Deep Transfer Learning for Time Series Data Based on Sensor Modality Classification
The scarcity of labelled time-series data can hinder a proper training of deep learning models. This is especially relevant for the growing field of ubiquitous computing, where data coming from wearable devices have to be analysed using pattern recognition techniques to provide meaningful applicatio...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 20; no. 15; p. 4271 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
31.07.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The scarcity of labelled time-series data can hinder a proper training of deep learning models. This is especially relevant for the growing field of ubiquitous computing, where data coming from wearable devices have to be analysed using pattern recognition techniques to provide meaningful applications. To address this problem, we propose a transfer learning method based on attributing sensor modality labels to a large amount of time-series data collected from various application fields. Using these data, our method firstly trains a Deep Neural Network (DNN) that can learn general characteristics of time-series data, then transfers it to another DNN designed to solve a specific target problem. In addition, we propose a general architecture that can adapt the transferred DNN regardless of the sensors used in the target field making our approach in particular suitable for multichannel data. We test our method for two ubiquitous computing problems—Human Activity Recognition (HAR) and Emotion Recognition (ER)—and compare it a baseline training the DNN without using transfer learning. For HAR, we also introduce a new dataset, Cognitive Village-MSBand (CogAge), which contains data for 61 atomic activities acquired from three wearable devices (smartphone, smartwatch, and smartglasses). Our results show that our transfer learning approach outperforms the baseline for both HAR and ER. |
---|---|
AbstractList | The scarcity of labelled time-series data can hinder a proper training of deep learning models. This is especially relevant for the growing field of ubiquitous computing, where data coming from wearable devices have to be analysed using pattern recognition techniques to provide meaningful applications. To address this problem, we propose a transfer learning method based on attributing sensor modality labels to a large amount of time-series data collected from various application fields. Using these data, our method firstly trains a Deep Neural Network (DNN) that can learn general characteristics of time-series data, then transfers it to another DNN designed to solve a specific target problem. In addition, we propose a general architecture that can adapt the transferred DNN regardless of the sensors used in the target field making our approach in particular suitable for multichannel data. We test our method for two ubiquitous computing problems—Human Activity Recognition (HAR) and Emotion Recognition (ER)—and compare it a baseline training the DNN without using transfer learning. For HAR, we also introduce a new dataset, Cognitive Village-MSBand (CogAge), which contains data for 61 atomic activities acquired from three wearable devices (smartphone, smartwatch, and smartglasses). Our results show that our transfer learning approach outperforms the baseline for both HAR and ER. The scarcity of labelled time-series data can hinder a proper training of deep learning models. This is especially relevant for