An Effective Resistive-Type Alcohol Vapor Sensor Using One-Step Facile Nanoporous Anodic Alumina

With the increases in work environment regulations restricting alcohol to 1000 ppm, and in drink-driving laws, testing for alcohol with a simple method is a crucial issue. Conventional alcohol sensors based on sulfide, metal oxide, boron nitride or graphene oxide have a detection limit in the range...

Full description

Saved in:
Bibliographic Details
Published inMicromachines (Basel) Vol. 14; no. 7; p. 1330
Main Authors Chung, Chen-Kuei, Ku, Chin-An
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 29.06.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the increases in work environment regulations restricting alcohol to 1000 ppm, and in drink-driving laws, testing for alcohol with a simple method is a crucial issue. Conventional alcohol sensors based on sulfide, metal oxide, boron nitride or graphene oxide have a detection limit in the range of 50–1000 ppm but have disadvantages of complicated manufacture and longer processing times. A recent portable alcohol meter based on semiconductor material using conductivity or chemistry measurements still has the problem of a complex and lengthy manufacturing process. In this paper, a simple and effective resistive-type alcohol vapor sensor using one-step anodic aluminum oxide (AAO) is proposed. The nanoporous AAO was produced in one-step by anodizing low-purity AA1050 at room temperature of 25 °C, which overcame the traditional high-cost and lengthy process at low temperature of anodization and etching from high-purity aluminum. The highly specific surface area of AAO has benefits for good sensing performance, especially as a humidity or alcohol vapor sensor. With the resistance measurement method, alcohol vapor concentration of 0, 100, 300, 500, 700 and 1000 ppm correspond to mean resistances of 8524 Ω, 8672 Ω, 9121 Ω, 9568 Ω, 10,243 Ω, and 11,045 Ω, respectively, in a linear relationship. Compared with other materials for detecting alcohol vapor, the AAO resistive sensor has advantages of fast and simple manufacturing with good detection limits for practical applications. The resistive-type alcohol vapor-sensing mechanism is described with respect to the resistivity of the test substance and the pore morphology of AAO. In a human breath test, the AAO sensor can quickly distinguish whether the subject is drinking, with normal breath response of −30% to −40% and −20% to −30% response after drinking 50 mL of wine of 25% alcohol.
AbstractList With the increases in work environment regulations restricting alcohol to 1000 ppm, and in drink-driving laws, testing for alcohol with a simple method is a crucial issue. Conventional alcohol sensors based on sulfide, metal oxide, boron nitride or graphene oxide have a detection limit in the range of 50–1000 ppm but have disadvantages of complicated manufacture and longer processing times. A recent portable alcohol meter based on semiconductor material using conductivity or chemistry measurements still has the problem of a complex and lengthy manufacturing process. In this paper, a simple and effective resistive-type alcohol vapor sensor using one-step anodic aluminum oxide (AAO) is proposed. The nanoporous AAO was produced in one-step by anodizing low-purity AA1050 at room temperature of 25 °C, which overcame the traditional high-cost and lengthy process at low temperature of anodization and etching from high-purity aluminum. The highly specific surface area of AAO has benefits for good sensing performance, especially as a humidity or alcohol vapor sensor. With the resistance measurement method, alcohol vapor concentration of 0, 100, 300, 500, 700 and 1000 ppm correspond to mean resistances of 8524 Ω, 8672 Ω, 9121 Ω, 9568 Ω, 10,243 Ω, and 11,045 Ω, respectively, in a linear relationship. Compared with other materials for detecting alcohol vapor, the AAO resistive sensor has advantages of fast and simple manufacturing with good detection limits for practical applications. The resistive-type alcohol vapor-sensing mechanism is described with respect to the resistivity of the test substance and the pore morphology of AAO. In a human breath test, the AAO sensor can quickly distinguish whether the subject is drinking, with normal breath response of −30% to −40% and −20% to −30% response after drinking 50 mL of wine of 25% alcohol.
