SIRT3 regulates cancer cell proliferation through deacetylation of PYCR1 in proline metabolism
SIRT3 is a major mitochondrial deacetylase, which regulates various metabolic pathways by deacetylation; however, the effect of SIRT3 on proline metabolism is not reported. Pyrroline-5-carboxylate reductase 1 (PYCR1) participates in proline synthesis process by catalyzing the reduction of P5C to pro...
Saved in:
Published in | Neoplasia (New York, N.Y.) Vol. 21; no. 7; pp. 665 - 675 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.07.2019
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | SIRT3 is a major mitochondrial deacetylase, which regulates various metabolic pathways by deacetylation; however, the effect of SIRT3 on proline metabolism is not reported. Pyrroline-5-carboxylate reductase 1 (PYCR1) participates in proline synthesis process by catalyzing the reduction of P5C to proline with concomitant generation of NAD+ and NADP+. PYCR1 is highly expressed in various cancers, and it can promote the growth of tumor cells. Here, through immunoprecipitation and mass spectrometry, we found that PYCR1 is in SIRT3’s interacting network. PYCR1 directly binds to SIRT3 both in vivo and in vitro. CBP is the acetyltransferase for PYCR1, whereas SIRT3 deacetylates PYCR1. We further identified that K228 is the major acetylation site for PYCR1. Acetylation of PYCR1 at K228 reduced its enzymatic activity by impairing the formation of the decamer of PYCR1. As a result, acetylation of PYCR1 at K228 inhibits cell proliferation, while deacetylation of PYCR1 mediated by SIRT3 increases PYCR1’s activity. Our findings on the regulation of PYCR1 linked proline metabolism with SIRT3, CBP and cell growth, thus providing a potential approach for cancer therapy. |
---|---|
AbstractList | SIRT3 is a major mitochondrial deacetylase, which regulates various metabolic pathways by deacetylation; however, the effect of SIRT3 on proline metabolism is not reported. Pyrroline-5-carboxylate reductase 1 (PYCR1) participates in proline synthesis process by catalyzing the reduction of P5C to proline with concomitant generation of NAD+ and NADP+. PYCR1 is highly expressed in various cancers, and it can promote the growth of tumor cells. Here, through immunoprecipitation and mass spectrometry, we found that PYCR1 is in SIRT3’s interacting network. PYCR1 directly binds to SIRT3 both in vivo and in vitro. CBP is the acetyltransferase for PYCR1, whereas SIRT3 deacetylates PYCR1. We further identified that K228 is the major acetylation site for PYCR1. Acetylation of PYCR1 at K228 reduced its enzymatic activity by impairing the formation of the decamer of PYCR1. As a result, acetylation of PYCR1 at K228 inhibits cell proliferation, while deacetylation of PYCR1 mediated by SIRT3 increases PYCR1’s activity. Our findings on the regulation of PYCR1 linked proline metabolism with SIRT3, CBP and cell growth, thus providing a potential approach for cancer therapy. SIRT3 is a major mitochondrial deacetylase, which regulates various metabolic pathways by deacetylation; however, the effect of SIRT3 on proline metabolism is not reported. Pyrroline-5-carboxylate reductase 1 (PYCR1) participates in proline synthesis process by catalyzing the reduction of P5C to proline with concomitant generation of NAD+ and NADP+. PYCR1 is highly expressed in various cancers, and it can promote the growth of tumor cells. Here, through immunoprecipitation and mass spectrometry, we found that PYCR1 is in SIRT3's interacting network. PYCR1 directly binds to SIRT3 both in vivo and in vitro. CBP is the acetyltransferase for PYCR1, whereas SIRT3 deacetylates PYCR1. We further identified that K228 is the major acetylation site for PYCR1. Acetylation of PYCR1 at K228 reduced its enzymatic activity by impairing the formation of the decamer of PYCR1. As a result, acetylation of PYCR1 at K228 inhibits cell proliferation, while deacetylation of PYCR1 mediated by SIRT3 increases PYCR1's activity. Our findings on the regulation of PYCR1 linked proline metabolism with SIRT3, CBP and cell growth, thus providing a potential approach for cancer therapy.SIRT3 is a major mitochondrial deacetylase, which regulates various metabolic pathways by deacetylation; however, the effect of SIRT3 on proline metabolism is not reported. Pyrroline-5-carboxylate reductase 1 (PYCR1) participates in proline synthesis process by catalyzing the reduction of P5C to proline with concomitant generation of NAD+ and NADP+. PYCR1 is highly expressed