the growing field of ubiquitous computing, where data coming from wearable devices have to be analysed using pattern recognition techniques to provide meaningful applications. To address this problem, we propose a transfer learning method based on attributing sensor modality labels to a large amount of time-series data collected from various application fields. Using these data, our method firstly trains a Deep Neural Network (DNN) that can learn general characteristics of time-series data, then transfers it to another DNN designed to solve a specific target problem. In addition, we propose a general architecture that can adapt the transferred DNN regardless of the sensors used in the target field making our approach in particular suitable for multichannel data. We test our method for two ubiquitous computing problems-Human Activity Recognition (HAR) and Emotion Recognition (ER)-and compare it a baseline training the DNN without using transfer learning. For HAR, we also introduce a new dataset, Cognitive Village-MSBand (CogAge), which contains data for 61 atomic activities acquired from three wearable devices (smartphone, smartwatch, and smartglasses). Our results show that our transfer learning approach outperforms the baseline for both HAR and ER.The scarcity of labelled time-series data can hinder a proper training of deep learning models. This is especially relevant for the growing field of ubiquitous computing, where data coming from wearable devices have to be analysed using pattern recognition techniques to provide meaningful applications. To address this problem, we propose a transfer learning method based on attributing sensor modality labels to a large amount of time-series data collected from various application fields. Using these data, our method firstly trains a Deep Neural Network (DNN) that can learn general characteristics of time-series data, then transfers it to another DNN designed to solve a specific target problem. In addition, we propose a general architecture that can adapt the transferred DNN regardless of the sensors used in the target field making our approach in particular suitable for multichannel data. We test our method for two ubiquitous computing problems-Human Activity Recognition (HAR) and Emotion Recognition (ER)-and compare it a baseline training the DNN without using transfer learning. For HAR, we also introduce a new dataset, Cognitive Village-MSBand (CogAge), which contains data for 61 atomic activities acquired from three wearable devices (smartphone, smartwatch, and smartglasses). Our results show that our transfer learning approach outperforms the baseline for both HAR and ER. |
Author | Shirahama, Kimiaki Nisar, Muhammad Adeel Li, Frédéric Grzegorzek, Marcin Huang, Xinyu |
AuthorAffiliation | 1 Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; muhammad.nisar@student.uni-luebeck.de (M.A.N.); huang@imi.uni-luebeck.de (X.H.); grzegorzek@imi.uni-luebeck.de (M.G.) 2 Department of Informatics, Kindai University, 3-4-1 Kowakae, Higashiosaka City, Osaka 577-8502, Japan; shirahama@info.kindai.ac.jp |
AuthorAffiliation_xml | – name: 2 Department of Informatics, Kindai University, 3-4-1 Kowakae, Higashiosaka City, Osaka 577-8502, Japan; shirahama@info.kindai.ac.jp – name: 1 Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; muhammad.nisar@student.uni-luebeck.de (M.A.N.); huang@imi.uni-luebeck.de (X.H.); grzegorzek@imi.uni-luebeck.de (M.G.) |