With the increases in work environment regulations restricting alcohol to 1000 ppm, and in drink-driving laws, testing for alcohol with a simple method is a crucial issue. Conventional alcohol sensors based on sulfide, metal oxide, boron nitride or graphene oxide have a detection limit in the range of 50-1000 ppm but have disadvantages of complicated manufacture and longer processing times. A recent portable alcohol meter based on semiconductor material using conductivity or chemistry measurements still has the problem of a complex and lengthy manufacturing process. In this paper, a simple and effective resistive-type alcohol vapor sensor using one-step anodic aluminum oxide (AAO) is proposed. The nanoporous AAO was produced in one-step by anodizing low-purity AA1050 at room temperature of 25 °C, which overcame the traditional high-cost and lengthy process at low temperature of anodization and etching from high-purity aluminum. The highly specific surface area of AAO has benefits for good sensing performance, especially as a humidity or alcohol vapor sensor. With the resistance measurement method, alcohol vapor concentration of 0, 100, 300, 500, 700 and 1000 ppm correspond to mean resistances of 8524 Ω, 8672 Ω, 9121 Ω, 9568 Ω, 10,243 Ω, and 11,045 Ω, respectively, in a linear relationship. Compared with other materials for detecting alcohol vapor, the AAO resistive sensor has advantages of fast and simple manufacturing with good detection limits for practical applications. The resistive-type alcohol vapor-sensing mechanism is described with respect to the resistivity of the test substance and the pore morphology of AAO. In a human breath test, the AAO sensor can quickly distinguish whether the subject is drinking, with normal breath response of -30% to -40% and -20% to -30% response after drinking 50 mL of wine of 25% alcohol.
With the increases in work environment regulations restricting alcohol to 1000 ppm, and in drink-driving laws, testing for alcohol with a simple method is a crucial issue. Conventional alcohol sensors based on sulfide, metal oxide, boron nitride or graphene oxide have a detection limit in the range of 50-1000 ppm but have disadvantages of complicated manufacture and longer processing times. A recent portable alcohol meter based on semiconductor material using conductivity or chemistry measurements still has the problem of a complex and lengthy manufacturing process. In this paper, a simple and effective resistive-type alcohol vapor sensor using one-step anodic aluminum oxide (AAO) is proposed. The nanoporous AAO was produced in one-step by anodizing low-purity AA1050 at room temperature of 25 °C, which overcame the traditional high-cost and lengthy process at low temperature of anodization and etching from high-purity aluminum. The highly specific surface area of AAO has benefits for good sensing performance, especially as a humidity or alcohol vapor sensor. With the resistance measurement method, alcohol vapor concentration of 0, 100, 300, 500, 700 and 1000 ppm correspond to mean resistances of 8524 Ω, 8672 Ω, 9121 Ω, 9568 Ω, 10,243 Ω, and 11,045 Ω, respectively, in a linear relationship. Compared with other materials for detecting alcohol vapor, the AAO resistive sensor has advantages of fast and simple manufacturing with good detection limits for practical applications. The resistive-type alcohol vapor-sensing mechanism is described with respect to the resistivity of the test substance and the pore morphology of AAO. In a human breath test, the AAO sensor can quickly distinguish whether the subject is drinking, with normal breath response of -30% to -40% and -20% to -30% response after drinking 50 mL of wine of 25% alcohol.With the increases in work environment regulations restricting alcohol to 1000 ppm, and in drink-driving laws, testing for alcohol with a simple method is a crucial issue. Conventional alcohol sensors based on sulfide, metal oxide, boron nitride or graphene oxide have a detection limit in the range of 50-1000 ppm but have disadvantages of complicated manufacture and longer processing times. A recent portable alcohol meter based on semiconductor material using conductivity or chemistry measurements still has the problem of a complex and lengthy manufacturing process. In this paper, a simple and effective resistive-type alcohol vapor sensor using one-step anodic aluminum oxide (AAO) is proposed. The nanoporous AAO was produced in one-step by anodizing low-purity AA1050 at room temperature of 25 °C, which overcame the traditional high-cost and lengthy process at low temperature of anodization and etching from high-purity aluminum. The highly specific surface area of AAO has benefits for good sensing performance, especially as a humidity or alcohol vapor sensor. With the resistance measurement method, alcohol vapor concentration of 0, 100, 300, 500, 700 and 1000 ppm correspond to mean resistances of 8524 Ω, 8672 Ω, 9121 Ω, 9568 Ω, 10,243 Ω, and 11,045 Ω, respectively, in a linear relationship. Compared with other materials for detecting alcohol vapor, the AAO resistive sensor has advantages of fast and simple manufacturing with good detection limits for practical applications. The resistive-type alcohol vapor-sensing mechanism is described with respect to the resistivity of the test substance and the pore morphology of AAO. In a human breath test, the AAO sensor can quickly distinguish whether the subject is drinking, with normal breath response of -30% to -40% and -20% to -30% response after drinking 50 mL of wine of 25% alcohol.