in various cancers, and it can promote the growth of tumor cells. Here, through immunoprecipitation and mass spectrometry, we found that PYCR1 is in SIRT3's interacting network. PYCR1 directly binds to SIRT3 both in vivo and in vitro. CBP is the acetyltransferase for PYCR1, whereas SIRT3 deacetylates PYCR1. We further identified that K228 is the major acetylation site for PYCR1. Acetylation of PYCR1 at K228 reduced its enzymatic activity by impairing the formation of the decamer of PYCR1. As a result, acetylation of PYCR1 at K228 inhibits cell proliferation, while deacetylation of PYCR1 mediated by SIRT3 increases PYCR1's activity. Our findings on the regulation of PYCR1 linked proline metabolism with SIRT3, CBP and cell growth, thus providing a potential approach for cancer therapy. SIRT3 is a major mitochondrial deacetylase, which regulates various metabolic pathways by deacetylation; however, the effect of SIRT3 on proline metabolism is not reported. Pyrroline-5-carboxylate reductase 1 (PYCR1) participates in proline synthesis process by catalyzing the reduction of P5C to proline with concomitant generation of NAD and NADP . PYCR1 is highly expressed in various cancers, and it can promote the growth of tumor cells. Here, through immunoprecipitation and mass spectrometry, we found that PYCR1 is in SIRT3's interacting network. PYCR1 directly binds to SIRT3 both in vivo and in vitro. CBP is the acetyltransferase for PYCR1, whereas SIRT3 deacetylates PYCR1. We further identified that K228 is the major acetylation site for PYCR1. Acetylation of PYCR1 at K228 reduced its enzymatic activity by impairing the formation of the decamer of PYCR1. As a result, acetylation of PYCR1 at K228 inhibits cell proliferation, while deacetylation of PYCR1 mediated by SIRT3 increases PYCR1's activity. Our findings on the regulation of PYCR1 linked proline metabolism with SIRT3, CBP and cell growth, thus providing a potential approach for cancer therapy. |
Author | Wang, Zhe Yang, Xin Yu, Miao Qi, Hao Zou, Junhua Luo, Jianyuan Ren, Mengmeng Chen, Shuaiyi Liu, Minghui Liu, Boya Vucenik, Ivana Liu, Lu Zhu, Wei-Guo |
Author_xml | – sequence: 1 givenname: Shuaiyi surname: Chen fullname: Chen, Shuaiyi organization: Department of Medical Genetics, Peking University Health Science Center, Beijing, 100191, China – sequence: 2 givenname: Xin surname: Yang fullname: Yang, Xin organization: Department of Medical Genetics, Peking University Health Science Center, Beijing, 100191, China – sequence: 3 givenname: Miao surname: Yu fullname: Yu, Miao organization: Department of Medical Genetics, Peking University Health Science Center, Beijing, 100191, China – sequence: 4 givenname: Zhe surname: Wang fullname: Wang, Zhe organization: Department of Medical Genetics, Peking University Health Science Center, Beijing, 100191, China – sequence: 5 givenname: Boya surname: Liu fullname: Liu, Boya organization: Department of Medical Genetics, Peking University Health Science Center, Beijing, 100191, China – sequence: 6 givenname: Minghui surname: Liu fullname: Liu, Minghui organization: Department of Medical Genetics, Peking University Health Science Center, Beijing, 100191, China – sequence: 7 givenname: Lu surname: Liu fullname: Liu, Lu organization: Department of Medical Genetics, Peking University Health Science Center, Beijing, 100191, China – sequence: 8 givenname: Mengmeng surname: Ren fullname: Ren, Mengmeng organization: Department of Medical Genetics, Peking University Health Science Center, Beijing, 100191, China – sequence: 9 givenname: Hao surname: Qi fullname: Qi, Hao organization: Department of Medical Genetics, Peking University Health Science Center, Beijing, 100191, China – sequence: 10 givenname: Junhua surname: Zou fullname: Zou, Junhua organization: Department of Medical Genetics, Peking University Health Science Center, Beijing, 100191, China – sequence: 11 givenname: Ivana surname: Vucenik fullname: Vucenik, Ivana organization: Department of Medical and Research Technology, University of Maryland, Baltimore, MD 21201, USA – sequence: 12 givenname: Wei-Guo surname: Zhu fullname: Zhu, Wei-Guo organization: Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518060, China – sequence: 13 givenname: Jianyuan surname: Luo fullname: Luo, Jianyuan email: luojianyuan@bjmu.edu.cn organization: Department of Medical Genetics, Peking University Health Science Center, Beijing, 100191, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31108370$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URH_gAdigLNlMaieOk4gVGgEdqVKrUhZssG7s66mHJC62gzRvX6cpVdVFWfnq6nzH9jnH5GB0IxLyntGcUSZOd_mILi8oa3PKc0qbV-SI8VqsqqoRB0_mQ3Icwo4mhtX1G3JYMkabsqZH5Nf3zdV1mXncTj1EDJmCUaHPFPZ9dutdbw16iNaNWbzxbtreZBpBYdz3y9aZ7PLn-opldlz0I2YDRujSGIa35LWBPuC7h_OE_Pj65Xp9tjq_-LZZfz5fqYoVcYWo69bUWHHVCm34_DpAwAIAKAjTsFK3jdGalwiNbnhXlmg0041RhaK8PCGbxVc72Mlbbwfwe-nAyvuF81sJPlrVo-TAKwHYYaEqjrTthKi5KSouKlMZWievj4tX-s6fCUOUgw1zHpDSnoIsipI1yUPM0g8P0qkbUD9e_C_fJGCLQHkXgkfzKGFUzh3KnUyucu5QUi5Th4mpnzHKxvuwowfbv0h-WkhMUf-16GVQFlOf2npUMWVhX6TbZ7RKbVoF_W_c_4e9A-eNyeg |