Author_xml | – sequence: 1 givenname: Frédéric surname: Li fullname: Li, Frédéric – sequence: 2 givenname: Kimiaki surname: Shirahama fullname: Shirahama, Kimiaki – sequence: 3 givenname: Muhammad Adeel orcidid: 0000-0003-3288-750X surname: Nisar fullname: Nisar, Muhammad Adeel – sequence: 4 givenname: Xinyu orcidid: 0000-0003-3210-3891 surname: Huang fullname: Huang, Xinyu – sequence: 5 givenname: Marcin orcidid: 0000-0003-4877-8287 surname: Grzegorzek fullname: Grzegorzek, Marcin |
BookMark | eNptkU1vEzEQhi1URD_gwD-wxAUOoV5_7K4vSDQFWilVDw1na9YeB0cbO9gbpP57TFJVbcXFtsaPnxn5PSVHMUUk5H3DPguh2XnhrFGSd80rctJILmc95-zoyfmYnJayZowLIfo35FjwTjW9Uifk7hJxS5cZYvGY6QIhxxBX1KdMl2GD9A5zwEIvYQJ6AQUdTbEWY6nATXIwhumezkcoJfhgYQopviWvPYwF3z3sZ-Tn92_L-dVscfvjev51MbOq4dPMeelVL4RVlncD9kxrK3poLCreqtbrhtmWAbMWlPUDGywTgg09Qss01504I9cHr0uwNtscNpDvTYJg9oWUVwbyFOyIRteODAfvHO8l1xakleiUG4Aj1LW6vhxc292wQWcxThnGZ9LnNzH8Mqv0x3RSKKXbKvj4IMjp9w7LZDahWBxHiJh2xXApWCu7VvYV_fACXaddjvWr9pRgnLe8Up8OlM2plIz-cZiGmX-xm8fYK3v-grVh2mdRZw3jf178BaPmrxY |
CitedBy_id | crossref_primary_10_3389_fpsyg_2021_697093 crossref_primary_10_48175_IJETIR_1230 crossref_primary_10_3390_sym12091570 crossref_primary_10_3390_en15062078 crossref_primary_10_1002_spe_3394 crossref_primary_10_3390_s22103634 crossref_primary_10_3390_s23198234 crossref_primary_10_1016_j_engappai_2024_108550 crossref_primary_10_1109_ACCESS_2021_3134628 crossref_primary_10_1016_j_compbiomed_2023_107501 crossref_primary_10_3390_s21061954 crossref_primary_10_1016_j_compbiomed_2023_107489 crossref_primary_10_3390_s23031105 crossref_primary_10_1007_s00607_020_00899_2 crossref_primary_10_3390_s23073446 crossref_primary_10_3390_s24247975 crossref_primary_10_1109_JIOT_2024_3415114 crossref_primary_10_1109_TAI_2024_3430236 crossref_primary_10_3390_electronics11182960 crossref_primary_10_1109_TITS_2021_3129916 crossref_primary_10_1016_j_eswa_2024_123147 crossref_primary_10_1145_3580883 crossref_primary_10_1109_ACCESS_2022_3141806 crossref_primary_10_1109_TKDE_2024_3475809 crossref_primary_10_3390_s22113980 crossref_primary_10_3390_s23031598 crossref_primary_10_3390_s23052611 crossref_primary_10_1016_j_jnca_2023_103760 crossref_primary_10_1109_JBHI_2022_3165383 crossref_primary_10_3390_s20247312 crossref_primary_10_3390_info15060343 crossref_primary_10_3390_s21144736 crossref_primary_10_1145_3649448 crossref_primary_10_1371_journal_pone_0315343 |
Cites_doi | 10.1109/CVPR.2014.222 10.1109/79.911197 10.1145/3343031.3350871 10.1016/j.enbuild.2017.01.083 10.3390/s16010115 10.1016/j.patrec.2012.12.014 10.1109/TKDE.2009.191 10.1155/2014/627892 10.1007/978-3-319-10590-1_53 10.1145/2971763.2971764 10.1016/j.patrec.2018.02.010 10.1016/j.snb.2015.03.028 10.1016/j.patcog.2019.107049 10.1109/PERCOM.2018.8444585 10.1561/1500000033 10.1109/PERCOM.2018.8444572 10.1007/s10115-013-0665-3 10.1109/BIBE.2018.00031 10.1109/CVPR.2018.00958 10.1109/ICASSP.2013.6637858 10.3389/fnins.2018.00162 10.1016/j.patcog.2017.07.019 10.1109/T-AFFC.2011.15 10.3390/s18020679 10.1109/ICCV.2015.478 10.1007/s10618-019-00619-1 10.1109/CVPR.2014.81 10.1109/CVPR.2016.278 10.1109/CVPR.2019.00494 10.1109/SURV.2012.110112.00192 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s20154271 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_95120ebfdd28429ca4c4ed5dba2eadba PMC7435596 10_3390_s20154271 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c512t-df4f5833c5c27be8099c38a1ce52656f910c60a0cca5cfb0bc0330b8ea6092973 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:25:17 EDT 2025 Thu Aug 21 13:48:43 EDT 2025 Fri Jul 11 00:24:06 EDT 2025 Fri Jul 25 20:42:46 EDT 2025 Tue Jul 01 03:55:42 EDT 2025 Thu Apr 24 22:55:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c512t-df4f5833c5c27be8099c38a1ce52656f910c60a0cca5cfb0bc0330b8ea6092973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4877-8287 0000-0003-3210-3891 0000-0003-3288-750X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s20154271 |
