Enhancement of catalytic performance of a metagenome-derived thermophilic oligosaccharide-specific xylanase by binding module removal and random mutagenesis

Xylo-oligosaccharide (XO) is a promising pre-biotic with applications in food, feed and healthcare products. XO can be produced by enzymatic digestion of xylan with xylanase. In this study, we aimed to improve the biochemical properties relevant to catalysis and kinetics of X11, a thermophilic glyco...

Full description

Saved in:
Bibliographic Details
Published inJournal of bioscience and bioengineering Vol. 131; no. 1; pp. 13 - 19
Main Authors Boonyapakron, Katewadee, Chitnumsub, Penchit, Kanokratana, Pattanop, Champreda, Verawat
Format Journal Article
LanguageEnglish
Published Japan Elsevier B.V 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Xylo-oligosaccharide (XO) is a promising pre-biotic with applications in food, feed and healthcare products. XO can be produced by enzymatic digestion of xylan with xylanase. In this study, we aimed to improve the biochemical properties relevant to catalysis and kinetics of X11, a thermophilic glycosyl hydrolase (GH) family 11 endo-β-1,4-xylanase derived from a metagenomic library isolated from sugarcane bagasse, under high-temperature conditions preferred for XO synthesis. Removal of a carbohydrate-binding module (X11C) resulted in 6.5 fold greater catalytic efficiency. X11C was further improved by a Pro71Thr mutation in the X11P variant obtained from a random mutagenesis library, which exhibited 15.9 fold greater catalytic efficiency compared with wild-type X11 under the enzyme's optimal conditions of 80°C and pH 6.0. Homology modeling suggested that the improved performance of X11P could be attributed to formation of an extra H-bond between Thr71 and Ser75, which stabilizes the key catalytic residue Glu180 at the active pocket and β-sheet layers and agrees with the respective increase in melting temperature (Tm) where X11P >X11C >X11 as determined by differential scanning fluorimetry. The X11P variant was tested for hydrolysis of beechwood xylan, which showed X6 as the major product followed by X3 and X4 XOs. The highest yield of 5.5 g total XOs product/mg enzyme was observed for X11P, equivalent to 3.7 fold higher than that of wild-type with XO production of >800 mg/g xylan. The X11P enzyme could be developed as a thermophilic biocatalyst for XO synthesis in biorefineries. [Display omitted] •XO-specific X11P was obtained by CBM removal and directed evolution.•X11P worked optimally at 80°C with 4.1x increase in specific activity.•X11P exhibited lower Km (4.6x) and higher kcat/Km (15.9x) compared to X11.•A 3.1 folds increase in XO yield (X6 > X3 > X4) was achieved by X11P.•Introduced H-bond (Thr71-Ser75) stabilized catalytic residue Glu180.
AbstractList Xylo-oligosaccharide (XO) is a promising pre-biotic with applications in food, feed and healthcare products. XO can be produced by enzymatic digestion of xylan with xylanase. In this study, we aimed to improve the biochemical properties relevant to catalysis and kinetics of X11, a thermophilic glycosyl hydrolase (GH) family 11 endo-β-1,4-xylanase derived from a metagenomic library isolated from sugarcane bagasse, under high-temperature conditions preferred for XO synthesis. Removal of a carbohydrate-binding module (X11C) resulted in 6.5 fold greater catalytic efficiency. X11C was further improved by a Pro71Thr mutation in the X11P variant obtained from a random mutagenesis library, which exhibited 15.9 fold greater catalytic efficiency compared with wild-type X11 under the enzyme's optimal conditions of 80°C and pH 6.0. Homology modeling suggested that the improved performance of X11P could be attributed to formation of an extra H-bond between Thr71 and Ser75, which stabilizes the key catalytic residue Glu180 at the active pocket and β-sheet layers and agrees with the respective increase in melting temperature (T ) where X11P >X11C >X11 as determined by differential scanning fluorimetry. The X11P variant was tested for hydrolysis of beechwood xylan, which showed X6 as the major product followed by X3 and X4 XOs. The highest yield of 5.5 g total XOs product/mg enzyme was observed for X11P, equivalent to 3.7 fold higher than that of wild-type with XO production of >800 mg/g xylan. The X11P enzyme could be developed as a thermophilic biocatalyst for XO synthesis in biorefineries.
Xylo-oligosaccharide (XO) is a promising pre-biotic with applications in food, feed and healthcare products. XO can be produced by enzymatic digestion of xylan with xylanase. In this study, we aimed to improve the biochemical properties relevant to catalysis and kinetics of X11, a thermophilic glycosyl hydrolase (GH) family 11 endo-β-1,4-xylanase derived from a metagenomic library isolated from sugarcane bagasse, under high-temperature conditions preferred for XO synthesis. Removal of a carbohydrate-binding module (X11C) resulted in 6.5 fold greater catalytic efficiency. X11C was further improved by a Pro71Thr mutation in the X11P variant obtained from a random mutagenesis library, which exhibited 15.9 fold greater catalytic efficiency compared with wild-type X11 under the enzyme's optimal conditions of 80°C and pH 6.0. Homology modeling suggested that the improved performance of X11P could be attributed to formation of an extra H-bond between Thr71 and Ser75, which stabilizes the key catalytic residue Glu180 at the active pocket and β-sheet layers and agrees with the respective increase in melting temperature (Tm) where X11P >X11C >X11 as determined by differential scanning fluorimetry. The X11P variant was tested for hydrolysis of beechwood xylan, which showed X6 as the major product followed by X3 and X4 XOs. The highest yield of 5.5 g total XOs product/mg enzyme was observed for X11P, equivalent to 3.7 fold higher than that of wild-type with XO production of >800 mg/g xylan. The X11P enzyme could be developed as a thermophilic biocatalyst for XO synthesis in biorefineries.Xylo-oligosaccharide (XO) is a promising pre-biotic with applications in food, feed and healthcare products. XO can be produced by enzymatic digestion of xylan with xylanase. In this study, we aimed to improve the biochemical properties relevant to catalysis and kinetics of X11, a thermophilic glycosyl hydrolase (GH) family 11 endo-β-1,4-xylanase derived from a metagenomic library isolated from sugarcane bagasse, under high-temperature conditions preferred for XO synthesis. Removal of a carbohydrate-binding module (X11C) resulted in 6.5 fold greater catalytic efficiency. X11C was further improved by a Pro71Thr mutation in the X11P variant obtained from a random mutagenesis library, which exhibited 15.9 fold greater catalytic efficiency compared with wild-type X11 under the enzyme's optimal conditions of 80°C and pH 6.0. Homology modeling suggested that the improved performance of X11P could be attributed to formation of an extra H-bond between Thr71 and Ser75, which stabilizes the key catalytic residue Glu180 at the active pocket and β-sheet layers and agrees with the respective increase in melting temperature (Tm) where X11P >X11C >X11 as determined by differential scanning fluorimetry. The X11P variant was tested for hydrolysis of beechwood xylan, which showed X6 as the major product followed by X3 and X4 XOs. The highest yield of 5.5 g total XOs product/mg enzyme was observed for X11P, equivalent to 3.7 fold higher than that of wild-type with XO production of >800 mg/g xylan. The X11P enzyme could be developed as a thermophilic biocatalyst for XO synthesis in biorefineries.
Xylo-oligosaccharide (XO) is a promising pre-biotic with applications in food, feed and healthcare products. XO can be produced by enzymatic digestion of xylan with xylanase. In this study, we aimed to improve the biochemical properties relevant to catalysis and kinetics of X11, a thermophilic glycosyl hydrolase (GH) family 11 endo-β-1,4-xylanase derived from a metagenomic library isolated from sugarcane bagasse, under high-temperature conditions preferred for XO synthesis. Removal of a carbohydrate-binding module (X11C) resulted in 6.5 fold greater catalytic efficiency. X11C was further improved by a Pro71Thr mutation in the X11P variant obtained from a random mutagenesis library, which exhibited 15.9 fold greater catalytic efficiency compared with wild-type X11 under the enzyme's optimal conditions of 80°C and pH 6.0. Homology modeling suggested that the improved performance of X11P could be attributed to formation of an extra H-bond between Thr71 and Ser75, which stabilizes the key catalytic residue Glu180 at the active pocket and β-sheet layers and agrees with the respective increase in melting temperature (Tₘ) where X11P >X11C >X11 as determined by differential scanning fluorimetry. The X11P variant was tested for hydrolysis of beechwood xylan, which showed X6 as the major product followed by X3 and X4 XOs. The highest yield of 5.5 g total XOs product/mg enzyme was observed for X11P, equivalent to 3.7 fold higher than that of wild-type with XO production of >800 mg/g xylan. The X11P enzyme could be developed as a thermophilic biocatalyst for XO synthesis in biorefineries.