CitedBy_id | crossref_primary_10_1007_s43630_025_00692_0 crossref_primary_10_1021_acs_jmedchem_3c01979 crossref_primary_10_1038_s41419_020_02763_9 crossref_primary_10_3389_fphar_2022_871560 crossref_primary_10_1016_j_bbadis_2025_167691 crossref_primary_10_1016_j_tips_2023_12_005 crossref_primary_10_1021_acsomega_2c07788 crossref_primary_10_1007_s00726_021_02961_5 crossref_primary_10_1016_j_ygeno_2020_10_022 crossref_primary_10_1007_s10735_022_10075_9 crossref_primary_10_18632_aging_204333 crossref_primary_10_1007_s12672_022_00513_1 crossref_primary_10_1016_j_biopha_2022_113923 crossref_primary_10_1007_s00726_021_03060_1 crossref_primary_10_1007_s00449_020_02387_5 crossref_primary_10_3389_fcell_2021_728576 crossref_primary_10_3389_fimmu_2022_977235 crossref_primary_10_1002_jgm_3527 crossref_primary_10_1038_s41598_021_81952_8 crossref_primary_10_3390_ijms26010092 crossref_primary_10_1007_s00432_023_04983_w crossref_primary_10_1007_s00726_021_02999_5 crossref_primary_10_1007_s00726_021_03047_y crossref_primary_10_1007_s00726_021_03048_x crossref_primary_10_1155_2021_9950663 crossref_primary_10_1007_s00726_021_03103_7 crossref_primary_10_1016_j_tranon_2023_101667 crossref_primary_10_1016_j_bbrc_2019_10_059 crossref_primary_10_1038_s41418_023_01185_2 crossref_primary_10_1016_j_biochi_2020_08_021 crossref_primary_10_3390_life13020263 crossref_primary_10_1038_s41392_024_01816_1 crossref_primary_10_1038_s41420_020_00341_8 crossref_primary_10_1016_j_biortech_2023_128806 crossref_primary_10_1016_j_exppara_2024_108712 crossref_primary_10_3389_fonc_2020_00776 crossref_primary_10_1038_s41392_020_00311_7 |
Cites_doi | 10.1074/jbc.M117.780288 10.4161/auto.21152 10.1007/s12032-016-0870-5 10.1128/MCB.01636-07 10.1016/j.molcel.2011.01.002 10.1038/nprot.2009.151 10.1016/j.jmb.2006.04.053 10.1016/j.freeradbiomed.2007.10.054 10.1007/s00726-008-0062-5 10.1155/2017/4184106 10.1038/onc.2016.198 10.1038/ncomms4128 10.1016/j.ymgme.2016.06.013 10.1177/1947601913486351 10.1038/nature10350 10.3892/ijo.2016.3767 10.1038/ng.413 10.1016/j.cell.2009.02.026 10.1016/j.gene.2016.04.023 10.18632/oncotarget.10048 10.1093/carcin/bgx022 10.1002/jcb.25653 10.3389/fonc.2012.00060 10.1016/j.cmet.2011.05.004 10.1016/j.ccr.2011.02.014 10.1074/jbc.M114.562827 10.18632/oncotarget.1561 10.1038/nature16982 |
ContentType | Journal Article |
Copyright | 2019 The Authors Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 The Authors – notice: Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1016/j.neo.2019.04.008 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1476-5586 |
EndPage | 675 |
ExternalDocumentID | oai_doaj_org_article_4a456aebe2c54e09b6674f25465f5f07 31108370 10_1016_j_neo_2019_04_008 S1476558618306663 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .1- .FO 0R~ 123 1P~ 29M 2WC 36B 4.4 457 53G AAEDT AAEDW AAIKJ AALRI AAXUO AAYWO ABDBF ABFRF ABMAC ACGFO ACGFS ACPRK ACUHS ACVFH ADBBV ADCNI ADEZE ADVLN AEFWE AENEX AEUPX AEVXI AEXQZ AFJKZ AFPUW AFRHN AFTJW AGHFR AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV CAG COF CS3 DIK DU5 E3Z EAD EAP EBC EBD EBS EJD EMB EMK EMOBN ESX F5P FDB GROUPED_DOAJ GX1 HYE IPNFZ IXB KQ8 OC~ OK1 OO- OVT P2P RIG RNS ROL RPM SSZ SV3 UNMZH W2D WOQ Z5R 0SF 6I. AACTN AAFTH AFCTW M~E NCXOZ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c512t-eed79f7e54c96df41083aeae2aaa0a6f813d98fdd43ea8d84b33efd1d8fc2c043 |
IEDL.DBID | DOA |
ISSN | 1476-5586 |
IngestDate | Wed Aug 27 00:44:16 EDT 2025 Fri Jul 11 08:48:00 EDT 2025 Thu Apr 03 07:08:11 EDT 2025 Thu Apr 24 22:54:06 EDT 2025 Tue Jul 01 01:22:15 EDT 2025 Fri Feb 23 02:28:59 EST 2024 Tue Aug 26 17:10:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c512t-eed79f7e54c96df41083aeae2aaa0a6f813d98fdd43ea8d84b33efd1d8fc2c043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/4a456aebe2c54e09b6674f25465f5f07 |
PMID | 31108370 |