PMID | 32751855 |
PQID | 2430302262 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_95120ebfdd28429ca4c4ed5dba2eadba pubmedcentral_primary_oai_pubmedcentral_nih_gov_7435596 proquest_miscellaneous_2430647648 proquest_journals_2430302262 crossref_primary_10_3390_s20154271 crossref_citationtrail_10_3390_s20154271 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200731 |
PublicationDateYYYYMMDD | 2020-07-31 |
PublicationDate_xml | – month: 7 year: 2020 text: 20200731 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_50 ref_14 ref_13 ref_11 ref_10 ref_19 Gurrin (ref_51) 2014; 8 ref_18 ref_17 ref_16 Pan (ref_8) 2009; 22 Li (ref_25) 2019; 98 Cowie (ref_34) 2001; 18 ref_24 ref_22 ref_21 ref_20 Fonollosa (ref_42) 2015; 215 ref_29 Li (ref_47) 2019; 12 ref_28 ref_26 Candanedo (ref_44) 2017; 140 ref_36 ref_35 ref_33 Chavarriaga (ref_41) 2013; 34 ref_31 Afridi (ref_23) 2018; 73 ref_30 Fawaz (ref_12) 2019; 33 Jirayucharoensak (ref_37) 2014; 14 Cook (ref_27) 2013; 36 ref_39 ref_38 Lara (ref_32) 2013; 15 Wang (ref_1) 2018; 119 ref_46 ref_45 ref_43 ref_40 ref_3 ref_2 ref_49 ref_48 ref_9 Koelstra (ref_15) 2012; 3 ref_5 ref_4 ref_7 ref_6 |
References_xml | – ident: ref_22 doi: 10.1109/CVPR.2014.222 – ident: ref_9 – ident: ref_5 – volume: 18 start-page: 32 year: 2001 ident: ref_34 article-title: Emotion Recognition in Human-Computer Interaction publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.911197 – ident: ref_16 – ident: ref_38 doi: 10.1145/3343031.3350871 – ident: ref_39 – volume: 140 start-page: 81 year: 2017 ident: ref_44 article-title: Data driven prediction models of energy use of appliances in a low-energy house publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.01.083 – ident: ref_4 doi: 10.3390/s16010115 – volume: 34 start-page: 2033 year: 2013 ident: ref_41 article-title: The Opportunity challenge: A benchmark database for on-body sensor-based activity recognition publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2012.12.014 – volume: 22 start-page: 1345 year: 2009 ident: ref_8 article-title: A Survey on Transfer Learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.191 – volume: 14 start-page: 1 year: 2014 ident: ref_37 article-title: EEG-based Emotion Recognition using Deep Learning Network with Principal Component Based Covariate Shift Adaptation publication-title: Sci. World J. doi: 10.1155/2014/627892 – ident: ref_3 doi: 10.1007/978-3-319-10590-1_53 – ident: ref_28 doi: 10.1145/2971763.2971764 – volume: 119 start-page: 3 year: 2018 ident: ref_1 article-title: Deep Learning for Sensor-based Activity Recognition: A Survey publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2018.02.010 – ident: ref_31 – volume: 215 start-page: 618 year: 2015 ident: ref_42 article-title: Reservoir computing compensates slow response of chemosensor arrays exposed to fast varying gas concentrations in continuous monitoring publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2015.03.028 – ident: ref_10 – ident: ref_13 – ident: ref_17 – ident: ref_45 – ident: ref_20 – volume: 98 start-page: 107049 year: 2019 ident: ref_25 article-title: A Baseline Regularisation Scheme for Transfer Learning with Convolutional