Audience Academic
Author Chung, Chen-Kuei
Ku, Chin-An
AuthorAffiliation Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan
AuthorAffiliation_xml – name: Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan
Author_xml – sequence: 1
  givenname: Chen-Kuei
  orcidid: 0000-0003-4068-5713
  surname: Chung
  fullname: Chung, Chen-Kuei
– sequence: 2
  givenname: Chin-An
  surname: Ku
  fullname: Ku, Chin-An
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37512643$$D View this record in MEDLINE/PubMed
BookMark eNptklFr3SAUx8PoWLuuL_sAI7CXMUin0Wh8GqG0W6GssLZjb86rx1sviaaaFPrtZ3a7ri1TUPH8zt9zPOd1seODh6J4i9EhIQJ9GhymiGNC0Itir0a8rhhjP3cenXeLg5Q2KA_ORV5eFbuEN7hmlOwVvzpfHlsLenK3UH6H5NJyqi7vRii7Xofr0Jc_1BhieQE-5e0qOb8uzz1UFxOM5YnSrofym_IhQ2FOZeeDcTo7z4Pz6k3x0qo-wcH9vl9cnRxfHn2tzs6_nB51Z5XOoUwVGEw0NUwYhYhljcE1XXEjGoYNMUhRIVpOmVZgqAWKWlw32UaBCmxqqsl-cbrVNUFt5BjdoOKdDMrJPxchrqWKk9M9yEYxbQ0lq5ZrqjEVK44QUIKstTWYNmt93mqN82oAo8FPUfVPRJ9avLuW63ArMSItFbXICh_uFWK4mSFNcnBJQ98rD_mPZN3SnEPD2zqj75-hmzBHn_9qoQgSvOELdbil1ipn4LwN-WGdp4HB6dwSNldBdrwRuGENXyJ49ziHh-D_lj4DH7eAjiGlCPYBwUgurSX_tVaG0TNYu0lNLiz5u_5_Lr8BN-DOwQ
CitedBy_id crossref_primary_10_1364_JOSAB_541159
crossref_primary_10_3390_nanomanufacturing4010004
crossref_primary_10_3390_chemosensors12050078
crossref_primary_10_3390_nano13212853
Cites_doi 10.1016/j.corsci.2017.05.027
10.1016/j.mssp.2022.106701
10.1039/c3nr00747b
10.1039/C5RA15019A
10.1016/j.matlet.2019.126921
10.1016/j.jcis.2018.03.109
10.4139/sfj1950.33.156
10.1016/j.jallcom.2015.12.066
10.1016/j.talanta.2020.121248
10.1016/j.jallcom.2016.03.029
10.1149/1.1837634
10.1088/0957-4484/23/41/415501
10.1016/j.snb.2017.11.167
10.1016/j.snb.2021.130156
10.3390/s21206852
10.1016/j.electacta.2009.01.046
10.1143/JJAP.37.L1340
10.1016/j.mseb.2006.10.006
10.1016/j.apsusc.2019.144063
10.1016/j.snb.2009.07.007
10.1039/C8NJ01061G
10.1016/0169-4332(87)90126-7
10.1016/j.snb.2015.05.053
10.1149/2.1051810jes
10.1038/nmat1717
10.3390/nano12101768
10.1016/j.snb.2014.03.057
10.1016/j.ceramint.2015.08.109
10.1016/S0003-2670(99)00135-X
10.1016/j.apsusc.2018.06.297
10.1016/j.matlet.2017.05.024
10.3390/s18103334
10.1016/j.snb.2016.06.041
10.1016/j.physe.2010.08.013
10.3390/s23042328
10.1142/S021798491940044X
10.1007/s00542-009-0944-9
10.1016/j.snb.2014.12.096
10.1016/j.vacuum.2021.110642
10.1016/S0925-4005(99)00511-0
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
7SP
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
L6V
L7M
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
5PM
DOA
DOI 10.3390/mi14071330
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Engineering Database (NC LIVE)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ) (Open Access)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed

CrossRef
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2072-666X
ExternalDocumentID oai_doaj_org_article_5a6cfd43b87c4c149b700e430fff2ed8
PMC10384929
A759156579
37512643
10_3390_mi14071330
Genre Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 106-2221-E-006-101-MY3 and 110-2221-E-006-177
– fundername: Ministry of Science and Technology (MOST), Taiwan
  grantid: 106-2221-E-006-101-MY3; 110-2221-E-006-177
GroupedDBID 53G
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
ITC
KQ8
L6V
M7S
MM.