PQID | 2231845667 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4a456aebe2c54e09b6674f25465f5f07 proquest_miscellaneous_2231845667 pubmed_primary_31108370 crossref_primary_10_1016_j_neo_2019_04_008 crossref_citationtrail_10_1016_j_neo_2019_04_008 elsevier_sciencedirect_doi_10_1016_j_neo_2019_04_008 elsevier_clinicalkey_doi_10_1016_j_neo_2019_04_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2019 2019-07-00 20190701 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: July 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neoplasia (New York, N.Y.) |
PublicationTitleAlternate | Neoplasia |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Xiong, Wang, Zhao, Han, Jia (bb0010) 2016; 49 Xinwen, Dickman, Becker (bb0045) 2014; 289 Li L, Ye Y, Sang P, Yin Y, Hu W, Wang J, Zhang C, Li D, Wan W, Li R (2017). Effect of R119G Mutation on Human P5CR1 Dynamic Property and Enzymatic Activity Biomed Res Int 2017, 4184106. Tanner (bb0015) 2008; 35 canres.1912.2017. Yosuke, Tokuzo, Hiroaki, Kazuko, Masato, Hidetoshi, Velasco, De, Hideharu, Takushi (bb0065) 2014; 5 Phang, Liu, Hancock, Christian (bb0060) 2012; 2 Christensen, Patel, Korasick, Campbell, Krause, Becker, Tanner (bb0020) 2017; 292 Nakagawa, Lomb, Haigis, Guarente (bb0125) 2009; 137 Zhaohui, Zhiyong, Zhe, Ming, Xiaodong, Mark, Zihe (bb0025) 2006; 359 Yang X, Wang Z, Li X, Liu B, Liu M, Liu L, Chen S, Ren M, Wang Y, Yu M (2017). SHMT2 desuccinylation by SIRT5 drives cancer cell proliferation Hallows, Wei, Smith, Devries, Devires, Ellinger, Shinichi, Shortreed, Tomas, Markley (bb0135) 2011; 41 Richard, Marks, Shaul, Pacold, Dohoon, K?Van?, Shalini, Hin-Koon, Jang, Jha (bb0085) 2011; 476 Cai, Miao, Liu, Wu, Shen, Su, Shi (bb0050) 2018; 15 Finley, Carracedo, Lee, Souza, Egia, Zhang, Teruya-Feldstein, Moreira, Cardoso, Clish (bb0145) 2011; 19 Di Martile, Bufalo, Trisciuoglio (bb0165) 2016; 7 Wei, Phang (bb0175) 2012; 8 Jessica, Boris, Richardson, Scott, Pedro, De, Marat, Maurizio, Ze'Ev, Osterman (bb0090) 2012; 7 Vaxevanou (bb0040) 2008; 44 Reversade, Escande (bb0030) 2009; 41 Dutta, Tiu, Sakamoto (bb0170) 2016; 119 Ding, Kuo, Su, Xue, Luh, Zhang, Wang, Lin, Zhang, Chu (bb0100) 2017; 38 Lombard, Alt, Cheng, Bunkenborg, Streeper, Mostoslavsky, Kim, Yancopoulos, Valenzuela, Murphy (bb0130) 2007; 27 Herrera, Finley, Haigis (bb0140) 2012 Liu, Hancock, Fischer, Harman, Phang (bb0035) 2015; 5 Alhazzazi, Kamarajan, Verdin, Kapila (bb0005) 2011; 1816 Zeng, Zhu, Liao, Zhuo, Yang, Wu, Wang (bb0075) 2017; 34 MR, C G, J D (bb0105) 2009; 4 Nilsson, Jain, Madhusudhan, Sheppard, Strittmatter, Kampf, Huang, Asplund, Mootha (bb0070) 2014; 5 Loayza-Puch, Rooijers, Buil, Zijlstra, Oude Vrielink, Lopes, Ugalde, Van, Hofland, Wesseling (bb0080) 2016; 530 Lei, Mostoslavsky (bb0120) 2011; 13 Ratnikov, Scott, Osterman, Smith, Ronai (bb0095) 2016; 36 Igci, Kalender, Borazan, Bozgeyik, Bayraktar, Bozgeyik, Camci, Arslan (bb0160) 2016; 586 Eri Maria, Wagner, Weinert, Amit, Hyun-Seok, Chu-Xia, Chunaram (bb0115) 2012; 7 Torrens-Mas, Pons, Sastre-Serra, Oliver, Roca (bb0155) 2017; 118 Alhazzazi, Kamarajan, Verdin, Kapila (bb0150) 2013; 4 Zhaohui (10.1016/j.neo.2019.04.008_bb0025) 2006; 359 Dutta (10.1016/j.neo.2019.04.008_bb0170) 2016; 119 Nakagawa (10.1016/j.neo.2019.04.008_bb0125) 2009; 137 Nilsson (10.1016/j.neo.2019.04.008_bb0070) 2014; 5 Xinwen (10.1016/j.neo.2019.04.008_bb0045) 2014; 289 MR (10.1016/j.neo.2019.04.008_bb0105) 2009; 4 Jessica (10.1016/j.neo.2019.04.008_bb0090) 2012; 7 Vaxevanou (10.1016/j.neo.2019.04.008_bb0040) 2008; 44 Lei (10.1016/j.neo.2019.04.008_bb0120) 2011; 13 Lombard (10.1016/j.neo.2019.04.008_bb0130) 2007; 27 Eri Maria (10.1016/j.neo.2019.04.008_bb0115) 2012; 7 Torrens-Mas (10.1016/j.neo.2019.04.008_bb0155) 2017; 118 Loayza-Puch (10.1016/j.neo.2019.04.008_bb0080) 2016; 530 Cai (10.1016/j.neo.2019.04.008_bb0050) 2018; 15 Christensen (10.1016/j.neo.2019.04.008_bb0020) 2017; 292 Liu (10.1016/j.neo.2019.04.008_bb0035) 2015; 5 Ratnikov (10.1016/j.neo.2019.04.008_bb0095) 2016; 36 10.1016/j.neo.2019.04.008_bb0055 10.1016/j.neo.2019.04.008_bb0110 Xiong (10.1016/j.neo.2019.04.008_bb0010) 2016; 49 Di Martile (10.1016/j.neo.2019.04.008_bb0165) 2016; 7 Tanner (10.1016/j.neo.2019.04.008_bb0015) 2008; 35 Ding (10.1016/j.neo.2019.04.008_bb0100) 2017; 38 Phang (10.1016/j.neo.2019.04.008_bb0060) 2012; 2 Yosuke (10.1016/j.neo.2019.04.008_bb0065) 2014; 5 Igci (10.1016/j.neo.2019.04.008_bb0160) 2016; 586 Wei (10.1016/j.neo.2019.04.008_bb0175) 2012; 8 Alhazzazi (10.1016/j.neo.2019.04.008_bb0005) 2011; 1816 Hallows (10.1016/j.neo.2019.04.008_bb0135) 2011; 41 Finley (10.1016/j.neo.2019.04.008_bb0145) 2011; 19 Reversade (10.1016/j.neo.2019.04.008_bb0030) 2009; 41 Alhazzazi (10.1016/j.neo.2019.04.008_bb0150) 2013; 4 Zeng (10.1016/j.neo.2019.04.008_bb0075) 2017; 34 Richard (10.1016/j.neo.2019.04.008_bb0085) 2011; 476 Herrera (10.1016/j.neo.2019.04.008_bb0140) 2012 |