Xylo-oligosaccharide (XO) is a promising pre-biotic with applications in food, feed and healthcare products. XO can be produced by enzymatic digestion of xylan with xylanase. In this study, we aimed to improve the biochemical properties relevant to catalysis and kinetics of X11, a thermophilic glycosyl hydrolase (GH) family 11 endo-β-1,4-xylanase derived from a metagenomic library isolated from sugarcane bagasse, under high-temperature conditions preferred for XO synthesis. Removal of a carbohydrate-binding module (X11C) resulted in 6.5 fold greater catalytic efficiency. X11C was further improved by a Pro71Thr mutation in the X11P variant obtained from a random mutagenesis library, which exhibited 15.9 fold greater catalytic efficiency compared with wild-type X11 under the enzyme's optimal conditions of 80°C and pH 6.0. Homology modeling suggested that the improved performance of X11P could be attributed to formation of an extra H-bond between Thr71 and Ser75, which stabilizes the key catalytic residue Glu180 at the active pocket and β-sheet layers and agrees with the respective increase in melting temperature (Tm) where X11P >X11C >X11 as determined by differential scanning fluorimetry. The X11P variant was tested for hydrolysis of beechwood xylan, which showed X6 as the major product followed by X3 and X4 XOs. The highest yield of 5.5 g total XOs product/mg enzyme was observed for X11P, equivalent to 3.7 fold higher than that of wild-type with XO production of >800 mg/g xylan. The X11P enzyme could be developed as a thermophilic biocatalyst for XO synthesis in biorefineries. [Display omitted] •XO-specific X11P was obtained by CBM removal and directed evolution.•X11P worked optimally at 80°C with 4.1x increase in specific activity.•X11P exhibited lower Km (4.6x) and higher kcat/Km (15.9x) compared to X11.•A 3.1 folds increase in XO yield (X6 > X3 > X4) was achieved by X11P.•Introduced H-bond (Thr71-Ser75) stabilized catalytic residue Glu180.
Author Champreda, Verawat
Boonyapakron, Katewadee
Chitnumsub, Penchit
Kanokratana, Pattanop
Author_xml – sequence: 1
  givenname: Katewadee
  surname: Boonyapakron
  fullname: Boonyapakron, Katewadee
  organization: Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
– sequence: 2
  givenname: Penchit
  surname: Chitnumsub
  fullname: Chitnumsub, Penchit
  organization: Biomolecular Analysis and Application Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
– sequence: 3
  givenname: Pattanop
  surname: Kanokratana
  fullname: Kanokratana, Pattanop
  organization: Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
– sequence: 4
  givenname: Verawat
  orcidid: 0000-0001-7768-1340
  surname: Champreda
  fullname: Champreda, Verawat
  email: verawat@biotec.or.th
  organization: Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33067124$$D View this record in MEDLINE/PubMed
BookMark eNqFkcuKFDEUhgsZcS76BiJZuqky17q4EGQYLzDgRtchlZx0p6kkZZJq7HfxYa2yZzYunE0S-C8nnO-6uggxQFW9JrghmLTvDs1hdDHrhmKKGzw0GPfPqivCeFdzTsnF9u6HmnSUXVbXOR8wJh3uyIvqkjHcdoTyq-r3XdiroMFDKChapFVR06k4jWZINia_iZugkIeidhCih9pAckcwqOwh-Tjv3bQG4uR2MSut9yo5A3WeQTu7Cr9OkwoqAxpPaHTBuLBDPpplApTAx6OakAoGpfWIHvnl7xjILr-snls1ZXj1cN9UPz7dfb_9Ut9_-_z19uN9rQWhpQaisLW4Z1SPYjStaHnfEa2tZpqDIqyzg2Vd23eG8l7QcRAdH3rRjoNuGePspnp77p1T_LlALtK7rGFavw1xyZIKyintKR6etnJBeoEFZ6v1zYN1GT0YOSfnVTrJx-Wvhvdng04x5wRWaldUcTGUpNwkCZYbaXmQZ9JyIy3xIFfSa5j_E37sfyL24RyDdZ9HB0lm7WBlbFwCXaSJ7v8FfwAZx8eR
CitedBy_id crossref_primary_10_1007_s00253_022_11823_3
crossref_primary_10_1080_21655979_2021_2023801
crossref_primary_10_1016_j_bcab_2022_102478
crossref_primary_10_1007_s13205_022_03339_4
crossref_primary_10_1016_j_jclepro_2021_128332
crossref_primary_10_1038_s41598_022_19774_5
crossref_primary_10_1016_j_biortech_2021_125737
crossref_primary_10_1016_j_ijbiomac_2024_137205
crossref_primary_10_1016_j_biotno_2023_02_003
crossref_primary_10_1007_s10529_021_03202_1
crossref_primary_10_1016_j_heliyon_2023_e18316
crossref_primary_10_1007_s00253_024_13356_3
crossref_primary_10_1016_j_enzmictec_2023_110375
crossref_primary_10_1038_s41598_021_95369_w
Cites_doi 10.1016/j.carres.2012.07.017
10.1007/s12010-014-1042-8
10.1016/j.biortech.2008.02.009
10.1128/AEM.03677-14
10.1016/S0924-2244(01)00031-0
10.1021/jf063580d
10.1186/1754-6834-6-30
10.1007/s10068-014-0207-0
10.1080/10408390500215746
10.1371/journal.pone.0052459
10.1016/j.enzmictec.2014.07.004
10.1016/j.enzmictec.2005.08.007
10.1016/j.ijbiomac.2013.11.012
10.1016/j.procbio.2013.01.010
10.1016/j.biortech.2012.09.112
10.1016/S0021-9258(18)86000-8
10.1016/j.jmb.2007.11.007
10.1186/s13068-015-0200-8
10.1016/j.ijbiomac.2012.06.036
10.1007/s10529-011-0698-1
10.1007/s00248-013-0209-0
10.1016/j.indcrop.2013.08.062
10.1016/j.procbio.2004.12.006
10.1021/ac60147a030
10.1021/jf0635964
10.1186/1754-6834-6-18
10.1186/1475-2859-10-20
10.1016/j.bcdf.2014.12.003
10.1016/j.biotechadv.2011.11.006
10.1271/bbb.100429
10.1007/s12010-014-1355-7
10.1016/j.cattod.2015.05.032
10.1007/s12010-013-0174-6
10.1021/acs.jafc.6b05183
10.1007/s00253-004-1797-x
10.1128/AEM.64.5.1759-1765.1998
10.1111/j.1750-3841.2012.02671.x
10.1016/j.pep.2005.01.016
10.1016/S0141-0229(96)00236-0
10.1016/j.femsre.2004.06.005
10.1016/j.lwt.2015.08.013
10.1186/1754-6834-7-27
10.1146/annurev-arplant-042809-112315
10.1016/j.carres.2019.01.003
10.1016/j.jbiosc.2014.09.010
10.1016/j.biortech.2011.10.083
10.1007/s12033-018-0059-6
10.1139/w01-118
10.1016/j.molcatb.2014.02.004
10.1038/s41598-017-12659-y
10.1016/j.fbp.2014.07.012
10.1016/j.biortech.2014.09.139
10.1007/s10295-008-0350-9
10.1016/j.indcrop.2013.12.005
10.1038/nprot.2007.321
10.1016/j.bej.2009.08.010
10.1016/j.biotechadv.2011.10.003
10.1016/j.biortech.2011.03.110
10.1016/j.pep.2007.10.020
10.1016/j.biortech.2009.05.038
ContentType Journal Article
Copyright 2020 The Society for Biotechnology, Japan
Copyright © 2020 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 The Society for Biotechnology, Japan
