Enhancement of catalytic performance of a metagenome-derived thermophilic oligosaccharide-specific xylanase by binding module removal and random mutagenesis
Xylo-oligosaccharide (XO) is a promising pre-biotic with applications in food, feed and healthcare products. XO can be produced by enzymatic digestion of xylan with xylanase. In this study, we aimed to improve the biochemical properties relevant to catalysis and kinetics of X11, a thermophilic glyco...
Saved in:
Published in | Journal of bioscience and bioengineering Vol. 131; no. 1; pp. 13 - 19 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Japan
Elsevier B.V
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Xylo-oligosaccharide (XO) is a promising pre-biotic with applications in food, feed and healthcare products. XO can be produced by enzymatic digestion of xylan with xylanase. In this study, we aimed to improve the biochemical properties relevant to catalysis and kinetics of X11, a thermophilic glycosyl hydrolase (GH) family 11 endo-β-1,4-xylanase derived from a metagenomic library isolated from sugarcane bagasse, under high-temperature conditions preferred for XO synthesis. Removal of a carbohydrate-binding module (X11C) resulted in 6.5 fold greater catalytic efficiency. X11C was further improved by a Pro71Thr mutation in the X11P variant obtained from a random mutagenesis library, which exhibited 15.9 fold greater catalytic efficiency compared with wild-type X11 under the enzyme's optimal conditions of 80°C and pH 6.0. Homology modeling suggested that the improved performance of X11P could be attributed to formation of an extra H-bond between Thr71 and Ser75, which stabilizes the key catalytic residue Glu180 at the active pocket and β-sheet layers and agrees with the respective increase in melting temperature (Tm) where X11P >X11C >X11 as determined by differential scanning fluorimetry. The X11P variant was tested for hydrolysis of beechwood xylan, which showed X6 as the major product followed by X3 and X4 XOs. The highest yield of 5.5 g total XOs product/mg enzyme was observed for X11P, equivalent to 3.7 fold higher than that of wild-type with XO production of >800 mg/g xylan. The X11P enzyme could be developed as a thermophilic biocatalyst for XO synthesis in biorefineries.
[Display omitted]
•XO-specific X11P was obtained by CBM removal and directed evolution.•X11P worked optimally at 80°C with 4.1x increase in specific activity.•X11P exhibited lower Km (4.6x) and higher kcat/Km (15.9x) compared to X11.•A 3.1 folds increase in XO yield (X6 > X3 > X4) was achieved by X11P.•Introduced H-bond (Thr71-Ser75) stabilized catalytic residue Glu180. |
---|---|
AbstractList | Xylo-oligosaccharide (XO) is a promising pre-biotic with applications in food, feed and healthcare products. XO can be produced by enzymatic digestion of xylan with xylanase. In this study, we aimed to improve the biochemical properties relevant to catalysis and kinetics of X11, a thermophilic glycosyl hydrolase (GH) family 11 endo-β-1,4-xylanase derived from a metagenomic library isolated from sugarcane bagasse, under high-temperature conditions preferred for XO synthesis. Removal of a carbohydrate-binding module (X11C) resulted in 6.5 fold greater catalytic efficiency. X11C was further improved by a Pro71Thr mutation in the X11P variant obtained from a random mutagenesis library, which exhibited 15.9 fold greater catalytic efficiency compared with wild-type X11 under the enzyme's optimal conditions of 80°C and pH 6.0. Homology modeling suggested that the improved performance of X11P could be attributed to formation of an extra H-bond between Thr71 and Ser75, which stabilizes the key catalytic residue Glu180 at the active pocket and β-sheet layers and agrees with the respective increase in melting temperature (T
) where X11P >X11C >X11 as determined by differential scanning fluorimetry. The X11P variant was tested for hydrolysis of beechwood xylan, which showed X6 as the major product followed by X3 and X4 XOs. The highest yield of 5.5 g total XOs product/mg enzyme was observed for X11P, equivalent to 3.7 fold higher than that of wild-type with XO production of >800 mg/g xylan. The X11P enzyme could be developed as a thermophilic biocatalyst for XO synthesis in biorefineries. Xylo-oligosaccharide (XO) is a promising pre-biotic with applications in food, feed and healthcare products. XO can be produced by enzymatic digestion of xylan with xylanase. In this study, we aimed to improve the biochemical properties relevant to catalysis and kinetics of X11, a thermophilic glycosyl hydrolase (GH) family 11 endo-β-1,4-xylanase derived from a metagenomic library isolated from sugarcane bagasse, under high-temperature conditions preferred for XO synthesis. Removal of a carbohydrate-binding module (X11C) resulted in 6.5 fold greater catalytic efficiency. X11C was further improved by a Pro71Thr mutation in the X11P variant obtained from a random mutagenesis library, which exhibited 15.9 fold greater catalytic efficiency compared with wild-type X11 under the enzyme's optimal conditions of 80°C and pH 6.0. Homology modeling suggested that the improved performance of X11P could be attributed to formation of an extra H-bond between Thr71 and Ser75, which stabilizes the key catalytic residue Glu180 at the active pocket and β-sheet layers and agrees with the respective increase in melting temperature (Tm) where X11P >X11C >X11 as determined by differential scanning fluorimetry. The X11P variant was tested for hydrolysis of beechwood xylan, which showed X6 as the major product followed by X3 and X4 XOs. The highest yield of 5.5 g total XOs product/mg enzyme was observed for X11P, equivalent to 3.7 fold higher than that of wild-type with XO production of >800 mg/g xylan. The X11P enzyme could be developed as a thermophilic biocatalyst for XO synthesis in biorefineries.Xylo-oligosaccharide (XO) is a promising pre-biotic with applications in food, feed and healthcare products. XO can be produced by enzymatic digestion of xylan with xylanase. In this study, we aimed to improve the biochemical properties relevant to catalysis and kinetics of X11, a thermophilic glycosyl hydrolase (GH) family 11 endo-β-1,4-xylanase derived from a metagenomic library isolated from sugarcane bagasse, under high-temperature conditions preferred for XO synthesis. Removal of a carbohydrate-binding module (X11C) resulted in 6.5 fold greater catalytic efficiency. X11C was further improved by a Pro71Thr mutation in the X11P variant obtained from a random mutagenesis library, which exhibited 15.9 fold greater catalytic efficiency compared with wild-type X11 under the enzyme's optimal conditions of 80°C and pH 6.0. Homology modeling suggested that the improved performance of X11P could be attributed to formation of an extra H-bond between Thr71 and Ser75, which stabilizes the key catalytic residue Glu180 at the active pocket and β-sheet layers and agrees with the respective