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RPM
TR2
TUS
NPM
PQGLB
7SP
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
L7M
PKEHL
PQEST
PQQKQ
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c512t-ed13c4d69da03f65d124b7d9561d3d0a4998746caed4fe4081255614e491d24c3
IEDL.DBID DOA
ISSN 2072-666X
IngestDate Wed Aug 27 01:25:01 EDT 2025
Thu Aug 21 18:36:40 EDT 2025
Thu Jul 10 22:47:50 EDT 2025
Fri Jul 25 12:05:34 EDT 2025
Tue Jul 01 05:45:25 EDT 2025
Mon Jul 21 06:00:30 EDT 2025
Tue Jul 01 03:41:31 EDT 2025
Thu Apr 24 23:04:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords anodization
resistive sensor
alcohol vapor
nanoporous alumina
AAO
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-ed13c4d69da03f65d124b7d9561d3d0a4998746caed4fe4081255614e491d24c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4068-5713
0000-0002-3180-7443
OpenAccessLink https://doaj.org/article/5a6cfd43b87c4c149b700e430fff2ed8
PMID 37512643
PQID 2843097572
PQPubID 2032359
ParticipantIDs doaj_primary_oai_doaj_org_article_5a6cfd43b87c4c149b700e430fff2ed8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10384929
proquest_miscellaneous_2844085782
proquest_journals_2843097572
gale_infotracacademiconefile_A759156579
pubmed_primary_37512643
crossref_primary_10_3390_mi14071330
crossref_citationtrail_10_3390_mi14071330
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230629
PublicationDateYYYYMMDD 2023-06-29
PublicationDate_xml – month: 6
  year: 2023
  text: 20230629
  day: 29
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Micromachines (Basel)
PublicationTitleAlternate Micromachines (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Yan (ref_2) 2015; 5
Khanna (ref_29) 1987; 28
Chung (ref_36) 2018; 165
Nahar (ref_30) 2000; 63
He (ref_32) 2010; 43
Chung (ref_21) 2017; 125
Chen (ref_33) 2014; 199
Ge (ref_6) 2007; 137
Liu (ref_8) 2017; 201
Zhao (ref_9) 2018; 258
Chung (ref_22) 2010; 16
Balde (ref_34) 2015; 220
Arshak (ref_5) 2004; 2
ref_18
Chung (ref_25) 2021; 343
Zhang (ref_19) 2020; 503
ref_15
Yuejiao (ref_10) 2012; 23
Zito (ref_14) 2018; 42
Kim (ref_31) 2009; 141
Sulka (ref_38) 2009; 54
Zhao (ref_1) 2016; 674
Yin (ref_7) 2018; 457
Ebihara (ref_41) 1982; 33
Masuda (ref_40) 1998; 37
Zhang (ref_4) 2018; 523
ref_23
Fang (ref_16) 2022; 146
Yang (ref_26) 2019; 33
ref_20
Lee (ref_37) 2006; 5
Chung (ref_27) 2015; 210
Sheng (ref_17) 2022; 195
Podgolin (ref_35) 2020; 219
Yan (ref_3) 2016; 662
Lipatov (ref_13) 2013; 5
Sharma (ref_24) 2016; 237
Lin (ref_11) 2016; 42
Masuda (ref_39) 1997; 144
Park (ref_12) 1999; 390
Chung (ref_28) 2020; 260
References_xml – volume: 125
  start-page: 40
  year: 2017
  ident: ref_21
  article-title: Impurity and temperature enhanced growth behaviour of anodic aluminium oxide from AA5052 Al-Mg alloy using hybrid pulse anodization at room temperature
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2017.05.027
– volume: 146
  start-page: 106701
  year: 2022
  ident: ref_16
  article-title: Au doped In2O3 nanoparticles: Preparation, and their ethanol detection with high performance
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2022.106701
– volume: 5
  start-page: 5426
  year: 2013
  ident: ref_13
  article-title: Highly selective gas sensor arrays based on thermally reduced graphene oxide
  publication-title: Nanoscale
  doi: 10.1039/c3nr00747b
– volume: 5
  start-page: 79593
  year: 2015
  ident: ref_2
  article-title: Dispersed SnO2 nanoparticles on MoS2 nanosheets for superior gas-sensing performances to ethanol
  publication-title: RSC Adv.