Neural Networks publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.107049 – ident: ref_7 – ident: ref_29 doi: 10.1109/PERCOM.2018.8444585 – volume: 8 start-page: 1 year: 2014 ident: ref_51 article-title: LifeLogging: Personal Big Data publication-title: Found. Trends Inf. Retr. doi: 10.1561/1500000033 – ident: ref_30 doi: 10.1109/PERCOM.2018.8444572 – ident: ref_11 – volume: 36 start-page: 537 year: 2013 ident: ref_27 article-title: Transfer Learning for Activity Recognition: A Survey publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-013-0665-3 – ident: ref_35 doi: 10.1109/BIBE.2018.00031 – ident: ref_40 – ident: ref_48 doi: 10.1109/CVPR.2018.00958 – ident: ref_36 doi: 10.1109/ICASSP.2013.6637858 – ident: ref_14 – volume: 12 start-page: 162 year: 2019 ident: ref_47 article-title: Exploring EEG Features in Cross-subject Emotion Recognition publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00162 – ident: ref_18 – volume: 73 start-page: 65 year: 2018 ident: ref_23 article-title: On Automated Source Selection for Transfer Learning in Convolutional Neural Networks publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.07.019 – volume: 3 start-page: 18 year: 2012 ident: ref_15 article-title: DEAP: A Database for Emotion Analysis Using Physiological Signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.15 – ident: ref_6 – ident: ref_50 – ident: ref_2 doi: 10.3390/s18020679 – ident: ref_33 – ident: ref_46 – ident: ref_49 doi: 10.1109/ICCV.2015.478 – volume: 33 start-page: 917 year: 2019 ident: ref_12 article-title: Deep Learning for Time Series Classification: A Review publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-019-00619-1 – ident: ref_21 doi: 10.1109/CVPR.2014.81 – ident: ref_26 doi: 10.1109/CVPR.2016.278 – ident: ref_19 – ident: ref_43 – ident: ref_24 doi: 10.1109/CVPR.2019.00494 – volume: 15 start-page: 1192 year: 2013 ident: ref_32 article-title: A Survey on Human Activity Recognition using Wearable Sensors publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/SURV.2012.110112.00192 |
SSID | ssj0023338 |
Score | 2.5079424 |
Snippet | The scarcity of labelled time-series data can hinder a proper training of deep learning models. This is especially relevant for the growing field of ubiquitous... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 4271 |
SubjectTerms | Classification Datasets deep learning emotion recognition Experiments human activity recognition Machine learning Neurons Sensors time-series classification transfer learning Ubiquitous computing wearable computing |
SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT4MwFG7MTnow_ozoNNV48EIGpS1wdM5lMZkXXbIb6S_UxMAy2P_va2FkJCZevNJ3KO8B3_eV9nsI3XPg7LFk8PWjnPlURNwXglBf5ipJRUDD1Nizw_NXPlvQlyVb7rT6snvCGnvgJnEjYAAkMDLXGj6kJFWCKmo001IQSIJ01AgwbyumWqkVgfJqfIQiEPWjiliqQOKwhz7OpL_HLPv7IneAZnqEDluGiB-bmR2jPVOcoIMd38BT9DYxZoUdzORmjVuP1A8MBBTbMx3YrnmZCk9ELfAYcErjsoCLRQUB81I77o1dP0y7U8gV5wwtps_vTzO_7Y7gK0hJ7euc5vbIlGKKxNIkQPVUlIhQGet4z3PgAYoHIoASMZXLQKogigKZGMGD1HasOkeDoizMBcKJoYqHOkzzGABdpyICZBMsZVRyUDCphx62WctUax1uO1h8ZyAhbIKzLsEeuutCV41fxm9BY5v6LsBaXLsLUPisLXz2V-E9NNwWLmvfuyojFCAZaAknHrrthuGNsb9BRGHKTRPDacxp4qG4V_DehPojxden894GwgUajF_-xx1coX1i1btbKR6iQb3emGugOLW8cU_zDy7R_QE priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB1RuNADaguIFKhcxIFLROI4TnJC5WNBSPRSkLhF_gogoWS7Wf4_M15vIBLiao-UyGP7vbHHbwAOJXL2Que4-wmZx0JlMlaKi1g3pqxUItLK0dvhm7_y6k5c3-f34cCtD2mVyz3Rb9S2M3RGfswFbrYIOJKfTP_HVDWKbldDCY0vsJYi0lBKVzm5HAKuDOOvhZpQhqH9cc-JMPAiHWGQl-of8ctxduQ7uJl8g43AE9mfhWO_w4prf8DXd-qBm_Dv3Lkp82DTuBkLSqkPDGkoo5cdjE6-XM_O1VyxU0Qry7oWG9seDW466xk481UxKV_Iu2gL7iYXt2dXcaiREBuE6nlsG9HQwymTG15oVyLhM1mpUuNI9142yAaMTFSCjspNoxNtkixLdOmUTCqqW7UNq23Xuh1gpRNGpjatmgJh3VYqQ3xTeZULLTGOqSI4Wo5abYKAONWxeK4xkKABrocBjuBgMJ0uVDM-MjqloR8MSOjaN3SzhzqsmxoJIE-cbqxFHOWVUcIIZ3OrFcc1oFUEe0vH1WH19fXbXIng99CN64YuQ1TrupeFjRSFFGUExcjhox8a97RPj16BG2kXRmLy5-cf34V1TtG5Pwneg9X57MXtI4WZ619-nr4Cu47yJQ priority: 102 providerName: ProQuest |