– notice: Copyright © 2020 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.jbiosc.2020.09.008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1347-4421
EndPage 19
ExternalDocumentID 33067124
10_1016_j_jbiosc_2020_09_008
S1389172320303571
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29K
2WC
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AAAJQ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIWK
ACPRK
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CJTIS
CS3
D-I
DOVZS
DU5
E3Z
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
LUGTX
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSI
SSU
SSZ
T5K
TKC
TR2
UNMZH
XFK
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c512t-e1a0ff0832cb5bd6564871ccfc3c4ea137f9f37687d24852b95749856b9c63343
IEDL.DBID .~1
ISSN 1389-1723
1347-4421
IngestDate Tue Aug 05 10:49:12 EDT 2025
Fri Jul 11 06:31:18 EDT 2025
Wed Feb 19 02:29:47 EST 2025
Tue Jul 01 02:45:34 EDT 2025
Thu Apr 24 22:56:56 EDT 2025
Fri Feb 23 02:48:22 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Xylo-oligosaccharide
Catalytic domain
Directed evolution
Xylanase
Metagenome
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2020 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-e1a0ff0832cb5bd6564871ccfc3c4ea137f9f37687d24852b95749856b9c63343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7768-1340
PMID 33067124
PQID 2451850543
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2524228209
proquest_miscellaneous_2451850543
pubmed_primary_33067124
crossref_citationtrail_10_1016_j_jbiosc_2020_09_008
crossref_primary_10_1016_j_jbiosc_2020_09_008
elsevier_sciencedirect_doi_10_1016_j_jbiosc_2020_09_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
2021-Jan
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Journal of bioscience and bioengineering
PublicationTitleAlternate J Biosci Bioeng
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ma, Bai, Huang, Luo, Chen, Fan, Cai, Yao (bib19) 2017; 65
Kumar, Dangi, Shukla (bib21) 2018; 60
Mohana, Shah, Divecha, Madamwar (bib16) 2008; 99
Morris, Gibbs, Chin, Koh, Wong, Allison, Nelson, Bergquist (bib27) 1998; 64
Vardakou, Dumon, Murray, Christakopoulos, Weiner, Juge, Lewis, Gilbert, Flint (bib36) 2008; 375
Wang, Ma, Xie, Liu, Tu, Zheng, You, Ge, Xie, Yao, Luo (bib50) 2017; 7
Milessi, Kopp, Rojas, Manrich, Baptista-Neto, Tardioli, Giordano, Fernandez-Lafuente, Guisan, Giordano (bib55) 2016; 259
Paes, Berrin, Beaugrand (bib24) 2012; 30
Liu, Liu (bib58) 2008; 57
Falck, Aronsson, Grey, Stålbrand, Nordberg Karlsson, Adlercreutz (bib49) 2014; 174
Meng, Ying, Chen, Lu, Ning, Wang, Li (bib25) 2015; 81
Aragon, Mateo, Ruiz-Matute, Corzo, Fernandez-Lorente, Sevillano, Díaz, Monti, Santamaría, Guisan (bib57) 2013; 48
Akpinar, Ak, Kavas, Bakir, Yilmaz (bib9) 2007; 55
Niesen, Berglund, Vedadi (bib35) 2007; 2
Varnai, Siika-Aho, Viikari (bib41) 2013; 6
Zhu, Li, Sun, Song, Li, Song (bib60) 2012; 77
Juturu, Wu (bib3) 2014; 174
Leskinen, Mäntylä, Fagerström, Vehmaanperä, Lantto, Paloheimo, Suominen (bib26) 2005; 67
Mcilvaine (bib34) 1921; 49
Studier (bib32) 2005; 41
Gonzales, Brooks, Pukatzki, Provenzano (bib29) 2013; 8
Abraham, Bhat (bib31) 2008; 35
Yang, Wang, Song, Xu (bib52) 2011; 102
Verma, Anand, Satyanarayana (bib17) 2013; 170
Kanokratana, Mhuantong, Laothanachareon, Tangphatsornruang, Eurwilaichitr, Pootanakit, Champreda (bib38) 2013; 66
Lafond, Tauzin, Desseaux, Bonnin, Ajandouz el, Giardina (bib44) 2011; 10
Ai, Jiang, Li, Deng, Kusakabe, Li (bib13) 2005; 40
Rattanachomsri, Kanokratana, Eurwilaichitr, Igarashi, Champreda (bib37) 2011; 75
Boonchuay, Techapun, Seesuriyachan, Chaiyaso (bib53) 2014; 23
Reddy, Krishnan (bib20) 2016; 65
Driss, Zouari-Ellouzi, Chaari, Kallel, Ghazala, Bouaziz, ghorbel, Chaabouni (bib47) 2014; 102
Zhang, Moilanen, Tang, Viikari (bib42) 2013; 6
Kumar, Satyanarayana (bib15) 2011; 33
Jun, Bing, Keying, Daiwen (bib48) 2009; 48
Kitamoto, Tokuda, Watanabe, Arioka (bib28) 2019; 474
Collins, Gerday, Feller (bib12) 2005; 29
Pakarinen, Haven, Djajadi, Varnai, Puranen, Viikari (bib40) 2014; 7
Mandelli, Brenelli, Almeida, Goldbeck, Wolf, Hoffmam, Ruller, Rocha, Mercadante, Squina (bib59) 2014; 52
Haddar, Driss, Frikha, Ellouz-Chaabouni, Nasri (bib14) 2012; 51
Juturu, Wu (bib2) 2012; 30
Bragatto, Segato, Squina (bib54) 2013; 51
Vázquez, Alonso, Dominguez, Parajó (bib8) 2000; 11
Mhuantong, Charoensawan, Kanokratana, Tangphatsornruang, Champreda (bib39) 2015; 8
Kallel, Driss, Bouaziz, Neifer, Ghorbel, Ellouz Chaabouni (bib43) 2015; 94
Verma, Kawarabayasi, Miyazaki, Satyanarayana (bib23) 2013; 8
Wang, Du, Weng, Liu, Wang, Liu (bib45) 2015; 175
Otieno, Ahring (bib7) 2012; 360
Chen, Tang, Cheng (bib46) 2001; 47
Chapla, Pandit, Shah (bib10) 2012; 115
Meddeb-Mouelhi, Moisan, Beauregard (bib30) 2014; 66
Chen, Zhang, Zhang, Chen, Sun, Zhou, Zhang (bib61) 2009; 100
Kanokratana, Eurwilaichitr, Pootanakit, Champreda (bib22) 2015; 119
Swennen, Courtin, Delcour (bib6) 2006; 46
Miller (bib33) 1959; 31
Scheller, Ulvskov (bib1) 2010; 61
Bian, Peng, Peng, Peng, Xu, Sun (bib5) 2013; 127
Li, Tian, Cheng, Jiang, Yang (bib18) 2006; 38
Yang, Yang, Liu (bib56) 2007; 55
Chen, Chen, Lin (bib11) 1997; 21
Samanta, Jayapal, Jayaram, Roy, Kolte, Senani, Sridhar (bib4) 2015; 5
Gowdhaman, Manaswini, Jayanthi, Dhanasri, Jeyalakshmi, Gunasekar, Sugumaran, Ponnusami (bib51) 2014; 64
Abraham (10.1016/j.jbiosc.2020.09.008_bib31) 2008; 35
Haddar (10.1016/j.jbiosc.2020.09.008_bib14) 2012; 51
Gonzales (10.1016/j.jbiosc.2020.09.008_bib29) 2013; 8
Chen (10.1016/j.jbiosc.2020.09.008_bib46) 2001; 47
Boonchuay (10.1016/j.jbiosc.2020.09.008_bib53) 2014; 23
Mcilvaine (10.1016/j.jbiosc.2020.09.008_bib34) 1921; 49
Verma (10.1016/j.jbiosc.2020.09.008_bib17) 2013; 170
Morris (10.1016/j.jbiosc.2020.09.008_bib27) 1998; 64
Samanta (10.1016/j.jbiosc.2020.09.008_bib4) 2015; 5
Kitamoto (10.1016/j.jbiosc.2020.09.008_bib28) 2019; 474
Falck (10.1016/j.jbiosc.2020.09.008_bib49) 2014; 174
Chen (10.1016/j.jbiosc.2020.09.008_bib11) 1997; 21