  doi: 10.1039/C5RA15019A
– volume: 2
  start-page: 681
  year: 2004
  ident: ref_5
  article-title: NiO-TiO2 thick-films for detection of alcohol vapours at room temperature
  publication-title: IEEE Sens.
– volume: 260
  start-page: 126921
  year: 2020
  ident: ref_28
  article-title: Total effective surface area principle for enhancement of capacitive humidity sensor of thick-film nanoporous alumina
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2019.126921
– volume: 523
  start-page: 217
  year: 2018
  ident: ref_4
  article-title: Hierarchical assembly of urchin-like alpha-iron oxide hollow microspheres and molybdenum disulphide nanosheets for ethanol gas sensing
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.03.109
– volume: 33
  start-page: 156
  year: 1982
  ident: ref_41
  article-title: Structure and density of anodic oxide films formed on aluminum in sulfuric acid solution
  publication-title: J. Met. Finish. Soc. Jpn.
  doi: 10.4139/sfj1950.33.156
– volume: 662
  start-page: 118
  year: 2016
  ident: ref_3
  article-title: Facile synthesis, characterization and gas sensing performance of ZnO nanoparticles-coated MoS2 nanosheets
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.12.066
– volume: 219
  start-page: 121248
  year: 2020
  ident: ref_35
  article-title: Anodic alumina membrane capacitive sensors for detection of vapors
  publication-title: Talanta
  doi: 10.1016/j.talanta.2020.121248
– volume: 674
  start-page: 252
  year: 2016
  ident: ref_1
  article-title: One dimensional MoS2-decorated TiO2 nanotube gas sensors for efficient alcohol sensing
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.03.029
– volume: 144
  start-page: L127
  year: 1997
  ident: ref_39
  article-title: Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1837634
– volume: 23
  start-page: 415501
  year: 2012
  ident: ref_10
  article-title: An evolution from 3D face-centered-cubic ZnSnO3 nanocubes to 2D orthorhombic ZnSnO3 nanosheets with excellent gas sensing performance
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/41/415501
– volume: 258
  start-page: 492
  year: 2018
  ident: ref_9
  article-title: Facile synthesis of SnO2 hierarchical porous nanosheets from graphene oxide sacrifcial scafolds for high-performance gas sensors
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2017.11.167
– volume: 343
  start-page: 130156
  year: 2021
  ident: ref_25
  article-title: A high-and-rapid-response capacitive humidity sensor of nanoporous anodic alumina by one-step anodizing commercial 1050 aluminum alloy and its enhancement mechanism
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2021.130156
– ident: ref_20
  doi: 10.3390/s21206852
– volume: 54
  start-page: 3683
  year: 2009
  ident: ref_38
  article-title: Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2009.01.046
– volume: 37
  start-page: L1340
  year: 1998
  ident: ref_40
  article-title: Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.37.L1340
– volume: 137
  start-page: 53
  year: 2007
  ident: ref_6
  article-title: Preparation and gas-sensing properties of Ce-doped ZnO thin-film sensors by dip-coating
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2006.10.006
– volume: 503
  start-page: 144063
  year: 2020
  ident: ref_19
  article-title: Tungsten trioxide nanoparticles decorated tungsten disulfide nanoheterojunction for highly sensitive ethanol gas sensing application
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.144063
– volume: 141
  start-page: 441
  year: 2009
  ident: ref_31
  article-title: Capacitive humidity sensor design based on anodic aluminum oxide
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2009.07.007
– volume: 42
  start-page: 8638
  year: 2018
  ident: ref_14
  article-title: Effective reduced graphene oxide sheets/hierarchical fower-like NiO composites for methanol sensing under high humidity
  publication-title: New J. Chem.