Title | Deep Transfer Learning for Time Series Data Based on Sensor Modality Classification |
URI | https://www.proquest.com/docview/2430302262 https://www.proquest.com/docview/2430647648 https://pubmed.ncbi.nlm.nih.gov/PMC7435596 https://doaj.org/article/95120ebfdd28429ca4c4ed5dba2eadba |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9tAEB1RuLSHio9WdYFoqXroxe1mvV7bhwoRIEWVglDbSLlZ-2WohGyaBAn-fWc2joUlDlx8WI8le2bX783a8wbgs0LOnpkU335SpbHUiYq1FjI2lc0LzeWw8FQ7PLlUF1P5c5bONmDdY7N14OLZ1I76SU3nt18f_j0e44L_ThknpuzfFoKIgKBK8i0EpIwaGUxk9zFBJEloaE01XTHiIV8JDPUv7cFSUO_vUc7-D5NPEGi8DW9b6shOVrHegQ1f78KbJ4KCe_D7zPs7FvCn8nPWiqdeM2SmjIo9GG2G-QU700vNRghgjjU1DtYLNJg0LpByFhpl0i9EIWrvYDo-_3N6EbdtE2KL6L2MXSUrqqWyqRWZ8TlyQJvkemg9SeGrCgmCVVxzjF1qK8ON5UnCTe614gW1snoPm3VT-w_Aci-tGrphUWXoWFfoBCFPp0UqjcLUpojgy9prpW01xam1xW2JuQU5uOwcHMGnzvRuJaTxnNGIXN8ZkPZ1GGjm12W7lErkhIJ7UzmH0CoKq6WV3qXOaIHLwugIDtaBK9fzqRQSsRr5ihIRHHWncSnR9xFd--Z-ZaNkpmQeQdYLeO-G-mfqvzdBlBuZGCZn6uNLHnMfXgtK28MW8QFsLuf3_hC5zdIM4FU2y_CYj38MYGt0fnn1axD2CQZhTv8Hxg37SA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKcaKGAQSFyiJo7jJAeEKMuypd1eaKXegl8pSChZNlsh_hS_kRnnQSMhbr3GozzGM_6-cTwzAC8lcvZMp7j6CZmGQiUyVIqLUFcmL1Qk4sJR7vDyWC5Oxaez9GwLfg-5MHSsclgT_UJtG0N75Htc4GKLgCP529WPkLpG0d_VoYVGZxaH7tdPDNnaNwcznN9XnM8_nLxfhH1XgdAguG1CW4mKUo1ManimXY4UySS5io2jSvGyQvw0MlIRflpqKh1pE2HMr3OnZFRQpye87zW4LhJEcspMn38cA7wE472uehEORnstJ4LCs3iCeb41wITPTk9jXoK3-R243fNS9q4zpLuw5ep7cOtStcL78Hnm3Ip5cKvcmvWVWc8Z0l5GmSSMdtpcy2Zqo9g-oqNlTY0X6xYFlo31jJ_5Lpx0PsmbxAM4vRLtPYTtuqndDrDcCSNjGxdVhjTCFipBPFVpkQotMW4qAng9aK00fcFy6pvxvcTAhRRcjgoO4MUouuqqdPxLaJ9UPwpQYW1_oVmfl72flkg4eeR0ZS3iNi-MEkY4m1qtOPqcVgHsDhNX9t7eln9tM4Dn4zD6Kf18UbVrLjoZKTIp8gCyyYRPXmg6Un_76it-I83DyE8--v_Dn8GNxcnyqDw6OD58DDc57Qz4Xehd2N6sL9wTpE8b_dTbLIMvV-0kfwCYTS8g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9VAEB7qKYg-iFdMrbqKgi_hJJvNJnkQ8Xh6aK09FLXQt3RvqUJJjieniH_NX-dMbjYgvvV1d8hldma_b_YyA_BKImdPdIyzn5CxL1QkfaW48HVh0kwFIswc3R0-Wsr9E_HxND7dgt_9XRg6VtnPic1EbStDa-RTLnCyRcCRfFp0xyKO54t3qx8-VZCinda-nEZrIofu108M3-q3B3Mc69ecL_a-ftj3uwoDvkGg2_i2EAVdOzKx4Yl2KdIlE6UqNI6yxssCsdTIQAX4m7EpdKBNgPG_Tp2SQUZVn_C5N2A7oahoAtuzveXx5yHcizD6a3MZRVEWTGtOdIUn4QgBm0IBI3Y7Ppt5BewWd-FOx1LZ-9as7sGWK-_D7Su5Cx_Al7lzK9ZAXeHWrMvTes6QBDO6V8Jo3c3VbK42is0QKy2rSmwsaxQ4qmzD_1lTk5NOKzUG8hBOrkV_j2BSVqV7DCx1wsjQhlmRIKmwmYoQXVWcxUJLjKIyD970WstNl76cqmhc5BjGkILzQcEevBxEV23Ojn8JzUj1gwCl2W4aqvV53nltjvSTB04X1iKK88woYYSzsdWKowdq5cFuP3B55_t1_tdSPXgxdKPX0laMKl112cpIkUiRepCMBnz0QeOe8vu3Jv83kj6MA-XO_1_-HG6ig-SfDpaHT-AWp2WCZkl6Fyab9aV7ilxqo591Rsvg7Lr95A-GdTSy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Transfer+Learning+for+Time+Series+Data+Based+on+Sensor+Modality+Classification&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Fr%C3%A9d%C3%A9ric&rft.au=Shirahama%2C+Kimiaki&rft.au=Nisar%2C+Muhammad+Adeel&rft.au=Huang%2C+Xinyu&rft.date=2020-07-31&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=20&rft.issue=15&rft.spage=4271&rft_id=info:doi/10.3390%2Fs20154271&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s20154271 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |