo.2019.04.008_bb0005
  article-title: SIRT3 and cancer: Tumor promoter or suppressor?
  publication-title: BBA - Reviews on Cancer
– start-page: P18
  year: 2012
  ident: 10.1016/j.neo.2019.04.008_bb0140
– volume: 7
  start-page: 55789
  year: 2016
  ident: 10.1016/j.neo.2019.04.008_bb0165
  article-title: The multifaceted role of lysine acetylation in cancer prognostic biomarker and therapeutic target
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.10048
– volume: 38
  start-page: 519
  year: 2017
  ident: 10.1016/j.neo.2019.04.008_bb0100
  article-title: Human mitochondrial pyrroline-5-carboxylate reductase 1 promotes invasiveness and impacts survival in breast cancers
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgx022
– volume: 118
  start-page: 397
  year: 2017
  ident: 10.1016/j.neo.2019.04.008_bb0155
  article-title: SIRT3 Silencing Sensitizes Breast Cancer Cells to Cytotoxic Treatments Through an Increment in ROS Production
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.25653
– volume: 2
  start-page: 60
  year: 2012
  ident: 10.1016/j.neo.2019.04.008_bb0060
  article-title: The proline regulatory axis and cancer
  publication-title: Front Oncol
  doi: 10.3389/fonc.2012.00060
– volume: 13
  start-page: 621
  year: 2011
  ident: 10.1016/j.neo.2019.04.008_bb0120
  article-title: Fine Tuning Our Cellular Factories: Sirtuins in Mitochondrial Biology
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2011.05.004
– volume: 19
  start-page: 416
  year: 2011
  ident: 10.1016/j.neo.2019.04.008_bb0145
  article-title: SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2011.02.014
– volume: 289
  start-page: 27794
  year: 2014
  ident: 10.1016/j.neo.2019.04.008_bb0045
  article-title: Proline biosynthesis is required for endoplasmic reticulum stress tolerance in Saccharomyces cerevisiae
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M114.562827
– volume: 5
  start-page: 2962
  year: 2014
  ident: 10.1016/j.neo.2019.04.008_bb0065
  article-title: Frequent amplification of ORAOV1 gene in esophageal squamous cell cancer promotes an aggressive phenotype via proline metabolism and ROS production
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.1561
– volume: 530
  start-page: 490
  year: 2016
  ident: 10.1016/j.neo.2019.04.008_bb0080
  article-title: Tumour-specific proline vulnerability uncovered by differential ribosome codon reading
  publication-title: Nature
  doi: 10.1038/nature16982
SSID ssj0016177
Score 2.4629748
Snippet SIRT3 is a major mitochondrial deacetylase, which regulates various metabolic pathways by deacetylation; however, the effect of SIRT3 on proline metabolism is...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 665
SubjectTerms Acetylation
Cell Proliferation - genetics
delta-1-Pyrroline-5-Carboxylate Reductase
Humans
MCF-7 Cells
Mitochondria - genetics
Mitochondria - metabolism
Neoplasms - genetics
Neoplasms - pathology
Peptide Fragments - genetics
Proline - biosynthesis
Proline - metabolism
Pyrroline Carboxylate Reductases - genetics
Sialoglycoproteins - genetics
Sirtuin 3 - genetics
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect Open Access Journals