  doi: 10.1039/C8NJ01061G
– volume: 28
  start-page: 247
  year: 1987
  ident: ref_29
  article-title: Surface conduction mechanisms and the electrical properties of Al2O3 humidity sensor
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/0169-4332(87)90126-7
– volume: 220
  start-page: 829
  year: 2015
  ident: ref_34
  article-title: Fabrication of porous anodic aluminium oxide layers on paper for humidity sensors
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2015.05.053
– volume: 165
  start-page: E498
  year: 2018
  ident: ref_36
  article-title: Enhancement of Surface Roughness and Growth Morphology of Nanoporous Anodic Alumina from Commercially Aluminum Alloy 1050 Using Two-Step Electrochemical Polishing
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1051810jes
– volume: 5
  start-page: 741
  year: 2006
  ident: ref_37
  article-title: Fast fabrication of long-range ordered porous alumina membranes by hard anodization
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1717
– ident: ref_18
  doi: 10.3390/nano12101768
– volume: 199
  start-page: 384
  year: 2014
  ident: ref_33
  article-title: Sensitivity evolution and enhancement mechanism of porous anodic aluminum oxide humidity sensor using magnetic field
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2014.03.057
– volume: 42
  start-page: 971
  year: 2016
  ident: ref_11
  article-title: Synthesis of boron nitride nanosheets with a few atomic layers and their gas-sensing performance
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2015.08.109
– volume: 390
  start-page: 83
  year: 1999
  ident: ref_12
  article-title: Determination of breath alcohol using a differential-type amperometric biosensor based on alcohol dehydrogenase
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(99)00135-X
– volume: 457
  start-page: 1103
  year: 2018
  ident: ref_7
  article-title: Facile synthesis of hexagonal single-crystalline ZnCo2O4 nanosheet arrays assembled by mesoporous nanosheets as electrodes for high-performance electrochemical capacitors and gas sensors
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.06.297
– volume: 201
  start-page: 211
  year: 2017
  ident: ref_8
  article-title: Synthesis of porous SnO2 hexagon nanosheets loaded with au nanoparticles for high performance gas sensors
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2017.05.024
– ident: ref_15
  doi: 10.3390/s18103334
– volume: 237
  start-page: 443
  year: 2016
  ident: ref_24
  article-title: Optimization of porous anodic alumina nanostructure for ultra-high sensitive humidity sensor
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2016.06.041
– volume: 43
  start-page: 366
  year: 2010
  ident: ref_32
  article-title: Enhanced humidity sensitivity of nanoporous alumina films by controlling the concentration and type of impurity in pore wall
  publication-title: Phys. E Low-Dimens. Syst. Nanostruct.
  doi: 10.1016/j.physe.2010.08.013
– ident: ref_23
  doi: 10.3390/s23042328
– volume: 33
  start-page: 1940044
  year: 2019
  ident: ref_26