Swennen (10.1016/j.jbiosc.2020.09.008_bib6) 2006; 46
Driss (10.1016/j.jbiosc.2020.09.008_bib47) 2014; 102
Vardakou (10.1016/j.jbiosc.2020.09.008_bib36) 2008; 375
Verma (10.1016/j.jbiosc.2020.09.008_bib23) 2013; 8
Vázquez (10.1016/j.jbiosc.2020.09.008_bib8) 2000; 11
Collins (10.1016/j.jbiosc.2020.09.008_bib12) 2005; 29
Kanokratana (10.1016/j.jbiosc.2020.09.008_bib38) 2013; 66
Lafond (10.1016/j.jbiosc.2020.09.008_bib44) 2011; 10
Gowdhaman (10.1016/j.jbiosc.2020.09.008_bib51) 2014; 64
Juturu (10.1016/j.jbiosc.2020.09.008_bib3) 2014; 174
Aragon (10.1016/j.jbiosc.2020.09.008_bib57) 2013; 48
Wang (10.1016/j.jbiosc.2020.09.008_bib45) 2015; 175
Meng (10.1016/j.jbiosc.2020.09.008_bib25) 2015; 81
Niesen (10.1016/j.jbiosc.2020.09.008_bib35) 2007; 2
Otieno (10.1016/j.jbiosc.2020.09.008_bib7) 2012; 360
Bragatto (10.1016/j.jbiosc.2020.09.008_bib54) 2013; 51
Rattanachomsri (10.1016/j.jbiosc.2020.09.008_bib37) 2011; 75
Yang (10.1016/j.jbiosc.2020.09.008_bib56) 2007; 55
Li (10.1016/j.jbiosc.2020.09.008_bib18) 2006; 38
Kumar (10.1016/j.jbiosc.2020.09.008_bib15) 2011; 33
Paes (10.1016/j.jbiosc.2020.09.008_bib24) 2012; 30
Mandelli (10.1016/j.jbiosc.2020.09.008_bib59) 2014; 52
Varnai (10.1016/j.jbiosc.2020.09.008_bib41) 2013; 6
Miller (10.1016/j.jbiosc.2020.09.008_bib33) 1959; 31
Milessi (10.1016/j.jbiosc.2020.09.008_bib55) 2016; 259
Ma (10.1016/j.jbiosc.2020.09.008_bib19) 2017; 65
Studier (10.1016/j.jbiosc.2020.09.008_bib32) 2005; 41
Liu (10.1016/j.jbiosc.2020.09.008_bib58) 2008; 57
Ai (10.1016/j.jbiosc.2020.09.008_bib13) 2005; 40
Meddeb-Mouelhi (10.1016/j.jbiosc.2020.09.008_bib30) 2014; 66
Bian (10.1016/j.jbiosc.2020.09.008_bib5) 2013; 127
Mohana (10.1016/j.jbiosc.2020.09.008_bib16) 2008; 99
Juturu (10.1016/j.jbiosc.2020.09.008_bib2) 2012; 30
Akpinar (10.1016/j.jbiosc.2020.09.008_bib9) 2007; 55
Zhu (10.1016/j.jbiosc.2020.09.008_bib60) 2012; 77
Kallel (10.1016/j.jbiosc.2020.09.008_bib43) 2015; 94
Scheller (10.1016/j.jbiosc.2020.09.008_bib1) 2010; 61
Chen (10.1016/j.jbiosc.2020.09.008_bib61) 2009; 100
Kanokratana (10.1016/j.jbiosc.2020.09.008_bib22) 2015; 119
Wang (10.1016/j.jbiosc.2020.09.008_bib50) 2017; 7
Chapla (10.1016/j.jbiosc.2020.09.008_bib10) 2012; 115
Yang (10.1016/j.jbiosc.2020.09.008_bib52) 2011; 102
Zhang (10.1016/j.jbiosc.2020.09.008_bib42) 2013; 6
Kumar (10.1016/j.jbiosc.2020.09.008_bib21) 2018; 60
Reddy (10.1016/j.jbiosc.2020.09.008_bib20) 2016; 65
Jun (10.1016/j.jbiosc.2020.09.008_bib48) 2009; 48
Mhuantong (10.1016/j.jbiosc.2020.09.008_bib39) 2015; 8
Pakarinen (10.1016/j.jbiosc.2020.09.008_bib40) 2014; 7
Leskinen (10.1016/j.jbiosc.2020.09.008_bib26) 2005; 67
References_xml – volume: 115
  start-page: 215
  year: 2012
  end-page: 221
  ident: bib10
  article-title: Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics
  publication-title: Bioresour. Technol.
– volume: 174
  start-page: 81
  year: 2014
  end-page: 92
  ident: bib3
  article-title: Microbial exo-xylanases: a mini review
  publication-title: Appl. Biochem. Biotechnol.
– volume: 102
  start-page: 7171
  year: 2011
  end-page: 7176
  ident: bib52
  article-title: Production of xylooligosaccharides by xylanase from
  publication-title: Bioresour. Technol.
– volume: 10
  start-page: 20
  year: 2011
  ident: bib44
  article-title: GH10 xylanase D from
  publication-title: Microb. Cell Fact.
– volume: 46
  start-page: 459
  year: 2006
  end-page: 471
  ident: bib6
  article-title: Non-digestible oligosaccharides with prebiotic properties
  publication-title: Crit. Rev. Food Sci. Nutr.
– volume: 65
  start-page: 237
  year: 2016
  end-page: 245
  ident: bib20
  article-title: Production of high-pure xylooligosaccharides from sugarcane bagasse using crude β-xylosidase-free xylanase of
  publication-title: LWT - Food Sci. Technol.
– volume: 60
  start-page: 226
  year: 2018
  end-page: 235
  ident: bib21
  article-title: Engineering thermostable microbial xylanases toward its industrial applications
  publication-title: Mol. Biotechnol.
– volume: 31
  start-page: 426
  year: 1959
  end-page: 428
  ident: bib33
  article-title: Use of dinitrosalicylic acid reagent for determination of reducing sugar
  publication-title: Anal. Chem.
– volume: 52
  start-page: 770
  year: 2014
  end-page: 775
  ident: bib59
  article-title: Simultaneous production of xylooligosaccharides and antioxidant compounds from sugarcane bagasse via enzymatic hydrolysis
  publication-title: Ind. Crop. Prod.
– volume: 40
  start-page: 2707
  year: 2005
  end-page: 2714
  ident: bib13
  article-title: Immobilization of
  publication-title: Process Biochem.
– volume: 55
  start-page: 5544
  year: 2007
  end-page: 5551
  ident: bib9
  article-title: Enzymatic production of xylooligosaccharides from cotton stalks
  publication-title: J. Agric. Food Chem.
– volume: 8
  year: 2013
  ident: bib29
  article-title: Rapid protocol for preparation of electrocompetent
  publication-title: J. Vis. Exp.
– volume: 6
  start-page: 30
  year: 2013
  ident: bib41
  article-title: Carbohydrate-binding modules (CBMs) revisited: reduced amount of water counterbalances the need for CBMs
  publication-title: Biotechnol. Biofuels
– volume: 48
  start-page: 478
  year: 2013
  end-page: 483
  ident: bib57
  article-title: Production of xylo-oligosaccharides by immobilized-stabilized derivatives of endo-xylanase from
  publication-title: Process Biochem.
– volume: 5
  start-page: 62
  year: 2015
  end-page: 71
  ident: bib4
  article-title: Xylooligosaccharides as prebiotics from agricultural by-products: production and applications
  publication-title: Bioact. Carbohydr. Diet Fibre
– volume: 259
  start-page: 130
  year: 2016
  end-page: 139
  ident: bib55
  article-title: Immobilization and stabilization of an endoxylanase from
  publication-title: Catal. Today
– volume: 11
  start-page: 387
  year: 2000
  end-page: 393
  ident: bib8
  article-title: Xylooligosaccharides: manufacture and applications
  publication-title: Trends Food Sci. Technol.