increase in melting temperature (Tm) where X11P >X11C >X11 as determined by differential scanning fluorimetry. The X11P variant was tested for hydrolysis of beechwood xylan, which showed X6 as the major product followed by X3 and X4 XOs. The highest yield of 5.5 g total XOs product/mg enzyme was observed for X11P, equivalent to 3.7 fold higher than that of wild-type with XO production of >800 mg/g xylan. The X11P enzyme could be developed as a thermophilic biocatalyst for XO synthesis in biorefineries. Xylo-oligosaccharide (XO) is a promising pre-biotic with applications in food, feed and healthcare products. XO can be produced by enzymatic digestion of xylan with xylanase. In this study, we aimed to improve the biochemical properties relevant to catalysis and kinetics of X11, a thermophilic glycosyl hydrolase (GH) family 11 endo-β-1,4-xylanase derived from a metagenomic library isolated from sugarcane bagasse, under high-temperature conditions preferred for XO synthesis. Removal of a carbohydrate-binding module (X11C) resulted in 6.5 fold greater catalytic efficiency. X11C was further improved by a Pro71Thr mutation in the X11P variant obtained from a random mutagenesis library, which exhibited 15.9 fold greater catalytic efficiency compared with wild-type X11 under the enzyme's optimal conditions of 80°C and pH 6.0. Homology modeling suggested that the improved performance of X11P could be attributed to formation of an extra H-bond between Thr71 and Ser75, which stabilizes the key catalytic residue Glu180 at the active pocket and β-sheet layers and agrees with the respective increase in melting temperature (Tₘ) where X11P >X11C >X11 as determined by differential scanning fluorimetry. The X11P variant was tested for hydrolysis of beechwood xylan, which showed X6 as the major product followed by X3 and X4 XOs. The highest yield of 5.5 g total XOs product/mg enzyme was observed for X11P, equivalent to 3.7 fold higher than that of wild-type with XO production of >800 mg/g xylan. The X11P enzyme could be developed as a thermophilic biocatalyst for XO synthesis in biorefineries. Xylo-oligosaccharide (XO) is a promising pre-biotic with applications in food, feed and healthcare products. XO can be produced by enzymatic digestion of xylan with xylanase. In this study, we aimed to improve the biochemical properties relevant to catalysis and kinetics of X11, a thermophilic glycosyl hydrolase (GH) family 11 endo-β-1,4-xylanase derived from a metagenomic library isolated from sugarcane bagasse, under high-temperature conditions preferred for XO synthesis. Removal of a carbohydrate-binding module (X11C) resulted in 6.5 fold greater catalytic efficiency. X11C was further improved by a Pro71Thr mutation in the X11P variant obtained from a random mutagenesis library, which exhibited 15.9 fold greater catalytic efficiency compared with wild-type X11 under the enzyme's optimal conditions of 80°C and pH 6.0. Homology modeling suggested that the improved performance of X11P could be attributed to formation of an extra H-bond between Thr71 and Ser75, which stabilizes the key catalytic residue Glu180 at the active pocket and β-sheet layers and agrees with the respective increase in melting temperature (Tm) where X11P >X11C >X11 as determined by differential scanning fluorimetry. The X11P variant was tested for hydrolysis of beechwood xylan, which showed X6 as the major product followed by X3 and X4 XOs. The highest yield of 5.5 g total XOs product/mg enzyme was observed for X11P, equivalent to 3.7 fold higher than that of wild-type with XO production of >800 mg/g xylan. The X11P enzyme could be developed as a thermophilic biocatalyst for XO synthesis in biorefineries. [Display omitted] •XO-specific X11P was obtained by CBM removal and directed evolution.•X11P worked optimally at 80°C with 4.1x increase in specific activity.•X11P exhibited lower Km (4.6x) and higher kcat/Km (15.9x) compared to X11.•A 3.1 folds increase in XO yield (X6 > X3 > X4) was achieved by X11P.•Introduced H-bond (Thr71-Ser75) stabilized catalytic residue Glu180. |
Author | Champreda, Verawat Boonyapakron, Katewadee Chitnumsub, Penchit Kanokratana, Pattanop |
Author_xml | – sequence: 1 givenname: Katewadee surname: Boonyapakron fullname: Boonyapakron, Katewadee organization: Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand – sequence: 2 givenname: Penchit surname: Chitnumsub fullname: Chitnumsub, Penchit organization: Biomolecular Analysis and Application Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand – sequence: 3 givenname: Pattanop surname: Kanokratana fullname: Kanokratana, Pattanop organization: Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand – sequence: 4 givenname: Verawat orcidid: 0000-0001-7768-1340 surname: Champreda fullname: Champreda, Verawat email: verawat@biotec.or.th organization: Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33067124$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcuKFDEUhgsZcS76BiJZuqky17q4EGQYLzDgRtchlZx0p6kkZZJq7HfxYa2yZzYunE0S-C8nnO-6uggxQFW9JrghmLTvDs1hdDHrhmKKGzw0GPfPqivCeFdzTsnF9u6HmnSUXVbXOR8wJh3uyIvqkjHcdoTyq-r3XdiroMFDKChapFVR06k4jWZINia_iZugkIeidhCih9pAckcwqOwh-Tjv3bQG4uR2MSut9yo5A3WeQTu7Cr9OkwoqAxpPaHTBuLBDPpplApTAx6OakAoGpfWIHvnl7xjILr-snls1ZXj1cN9UPz7dfb_9Ut9_-_z19uN9rQWhpQaisLW4Z1SPYjStaHnfEa2tZpqDIqyzg2Vd23eG8l7QcRAdH3rRjoNuGePspnp77p1T_LlALtK7rGFavw1xyZIKyintKR6etnJBeoEFZ6v1zYN1GT0YOSfnVTrJx-Wvhvdng04x5wRWaldUcTGUpNwkCZYbaXmQZ9JyIy3xIFfSa5j_E37sfyL24RyDdZ9HB0lm7WBlbFwCXaSJ7v8FfwAZx8eR |
CitedBy_id | crossref_primary_10_1007_s00253_022_11823_3 crossref_primary_10_1080_21655979_2021_2023801 crossref_primary_10_1016_j_bcab_2022_102478 crossref_primary_10_1007_s13205_022_03339_4 crossref_primary_10_1016_j_jclepro_2021_128332 crossref_primary_10_1038_s41598_022_19774_5 crossref_primary_10_1016_j_biortech_2021_125737 crossref_primary_10_1016_j_ijbiomac_2024_137205 crossref_primary_10_1016_j_biotno_2023_02_003 crossref_primary_10_1007_s10529_021_03202_1 crossref_primary_10_1016_j_heliyon_2023_e18316 crossref_primary_10_1007_s00253_024_13356_3 crossref_primary_10_1016_j_enzmictec_2023_110375 crossref_primary_10_1038_s41598_021_95369_w |