  article-title: Relative humidity sensing properties of indium nitride compound with oxygen doping on silicon and AAO substrates
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S021798491940044X
– volume: 16
  start-page: 1451
  year: 2010
  ident: ref_22
  article-title: Effect of oxalic acid concentration on the formation of anodic aluminum oxide using pulse anodization at room temperature
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-009-0944-9
– volume: 210
  start-page: 69
  year: 2015
  ident: ref_27
  article-title: Effect of oxalic acid concentration on the magnetically enhanced capacitance and resistance of AAO humidity sensor
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2014.12.096
– volume: 195
  start-page: 110642
  year: 2022
  ident: ref_17
  article-title: A highly sensitivity and anti-humidity gas sensor for ethanol detection with NdFeO3 nano-coral granules
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2021.110642
– volume: 63
  start-page: 49
  year: 2000
  ident: ref_30
  article-title: Study of the performance degradation of thin film aluminum oxide sensor at high humidity
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/S0925-4005(99)00511-0
SSID ssj0000779007
Score 2.2999637
Snippet With the increases in work environment regulations restricting alcohol to 1000 ppm, and in drink-driving laws, testing for alcohol with a simple method is a...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1330
SubjectTerms AAO
Acids
Alcohol
alcohol vapor
Alcohols
Aluminum alloys
Aluminum oxide
anodization
Boron nitride
Breath tests
Contact angle
Drinking
Drinking of alcoholic beverages
Driving
Drunk driving
Electric properties
Electrodes
Environmental law
Ethanol
Graphene
Humidity
Low temperature
Manufacturing
Measurement methods
Metal oxides
Methods
Morphology
nanoporous alumina
Purity
resistive sensor
Room temperature
Semiconductor materials
Semiconductors
Sensors
Vapor resistance
Working conditions
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7B9gIHxJtAQUYgIQ5R7dh5naq06qriUFChqLfgV8pKkJTuLr-_M4k33aiIUyR7Itkez8sefwPwnpAlhaakMJ-ZWCXcxcbqLC69VJlxopED2udJdnymPp2n5-HAbRnSKjc6sVfUrrN0Rr6HalTyMk_zZP_yT0xVo-h2NZTQuAs7qIKLYgY7B0cnX07HUxZOcHo8H3BJJcb3e78XQvWRGZ9Yoh6w_7Za3rJL05zJLSM0fwgPgvfIqoHdj-CObx_D_S1MwSfwo2rZAEmMeoyd-iUJ8V8fU8DJqqEgLvuu0e1mXzGExU-fNcA-tz6mlC821xY1BUO12yFRt16yqu3cwuLPa8qbeQpn86Nvh8dxKKMQW7Tmq9g7Ia1yWek0l02WOjTpJnf0otVJxzXGPEWuMqu9U41X6CMQLJlQXpXCJcrKZzBru9a_AFY4MujKFkY6VYhGe82zUmCbNYQcF8HHzZLWNmCMU6mLXzXGGrT89c3yR_BupL0ckDX-SXVAnBkpCA27b-iuLuogXHWqM9s4JU2RW2Ux5jM55x73S9M0iXc4rA_E15pkFodjdXh6gJMi9Ku6ytNS0P1vGcHuhvV1EOZlfbP1Ing7dqMY0t2Kbj1ygmgIKw79rQieDztlHLPMkQ_o-UVQTPbQZFLTnnbxs4f6Jvh6hR7sy_-P6xXcS9D5ohS2pNyF2epq7V-js7Qyb4JEXANKzhRh
  priority: 102
  providerName: ProQuest
Title An Effective Resistive-Type Alcohol Vapor Sensor Using One-Step Facile Nanoporous Anodic Alumina
URI https://www.ncbi.nlm.nih.gov/pubmed/37512643
https://www.proquest.com/docview/2843097572
https://www.proquest.com/docview/2844085782
https://pubmed.ncbi.nlm.nih.gov/PMC10384929