References_xml | – reference: Yang X, Wang Z, Li X, Liu B, Liu M, Liu L, Chen S, Ren M, Wang Y, Yu M (2017). SHMT2 desuccinylation by SIRT5 drives cancer cell proliferation – volume: 7 year: 2012 ident: bb0115 article-title: Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3 publication-title: Plos One – volume: 35 start-page: 719 year: 2008 end-page: 730 ident: bb0015 article-title: Structural biology of proline catabolism publication-title: Amino Acids – volume: 586 start-page: 123 year: 2016 end-page: 128 ident: bb0160 article-title: High-throughput screening of Sirtuin family of genes in breast cancer publication-title: Gene – volume: 292 start-page: 7233 year: 2017 end-page: 7243 ident: bb0020 article-title: Resolving the cofactor-binding site in the proline biosynthetic enzyme human pyrroline-5-carboxylate reductase 1 publication-title: J Biol Chem – start-page: P18 year: 2012 ident: bb0140 article-title: The role of SIRT3 in regulating cancer cell metabolism – volume: 8 start-page: 1407 year: 2012 end-page: 1409 ident: bb0175 article-title: Proline dehydrogenase (oxidase), a mitochondrial tumor suppressor, and autophagy under the hypoxia microenvironment publication-title: Autophagy – reference: , canres.1912.2017. – volume: 118 start-page: 397 year: 2017 end-page: 406 ident: bb0155 article-title: SIRT3 Silencing Sensitizes Breast Cancer Cells to Cytotoxic Treatments Through an Increment in ROS Production publication-title: J Cell Biochem – volume: 119 start-page: 37 year: 2016 end-page: 43 ident: bb0170 article-title: CBP/p300 acetyltransferase activity in hematologic malignancies publication-title: Molecular Genetics & Metabolism – volume: 7 year: 2012 ident: bb0090 article-title: Functional specialization in proline biosynthesis of melanoma publication-title: Plos One – volume: 13 start-page: 621 year: 2011 end-page: 626 ident: bb0120 article-title: Fine Tuning Our Cellular Factories: Sirtuins in Mitochondrial Biology publication-title: Cell Metab – volume: 359 start-page: 1364 year: 2006 end-page: 1377 ident: bb0025 article-title: Crystal structure of human pyrroline-5-carboxylate reductase publication-title: J Mol Biol – volume: 49 start-page: 2227 year: 2016 ident: bb0010 article-title: Sirtuin 3: A Janus face in cancer (Review) publication-title: Int J Oncol – volume: 36 start-page: 147 year: 2016 end-page: 157 ident: bb0095 article-title: Metabolic rewiring in melanoma publication-title: Oncogene – volume: 289 start-page: 27794 year: 2014 end-page: 27806 ident: bb0045 article-title: Proline biosynthesis is required for endoplasmic reticulum stress tolerance in Saccharomyces cerevisiae publication-title: J Biol Chem – volume: 137 start-page: 560 year: 2009 end-page: 570 ident: bb0125 article-title: SIRT5 Deacetylates Carbamoyl Phosphate Synthetase 1 and Regulates the Urea Cycle publication-title: Cell – volume: 41 start-page: 1016 year: 2009 ident: bb0030 article-title: Mutations in PYCR1 cause cutis laxa with progeroid features publication-title: Nat Genet – volume: 34 start-page: 27 year: 2017 ident: bb0075 article-title: Knockdown of PYCR1 inhibits cell proliferation and colony formation via cell cycle arrest and apoptosis in prostate cancer publication-title: Med Oncol – volume: 38 start-page: 519 year: 2017 end-page: 531 ident: bb0100 article-title: Human mitochondrial pyrroline-5-carboxylate reductase 1 promotes invasiveness and impacts survival in breast cancers publication-title: Carcinogenesis – volume: 2 start-page: 60 year: 2012 ident: bb0060 article-title: The proline regulatory axis and cancer publication-title: Front Oncol – reference: Li L, Ye Y, Sang P, Yin Y, Hu W, Wang J, Zhang C, Li D, Wan W, Li R (2017). Effect of R119G Mutation on Human P5CR1 Dynamic Property and Enzymatic Activity Biomed Res Int 2017, 4184106. – volume: 19 start-page: 416 year: 2011 end-page: 428 ident: bb0145 article-title: SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization publication-title: Cancer Cell – volume: 44 start-page: 671 year: 2008 end-page: 681 ident: bb0040 article-title: Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress publication-title: Free Radic Biol Med – volume: 27 start-page: 8807 year: 2007 end-page: 8814 ident: bb0130 