– volume: 99
  start-page: 7553
  year: 2008
  end-page: 7564
  ident: bib16
  article-title: Xylanase production by
  publication-title: Bioresour. Technol.
– volume: 57
  start-page: 101
  year: 2008
  end-page: 107
  ident: bib58
  article-title: Expression of recombinant
  publication-title: Protein Expr. Purif.
– volume: 30
  start-page: 564
  year: 2012
  end-page: 592
  ident: bib24
  article-title: GH11 xylanases: structure/function/properties relationships and applications
  publication-title: Biotechnol. Adv.
– volume: 175
  start-page: 1318
  year: 2015
  end-page: 1329
  ident: bib45
  article-title: Recombination of thermo-alkalistable, high xylooligosaccharides producing endo-xylanase from
  publication-title: Appl. Biochem. Biotechnol.
– volume: 66
  start-page: 16
  year: 2014
  end-page: 19
  ident: bib30
  article-title: A comparison of plate assay methods for detecting extracellular cellulase and xylanase activity
  publication-title: Enzyme Microb. Technol.
– volume: 41
  start-page: 207
  year: 2005
  end-page: 234
  ident: bib32
  article-title: Protein production by auto-induction in high density shaking cultures
  publication-title: Protein Expr. Purif.
– volume: 81
  start-page: 2006
  year: 2015
  end-page: 2014
  ident: bib25
  article-title: Distinct roles for carbohydrate-binding modules of glycoside hydrolase 10 (GH10) and GH11 xylanases from
  publication-title: Appl. Environ. Microbiol.
– volume: 51
  start-page: 647
  year: 2012
  end-page: 656
  ident: bib14
  article-title: Alkaline xylanases from
  publication-title: Int. J. Biol. Macromol.
– volume: 29
  start-page: 3
  year: 2005
  end-page: 23
  ident: bib12
  article-title: Xylanases, xylanase families and extremophilic xylanases
  publication-title: FEMS Microbiol. Rev.
– volume: 65
  start-page: 1139
  year: 2017
  end-page: 1145
  ident: bib19
  article-title: Utility of thermostable xylanases of
  publication-title: J. Agric. Food Chem.
– volume: 6
  start-page: 18
  year: 2013
  ident: bib42
  article-title: The carbohydrate-binding module of xylanase from
  publication-title: Biotechnol. Biofuels
– volume: 23
  start-page: 1515
  year: 2014
  end-page: 1523
  ident: bib53
  article-title: Production of xylooligosaccharides from corncob using a crude thermostable endo-xylanase from
  publication-title: Food Sci. Biotechnol.
– volume: 7
  start-page: 15287
  year: 2017
  ident: bib50
  article-title: Thermostability improvement of a
  publication-title: Sci. Rep.
– volume: 67
  start-page: 495
  year: 2005
  end-page: 505
  ident: bib26
  article-title: Thermostable xylanases, Xyn10A and Xyn11A, from the actinomycete
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 170
  start-page: 119
  year: 2013
  end-page: 130
  ident: bib17
  article-title: Thermostable and alkalistable endoxylanase of the extremely thermophilic bacterium
  publication-title: Appl. Biochem. Biotechnol.
– volume: 66
  start-page: 322
  year: 2013
  end-page: 334
  ident: bib38
  article-title: Phylogenetic analysis and metabolic potential of microbial communities in an industrial bagasse collection site
  publication-title: Microb. Ecol.
– volume: 7
  start-page: 27
  year: 2014
  ident: bib40
  article-title: Cellulases without carbohydrate-binding modules in high consistency ethanol production process
  publication-title: Biotechnol. Biofuels
– volume: 100
  start-page: 5230
  year: 2009
  end-page: 5236
  ident: bib61
  article-title: Purification and enzymatic characterization of two β-endoxylanases from
  publication-title: Bioresour. Technol.
– volume: 119
  start-page: 384
  year: 2015
  end-page: 391
  ident: bib22
  article-title: Identification of glycosyl hydrolases from a metagenomic library of microflora in sugarcane bagasse collection site and their cooperative action on cellulose degradation
  publication-title: J. Biosci. Bioeng.
– volume: 2
  start-page: 2212
  year: 2007
  end-page: 2221
  ident: bib35
  article-title: The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability
  publication-title: Nat. Protoc.
– volume: 8
  start-page: e52459
  year: 2013
  ident: bib23
  article-title: Cloning, expression and characteristics of a novel alkalistable and thermostable xylanase encoding gene (
  publication-title: PloS One
– volume: 77
  start-page: C506
  year: 2012
  end-page: C511
  ident: bib60
  article-title: Properties of an alkaline-tolerant, thermostable xylanase from
  publication-title: J. Food Sci.
– volume: 174
  start-page: 118
  year: 2014
  end-page: 125
  ident: bib49
  article-title: Production of arabinoxylan-oligosaccharide mixtures of varying composition from rye bran by a combination of process conditions and type of xylanase
  publication-title: Bioresour. Technol.
– volume: 47
  start-page: 1088
  year: 2001
  end-page: 1094
  ident: bib46
  article-title: Directed evolution to produce an alkalophilic variant from a
  publication-title: Can. J. Microbiol.
– volume: 48
  start-page: 87
  year: 2009
  end-page: 92
  ident: bib48
  article-title: Functional characterization of a recombinant thermostable xylanase from
  publication-title: Biochem. Eng. J.
– volume: 94
  start-page: 536
  year: 2015
  end-page: 546
  ident: bib43
  article-title: Production of xylooligosaccharides from garlic straw xylan by purified xylanase from
  publication-title: Food Bioprod. Process.
– volume: 360
  start-page: 84
  year: 2012
  end-page: 92
  ident: bib7
  article-title: The potential for oligosaccharide production from the hemicellulose fraction of biomasses through pretreatment processes:xylooligosaccharides (XOS), arabinooligosaccharides (AOS), and mannooligosaccharides (MOS)
  publication-title: Carbohydr. Res.
– volume: 55
  start-page: 3955
  year: 2007
  end-page: 3959
  ident: bib56
  article-title: Production of xylooligosaccharides from xylans by extracellular xylanases from
  publication-title: J. Agric. Food Chem.
– volume: 127
  start-page: 236
  year: 2013
  end-page: 241
  ident: bib5
  article-title: Structural features and antioxidant activity of xylooligosaccharides enzymatically produced from sugarcane bagasse
  publication-title: Bioresour. Technol.
– volume: 64
  start-page: 90
  year: 2014
  end-page: 98
  ident: bib51
  article-title: Xylanase production from
  publication-title: Int. J. Biol. Macromol.
– volume: 21
  start-page: 91
  year: 1997
  end-page: 96
  ident: bib11
  article-title: Purification and characterization of a xylanase from
  publication-title: Enzyme Microb. Technol.
– volume: 61
  start-page: 263
  year: 2010
  end-page: 289
  ident: bib1
  article-title: Hemicelluloses
  publication-title: Annu. Rev. Plant Biol.
– volume: 30
  start-page: 1219
  year: 2012
  end-page: 1227
  ident: bib2
  article-title: Microbial xylanases: engineering, production and industrial applications
  publication-title: Biotechnol. Adv.
– volume: 35
  start-page: 799
  year: 2008
  end-page: 804
  ident: bib31
  article-title: Permeabilization of baker's yeast with
  publication-title: J. Ind. Microbiol. Biotechnol.
– volume: 102
  start-page: 146
  year: 2014
  end-page: 153
  ident: bib47
  article-title: Production and in vitro evaluation of xylooligosaccharides generated from corncobs using immobilized Penicillium occitanis xylanase
  publication-title: J. Mol. Catal. B: Enzym.
– volume: 8
  start-page: 16
  year: 2015
  ident: bib39
  article-title: Comparative analysis of sugarcane bagasse metagenome reveals unique and conserved biomass-degrading enzymes among lignocellulolytic microbial communities
  publication-title: Biotechnol. Biofuels
– volume: 51
  start-page: 123
  year: 2013
  end-page: 129
  ident: bib54
  article-title: Production of xylooligosaccharides (XOS) from delignified sugarcane bagasse by peroxide-HAc process using recombinant xylanase from
  publication-title: Ind. Crop. Prod.