Cites_doi | 10.1016/j.carres.2012.07.017 10.1007/s12010-014-1042-8 10.1016/j.biortech.2008.02.009 10.1128/AEM.03677-14 10.1016/S0924-2244(01)00031-0 10.1021/jf063580d 10.1186/1754-6834-6-30 10.1007/s10068-014-0207-0 10.1080/10408390500215746 10.1371/journal.pone.0052459 10.1016/j.enzmictec.2014.07.004 10.1016/j.enzmictec.2005.08.007 10.1016/j.ijbiomac.2013.11.012 10.1016/j.procbio.2013.01.010 10.1016/j.biortech.2012.09.112 10.1016/S0021-9258(18)86000-8 10.1016/j.jmb.2007.11.007 10.1186/s13068-015-0200-8 10.1016/j.ijbiomac.2012.06.036 10.1007/s10529-011-0698-1 10.1007/s00248-013-0209-0 10.1016/j.indcrop.2013.08.062 10.1016/j.procbio.2004.12.006 10.1021/ac60147a030 10.1021/jf0635964 10.1186/1754-6834-6-18 10.1186/1475-2859-10-20 10.1016/j.bcdf.2014.12.003 10.1016/j.biotechadv.2011.11.006 10.1271/bbb.100429 10.1007/s12010-014-1355-7 10.1016/j.cattod.2015.05.032 10.1007/s12010-013-0174-6 10.1021/acs.jafc.6b05183 10.1007/s00253-004-1797-x 10.1128/AEM.64.5.1759-1765.1998 10.1111/j.1750-3841.2012.02671.x 10.1016/j.pep.2005.01.016 10.1016/S0141-0229(96)00236-0 10.1016/j.femsre.2004.06.005 10.1016/j.lwt.2015.08.013 10.1186/1754-6834-7-27 10.1146/annurev-arplant-042809-112315 10.1016/j.carres.2019.01.003 10.1016/j.jbiosc.2014.09.010 10.1016/j.biortech.2011.10.083 10.1007/s12033-018-0059-6 10.1139/w01-118 10.1016/j.molcatb.2014.02.004 10.1038/s41598-017-12659-y 10.1016/j.fbp.2014.07.012 10.1016/j.biortech.2014.09.139 10.1007/s10295-008-0350-9 10.1016/j.indcrop.2013.12.005 10.1038/nprot.2007.321 10.1016/j.bej.2009.08.010 10.1016/j.biotechadv.2011.10.003 10.1016/j.biortech.2011.03.110 10.1016/j.pep.2007.10.020 10.1016/j.biortech.2009.05.038 |
ContentType | Journal Article |
Copyright | 2020 The Society for Biotechnology, Japan Copyright © 2020 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 The Society for Biotechnology, Japan – notice: Copyright © 2020 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jbiosc.2020.09.008 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1347-4421 |
EndPage | 19 |
ExternalDocumentID | 33067124 10_1016_j_jbiosc_2020_09_008 S1389172320303571 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29K 2WC 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AAAJQ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIWK ACPRK ACRLP ADBBV ADEWK ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CJTIS CS3 D-I DOVZS DU5 E3Z EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM LUGTX M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSI SSU SSZ T5K TKC TR2 UNMZH XFK Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c512t-e1a0ff0832cb5bd6564871ccfc3c4ea137f9f37687d24852b95749856b9c63343 |
IEDL.DBID | .~1 |
ISSN | 1389-1723 1347-4421 |
IngestDate | Tue Aug 05 10:49:12 EDT 2025 Fri Jul 11 06:31:18 EDT 2025 Wed Feb 19 02:29:47 EST 2025 Tue Jul 01 02:45:34 EDT 2025 Thu Apr 24 22:56:56 EDT 2025 Fri Feb 23 02:48:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Xylo-oligosaccharide Catalytic domain Directed evolution Xylanase Metagenome |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2020 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c512t-e1a0ff0832cb5bd6564871ccfc3c4ea137f9f37687d24852b95749856b9c63343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7768-1340 |
PMID | 33067124 |
PQID | 2451850543 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2524228209 proquest_miscellaneous_2451850543 pubmed_primary_33067124 crossref_citationtrail_10_1016_j_jbiosc_2020_09_008 crossref_primary_10_1016_j_jbiosc_2020_09_008 elsevier_sciencedirect_doi_10_1016_j_jbiosc_2020_09_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 2021-Jan 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan |
PublicationTitle | Journal of bioscience and bioengineering |
PublicationTitleAlternate | J Biosci Bioeng |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ma, Bai, Huang, Luo, Chen, Fan, Cai, Yao (bib19) 2017; 65 Kumar, Dangi, Shukla (bib21) 2018; 60 Mohana, Shah, Divecha, Madamwar (bib16) 2008; 99 Morris, Gibbs, Chin, Koh, Wong, Allison, Nelson, Bergquist (bib27) 1998; 64 Vardakou, Dumon, Murray, Christakopoulos, Weiner, Juge, Lewis, Gilbert, Flint (bib36) 2008; 375 Wang, Ma, Xie, Liu, Tu, Zheng, You, Ge, Xie, Yao, Luo (bib50) 2017; 7 Milessi, Kopp, Rojas, Manrich, Baptista-Neto, Tardioli, Giordano, Fernandez-Lafuente, Guisan, Giordano (bib55) 2016; 259 Paes, Berrin, Beaugrand (bib24) 2012; 30 Liu, Liu (bib58) 2008; 57 Falck, Aronsson, Grey, Stålbrand, Nordberg Karlsson, Adlercreutz (bib49) 2014; 174 Meng, Ying, Chen, Lu, Ning, Wang, Li (bib25) 2015; 81 Aragon, Mateo, Ruiz-Matute, Corzo, Fernandez-Lorente, Sevillano, Díaz, Monti, Santamaría, Guisan (bib57) 2013; 48 Akpinar, Ak, Kavas, Bakir, Yilmaz (bib9) 2007; 55 Niesen, Berglund, Vedadi (bib35) 2007; 2 Varnai, Siika-Aho, Viikari (bib41) 2013; 6 Zhu, Li, Sun, Song, Li, Song (bib60) 2012; 77 Juturu, Wu (bib3) 2014; 174 Leskinen, Mäntylä, Fagerström, Vehmaanperä, Lantto, Paloheimo, Suominen (bib26) 2005; 67 Mcilvaine (bib34) 1921; 49 Studier (bib32) 2005; 41 Gonzales, Brooks, Pukatzki, Provenzano (bib29) 2013; 8 Abraham, Bhat (bib31) 2008; 35 Yang, Wang, Song, Xu (bib52) 2011; 102 Verma, Anand, Satyanarayana (bib17) 2013; 170 Kanokratana, Mhuantong, Laothanachareon, Tangphatsornruang, Eurwilaichitr, Pootanakit, Champreda (bib38) 2013; 66 Lafond, Tauzin, Desseaux, Bonnin, Ajandouz el, Giardina (bib44) 2011; 10 Ai, Jiang, Li, Deng, Kusakabe, Li (bib13) 2005; 40 Rattanachomsri, Kanokratana, Eurwilaichitr, Igarashi, Champreda (bib37) 2011; 75 Boonchuay, Techapun, Seesuriyachan, Chaiyaso (bib53) 2014; 23 Reddy, Krishnan (bib20) 2016; 65 Driss, Zouari-Ellouzi, Chaari, Kallel, Ghazala, Bouaziz, ghorbel, Chaabouni (bib47) 2014; 102 Zhang, Moilanen, Tang, Viikari (bib42) 2013; 6 Kumar, Satyanarayana (bib15) 2011; 33 Jun, Bing, Keying, Daiwen (bib48) 2009; 48 Kitamoto, Tokuda, Watanabe, Arioka (bib28) 2019; 474 Collins, Gerday, Feller (bib12) 2005; 29 Pakarinen, Haven, Djajadi, Varnai, Puranen, Viikari (bib40) 2014; 7 Mandelli, Brenelli, Almeida, Goldbeck, Wolf, Hoffmam, Ruller, Rocha, Mercadante, Squina (bib59) 2014; 52 Haddar, Driss, Frikha, Ellouz-Chaabouni, Nasri (bib14) 2012; 51 Juturu, Wu (bib2) 2012; 30 Bragatto, Segato, Squina (bib54) 2013; 51 Vázquez, Alonso, Dominguez, Parajó (bib8) 2000; 11 Mhuantong, Charoensawan, Kanokratana, Tangphatsornruang, Champreda (bib39) 2015; 8 Kallel, Driss, Bouaziz, Neifer, Ghorbel, Ellouz Chaabouni (bib43) 2015; 94 Verma, Kawarabayasi, Miyazaki, Satyanarayana (bib23) 2013; 8 Wang, Du, Weng, Liu, Wang, Liu (bib45) 2015; 175 Otieno, Ahring (bib7) 2012; 360 Chen, Tang, Cheng (bib46) 2001; 47 Chapla, Pandit, Shah (bib10) 2012; 115 Meddeb-Mouelhi, Moisan, Beauregard (bib30) 2014; 66 Chen, Zhang, Zhang, Chen, Sun, Zhou, Zhang (bib61) 2009; 100 Kanokratana, Eurwilaichitr, Pootanakit, Champreda (bib22) 2015; 119 Swennen, Courtin, Delcour (bib6) 2006; 46 Miller (bib33) 1959; 31 Scheller, Ulvskov (bib1) 2010; 61 Bian, Peng, Peng, Peng, Xu, Sun (bib5) 2013; 127 Li, Tian, Cheng, Jiang, Yang (bib18) 2006; 38 Yang, Yang, Liu (bib56) 2007; 55 Chen, Chen, Lin (bib11) 1997; 21 Samanta, Jayapal, Jayaram, Roy, Kolte, Senani, Sridhar (bib4) 2015; 5 Gowdhaman, Manaswini, Jayanthi, Dhanasri, Jeyalakshmi, Gunasekar, Sugumaran, Ponnusami (bib51) 2014; 64 Abraham (10.1016/j.jbiosc.2020.09.008_bib31) 2008; 35 Haddar (10.1016/j.jbiosc.2020.09.008_bib14) 2012; 51 Gonzales (10.1016/j.jbiosc.2020.09.008_bib29) 2013; 8 Chen (10.1016/j.jbiosc.2020.09.008_bib46) 2001; 47 Boonchuay (10.1016/j.jbiosc.2020.09.008_bib53) 2014; 23 Mcilvaine (10.1016/j.jbiosc.2020.09.008_bib34) 1921; 49 Verma (10.1016/j.jbiosc.2020.09.008_bib17) 2013; 170 Morris (10.1016/j.jbiosc.2020.09.008_bib27) 1998; 64 Samanta (10.1016/j.jbiosc.2020.09.008_bib4) 2015; 5 Kitamoto (10.1016/j.jbiosc.2020.09.008_bib28) 2019; 474 Falck (10.1016/j.jbiosc.2020.09.008_bib49) 2014; 174 Chen (10.1016/j.jbiosc.2020.09.008_bib11) 1997; 21 Swennen (10.1016/j.jbiosc.2020.09.008_bib6) 2006; 46 Driss (10.1016/j.jbiosc.2020.09.008_bib47) 2014; 102 Vardakou (10.1016/j.jbiosc.2020.09.008_bib36) 2008; 375 Verma (10.1016/j.jbiosc.2020.09.008_bib23) 2013; 8 Vázquez (10.1016/j.jbiosc.2020.09.008_bib8) 2000; 11 Collins (10.1016/j.jbiosc.2020.09.008_bib12) 2005; 29 Kanokratana (10.1016/j.jbiosc.2020.09.008_bib38) 2013; 66 Lafond (10.1016/j.jbiosc.2020.09.008_bib44) 2011; 10 Gowdhaman (10.1016/j.jbiosc.2020.09.008_bib51) 2014; 64 Juturu (10.1016/j.jbiosc.2020.09.008_bib3) 2014; 174 Aragon (10.1016/j.jbiosc.2020.09.008_bib57) 2013; 48 Wang (10.1016/j.jbiosc.2020.09.008_bib45) 2015; 175 Meng (10.1016/j.jbiosc.2020.09.008_bib25) 2015; 81 Niesen (10.1016/j.jbiosc.2020.09.008_bib35) 2007; 2 Otieno (10.1016/j.jbiosc.2020.09.008_bib7) 2012; 360 Bragatto (10.1016/j.jbiosc.2020.09.008_bib54) 2013; 51 Rattanachomsri (10.1016/j.jbiosc.2020.09.008_bib37) 2011; 75 Yang (10.1016/j.jbiosc.2020.09.008_bib56) 2007; 55 Li (10.1016/j.jbiosc.2020.09.008_bib18) 2006; 38 Kumar (10.1016/j.jbiosc.2020.09.008_bib15) 2011; 33 Paes (10.1016/j.jbiosc.2020.09.008_bib24) 2012; 30 Mandelli (10.1016/j.jbiosc.2020.09.008_bib59) 2014; 52 Varnai (10.1016/j.jbiosc.2020.09.008_bib41) 2013; 6 Miller (10.1016/j.jbiosc.2020.09.008_bib33) 1959; 31 Milessi (10.1016/j.jbiosc.2020.09.008_bib55) 2016; 259 Ma (10.1016/j.jbiosc.2020.09.008_bib19) 2017; 65 Studier (10.1016/j.jbiosc.2020.09.008_bib32) 2005; 41 Liu (10.1016/j.jbiosc.2020.09.008_bib58) 2008; 57 Ai (10.1016/j.jbiosc.2020.09.008_bib13) 2005; 40 Meddeb-Mouelhi (10.1016/j.jbiosc.2020.09.008_bib30) 2014; 66 Bian (10.1016/j.jbiosc.2020.09.008_bib5) 2013; 127 Mohana (10.1016/j.jbiosc.2020.09.008_bib16) 2008; 99 Juturu (10.1016/j.jbiosc.2020.09.008_bib2) 2012; 30 Akpinar (10.1016/j.jbiosc.2020.09.008_bib9) 2007; 55 Zhu (10.1016/j.jbiosc.2020.09.008_bib60) 2012; 77 Kallel (10.1016/j.jbiosc.2020.09.008_bib43) 2015; 94 Scheller (10.1016/j.jbiosc.2020.09.008_bib1) 2010; 61 Chen (10.1016/j.jbiosc.2020.09.008_bib61) 2009; 100 Kanokratana (10.1016/j.jbiosc.2020.09.008_bib22) 2015; 119 Wang (10.1016/j.jbiosc.2020.09.008_bib50) 2017; 7 Chapla (10.1016/j.jbiosc.2020.09.008_bib10) 2012; 115 Yang (10.1016/j.jbiosc.2020.09.008_bib52) 2011; 102 Zhang (10.1016/j.jbiosc.2020.09.008_bib42) 2013; 6 Kumar (10.1016/j.jbiosc.2020.09.008_bib21) 2018; 60 Reddy (10.1016/j.jbiosc.2020.09.008_bib20) 2016; 65 Jun (10.1016/j.jbiosc.2020.09.008_bib48) 2009; 48 Mhuantong (10.1016/j.jbiosc.2020.09.008_bib39) 2015; 8 Pakarinen (10.1016/j.jbiosc.2020.09.008_bib40) 2014; 7 Leskinen (10.1016/j.jbiosc.2020.09.008_bib26) 2005; 67 |
References_xml | – volume: 115 start-page: 215 year: 2012 end-page: 221 ident: bib10 article-title: Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics publication-title: Bioresour. Technol. – volume: 174 start-page: 81 year: 2014 end-page: 92 ident: bib3 article-title: Microbial exo-xylanases: a mini review publication-title: Appl. Biochem. Biotechnol. – volume: 102 start-page: 7171 year: 2011 end-page: 7176 ident: bib52 article-title: Production of xylooligosaccharides by xylanase from publication-title: Bioresour. Technol. – volume: 10 start-page: 20 year: 2011 ident: bib44 article-title: GH10 xylanase D from publication-title: Microb. Cell Fact. – volume: 46 start-page: 459 year: 2006 end-page: 471 ident: bib6 article-title: Non-digestible oligosaccharides with prebiotic properties publication-title: Crit. Rev. Food Sci. Nutr. – volume: 65 start-page: 237 year: 2016 end-page: 245 ident: bib20 article-title: Production of high-pure xylooligosaccharides from sugarcane bagasse using crude β-xylosidase-free xylanase of publication-title: LWT - Food Sci. Technol. – volume: 60 start-page: 226 year: 2018 end-page: 235 ident: bib21 article-title: Engineering thermostable microbial xylanases toward its industrial applications publication-title: Mol. Biotechnol. – volume: 31 start-page: 426 year: 1959 end-page: 428 ident: bib33 article-title: Use of dinitrosalicylic acid reagent for determination of reducing sugar publication-title: Anal. Chem. – volume: 52 start-page: 770 year: 2014 end-page: 775 ident: bib59 article-title: Simultaneous production of xylooligosaccharides and antioxidant compounds from sugarcane bagasse via enzymatic hydrolysis publication-title: Ind. Crop. Prod. – volume: 40 start-page: 2707 year: 2005 end-page: 2714 ident: bib13 article-title: Immobilization of publication-title: Process Biochem. – volume: 55 start-page: 5544 year: 2007 end-page: 5551 ident: bib9 article-title: Enzymatic production of xylooligosaccharides from cotton stalks publication-title: J. Agric. Food Chem. – volume: 8 year: 2013 ident: bib29 article-title: Rapid protocol for preparation of electrocompetent publication-title: J. Vis. Exp. – volume: 6 start-page: 30 year: 2013 ident: bib41 article-title: Carbohydrate-binding modules (CBMs) revisited: reduced amount of water counterbalances the need for CBMs publication-title: Biotechnol. Biofuels – volume: 48 start-page: 478 year: 2013 end-page: 483 ident: bib57 article-title: Production of xylo-oligosaccharides by immobilized-stabilized derivatives of endo-xylanase from publication-title: Process Biochem. – volume: 5 start-page: 62 year: 2015 end-page: 71 ident: bib4 article-title: Xylooligosaccharides as prebiotics from agricultural by-products: production and applications publication-title: Bioact. Carbohydr. Diet Fibre – volume: 259 start-page: 130 year: 2016 end-page: 139 ident: bib55 article-title: Immobilization and stabilization of an endoxylanase from publication-title: Catal. Today – volume: 11 start-page: 387 year: 2000 end-page: 393 ident: bib8 article-title: Xylooligosaccharides: manufacture and applications publication-title: Trends Food Sci. Technol. – volume: 99 start-page: 7553 year: 2008 end-page: 7564 ident: bib16 article-title: Xylanase production by publication-title: Bioresour. Technol. – volume: 57 start-page: 101 year: 2008 end-page: 107 ident: bib58 article-title: Expression of recombinant publication-title: Protein Expr. Purif. – volume: 30 start-page: 564 year: 2012 end-page: 592 ident: bib24 article-title: GH11 xylanases: structure/function/properties relationships and applications publication-title: Biotechnol. Adv. – volume: 175 start-page: 1318 year: 2015 end-page: 1329 ident: bib45 article-title: Recombination of thermo-alkalistable, high xylooligosaccharides producing endo-xylanase from publication-title: Appl. Biochem. Biotechnol. – volume: 66 start-page: 16 year: 2014 end-page: 19 ident: bib30 article-title: A comparison of plate assay methods for detecting extracellular cellulase and xylanase activity publication-title: Enzyme Microb. Technol. – volume: 41 start-page: 207 year: 2005 end-page: 234 ident: bib32 article-title: Protein production by auto-induction in high density shaking cultures