article-title: Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation publication-title: Molecular & Cellular Biology – volume: 5 start-page: 3128 year: 2014 ident: bb0070 article-title: Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer publication-title: Nat Commun – volume: 1816 start-page: 80 year: 2011 end-page: 88 ident: bb0005 article-title: SIRT3 and cancer: Tumor promoter or suppressor? publication-title: BBA - Reviews on Cancer – volume: 4 start-page: 1582 year: 2009 ident: bb0105 article-title: Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells publication-title: Nat Protoc – volume: 4 start-page: 164 year: 2013 end-page: 171 ident: bb0150 article-title: Sirtuin-3 (SIRT3) and the Hallmarks of Cancer publication-title: Genes Cancer – volume: 7 start-page: 55789 year: 2016 end-page: 55810 ident: bb0165 article-title: The multifaceted role of lysine acetylation in cancer prognostic biomarker and therapeutic target publication-title: Oncotarget – volume: 5 year: 2015 ident: bb0035 article-title: Proline biosynthesis augments tumor cell growth and aerobic glycolysis: involvement of pyridine nucleotides publication-title: Sci Rep – volume: 15 start-page: 731 year: 2018 end-page: 740 ident: bb0050 article-title: Pyrroline-5-carboxylate reductase 1 promotes proliferation and inhibits apoptosis in non-small cell lung cancer publication-title: Oncol Lett – volume: 476 start-page: 346 year: 2011 end-page: 350 ident: bb0085 article-title: Functional genomics reveal that the serine synthesis pathway is essential in breast cancer publication-title: Nature – volume: 5 start-page: 2962 year: 2014 end-page: 2973 ident: bb0065 article-title: Frequent amplification of ORAOV1 gene in esophageal squamous cell cancer promotes an aggressive phenotype via proline metabolism and ROS production publication-title: Oncotarget – volume: 530 start-page: 490 year: 2016 end-page: 494 ident: bb0080 article-title: Tumour-specific proline vulnerability uncovered by differential ribosome codon reading publication-title: Nature – volume: 41 start-page: 139 year: 2011 end-page: 149 ident: bb0135 article-title: Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction publication-title: Mol Cell – volume: 5 year: 2015 ident: 10.1016/j.neo.2019.04.008_bb0035 article-title: Proline biosynthesis augments tumor cell growth and aerobic glycolysis: involvement of pyridine nucleotides publication-title: Sci Rep – volume: 292 start-page: 7233 year: 2017 ident: 10.1016/j.neo.2019.04.008_bb0020 article-title: Resolving the cofactor-binding site in the proline biosynthetic enzyme human pyrroline-5-carboxylate reductase 1 publication-title: J Biol Chem doi: 10.1074/jbc.M117.780288 – volume: 8 start-page: 1407 year: 2012 ident: 10.1016/j.neo.2019.04.008_bb0175 article-title: Proline dehydrogenase (oxidase), a mitochondrial tumor suppressor, and autophagy under the hypoxia microenvironment publication-title: Autophagy doi: 10.4161/auto.21152 – volume: 34 start-page: 27 year: 2017 ident: 10.1016/j.neo.2019.04.008_bb0075 article-title: Knockdown of PYCR1 inhibits cell proliferation and colony formation via cell cycle arrest and apoptosis in prostate cancer publication-title: Med Oncol doi: 10.1007/s12032-016-0870-5 – volume: 27 start-page: 8807 year: 2007 ident: 10.1016/j.neo.2019.04.008_bb0130 article-title: Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation publication-title: Molecular & Cellular Biology doi: 10.1128/MCB.01636-07 – volume: 15 start-page: 731 year: 2018 ident: 10.1016/j.neo.2019.04.008_bb0050 article-title: Pyrroline-5-carboxylate reductase 1 promotes proliferation and inhibits apoptosis in non-small cell lung cancer publication-title: Oncol Lett – volume: 41 start-page: 139 year: 2011 ident: 10.1016/j.neo.2019.04.008_bb0135 article-title: Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction publication-title: Mol Cell doi: 10.1016/j.molcel.2011.01.002 – ident: 10.1016/j.neo.2019.04.008_bb0110 – volume: 4 start-page: 1582 year: 2009 ident: 10.1016/j.neo.2019.04.008_bb0105 article-title: Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells publication-title: Nat Protoc doi: 10.1038/nprot.2009.151 – volume: 359 start-page: 1364 year: 2006 ident: 10.1016/j.neo.2019.04.008_bb0025 article-title: Crystal structure of human pyrroline-5-carboxylate reductase publication-title: J Mol Biol doi: 10.1016/j.jmb.2006.04.053 – volume: 44 start-page: 671 year: 2008 ident: 10.1016/j.neo.2019.04.008_bb0040 article-title: Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2007.10.054 – volume: 35 start-page: 719 year: 2008 ident: 10.1016/j.neo.2019.04.008_bb0015 article-title: Structural biology of proline catabolism publication-title: Amino Acids doi: 10.1007/s00726-008-0062-5 – ident: 10.1016/j.neo.2019.04.008_bb0055 doi: 10.1155/2017/4184106 – volume: 36 start-page: 147 year: 2016 ident: 10.1016/j.neo.2019.04.008_bb0095 article-title: Metabolic rewiring in melanoma publication-title: Oncogene doi: 10.1038/onc.2016.198 – volume: 5 start-page: 3128 year: 2014 ident: 10.1016/j.neo.2019.04.008_bb0070 article-title: Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer publication-title: Nat Commun doi: 10.1038/ncomms4128 – volume: 119 start-page: 37 year: 2016 ident: 10.1016/j.neo.2019.04.008_bb0170 article-title: CBP/p300 acetyltransferase activity in hematologic malignancies publication-title: Molecular Genetics & Metabolism doi: 10.1016/j.ymgme.2016.06.013 – volume: 7 year: 2012 ident: 10.1016/j.neo.2019.04.008_bb0115 article-title: Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3 publication-title: Plos One – volume: 4 start-page: 164 year: 2013 ident: 10.1016/j.neo.2019.04.008_bb0150 article-title: Sirtuin-3 (SIRT3) and the Hallmarks of Cancer publication-title: Genes Cancer doi: 10.1177/1947601913486351 – volume: 7 year: 2012 ident: 10.1016/j.neo.2019.04.008_bb0090 article-title: Functional specialization in proline biosynthesis of melanoma publication-title: Plos One – volume: 476 start-page: 346 year: 2011 ident: 10.1016/j.neo.2019.04.008_bb0085 article-title: Functional genomics reveal that the serine synthesis pathway is essential in breast cancer publication-title: Nature doi: 10.1038/nature10350 – volume: 49 start-page: 2227 year: 2016 ident: 10.1016/j.neo.2019.04.008_bb0010 article-title: Sirtuin 3: A Janus face in cancer (Review) publication-title: Int J Oncol doi: 10.3892/ijo.2016.3767 – volume: 41 start-page: 1016 year: 2009 ident: 10.1016/j.neo.2019.04.008_bb0030 article-title: Mutations in PYCR1 cause cutis laxa with progeroid features publication-title: Nat Genet doi: 10.1038/ng.413 – volume: 137 start-page: 560 year: 2009 ident: 10.1016/j.neo.2019.04.008_bb0125 article-title: SIRT5 Deacetylates Carbamoyl Phosphate Synthetase 1 and Regulates the Urea Cycle publication-title: Cell doi: 10.1016/j.cell.2009.02.026 – volume: 586 start-page: 123 year: 2016 ident: 10.1016/j.neo.2019.04.008_bb0160 article-title: High-throughput screening of Sirtuin family of genes in breast cancer publication-title: Gene doi: 10.1016/j.gene.2016.04.023 – volume: 1816 start-page: 80 year: 2011 ident: 10.1016/j.neo.2019.04.008_bb0005 article-title: SIRT3 and cancer: Tumor promoter or suppressor? publication-title: BBA - Reviews on Cancer – start-page: P18 year: 2012 ident: 10.1016/j.neo.2019.04.008_bb0140 – volume: 7 start-page: 55789 year: 2016 ident: 10.1016/j.neo.2019.04.008_bb0165 article-title: The multifaceted role of lysine acetylation in cancer prognostic biomarker and therapeutic target publication-title: Oncotarget doi: 10.18632/oncotarget.10048 – volume: 38 start-page: 519 year: 2017 ident: 10.1016/j.neo.2019.04.008_bb0100 article-title: Human mitochondrial pyrroline-5-carboxylate reductase 1 promotes invasiveness and impacts survival in breast cancers publication-title: Carcinogenesis doi: 10.1093/carcin/bgx022 – volume: 118 start-page: 397 year: 2017 ident: 10.1016/j.neo.2019.04.008_bb0155 article-title: SIRT3 Silencing Sensitizes Breast Cancer Cells to Cytotoxic Treatments Through an Increment in ROS Production publication-title: J Cell Biochem doi: 10.1002/jcb.25653 – volume: 2 start-page: 60 year: 2012 ident: 10.1016/j.neo.2019.04.008_bb0060 article-title: The proline regulatory axis and cancer publication-title: Front Oncol doi: 10.3389/fonc.2012.00060 – volume: 13 start-page: 621 year: 2011 ident: 10.1016/j.neo.2019.04.008_bb0120 article-title: Fine Tuning Our Cellular Factories: Sirtuins in Mitochondrial Biology publication-title: Cell Metab doi: 10.1016/j.cmet.2011.05.004 – volume: 19 start-page: 416 year: 2011 ident: 10.1016/j.neo.2019.04.008_bb0145 article-title: SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization publication-title: Cancer Cell doi: 10.1016/j.ccr.2011.02.014 – volume: 289 start-page: 27794 year: 2014 ident: 10.1016/j.neo.2019.04.008_bb0045 article-title: Proline biosynthesis is required for endoplasmic reticulum stress tolerance in Saccharomyces cerevisiae publication-title: J Biol Chem doi: 10.1074/jbc.M114.562827 – volume: 5 start-page: 2962 year: 2014 ident: 10.1016/j.neo.2019.04.008_bb0065 article-title: Frequent amplification of ORAOV1 gene in esophageal squamous cell cancer promotes an aggressive phenotype via proline metabolism and ROS production publication-title: Oncotarget doi: 10.18632/oncotarget.1561 – volume: 530 start-page: 490 year: 2016 ident: 10.1016/j.neo.2019.04.008_bb0080 article-title: Tumour-specific proline vulnerability uncovered by differential ribosome codon reading publication-title: Nature doi: 10.1038/nature16982 |