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEG6WPYgX8e34ogVPQph0-pHO0R1cVkGRfcB4semnRHYzw0z24L-3-pHgHlzBY0L1I1WVqkq66iuE3lLhaK15W5HGhIp5w6qOG1c1QtckaM-5SWifX8TJBfu05usDtJpqYWJaZbH92aYna13uLAs3l9u-X54R1grOpQCljEF4RPykTKYivvXRfJIAHjo1WAHiKlJPJ5spx2tI9X-kS2inscPkH74pQfjfcFF_C0GTKzq-j-6VGBK_z9t8gA788BDd-VxOyR-h72cfT88p3uU2836PbRTtDsef9Hgb2_QEnwWPS5se7MAy-vFXTozDm4C_fludEtwPmX7w-MqPoC-X_f7qMbo4_nC-OqlKH4XKgjsfK3CDbRdaz5nthAuMQNilvfaN1rrWIkhCXSeDc4x6LZ1khlIfHHEy2MbWjD5Bh8Nm8M8QJiZYQ5mQ3FnWeisJ0VSYOIuFOcgC1RMHlS0g47HXxaWassl-KmC6ikxXNVPA9AV6Nw_ZZoSN24iPolhmwgiOnW5sdj9U0Q7FNESFGrSzsZz5ujNCtCxE4H8eeKjbBWomoaqp_hQsJkzU37YymwfdUNB_DXszaY2CFzcKWgPJ9V5BXAZf1xBNw36eZnWaH4vG4gza1s__b9EX6G68ylnFL9HhuLv2ryB2Gs3r9HL8BnnwFps
  priority: 102
  providerName: Elsevier
Title SIRT3 regulates cancer cell proliferation through deacetylation of PYCR1 in proline metabolism
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1476558618306663
https://dx.doi.org/10.1016/j.neo.2019.04.008
https://www.ncbi.nlm.nih.gov/pubmed/31108370
https://www.proquest.com/docview/2231845667
https://doaj.org/article/4a456aebe2c54e09b6674f25465f5f07
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQlapeqtLSdltArtRTpahx_EhyBFQERUXVFsT2UsuPsbQVBLQbDvx7xnaygkPh0ksO0dixZ8b-xvE8CPnMleelkXXBKhsKAVYUrbS-qJQpWTAgpU3ZPk_U4Zn4PpOze6W-ok9YTg-cGfdVGIR4g5-qnBRQtlapWoSYxV0GGXIcOWLeeJga7g8Ql1NZFVGrQspGjfeZybOrS1F_rE05TmNdyXuIlBL3PwCmfxmeCYAOXpGXg-VId_OIN8gadK_J8x_D3fgb8ufX0fSU00UuLg9L6qJAFzT-mqfXsThPgCxuOhTnoR73Q-hvszscvQr05-_9KaPzLtN3QC-hRy25mC8vN8nZwbfT_cNiqJ5QOATxvkDwq9tQgxSuVT4IhsaWAQOVMaY0KjSM-7YJ3gsOpvGNsJxD8Mw3wVWuFPwtWe-uOnhPKLPBWS5UI70TNbiGMcOVjb047INNSDlyULshtXiscHGhRx-yvxqZriPTdSk0Mn1CvqyaXOe8Go8R70WxrAhjSuz0AhVFD4qin1KUCalGoeox6hT3Sexo_tiXxarRYJJkU-OpZp9GrdG4XKOgDZLcLDVaY3imRhsax_Muq9NqWjyGZPC6_PA_pvuRvIgDyp7FW2S9X9zANtpPvd0hz3aPp-fHO2nJ4PNotncHN2EY-A
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkYAL4s3yNBInpGjj-JHkSFdUu9BWqN1KywXLTxTUZle76YF_z9hOInqgSFyd8SMzn2cm8XgGofdUWJorXmak0D5jTrOs5tpmhVA58cpxrmO2zxMxP2efV3y1h2bDXZgQVtnr_qTTo7buW6Y9N6ebppmeEVYKzisBoAxOOL2FboM3UIbduVgdjEcJYKJjhRWgzgL5cLQZg7zaeAGQ1DHdaSgx-Ydxijn8r9mov_mg0RYdPkD3eycSf0zrfIj2XPsI3Tnuj8kfo-9ni9MlxdtUZ97tsAmy3eLwlx5vQp0e75LkcV-nB1tQja77lSLj8Nrjr99mpwQ3baJvHb50HQDmotldPkHnh5-Ws3nWF1LIDNjzLgM7WNa-dJyZWljPCPhdyilXKKVyJXxFqK0rby2jTlW2YppS5y2xlTeFyRl9ivbbdeueI0y0N5oyUXFrWOlMRYiiQodRDIxBJigfOChNn2U8FLu4kEM42U8JTJeB6TJnEpg-QR_GLpuUYuMm4oMglpEwZMeODevtD9nDQzIFQFAAz8Jw5vJaC1EyHzL_c899Xk5QMQhVDhdQQWXCQM1NM7Ox0zWE_qvbuwE1EnZuELQCkqudBMcMPq_BnYb1PEtwGl-LhtsZtMxf_N-kb9Hd-fL4SB4tTr68RPfCkxRi_Artd9sr9xocqU6_iRvlN3n8Gbs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SIRT3+regulates+cancer+cell+proliferation+through+deacetylation+of+PYCR1+in+proline+metabolism&rft.jtitle=Neoplasia+%28New+York%2C+N.Y.%29&rft.au=Shuaiyi+Chen&rft.au=Xin+Yang&rft.au=Miao+Yu&rft.au=Zhe+Wang&rft.date=2019-07-01&rft.pub=Elsevier&rft.issn=1476-5586&rft.volume=21&rft.issue=7&rft.spage=665&rft.epage=675&rft_id=info:doi/10.1016%2Fj.neo.2019.04.008&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4a456aebe2c54e09b6674f25465f5f07
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-5586&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-5586&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-5586&client=summon