https://doaj.org/article/5a6cfd43b87c4c149b700e430fff2ed8
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BucABUV4NtCsjkBCHqHbs2MkxRV0qDgUVinozju2oK5Vs1d3l9zOTpEsikLhwipRMJGee3yjjzwBviFlSOBoKi7pOVcZDWnun0zJKpesgGtmzfZ7qk3P18SK_GB31RTNhPT1wr7jD3GnfBCXrwnjlEc_XhvOoJG-aJouh2-aLNW_UTHU5mGj0uOn5SCX29Yc_FkJ1HRmfVKCOqP_PdDyqR9NZyVHxmT-ChwNqZFW_2l24E9vH8GDEJfgEvlct66mIMX-xs7ii4P0ZU2o0WdUfhMu-OYTb7Au2rnjppgXYpzamNOrF5s5jhmCYbpcotNysWNUuw8Ljyxual3kK5_Pjr-9P0uH4hNRjFV-nMQjpVdBlcFw2Og9YymsTaCdrkIE77HUKo7R3MagmKsQGREcmVFSlCJny8hnstMs27gErAhVy5YtaBlWIxkXHdSnwnq-JMS6Bd7cqtX7gFqcjLq4s9hikfvtb_Qm83spe94waf5U6IstsJYgFu7uBvmEH37D_8o0E3pJdLcUqLse7YcsBfhSxXtnK5KWg_75lAvu3prdDEK8sVm7JS5ObLIFX28cYfvRPxbURLUEyxBGHOCuB572nbNcsDdoBEV8CxcSHJh81fdIuLjuKb6KtV4hcX_wPNbyE-xlCMxpwy8p92FnfbOIBQql1PYO7xfzDDO4dHZ9-Ppt1MfQLmzweyw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAkaAEIeoTuy8DgiFx7KlpUjQVr25ju3ASpCU7i6IP8VvZCavbgTi1lOkeBLZnvE87PE3AI8JWTLQlBTm4sKXIbd-YXTsZ07IuLBBKVq0z914ui_fHUaHa_C7vwtDaZW9TmwUta0N7ZFvohoVPEuiJHxx_N2nqlF0utqX0GjFYtv9-okh2_z51mvk75MwnLzZezX1u6oCvkHjtvCdDYSRNs6s5qKMI4sWrkgsXfC0wnKNIUCayNhoZ2XpJJpMQukKpJNZYENpBP73HJyXAi053UyfvB32dDiB9_GkRUHFdr75bRbIJg7kI7vXlAf42wisWMFxhuaKyZtcgcudr8ryVriuwpqrrsGlFQTD63CUV6wFQEatyT66OamMH86n8JblbflddqDRyWefMGDGR5OjwD5UzqcEMzbRBvUSQyVfI1G9nLO8qu3M4MdLytK5AftnMr03Yb2qK3cbWGrJfZAmLYSVaVBqp3mcBfjOFIRT58GzfkqV6RDNqbDGV4WRDU2_Op1-Dx4NtMctjsc_qV4SZwYKwt5uXtQnn1W3lFWkY1NaKYo0MdJghFkknDuUzrIsQ2exW0-Jr4o0BHbH6O6iAw6KsLZUnkRZQKfNmQcbPetVpzrm6lTQPXg4NOOip5McXTnkBNEQMh16dx7caiVl6LNIkA_oZ3qQjmRoNKhxSzX70gCLE1i-RH_5zv_79QAuTPfe76idrd3tu3AxRLePkufCbAPWFydLdw_dtEVxv1kbDI7OejH-AQ0xTuU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHgTKGAECHGI1omd1wGhlHbVUrRUhaLeUsd22pUgKd1dEH-NX8dMXt0IxK2nlZLJyvGMv5mJx98AvCBmSU9RUZgNc1f63Li5VqGbWCHD3HiFaNg-p-HOoXx_FBytwe_uLAyVVXaYWAO1qTR9Ix8jjAqeREHkj4u2LGJ_a_L27LtLHaRop7Vrp9GYyJ799RPTt_mb3S3U9Uvfn2x_frfjth0GXI2ObuFa4wktTZgYxUURBga9XR4ZOuxphOEK04E4kqFW1sjCSnSfxNjlSSsTz_hSC_zfK7AeUVY0gvXN7en-Qf-FhxOVH48aTlQhEj7-NvNknRXygResmwX87RJWfOKwXnPFAU5uwo02cmVpY2q3YM2Wt-H6Cp_hHThOS9bQISOGsgM7JwD5YV1KdlnaNONlXxSG_OwTps_4U1cssI-ldancjE2URpRiCPkVClXLOUvLysw0Prykmp27cHgpE3wPRmVV2gfAYkPBhNRxLoyMvUJZxcPEw2s6J9Y6B153U5rplt-c2mx8zTDPoenPLqbfgee97FnD6vFPqU3STC9BTNz1her8JGsXdhaoUBdGijyOtNSYb-YR5xZttSgK3xoc1ivSa0Z4gcPRqj32gC9FzFtZGgWJR3vPiQMbneqzFkjm2YXZO_Csv40QQPs6qrSoCZIhnjqM9Ry431hKP2YRoR4w6nQgHtjQ4KWGd8rZaU0zTtT5EqPnh_8f11O4igsx-7A73XsE13yMAamSzk82YLQ4X9rHGLMt8ift4mBwfNnr8Q89jlR3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Effective+Resistive-Type+Alcohol+Vapor+Sensor+Using+One-Step+Facile+Nanoporous+Anodic+Alumina&rft.jtitle=Micromachines+%28Basel%29&rft.au=Chen-Kuei+Chung&rft.au=Chin-An+Ku&rft.date=2023-06-29&rft.pub=MDPI+AG&rft.eissn=2072-666X&rft.volume=14&rft.issue=7&rft.spage=1330&rft_id=info:doi/10.3390%2Fmi14071330&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5a6cfd43b87c4c149b700e430fff2ed8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-666X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-666X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-666X&client=summon