– volume: 33
  start-page: 2279
  year: 2011
  end-page: 2285
  ident: bib15
  article-title: Applicability of thermo-alkali-stable and cellulase-free xylanase from a novel thermo-halo-alkaliphilic
  publication-title: Biotechnol. Lett.
– volume: 75
  start-page: 232
  year: 2011
  end-page: 239
  ident: bib37
  article-title: Culture-independent phylogenetic analysis of the microbial community in industrial sugarcane bagasse feedstock piles
  publication-title: Biosci. Biotechnol. Biochem.
– volume: 64
  start-page: 1759
  year: 1998
  end-page: 1765
  ident: bib27
  article-title: Cloning of the xynB gene from
  publication-title: Appl. Environ. Microbiol.
– volume: 375
  start-page: 1293
  year: 2008
  end-page: 1305
  ident: bib36
  article-title: Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases
  publication-title: J. Mol. Biol.
– volume: 474
  start-page: 1
  year: 2019
  end-page: 7
  ident: bib28
  article-title: Characterization of CBM36-containing GH11 endoxylanase NtSymX11 from the hindgut metagenome of higher termite
  publication-title: Carbohydr. Res.
– volume: 38
  start-page: 780
  year: 2006
  end-page: 787
  ident: bib18
  article-title: Purification and characterization of a thermostable cellulase-free xylanase from the newly isolated
  publication-title: Enzyme Microb. Technol.
– volume: 49
  start-page: 183
  year: 1921
  end-page: 186
  ident: bib34
  article-title: A buffer solution for colorimetric comparison,
  publication-title: J. Biol. Chem.
– volume: 360
  start-page: 84
  year: 2012
  ident: 10.1016/j.jbiosc.2020.09.008_bib7
  article-title: The potential for oligosaccharide production from the hemicellulose fraction of biomasses through pretreatment processes:xylooligosaccharides (XOS), arabinooligosaccharides (AOS), and mannooligosaccharides (MOS)
  publication-title: Carbohydr. Res.
  doi: 10.1016/j.carres.2012.07.017
– volume: 174
  start-page: 81
  year: 2014
  ident: 10.1016/j.jbiosc.2020.09.008_bib3
  article-title: Microbial exo-xylanases: a mini review
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-014-1042-8
– volume: 99
  start-page: 7553
  year: 2008
  ident: 10.1016/j.jbiosc.2020.09.008_bib16
  article-title: Xylanase production by Burkholderia sp. DMAX strain under solid state fermentation using distillery spent wash
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2008.02.009
– volume: 81
  start-page: 2006
  year: 2015
  ident: 10.1016/j.jbiosc.2020.09.008_bib25
  article-title: Distinct roles for carbohydrate-binding modules of glycoside hydrolase 10 (GH10) and GH11 xylanases from Caldicellulosiruptor sp. strain F32 in thermostability and catalytic efficiency
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.03677-14
– volume: 11
  start-page: 387
  year: 2000
  ident: 10.1016/j.jbiosc.2020.09.008_bib8
  article-title: Xylooligosaccharides: manufacture and applications
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/S0924-2244(01)00031-0
– volume: 55
  start-page: 5544
  year: 2007
  ident: 10.1016/j.jbiosc.2020.09.008_bib9
  article-title: Enzymatic production of xylooligosaccharides from cotton stalks
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf063580d
– volume: 6
  start-page: 30
  year: 2013
  ident: 10.1016/j.jbiosc.2020.09.008_bib41
  article-title: Carbohydrate-binding modules (CBMs) revisited: reduced amount of water counterbalances the need for CBMs
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/1754-6834-6-30
– volume: 8
  year: 2013
  ident: 10.1016/j.jbiosc.2020.09.008_bib29
  article-title: Rapid protocol for preparation of electrocompetent Escherichia coli and Vibrio cholerae
  publication-title: J. Vis. Exp.
– volume: 23
  start-page: 1515
  year: 2014
  ident: 10.1016/j.jbiosc.2020.09.008_bib53
  article-title: Production of xylooligosaccharides from corncob using a crude thermostable endo-xylanase from Streptomyces thermovulgaris TISTR1948 and prebiotic properties
  publication-title: Food Sci. Biotechnol.
  doi: 10.1007/s10068-014-0207-0
– volume: 46
  start-page: 459
  year: 2006
  ident: 10.1016/j.jbiosc.2020.09.008_bib6
  article-title: Non-digestible oligosaccharides with prebiotic properties
  publication-title: Crit. Rev. Food Sci. Nutr.
  doi: 10.1080/10408390500215746
– volume: 8
  start-page: e52459
  year: 2013
  ident: 10.1016/j.jbiosc.2020.09.008_bib23
  article-title: Cloning, expression and characteristics of a novel alkalistable and thermostable xylanase encoding gene (Mxyl) retrieved from compost-soil metagenome
  publication-title: PloS One
  doi: 10.1371/journal.pone.0052459
– volume: 66
  start-page: 16
  year: 2014
  ident: 10.1016/j.jbiosc.2020.09.008_bib30
  article-title: A comparison of plate assay methods for detecting extracellular cellulase and xylanase activity
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/j.enzmictec.2014.07.004
– volume: 38
  start-page: 780
  year: 2006
  ident: 10.1016/j.jbiosc.2020.09.008_bib18
  article-title: Purification and characterization of a thermostable cellulase-free xylanase from the newly isolated Paecilomyces themophila
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/j.enzmictec.2005.08.007
– volume: 64
  start-page: 90
  year: 2014
  ident: 10.1016/j.jbiosc.2020.09.008_bib51
  article-title: Xylanase production from Bacillus aerophilus KGJ2 and its application in xylooligosaccharides preparation
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2013.11.012
– volume: 48
  start-page: 478
  year: 2013
  ident: 10.1016/j.jbiosc.2020.09.008_bib57
  article-title: Production of xylo-oligosaccharides by immobilized-stabilized derivatives of endo-xylanase from Streptomyces halstedii
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2013.01.010
– volume: 127
  start-page: 236
  year: 2013
  ident: 10.1016/j.jbiosc.2020.09.008_bib5
  article-title: Structural features and antioxidant activity of xylooligosaccharides enzymatically produced from sugarcane bagasse
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.09.112
– volume: 49
  start-page: 183
  year: 1921
  ident: 10.1016/j.jbiosc.2020.09.008_bib34
  article-title: A buffer solution for colorimetric comparison,
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)86000-8
– volume: 375
  start-page: 1293
  year: 2008
  ident: 10.1016/j.jbiosc.2020.09.008_bib36
  article-title: Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2007.11.007
– volume: 8
  start-page: 16
  year: 2015
  ident: 10.1016/j.jbiosc.2020.09.008_bib39
  article-title: Comparative analysis of sugarcane bagasse metagenome reveals unique and conserved biomass-degrading enzymes among lignocellulolytic microbial communities
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-015-0200-8
– volume: 51
  start-page: 647
  year: 2012
  ident: 10.1016/j.jbiosc.2020.09.008_bib14
  article-title: Alkaline xylanases from Bacillus mojavensis A21: production and generation of xylooligosaccharides
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2012.06.036
– volume: 33
  start-page: 2279
  year: 2011
  ident: 10.1016/j.jbiosc.2020.09.008_bib15
  article-title: Applicability of thermo-alkali-stable and cellulase-free xylanase from a novel thermo-halo-alkaliphilic Bacillus halodurans in producing xylooligosaccharides
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-011-0698-1
– volume: 66
  start-page: 322
  year: 2013
  ident: 10.1016/j.jbiosc.2020.09.008_bib38
  article-title: Phylogenetic analysis and metabolic potential of microbial communities in an industrial bagasse collection site
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-013-0209-0
– volume: 51
  start-page: 123
  year: 2013
  ident: 10.1016/j.jbiosc.2020.09.008_bib54
  article-title: Production of xylooligosaccharides (XOS) from delignified sugarcane bagasse by peroxide-HAc process using recombinant xylanase from Bacillus subtilis
  publication-title: Ind. Crop. Prod.