publication-title: Protein Expr. Purif. – volume: 81 start-page: 2006 year: 2015 end-page: 2014 ident: bib25 article-title: Distinct roles for carbohydrate-binding modules of glycoside hydrolase 10 (GH10) and GH11 xylanases from publication-title: Appl. Environ. Microbiol. – volume: 51 start-page: 647 year: 2012 end-page: 656 ident: bib14 article-title: Alkaline xylanases from publication-title: Int. J. Biol. Macromol. – volume: 29 start-page: 3 year: 2005 end-page: 23 ident: bib12 article-title: Xylanases, xylanase families and extremophilic xylanases publication-title: FEMS Microbiol. Rev. – volume: 65 start-page: 1139 year: 2017 end-page: 1145 ident: bib19 article-title: Utility of thermostable xylanases of publication-title: J. Agric. Food Chem. – volume: 6 start-page: 18 year: 2013 ident: bib42 article-title: The carbohydrate-binding module of xylanase from publication-title: Biotechnol. Biofuels – volume: 23 start-page: 1515 year: 2014 end-page: 1523 ident: bib53 article-title: Production of xylooligosaccharides from corncob using a crude thermostable endo-xylanase from publication-title: Food Sci. Biotechnol. – volume: 7 start-page: 15287 year: 2017 ident: bib50 article-title: Thermostability improvement of a publication-title: Sci. Rep. – volume: 67 start-page: 495 year: 2005 end-page: 505 ident: bib26 article-title: Thermostable xylanases, Xyn10A and Xyn11A, from the actinomycete publication-title: Appl. Microbiol. Biotechnol. – volume: 170 start-page: 119 year: 2013 end-page: 130 ident: bib17 article-title: Thermostable and alkalistable endoxylanase of the extremely thermophilic bacterium publication-title: Appl. Biochem. Biotechnol. – volume: 66 start-page: 322 year: 2013 end-page: 334 ident: bib38 article-title: Phylogenetic analysis and metabolic potential of microbial communities in an industrial bagasse collection site publication-title: Microb. Ecol. – volume: 7 start-page: 27 year: 2014 ident: bib40 article-title: Cellulases without carbohydrate-binding modules in high consistency ethanol production process publication-title: Biotechnol. Biofuels – volume: 100 start-page: 5230 year: 2009 end-page: 5236 ident: bib61 article-title: Purification and enzymatic characterization of two β-endoxylanases from publication-title: Bioresour. Technol. – volume: 119 start-page: 384 year: 2015 end-page: 391 ident: bib22 article-title: Identification of glycosyl hydrolases from a metagenomic library of microflora in sugarcane bagasse collection site and their cooperative action on cellulose degradation publication-title: J. Biosci. Bioeng. – volume: 2 start-page: 2212 year: 2007 end-page: 2221 ident: bib35 article-title: The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability publication-title: Nat. Protoc. – volume: 8 start-page: e52459 year: 2013 ident: bib23 article-title: Cloning, expression and characteristics of a novel alkalistable and thermostable xylanase encoding gene ( publication-title: PloS One – volume: 77 start-page: C506 year: 2012 end-page: C511 ident: bib60 article-title: Properties of an alkaline-tolerant, thermostable xylanase from publication-title: J. Food Sci. – volume: 174 start-page: 118 year: 2014 end-page: 125 ident: bib49 article-title: Production of arabinoxylan-oligosaccharide mixtures of varying composition from rye bran by a combination of process conditions and type of xylanase publication-title: Bioresour. Technol. – volume: 47 start-page: 1088 year: 2001 end-page: 1094 ident: bib46 article-title: Directed evolution to produce an alkalophilic variant from a publication-title: Can. J. Microbiol. – volume: 48 start-page: 87 year: 2009 end-page: 92 ident: bib48 article-title: Functional characterization of a recombinant thermostable xylanase from publication-title: Biochem. Eng. J. – volume: 94 start-page: 536 year: 2015 end-page: 546 ident: bib43 article-title: Production of xylooligosaccharides from garlic straw xylan by purified xylanase from publication-title: Food Bioprod. Process. – volume: 360 start-page: 84 year: 2012 end-page: 92 ident: bib7 article-title: The potential for oligosaccharide production from the hemicellulose fraction of biomasses through pretreatment processes:xylooligosaccharides (XOS), arabinooligosaccharides (AOS), and mannooligosaccharides (MOS) publication-title: Carbohydr. Res. – volume: 55 start-page: 3955 year: 2007 end-page: 3959 ident: bib56 article-title: Production of xylooligosaccharides from xylans by extracellular xylanases from publication-title: J. Agric. Food Chem. – volume: 127 start-page: 236 year: 2013 end-page: 241 ident: bib5 article-title: Structural features and antioxidant activity of xylooligosaccharides enzymatically produced from sugarcane bagasse publication-title: Bioresour. Technol. – volume: 64 start-page: 90 year: 2014 end-page: 98 ident: bib51 article-title: Xylanase production from publication-title: Int. J. Biol. Macromol. – volume: 21 start-page: 91 year: 1997 end-page: 96 ident: bib11 article-title: Purification and characterization of a xylanase from publication-title: Enzyme Microb. Technol. – volume: 61 start-page: 263 year: 2010 end-page: 289 ident: bib1 article-title: Hemicelluloses publication-title: Annu. Rev. Plant Biol. – volume: 30 start-page: 1219 year: 2012 end-page: 1227 ident: bib2 article-title: Microbial xylanases: engineering, production and industrial applications publication-title: Biotechnol. Adv. – volume: 35 start-page: 799 year: 2008 end-page: 804 ident: bib31 article-title: Permeabilization of baker's yeast with publication-title: J. Ind. Microbiol. Biotechnol. – volume: 102 start-page: 146 year: 2014 end-page: 153 ident: bib47 article-title: Production and in vitro evaluation of xylooligosaccharides generated from corncobs using immobilized Penicillium occitanis xylanase publication-title: J. Mol. Catal. B: Enzym. – volume: 8 start-page: 16 year: 2015 ident: bib39 article-title: Comparative analysis of sugarcane bagasse metagenome reveals unique and conserved biomass-degrading enzymes among lignocellulolytic microbial communities publication-title: Biotechnol. Biofuels – volume: 51 start-page: 123 year: 2013 end-page: 129 ident: bib54 article-title: Production of xylooligosaccharides (XOS) from delignified sugarcane bagasse by peroxide-HAc process using recombinant xylanase from publication-title: Ind. Crop. Prod. – volume: 33 start-page: 2279 year: 2011 end-page: 2285 ident: bib15 article-title: Applicability of thermo-alkali-stable and cellulase-free xylanase from a novel thermo-halo-alkaliphilic publication-title: Biotechnol. Lett. – volume: 75 start-page: 232 year: 2011 end-page: 239 ident: bib37 article-title: Culture-independent phylogenetic analysis of the microbial community in industrial sugarcane bagasse feedstock piles publication-title: Biosci. Biotechnol. Biochem. – volume: 64 start-page: 1759 year: 1998 end-page: 1765 ident: bib27 article-title: Cloning of the xynB gene from publication-title: Appl. Environ. Microbiol. – volume: 375 start-page: 1293 year: 2008 end-page: 1305 ident: bib36 article-title: Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases publication-title: J. Mol. Biol. – volume: 474 start-page: 1 year: 2019 end-page: 7 ident: bib28 article-title: Characterization of CBM36-containing GH11 endoxylanase NtSymX11 from the hindgut metagenome of higher termite publication-title: Carbohydr. Res. – volume: 38 start-page: 780 year: 2006 end-page: 787 ident: bib18 article-title: Purification and characterization of a thermostable cellulase-free xylanase from the newly isolated publication-title: Enzyme Microb. Technol. – volume: 49 start-page: 183 year: 1921 end-page: 186 ident: bib34 article-title: A buffer solution for colorimetric comparison, publication-title: J. Biol. Chem. – volume: 360 start-page: 84 year: 2012 ident: 10.1016/j.jbiosc.2020.09.008_bib7 article-title: The potential for oligosaccharide production from the hemicellulose fraction of biomasses through pretreatment processes:xylooligosaccharides (XOS), arabinooligosaccharides (AOS), and mannooligosaccharides (MOS) publication-title: Carbohydr. Res. doi: 10.1016/j.carres.2012.07.017 – volume: 174 start-page: 81 year: 2014 ident: 10.1016/j.jbiosc.2020.09.008_bib3 article-title: Microbial exo-xylanases: a mini review publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-014-1042-8 – volume: 99 start-page: 7553 year: 2008 ident: 10.1016/j.jbiosc.2020.09.008_bib16 article-title: Xylanase production by Burkholderia sp. DMAX strain under solid state fermentation using distillery spent wash publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2008.02.009 – volume: 81 start-page: 2006 year: 2015 ident: 10.1016/j.jbiosc.2020.09.008_bib25 article-title: Distinct roles for carbohydrate-binding modules of glycoside hydrolase 10 (GH10) and GH11 xylanases from Caldicellulosiruptor sp. strain F32 in thermostability and catalytic efficiency publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.03677-14 – volume: 11 start-page: 387 year: 2000 ident: 10.1016/j.jbiosc.2020.09.008_bib8 article-title: Xylooligosaccharides: manufacture and applications publication-title: Trends Food Sci. Technol. doi: 10.1016/S0924-2244(01)00031-0 – volume: 55 start-page: 5544 year: 2007 ident: 10.1016/j.jbiosc.2020.09.008_bib9 article-title: Enzymatic production of xylooligosaccharides from cotton stalks publication-title: J. Agric. Food Chem. doi: 10.1021/jf063580d – volume: 6 start-page: 30 year: 2013 ident: 10.1016/j.jbiosc.2020.09.008_bib41 article-title: Carbohydrate-binding modules (CBMs) revisited: reduced amount of water counterbalances the need for CBMs publication-title: Biotechnol. Biofuels doi: 10.1186/1754-6834-6-30 – volume: 8 year: 2013 ident: 10.1016/j.jbiosc.2020.09.008_bib29 article-title: Rapid protocol for preparation of electrocompetent Escherichia coli and Vibrio cholerae publication-title: J. Vis. Exp. – volume: 23 start-page: 1515 year: 2014 ident: 10.1016/j.jbiosc.2020.09.008_bib53 article-title: Production of xylooligosaccharides from corncob using a crude thermostable endo-xylanase from Streptomyces thermovulgaris TISTR1948 and prebiotic properties publication-title: Food Sci. Biotechnol. doi: 10.1007/s10068-014-0207-0 – volume: 46 start-page: 459 year: 2006 ident: 10.1016/j.jbiosc.2020.09.008_bib6 article-title: Non-digestible oligosaccharides with prebiotic properties publication-title: Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408390500215746 – volume: 8 start-page: e52459 year: 2013 ident: 10.1016/j.jbiosc.2020.09.008_bib23 article-title: Cloning, expression and characteristics of a novel alkalistable and thermostable xylanase encoding gene (Mxyl) retrieved from compost-soil metagenome publication-title: PloS One doi: 10.1371/journal.pone.0052459 – volume: 66 start-page: 16 year: 2014 ident: 10.1016/j.jbiosc.2020.09.008_bib30 article-title: A comparison of plate assay methods for detecting extracellular cellulase and xylanase activity publication-title: Enzyme Microb. Technol. doi: 10.1016/j.enzmictec.2014.07.004 – volume: 38 start-page: 780 year: 2006 ident: 10.1016/j.jbiosc.2020.09.008_bib18 article-title: Purification and characterization of a thermostable cellulase-free xylanase from the newly isolated Paecilomyces themophila publication-title: Enzyme Microb. Technol. doi: 10.1016/j.enzmictec.2005.08.007 – volume: 64 start-page: 90 year: 2014 ident: 10.1016/j.jbiosc.2020.09.008_bib51 article-title: Xylanase production from Bacillus aerophilus KGJ2 and its application in xylooligosaccharides preparation publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2013.11.012 – volume: 48 start-page: 478 year: 2013 ident: 10.1016/j.jbiosc.2020.09.008_bib57 article-title: Production of xylo-oligosaccharides by immobilized-stabilized derivatives of endo-xylanase from Streptomyces halstedii publication-title: Process Biochem. doi: 10.1016/j.procbio.2013.01.010 – volume: 127 start-page: 236 year: 2013 ident: 10.1016/j.jbiosc.2020.09.008_bib5 article-title: Structural features and antioxidant activity of xylooligosaccharides enzymatically produced from sugarcane bagasse publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.09.112 – volume: 49 start-page: 183 year: 1921 ident: 10.1016/j.jbiosc.2020.09.008_bib34 article-title: A buffer solution for colorimetric comparison, publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)86000-8 – volume: 375 start-page: 1293 year: 2008 ident: 10.1016/j.jbiosc.2020.09.008_bib36 article-title: Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2007.11.007 – volume: 8 start-page: 16 year: 2015 ident: 10.1016/j.jbiosc.2020.09.008_bib39 article-title: Comparative analysis of sugarcane bagasse metagenome reveals unique and conserved biomass-degrading enzymes among lignocellulolytic microbial communities publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-015-0200-8 – volume: 51 start-page: 647 year: 2012 ident: 10.1016/j.jbiosc.2020.09.008_bib14 article-title: Alkaline xylanases from Bacillus mojavensis A21: production and generation of xylooligosaccharides publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2012.06.036 – volume: 33 start-page: 2279 year: 2011 ident: 10.1016/j.jbiosc.2020.09.008_bib15 article-title: Applicability of thermo-alkali-stable and cellulase-free xylanase from a novel thermo-halo-alkaliphilic Bacillus halodurans in producing xylooligosaccharides publication-title: Biotechnol. Lett. doi: 10.1007/s10529-011-0698-1 – volume: 66 start-page: 322 year: 2013 ident: 10.1016/j.jbiosc.2020.09.008_bib38 article-title: Phylogenetic analysis and metabolic potential of microbial communities in an industrial bagasse collection site publication-title: Microb. Ecol. doi: 10.1007/s00248-013-0209-0 – volume: 51 start-page: 123 year: 2013 ident: 10.1016/j.jbiosc.2020.09.008_bib54 article-title: Production of xylooligosaccharides (XOS) from delignified sugarcane bagasse by peroxide-HAc process using recombinant