SSID | ssj0016177 |
Score | 2.4629748 |
Snippet | SIRT3 is a major mitochondrial deacetylase, which regulates various metabolic pathways by deacetylation; however, the effect of SIRT3 on proline metabolism is... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 665 |
SubjectTerms | Acetylation Cell Proliferation - genetics delta-1-Pyrroline-5-Carboxylate Reductase Humans MCF-7 Cells Mitochondria - genetics Mitochondria - metabolism Neoplasms - genetics Neoplasms - pathology Peptide Fragments - genetics Proline - biosynthesis Proline - metabolism Pyrroline Carboxylate Reductases - genetics Sialoglycoproteins - genetics Sirtuin 3 - genetics |
SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect Open Access Journals dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEG6WPYgX8e34ogVPQph0-pHO0R1cVkGRfcB4semnRHYzw0z24L-3-pHgHlzBY0L1I1WVqkq66iuE3lLhaK15W5HGhIp5w6qOG1c1QtckaM-5SWifX8TJBfu05usDtJpqYWJaZbH92aYna13uLAs3l9u-X54R1grOpQCljEF4RPykTKYivvXRfJIAHjo1WAHiKlJPJ5spx2tI9X-kS2inscPkH74pQfjfcFF_C0GTKzq-j-6VGBK_z9t8gA788BDd-VxOyR-h72cfT88p3uU2836PbRTtDsef9Hgb2_QEnwWPS5se7MAy-vFXTozDm4C_fludEtwPmX7w-MqPoC-X_f7qMbo4_nC-OqlKH4XKgjsfK3CDbRdaz5nthAuMQNilvfaN1rrWIkhCXSeDc4x6LZ1khlIfHHEy2MbWjD5Bh8Nm8M8QJiZYQ5mQ3FnWeisJ0VSYOIuFOcgC1RMHlS0g47HXxaWassl-KmC6ikxXNVPA9AV6Nw_ZZoSN24iPolhmwgiOnW5sdj9U0Q7FNESFGrSzsZz5ujNCtCxE4H8eeKjbBWomoaqp_hQsJkzU37YymwfdUNB_DXszaY2CFzcKWgPJ9V5BXAZf1xBNw36eZnWaH4vG4gza1s__b9EX6G68ylnFL9HhuLv2ryB2Gs3r9HL8BnnwFps priority: 102 providerName: Elsevier |
Title | SIRT3 regulates cancer cell proliferation through deacetylation of PYCR1 in proline metabolism |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1476558618306663 https://dx.doi.org/10.1016/j.neo.2019.04.008 https://www.ncbi.nlm.nih.gov/pubmed/31108370 https://www.proquest.com/docview/2231845667 https://doaj.org/article/4a456aebe2c54e09b6674f25465f5f07 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQlapeqtLSdltArtRTpahx_EhyBFQERUXVFsT2UsuPsbQVBLQbDvx7xnaygkPh0ksO0dixZ8b-xvE8CPnMleelkXXBKhsKAVYUrbS-qJQpWTAgpU3ZPk_U4Zn4PpOze6W-ok9YTg-cGfdVGIR4g5-qnBRQtlapWoSYxV0GGXIcOWLeeJga7g8Ql1NZFVGrQspGjfeZybOrS1F_rE05TmNdyXuIlBL3PwCmfxmeCYAOXpGXg-VId_OIN8gadK_J8x_D3fgb8ufX0fSU00UuLg9L6qJAFzT-mqfXsThPgCxuOhTnoR73Q-hvszscvQr05-_9KaPzLtN3QC-hRy25mC8vN8nZwbfT_cNiqJ5QOATxvkDwq9tQgxSuVT4IhsaWAQOVMaY0KjSM-7YJ3gsOpvGNsJxD8Mw3wVWuFPwtWe-uOnhPKLPBWS5UI70TNbiGMcOVjb047INNSDlyULshtXiscHGhRx-yvxqZriPTdSk0Mn1CvqyaXOe8Go8R70WxrAhjSuz0AhVFD4qin1KUCalGoeox6hT3Sexo_tiXxarRYJJkU-OpZp9GrdG4XKOgDZLcLDVaY3imRhsax_Muq9NqWjyGZPC6_PA_pvuRvIgDyp7FW2S9X9zANtpPvd0hz3aPp-fHO2nJ4PNotncHN2EY-A |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkYAL4s3yNBInpGjj-JHkSFdUu9BWqN1KywXLTxTUZle76YF_z9hOInqgSFyd8SMzn2cm8XgGofdUWJorXmak0D5jTrOs5tpmhVA58cpxrmO2zxMxP2efV3y1h2bDXZgQVtnr_qTTo7buW6Y9N6ebppmeEVYKzisBoAxOOL2FboM3UIbduVgdjEcJYKJjhRWgzgL5cLQZg7zaeAGQ1DHdaSgx-Ydxijn8r9mov_mg0RYdPkD3eycSf0zrfIj2XPsI3Tnuj8kfo-9ni9MlxdtUZ97tsAmy3eLwlx5vQp0e75LkcV-nB1tQja77lSLj8Nrjr99mpwQ3baJvHb50HQDmotldPkHnh5-Ws3nWF1LIDNjzLgM7WNa-dJyZWljPCPhdyilXKKVyJXxFqK0rby2jTlW2YppS5y2xlTeFyRl9ivbbdeueI0y0N5oyUXFrWOlMRYiiQodRDIxBJigfOChNn2U8FLu4kEM42U8JTJeB6TJnEpg-QR_GLpuUYuMm4oMglpEwZMeODevtD9nDQzIFQFAAz8Jw5vJaC1EyHzL_c899Xk5QMQhVDhdQQWXCQM1NM7Ox0zWE_qvbuwE1EnZuELQCkqudBMcMPq_BnYb1PEtwGl-LhtsZtMxf_N-kb9Hd-fL4SB4tTr68RPfCkxRi_Artd9sr9xocqU6_iRvlN3n8Gbs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SIRT3+regulates+cancer+cell+proliferation+through+deacetylation+of+PYCR1+in+proline+metabolism&rft.jtitle=Neoplasia+%28New+York%2C+N.Y.%29&rft.au=Shuaiyi+Chen&rft.au=Xin+Yang&rft.au=Miao+Yu&rft.au=Zhe+Wang&rft.date=2019-07-01&rft.pub=Elsevier&rft.issn=1476-5586&rft.volume=21&rft.issue=7&rft.spage=665&rft.epage=675&rft_id=info:doi/10.1016%2Fj.neo.2019.04.008&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4a456aebe2c54e09b6674f25465f5f07 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-5586&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-5586&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-5586&client=summon |