  doi: 10.1016/j.indcrop.2013.08.062
– volume: 40
  start-page: 2707
  year: 2005
  ident: 10.1016/j.jbiosc.2020.09.008_bib13
  article-title: Immobilization of Streptomyces olivaceoviridis E-86 xylanase on Eudragit S-100 for xylo-oligosaccharide production
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2004.12.006
– volume: 31
  start-page: 426
  year: 1959
  ident: 10.1016/j.jbiosc.2020.09.008_bib33
  article-title: Use of dinitrosalicylic acid reagent for determination of reducing sugar
  publication-title: Anal. Chem.
  doi: 10.1021/ac60147a030
– volume: 55
  start-page: 3955
  year: 2007
  ident: 10.1016/j.jbiosc.2020.09.008_bib56
  article-title: Production of xylooligosaccharides from xylans by extracellular xylanases from Thermobifida fusca
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf0635964
– volume: 6
  start-page: 18
  year: 2013
  ident: 10.1016/j.jbiosc.2020.09.008_bib42
  article-title: The carbohydrate-binding module of xylanase from Nonomuraea flexuosa decreases its non-productive adsorption on lignin
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/1754-6834-6-18
– volume: 10
  start-page: 20
  year: 2011
  ident: 10.1016/j.jbiosc.2020.09.008_bib44
  article-title: GH10 xylanase D from Penicillium funiculosum: biochemical studies and xylooligosaccharide production
  publication-title: Microb. Cell Fact.
  doi: 10.1186/1475-2859-10-20
– volume: 5
  start-page: 62
  year: 2015
  ident: 10.1016/j.jbiosc.2020.09.008_bib4
  article-title: Xylooligosaccharides as prebiotics from agricultural by-products: production and applications
  publication-title: Bioact. Carbohydr. Diet Fibre
  doi: 10.1016/j.bcdf.2014.12.003
– volume: 30
  start-page: 1219
  year: 2012
  ident: 10.1016/j.jbiosc.2020.09.008_bib2
  article-title: Microbial xylanases: engineering, production and industrial applications
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2011.11.006
– volume: 75
  start-page: 232
  year: 2011
  ident: 10.1016/j.jbiosc.2020.09.008_bib37
  article-title: Culture-independent phylogenetic analysis of the microbial community in industrial sugarcane bagasse feedstock piles
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.100429
– volume: 175
  start-page: 1318
  year: 2015
  ident: 10.1016/j.jbiosc.2020.09.008_bib45
  article-title: Recombination of thermo-alkalistable, high xylooligosaccharides producing endo-xylanase from Thermobifida fusca and expression in Pichia pastoris
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-014-1355-7
– volume: 259
  start-page: 130
  year: 2016
  ident: 10.1016/j.jbiosc.2020.09.008_bib55
  article-title: Immobilization and stabilization of an endoxylanase from Bacillus subtilis (XynA) for xylooligosaccharides (XOs) production
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2015.05.032
– volume: 170
  start-page: 119
  year: 2013
  ident: 10.1016/j.jbiosc.2020.09.008_bib17
  article-title: Thermostable and alkalistable endoxylanase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1: cloning, expression, characteristics and its applicability in generating xylooligosaccharides and fermentable sugars
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-013-0174-6
– volume: 65
  start-page: 1139
  year: 2017
  ident: 10.1016/j.jbiosc.2020.09.008_bib19
  article-title: Utility of thermostable xylanases of Mycothermus thermophilus in generating prebiotic xylooligosaccharides
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.6b05183
– volume: 67
  start-page: 495
  year: 2005
  ident: 10.1016/j.jbiosc.2020.09.008_bib26
  article-title: Thermostable xylanases, Xyn10A and Xyn11A, from the actinomycete Nonomuraea flexuosa: isolation of the genes and characterization of recombinant Xyn11A polypeptides produced in Trichoderma reesei
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-004-1797-x
– volume: 64
  start-page: 1759
  year: 1998
  ident: 10.1016/j.jbiosc.2020.09.008_bib27
  article-title: Cloning of the xynB gene from Dictyoglomus thermophilum Rt46B.1 and action of the gene product on kraft pulp
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.64.5.1759-1765.1998
– volume: 77
  start-page: C506
  year: 2012
  ident: 10.1016/j.jbiosc.2020.09.008_bib60
  article-title: Properties of an alkaline-tolerant, thermostable xylanase from Streptomyces chartreusis L1105, suitable for xylooligosaccharide production
  publication-title: J. Food Sci.
  doi: 10.1111/j.1750-3841.2012.02671.x
– volume: 41
  start-page: 207
  year: 2005
  ident: 10.1016/j.jbiosc.2020.09.008_bib32
  article-title: Protein production by auto-induction in high density shaking cultures
  publication-title: Protein Expr. Purif.
  doi: 10.1016/j.pep.2005.01.016
– volume: 21
  start-page: 91
  year: 1997
  ident: 10.1016/j.jbiosc.2020.09.008_bib11
  article-title: Purification and characterization of a xylanase from Trichoderma longibrachiatum for xylooligosaccharide production
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/S0141-0229(96)00236-0
– volume: 29
  start-page: 3
  year: 2005
  ident: 10.1016/j.jbiosc.2020.09.008_bib12
  article-title: Xylanases, xylanase families and extremophilic xylanases
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1016/j.femsre.2004.06.005
– volume: 65
  start-page: 237
  year: 2016
  ident: 10.1016/j.jbiosc.2020.09.008_bib20
  article-title: Production of high-pure xylooligosaccharides from sugarcane bagasse using crude β-xylosidase-free xylanase of Bacillus subtilis KCX006 and their bifidogenic function
  publication-title: LWT - Food Sci. Technol.
  doi: 10.1016/j.lwt.2015.08.013
– volume: 7
  start-page: 27
  year: 2014
  ident: 10.1016/j.jbiosc.2020.09.008_bib40
  article-title: Cellulases without carbohydrate-binding modules in high consistency ethanol production process
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/1754-6834-7-27
– volume: 61
  start-page: 263
  year: 2010
  ident: 10.1016/j.jbiosc.2020.09.008_bib1
  article-title: Hemicelluloses
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042809-112315
– volume: 474
  start-page: 1
  year: 2019
  ident: 10.1016/j.jbiosc.2020.09.008_bib28
  article-title: Characterization of CBM36-containing GH11 endoxylanase NtSymX11 from the hindgut metagenome of higher termite Nasutitermes takasagoensis displaying prominent catalytic activity
  publication-title: Carbohydr. Res.
  doi: 10.1016/j.carres.2019.01.003
– volume: 119
  start-page: 384
  year: 2015
  ident: 10.1016/j.jbiosc.2020.09.008_bib22
  article-title: Identification of glycosyl hydrolases from a metagenomic library of microflora in sugarcane bagasse collection site and their cooperative action on cellulose degradation
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2014.09.010
– volume: 115
  start-page: 215
  year: 2012
  ident: 10.1016/j.jbiosc.2020.09.008_bib10
  article-title: Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.10.083
– volume: 60
  start-page: 226
  year: 2018
  ident: 10.1016/j.jbiosc.2020.09.008_bib21
  article-title: Engineering thermostable microbial xylanases toward its industrial applications
  publication-title: Mol. Biotechnol.
  doi: 10.1007/s12033-018-0059-6
– volume: 47
  start-page: 1088
  year: 2001
  ident: 10.1016/j.jbiosc.2020.09.008_bib46
  article-title: Directed evolution to produce an alkalophilic variant from a Neocallimastix patriciarum xylanase
  publication-title: Can. J. Microbiol.
  doi: 10.1139/w01-118
– volume: 102
  start-page: 146
  year: 2014
  ident: 10.1016/j.jbiosc.2020.09.008_bib47
  article-title: Production and in vitro evaluation of xylooligosaccharides generated from corncobs using immobilized Penicillium occitanis xylanase
  publication-title: J. Mol. Catal. B: Enzym.
  doi: 10.1016/j.molcatb.2014.02.004
– volume: 7
  start-page: 15287
  year: 2017
  ident: 10.1016/j.jbiosc.2020.09.008_bib50
  article-title: Thermostability improvement of a Talaromyces leycettanus xylanase by rational protein engineering
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-12659-y
– volume: 94
  start-page: 536
  year: 2015
  ident: 10.1016/j.jbiosc.2020.09.008_bib43
  article-title: Production of xylooligosaccharides from garlic straw xylan by purified xylanase from Bacillus mojavensis UEB-FK and their in vitroevaluation as prebiotics
  publication-title: Food Bioprod. Process.
  doi: 10.1016/j.fbp.2014.07.012
– volume: 174
  start-page: 118
  year: 2014
  ident: 10.1016/j.jbiosc.2020.09.008_bib49
  article-title: Production of arabinoxylan-oligosaccharide mixtures of varying composition from rye bran by a combination of process conditions and type of xylanase
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.09.139
– volume: 35
  start-page: 799
  year: 2008
  ident: 10.1016/j.jbiosc.2020.09.008_bib31
  article-title: Permeabilization of baker's yeast with N-lauroyl sarcosine
  publication-title: J. Ind. Microbiol. Biotechnol.
  doi: 10.1007/s10295-008-0350-9
– volume: 52
  start-page: 770
  year: 2014
  ident: 10.1016/j.jbiosc.2020.09.008_bib59
  article-title: Simultaneous production of xylooligosaccharides and antioxidant compounds from sugarcane bagasse via enzymatic hydrolysis
  publication-title: Ind. Crop. Prod.
  doi: 10.1016/j.indcrop.2013.12.005
– volume: 2
  start-page: 2212
  year: 2007
  ident: 10.1016/j.jbiosc.2020.09.008_bib35
  article-title: The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2007.321
– volume: 48
  start-page: 87
  year: 2009
  ident: 10.1016/j.jbiosc.2020.09.008_bib48
  article-title: Functional characterization of a recombinant thermostable xylanase from Pichia pastoris: a hybrid enzyme being suitable for xylooligosaccharides production,
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2009.08.010
– volume: 30
  start-page: 564
  year: 2012
  ident: 10.1016/j.jbiosc.2020.09.008_bib24
  article-title: GH11 xylanases: structure/function/properties relationships and applications
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2011.10.003
– volume: 102
  start-page: 7171
  year: 2011
  ident: 10.1016/j.jbiosc.2020.09.008_bib52
  article-title: Production of xylooligosaccharides by xylanase from Pichia stipitis based on xylan preparation from triploid Populas tomentosa
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.03.110
– volume: 57
  start-page: 101
  year: 2008
  ident: 10.1016/j.jbiosc.2020.09.008_bib58
  article-title: Expression of recombinant Bacillus licheniformis xylanase A in Pichia pastoris and xylooligosaccharides released from xylans by it
  publication-title: Protein Expr. Purif.
  doi: 10.1016/j.pep.2007.10.020
– volume: 100
  start-page: 5230
  year: 2009
  ident: 10.1016/j.jbiosc.2020.09.008_bib61
  article-title: Purification and enzymatic characterization of two β-endoxylanases from Trichoderma sp. K9301 and their actions in xylooligosaccharide production
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2009.05.038
SSID ssj0017071
Score 2.3877409
Snippet Xylo-oligosaccharide (XO) is a promising pre-biotic with applications in food, feed and healthcare products. XO can be produced by enzymatic digestion of xylan...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13
SubjectTerms Biocatalysis
biocatalysts
biorefining
carbohydrate binding
catalytic activity
Catalytic domain
Cellulose - metabolism
Directed evolution
Endo-1,4-beta Xylanases - genetics
Endo-1,4-beta Xylanases - metabolism
fluorometry
Gene Library
genomic libraries
health services
Hydrolysis
Kinetics
Metagenome
Mutagenesis
Oligosaccharides - metabolism
Saccharum - metabolism
Substrate Specificity
sugarcane bagasse
Temperature
xylan
Xylanase
xylanases
Xylans - metabolism
Xylo-oligosaccharide
Title Enhancement of catalytic performance of a metagenome-derived thermophilic oligosaccharide-specific xylanase by binding module removal and random mutagenesis
URI https://dx.doi.org/10.1016/j.jbiosc.2020.09.008
https://www.ncbi.nlm.nih.gov/pubmed/33067124
https://www.proquest.com/docview/2451850543
https://www.proquest.com/docview/2524228209
Volume 131
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiQuiDfbQmUkrmYTO07iY1W1WljRA1DRm2U7DqTaxKvuLupe-CX8WGacZBESUIlTpGSsWJ7xzOfxPAh5XTsuijo3rLJOsKxOLFOSGyZNkpZGlamJdbbfn-ezi-zdpbzcIydjLgyGVQ66v9fpUVsPb6bDak6XTTP9GK_YCkAEIKdCxjzyLCtQyt9834V5pEUyHLpKxZB6TJ-LMV5XtgkrLGTIk1jtFJtM_tk8_Q1-RjN09oDcH_AjPe6n-JDs-e4Rudt3lNw-Jj9Ou6_IR_T50VDT6J3ZAi1d_soQwA-Gtn5tsEJr61kFYvjNVxTBYBuW6GNxNCyaL2FlHOZlNZVnmJOJcUX0ZrswHRg_arfUNjErhrah2iw8vfZtANGlpqsoGMEqtLTdxN_4VbN6Qi7OTj-dzNjQgIE5wAFr5lOT1DWANO6stBVAPzjepM7VTrjMmxS4rGrQUGVRYWU0bpUsMlXK3CqXC5GJp2S_C51_TmjJhXUANT13eeZVYqUHvhlvCleKupYTIsZ1126oTo5NMhZ6DEO70j23NHJLJ0oDtyaE7UYt--oct9AXI0v1b1KmwYDcMvLVKAEaNiDeqpjOh81K80wC5gHkK_5BIzmWWuOJmpBnvfjs5ivw0AYo6-C_53ZI7nGMtImOoRdkf3298S8BKq3tUdwLR-TO8dv57Byf8w-f5z8BhmMYNg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEaIXxM6UzUhwNJPYcZYDBwStpnS50Eq9GdtxINUkGTUzQC78Ev4Ff5D3nGQQElAJqdfETiy_7fPzWwh5XlgukiLWLDdWsKgIDMsk10zqIEx1loba19k-PIpnJ9G7U3m6QX6MuTAYVjno_l6ne209PJkOuzldlOX0vb9iSwARAJ8KmYRDZOW-677Aua19tfcWiPyC892d4zczNrQWYBYs3JK5UAdFAfCDWyNNDqAGgHtobWGFjZwOYf1ZAbKXJjnW_OImk0mUpTI2mY2FiAR89wq5GoG6wLYJL7-t40rCJBhOeWnGcHljvp4PKjszZdNi5UQe-PKq2NXyz_bwb3jX273dm-TGAFjp635PbpENV98m1_oWlt0d8n2n_oSMg05G2hTUu4M6GEsXv1IS8IWmlVtqLAlbOZYD3392OUX0WTULdOpY2szLj02rLSaClbljmASKgUz0azfXNVhbajpqSp-GQ6smX80dPXdVA7JCdZ1TsLp5U9Fq5X_j2rK9S04uhSz3yGbd1O4BoSkXxgK2ddzGkcsCIx0winY6sakoCjkhYtx3ZYdy6NiVY67GuLcz1VNLIbVUkCmg1oSw9axFXw7kgvHJSFL1G1srsFgXzHw2coACicdrHF27ZtUqHkkAWQC1xT_GSI613XiQTcj9nn3W6xV4SgRYt_3fa3tKrs-ODw_Uwd7R_kOyxTHMx3ulHpHN5fnKPQactjRPvFxQ8uGyBfEnBf9RCQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+catalytic+performance+of+a+metagenome-derived+thermophilic+oligosaccharide-specific+xylanase+by+binding+module+removal+and+random+mutagenesis&rft.jtitle=Journal+of+bioscience+and+bioengineering&rft.au=Boonyapakron%2C+Katewadee&rft.au=Chitnumsub%2C+Penchit&rft.au=Kanokratana%2C+Pattanop&rft.au=Champreda%2C+Verawat&rft.date=2021-01-01&rft.pub=Elsevier+B.V&rft.issn=1389-1723&rft.eissn=1347-4421&rft.volume=131&rft.issue=1&rft.spage=13&rft.epage=19&rft_id=info:doi/10.1016%2Fj.jbiosc.2020.09.008&rft.externalDocID=S1389172320303571
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-1723&client=summon