xylanase from Bacillus subtilis publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2013.08.062 – volume: 40 start-page: 2707 year: 2005 ident: 10.1016/j.jbiosc.2020.09.008_bib13 article-title: Immobilization of Streptomyces olivaceoviridis E-86 xylanase on Eudragit S-100 for xylo-oligosaccharide production publication-title: Process Biochem. doi: 10.1016/j.procbio.2004.12.006 – volume: 31 start-page: 426 year: 1959 ident: 10.1016/j.jbiosc.2020.09.008_bib33 article-title: Use of dinitrosalicylic acid reagent for determination of reducing sugar publication-title: Anal. Chem. doi: 10.1021/ac60147a030 – volume: 55 start-page: 3955 year: 2007 ident: 10.1016/j.jbiosc.2020.09.008_bib56 article-title: Production of xylooligosaccharides from xylans by extracellular xylanases from Thermobifida fusca publication-title: J. Agric. Food Chem. doi: 10.1021/jf0635964 – volume: 6 start-page: 18 year: 2013 ident: 10.1016/j.jbiosc.2020.09.008_bib42 article-title: The carbohydrate-binding module of xylanase from Nonomuraea flexuosa decreases its non-productive adsorption on lignin publication-title: Biotechnol. Biofuels doi: 10.1186/1754-6834-6-18 – volume: 10 start-page: 20 year: 2011 ident: 10.1016/j.jbiosc.2020.09.008_bib44 article-title: GH10 xylanase D from Penicillium funiculosum: biochemical studies and xylooligosaccharide production publication-title: Microb. Cell Fact. doi: 10.1186/1475-2859-10-20 – volume: 5 start-page: 62 year: 2015 ident: 10.1016/j.jbiosc.2020.09.008_bib4 article-title: Xylooligosaccharides as prebiotics from agricultural by-products: production and applications publication-title: Bioact. Carbohydr. Diet Fibre doi: 10.1016/j.bcdf.2014.12.003 – volume: 30 start-page: 1219 year: 2012 ident: 10.1016/j.jbiosc.2020.09.008_bib2 article-title: Microbial xylanases: engineering, production and industrial applications publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2011.11.006 – volume: 75 start-page: 232 year: 2011 ident: 10.1016/j.jbiosc.2020.09.008_bib37 article-title: Culture-independent phylogenetic analysis of the microbial community in industrial sugarcane bagasse feedstock piles publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.100429 – volume: 175 start-page: 1318 year: 2015 ident: 10.1016/j.jbiosc.2020.09.008_bib45 article-title: Recombination of thermo-alkalistable, high xylooligosaccharides producing endo-xylanase from Thermobifida fusca and expression in Pichia pastoris publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-014-1355-7 – volume: 259 start-page: 130 year: 2016 ident: 10.1016/j.jbiosc.2020.09.008_bib55 article-title: Immobilization and stabilization of an endoxylanase from Bacillus subtilis (XynA) for xylooligosaccharides (XOs) production publication-title: Catal. Today doi: 10.1016/j.cattod.2015.05.032 – volume: 170 start-page: 119 year: 2013 ident: 10.1016/j.jbiosc.2020.09.008_bib17 article-title: Thermostable and alkalistable endoxylanase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1: cloning, expression, characteristics and its applicability in generating xylooligosaccharides and fermentable sugars publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-013-0174-6 – volume: 65 start-page: 1139 year: 2017 ident: 10.1016/j.jbiosc.2020.09.008_bib19 article-title: Utility of thermostable xylanases of Mycothermus thermophilus in generating prebiotic xylooligosaccharides publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.6b05183 – volume: 67 start-page: 495 year: 2005 ident: 10.1016/j.jbiosc.2020.09.008_bib26 article-title: Thermostable xylanases, Xyn10A and Xyn11A, from the actinomycete Nonomuraea flexuosa: isolation of the genes and characterization of recombinant Xyn11A polypeptides produced in Trichoderma reesei publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-004-1797-x – volume: 64 start-page: 1759 year: 1998 ident: 10.1016/j.jbiosc.2020.09.008_bib27 article-title: Cloning of the xynB gene from Dictyoglomus thermophilum Rt46B.1 and action of the gene product on kraft pulp publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.64.5.1759-1765.1998 – volume: 77 start-page: C506 year: 2012 ident: 10.1016/j.jbiosc.2020.09.008_bib60 article-title: Properties of an alkaline-tolerant, thermostable xylanase from Streptomyces chartreusis L1105, suitable for xylooligosaccharide production publication-title: J. Food Sci. doi: 10.1111/j.1750-3841.2012.02671.x – volume: 41 start-page: 207 year: 2005 ident: 10.1016/j.jbiosc.2020.09.008_bib32 article-title: Protein production by auto-induction in high density shaking cultures publication-title: Protein Expr. Purif. doi: 10.1016/j.pep.2005.01.016 – volume: 21 start-page: 91 year: 1997 ident: 10.1016/j.jbiosc.2020.09.008_bib11 article-title: Purification and characterization of a xylanase from Trichoderma longibrachiatum for xylooligosaccharide production publication-title: Enzyme Microb. Technol. doi: 10.1016/S0141-0229(96)00236-0 – volume: 29 start-page: 3 year: 2005 ident: 10.1016/j.jbiosc.2020.09.008_bib12 article-title: Xylanases, xylanase families and extremophilic xylanases publication-title: FEMS Microbiol. Rev. doi: 10.1016/j.femsre.2004.06.005 – volume: 65 start-page: 237 year: 2016 ident: 10.1016/j.jbiosc.2020.09.008_bib20 article-title: Production of high-pure xylooligosaccharides from sugarcane bagasse using crude β-xylosidase-free xylanase of Bacillus subtilis KCX006 and their bifidogenic function publication-title: LWT - Food Sci. Technol. doi: 10.1016/j.lwt.2015.08.013 – volume: 7 start-page: 27 year: 2014 ident: 10.1016/j.jbiosc.2020.09.008_bib40 article-title: Cellulases without carbohydrate-binding modules in high consistency ethanol production process publication-title: Biotechnol. Biofuels doi: 10.1186/1754-6834-7-27 – volume: 61 start-page: 263 year: 2010 ident: 10.1016/j.jbiosc.2020.09.008_bib1 article-title: Hemicelluloses publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042809-112315 – volume: 474 start-page: 1 year: 2019 ident: 10.1016/j.jbiosc.2020.09.008_bib28 article-title: Characterization of CBM36-containing GH11 endoxylanase NtSymX11 from the hindgut metagenome of higher termite Nasutitermes takasagoensis displaying prominent catalytic activity publication-title: Carbohydr. Res. doi: 10.1016/j.carres.2019.01.003 – volume: 119 start-page: 384 year: 2015 ident: 10.1016/j.jbiosc.2020.09.008_bib22 article-title: Identification of glycosyl hydrolases from a metagenomic library of microflora in sugarcane bagasse collection site and their cooperative action on cellulose degradation publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2014.09.010 – volume: 115 start-page: 215 year: 2012 ident: 10.1016/j.jbiosc.2020.09.008_bib10 article-title: Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.10.083 – volume: 60 start-page: 226 year: 2018 ident: 10.1016/j.jbiosc.2020.09.008_bib21 article-title: Engineering thermostable microbial xylanases toward its industrial applications publication-title: Mol. Biotechnol. doi: 10.1007/s12033-018-0059-6 – volume: 47 start-page: 1088 year: 2001 ident: 10.1016/j.jbiosc.2020.09.008_bib46 article-title: Directed evolution to produce an alkalophilic variant from a Neocallimastix patriciarum xylanase publication-title: Can. J. Microbiol. doi: 10.1139/w01-118 – volume: 102 start-page: 146 year: 2014 ident: 10.1016/j.jbiosc.2020.09.008_bib47 article-title: Production and in vitro evaluation of xylooligosaccharides generated from corncobs using immobilized Penicillium occitanis xylanase publication-title: J. Mol. Catal. B: Enzym. doi: 10.1016/j.molcatb.2014.02.004 – volume: 7 start-page: 15287 year: 2017 ident: 10.1016/j.jbiosc.2020.09.008_bib50 article-title: Thermostability improvement of a Talaromyces leycettanus xylanase by rational protein engineering publication-title: Sci. Rep. doi: 10.1038/s41598-017-12659-y – volume: 94 start-page: 536 year: 2015 ident: 10.1016/j.jbiosc.2020.09.008_bib43 article-title: Production of xylooligosaccharides from garlic straw xylan by purified xylanase from Bacillus mojavensis UEB-FK and their in vitroevaluation as prebiotics publication-title: Food Bioprod. Process. doi: 10.1016/j.fbp.2014.07.012 – volume: 174 start-page: 118 year: 2014 ident: 10.1016/j.jbiosc.2020.09.008_bib49 article-title: Production of arabinoxylan-oligosaccharide mixtures of varying composition from rye bran by a combination of process conditions and type of xylanase publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.09.139 – volume: 35 start-page: 799 year: 2008 ident: 10.1016/j.jbiosc.2020.09.008_bib31 article-title: Permeabilization of baker's yeast with N-lauroyl sarcosine publication-title: J. Ind. Microbiol. Biotechnol. doi: 10.1007/s10295-008-0350-9 – volume: 52 start-page: 770 year: 2014 ident: 10.1016/j.jbiosc.2020.09.008_bib59 article-title: Simultaneous production of xylooligosaccharides and antioxidant compounds from sugarcane bagasse via enzymatic hydrolysis publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2013.12.005 – volume: 2 start-page: 2212 year: 2007 ident: 10.1016/j.jbiosc.2020.09.008_bib35 article-title: The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.321 – volume: 48 start-page: 87 year: 2009 ident: 10.1016/j.jbiosc.2020.09.008_bib48 article-title: Functional characterization of a recombinant thermostable xylanase from Pichia pastoris: a hybrid enzyme being suitable for xylooligosaccharides production, publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2009.08.010 – volume: 30 start-page: 564 year: 2012 ident: 10.1016/j.jbiosc.2020.09.008_bib24 article-title: GH11 xylanases: structure/function/properties relationships and applications publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2011.10.003 – volume: 102 start-page: 7171 year: 2011 ident: 10.1016/j.jbiosc.2020.09.008_bib52 article-title: Production of xylooligosaccharides by xylanase from Pichia stipitis based on xylan preparation from triploid Populas tomentosa publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.03.110 – volume: 57 start-page: 101 year: 2008 ident: 10.1016/j.jbiosc.2020.09.008_bib58 article-title: Expression of recombinant Bacillus licheniformis xylanase A in Pichia pastoris and xylooligosaccharides released from xylans by it publication-title: Protein Expr. Purif. doi: 10.1016/j.pep.2007.10.020 – volume: 100 start-page: 5230 year: 2009 ident: 10.1016/j.jbiosc.2020.09.008_bib61 article-title: Purification and enzymatic characterization of two β-endoxylanases from Trichoderma sp. K9301 and their actions in xylooligosaccharide production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.05.038 |
SSID | ssj0017071 |
Score | 2.3877409 |
Snippet | Xylo-oligosaccharide (XO) is a promising pre-biotic with applications in food, feed and healthcare products. XO can be produced by enzymatic digestion of xylan... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13 |
SubjectTerms | Biocatalysis biocatalysts biorefining carbohydrate binding catalytic activity Catalytic domain Cellulose - metabolism Directed evolution Endo-1,4-beta Xylanases - genetics Endo-1,4-beta Xylanases - metabolism fluorometry Gene Library genomic libraries health services Hydrolysis Kinetics Metagenome Mutagenesis Oligosaccharides - metabolism Saccharum - metabolism Substrate Specificity sugarcane bagasse Temperature xylan Xylanase xylanases Xylans - metabolism Xylo-oligosaccharide |
Title | Enhancement of catalytic performance of a metagenome-derived thermophilic oligosaccharide-specific xylanase by binding module removal and random mutagenesis |
URI | https://dx.doi.org/10.1016/j.jbiosc.2020.09.008 https://www.ncbi.nlm.nih.gov/pubmed/33067124 https://www.proquest.com/docview/2451850543 https://www.proquest.com/docview/2524228209 |
Volume | 131 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiQuiDfbQmUkrmYTO07iY1W1WljRA1DRm2U7DqTaxKvuLupe-CX8WGacZBESUIlTpGSsWJ7xzOfxPAh5XTsuijo3rLJOsKxOLFOSGyZNkpZGlamJdbbfn-ezi-zdpbzcIydjLgyGVQ66v9fpUVsPb6bDak6XTTP9GK_YCkAEIKdCxjzyLCtQyt9834V5pEUyHLpKxZB6TJ-LMV5XtgkrLGTIk1jtFJtM_tk8_Q1-RjN09oDcH_AjPe6n-JDs-e4Rudt3lNw-Jj9Ou6_IR_T50VDT6J3ZAi1d_soQwA-Gtn5tsEJr61kFYvjNVxTBYBuW6GNxNCyaL2FlHOZlNZVnmJOJcUX0ZrswHRg_arfUNjErhrah2iw8vfZtANGlpqsoGMEqtLTdxN_4VbN6Qi7OTj-dzNjQgIE5wAFr5lOT1DWANO6stBVAPzjepM7VTrjMmxS4rGrQUGVRYWU0bpUsMlXK3CqXC5GJp2S_C51_TmjJhXUANT13eeZVYqUHvhlvCleKupYTIsZ1126oTo5NMhZ6DEO70j23NHJLJ0oDtyaE7UYt--oct9AXI0v1b1KmwYDcMvLVKAEaNiDeqpjOh81K80wC5gHkK_5BIzmWWuOJmpBnvfjs5ivw0AYo6-C_53ZI7nGMtImOoRdkf3298S8BKq3tUdwLR-TO8dv57Byf8w-f5z8BhmMYNg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEaIXxM6UzUhwNJPYcZYDBwStpnS50Eq9GdtxINUkGTUzQC78Ev4Ff5D3nGQQElAJqdfETiy_7fPzWwh5XlgukiLWLDdWsKgIDMsk10zqIEx1loba19k-PIpnJ9G7U3m6QX6MuTAYVjno_l6ne209PJkOuzldlOX0vb9iSwARAJ8KmYRDZOW-677Aua19tfcWiPyC892d4zczNrQWYBYs3JK5UAdFAfCDWyNNDqAGgHtobWGFjZwOYf1ZAbKXJjnW_OImk0mUpTI2mY2FiAR89wq5GoG6wLYJL7-t40rCJBhOeWnGcHljvp4PKjszZdNi5UQe-PKq2NXyz_bwb3jX273dm-TGAFjp635PbpENV98m1_oWlt0d8n2n_oSMg05G2hTUu4M6GEsXv1IS8IWmlVtqLAlbOZYD3392OUX0WTULdOpY2szLj02rLSaClbljmASKgUz0azfXNVhbajpqSp-GQ6smX80dPXdVA7JCdZ1TsLp5U9Fq5X_j2rK9S04uhSz3yGbd1O4BoSkXxgK2ddzGkcsCIx0winY6sakoCjkhYtx3ZYdy6NiVY67GuLcz1VNLIbVUkCmg1oSw9axFXw7kgvHJSFL1G1srsFgXzHw2coACicdrHF27ZtUqHkkAWQC1xT_GSI613XiQTcj9nn3W6xV4SgRYt_3fa3tKrs-ODw_Uwd7R_kOyxTHMx3ulHpHN5fnKPQactjRPvFxQ8uGyBfEnBf9RCQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+catalytic+performance+of+a+metagenome-derived+thermophilic+oligosaccharide-specific+xylanase+by+binding+module+removal+and+random+mutagenesis&rft.jtitle=Journal+of+bioscience+and+bioengineering&rft.au=Boonyapakron%2C+Katewadee&rft.au=Chitnumsub%2C+Penchit&rft.au=Kanokratana%2C+Pattanop&rft.au=Champreda%2C+Verawat&rft.date=2021-01-01&rft.pub=Elsevier+B.V&rft.issn=1389-1723&rft.eissn=1347-4421&rft.volume=131&rft.issue=1&rft.spage=13&rft.epage=19&rft_id=info:doi/10.1016%2Fj.jbiosc.2020.09.008&rft.externalDocID=S1389172320303571 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-1723&client=summon |