Deep Transfer Learning for Time Series Data Based on Sensor Modality Classification

The scarcity of labelled time-series data can hinder a proper training of deep learning models. This is especially relevant for the growing field of ubiquitous computing, where data coming from wearable devices have to be analysed using pattern recognition techniques to provide meaningful applicatio...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 20; no. 15; p. 4271
Main Authors Li, Frédéric, Shirahama, Kimiaki, Nisar, Muhammad Adeel, Huang, Xinyu, Grzegorzek, Marcin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 31.07.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The scarcity of labelled time-series data can hinder a proper training of deep learning models. This is especially relevant for the growing field of ubiquitous computing, where data coming from wearable devices have to be analysed using pattern recognition techniques to provide meaningful applications. To address this problem, we propose a transfer learning method based on attributing sensor modality labels to a large amount of time-series data collected from various application fields. Using these data, our method firstly trains a Deep Neural Network (DNN) that can learn general characteristics of time-series data, then transfers it to another DNN designed to solve a specific target problem. In addition, we propose a general architecture that can adapt the transferred DNN regardless of the sensors used in the target field making our approach in particular suitable for multichannel data. We test our method for two ubiquitous computing problems—Human Activity Recognition (HAR) and Emotion Recognition (ER)—and compare it a baseline training the DNN without using transfer learning. For HAR, we also introduce a new dataset, Cognitive Village-MSBand (CogAge), which contains data for 61 atomic activities acquired from three wearable devices (smartphone, smartwatch, and smartglasses). Our results show that our transfer learning approach outperforms the baseline for both HAR and ER.
AbstractList The scarcity of labelled time-series data can hinder a proper training of deep learning models. This is especially relevant for the growing field of ubiquitous computing, where data coming from wearable devices have to be analysed using pattern recognition techniques to provide meaningful applications. To address this problem, we propose a transfer learning method based on attributing sensor modality labels to a large amount of time-series data collected from various application fields. Using these data, our method firstly trains a Deep Neural Network (DNN) that can learn general characteristics of time-series data, then transfers it to another DNN designed to solve a specific target problem. In addition, we propose a general architecture that can adapt the transferred DNN regardless of the sensors used in the target field making our approach in particular suitable for multichannel data. We test our method for two ubiquitous computing problems—Human Activity Recognition (HAR) and Emotion Recognition (ER)—and compare it a baseline training the DNN without using transfer learning. For HAR, we also introduce a new dataset, Cognitive Village-MSBand (CogAge), which contains data for 61 atomic activities acquired from three wearable devices (smartphone, smartwatch, and smartglasses). Our results show that our transfer learning approach outperforms the baseline for both HAR and ER.
The scarcity of labelled time-series data can hinder a proper training of deep learning models. This is especially relevant for the growing field of ubiquitous computing, where data coming from wearable devices have to be analysed using pattern recognition techniques to provide meaningful applications. To address this problem, we propose a transfer learning method based on attributing sensor modality labels to a large amount of time-series data collected from various application fields. Using these data, our method firstly trains a Deep Neural Network (DNN) that can learn general characteristics of time-series data, then transfers it to another DNN designed to solve a specific target problem. In addition, we propose a general architecture that can adapt the transferred DNN regardless of the sensors used in the target field making our approach in particular suitable for multichannel data. We test our method for two ubiquitous computing problems-Human Activity Recognition (HAR) and Emotion Recognition (ER)-and compare it a baseline training the DNN without using transfer learning. For HAR, we also introduce a new dataset, Cognitive Village-MSBand (CogAge), which contains data for 61 atomic activities acquired from three wearable devices (smartphone, smartwatch, and smartglasses). Our results show that our transfer learning approach outperforms the baseline for both HAR and ER.The scarcity of labelled time-series data can hinder a proper training of deep learning models. This is especially relevant for the growing field of ubiquitous computing, where data coming from wearable devices have to be analysed using pattern recognition techniques to provide meaningful applications. To address this problem, we propose a transfer learning method based on attributing sensor modality labels to a large amount of time-series data collected from various application fields. Using these data, our method firstly trains a Deep Neural Network (DNN) that can learn general characteristics of time-series data, then transfers it to another DNN designed to solve a specific target problem. In addition, we propose a general architecture that can adapt the transferred DNN regardless of the sensors used in the target field making our approach in particular suitable for multichannel data. We test our method for two ubiquitous computing problems-Human Activity Recognition (HAR) and Emotion Recognition (ER)-and compare it a baseline training the DNN without using transfer learning. For HAR, we also introduce a new dataset, Cognitive Village-MSBand (CogAge), which contains data for 61 atomic activities acquired from three wearable devices (smartphone, smartwatch, and smartglasses). Our results show that our transfer learning approach outperforms the baseline for both HAR and ER.
Author Shirahama, Kimiaki
Nisar, Muhammad Adeel
Li, Frédéric
Grzegorzek, Marcin
Huang, Xinyu
AuthorAffiliation 1 Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; muhammad.nisar@student.uni-luebeck.de (M.A.N.); huang@imi.uni-luebeck.de (X.H.); grzegorzek@imi.uni-luebeck.de (M.G.)
2 Department of Informatics, Kindai University, 3-4-1 Kowakae, Higashiosaka City, Osaka 577-8502, Japan; shirahama@info.kindai.ac.jp
AuthorAffiliation_xml – name: 2 Department of Informatics, Kindai University, 3-4-1 Kowakae, Higashiosaka City, Osaka 577-8502, Japan; shirahama@info.kindai.ac.jp
– name: 1 Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; muhammad.nisar@student.uni-luebeck.de (M.A.N.); huang@imi.uni-luebeck.de (X.H.); grzegorzek@imi.uni-luebeck.de (M.G.)
Author_xml – sequence: 1
  givenname: Frédéric
  surname: Li
  fullname: Li, Frédéric
– sequence: 2
  givenname: Kimiaki
  surname: Shirahama
  fullname: Shirahama, Kimiaki
– sequence: 3
  givenname: Muhammad Adeel
  orcidid: 0000-0003-3288-750X
  surname: Nisar
  fullname: Nisar, Muhammad Adeel
– sequence: 4
  givenname: Xinyu
  orcidid: 0000-0003-3210-3891
  surname: Huang
  fullname: Huang, Xinyu
– sequence: 5
  givenname: Marcin
  orcidid: 0000-0003-4877-8287
  surname: Grzegorzek
  fullname: Grzegorzek, Marcin
BookMark eNptkU1vEzEQhi1URD_gwD-wxAUOoV5_7K4vSDQFWilVDw1na9YeB0cbO9gbpP57TFJVbcXFtsaPnxn5PSVHMUUk5H3DPguh2XnhrFGSd80rctJILmc95-zoyfmYnJayZowLIfo35FjwTjW9Uifk7hJxS5cZYvGY6QIhxxBX1KdMl2GD9A5zwEIvYQJ6AQUdTbEWY6nATXIwhumezkcoJfhgYQopviWvPYwF3z3sZ-Tn92_L-dVscfvjev51MbOq4dPMeelVL4RVlncD9kxrK3poLCreqtbrhtmWAbMWlPUDGywTgg09Qss01504I9cHr0uwNtscNpDvTYJg9oWUVwbyFOyIRteODAfvHO8l1xakleiUG4Aj1LW6vhxc292wQWcxThnGZ9LnNzH8Mqv0x3RSKKXbKvj4IMjp9w7LZDahWBxHiJh2xXApWCu7VvYV_fACXaddjvWr9pRgnLe8Up8OlM2plIz-cZiGmX-xm8fYK3v-grVh2mdRZw3jf178BaPmrxY
CitedBy_id crossref_primary_10_3389_fpsyg_2021_697093
crossref_primary_10_48175_IJETIR_1230
crossref_primary_10_3390_sym12091570
crossref_primary_10_3390_en15062078
crossref_primary_10_1002_spe_3394
crossref_primary_10_3390_s22103634
crossref_primary_10_3390_s23198234
crossref_primary_10_1016_j_engappai_2024_108550
crossref_primary_10_1109_ACCESS_2021_3134628
crossref_primary_10_1016_j_compbiomed_2023_107501
crossref_primary_10_3390_s21061954
crossref_primary_10_1016_j_compbiomed_2023_107489
crossref_primary_10_3390_s23031105
crossref_primary_10_1007_s00607_020_00899_2
crossref_primary_10_3390_s23073446
crossref_primary_10_3390_s24247975
crossref_primary_10_1109_JIOT_2024_3415114
crossref_primary_10_1109_TAI_2024_3430236
crossref_primary_10_3390_electronics11182960
crossref_primary_10_1109_TITS_2021_3129916
crossref_primary_10_1016_j_eswa_2024_123147
crossref_primary_10_1145_3580883
crossref_primary_10_1109_ACCESS_2022_3141806
crossref_primary_10_1109_TKDE_2024_3475809
crossref_primary_10_3390_s22113980
crossref_primary_10_3390_s23031598
crossref_primary_10_3390_s23052611
crossref_primary_10_1016_j_jnca_2023_103760
crossref_primary_10_1109_JBHI_2022_3165383
crossref_primary_10_3390_s20247312
crossref_primary_10_3390_info15060343
crossref_primary_10_3390_s21144736
crossref_primary_10_1145_3649448
crossref_primary_10_1371_journal_pone_0315343
Cites_doi 10.1109/CVPR.2014.222
10.1109/79.911197
10.1145/3343031.3350871
10.1016/j.enbuild.2017.01.083
10.3390/s16010115
10.1016/j.patrec.2012.12.014
10.1109/TKDE.2009.191
10.1155/2014/627892
10.1007/978-3-319-10590-1_53
10.1145/2971763.2971764
10.1016/j.patrec.2018.02.010
10.1016/j.snb.2015.03.028
10.1016/j.patcog.2019.107049
10.1109/PERCOM.2018.8444585
10.1561/1500000033
10.1109/PERCOM.2018.8444572
10.1007/s10115-013-0665-3
10.1109/BIBE.2018.00031
10.1109/CVPR.2018.00958
10.1109/ICASSP.2013.6637858
10.3389/fnins.2018.00162
10.1016/j.patcog.2017.07.019
10.1109/T-AFFC.2011.15
10.3390/s18020679
10.1109/ICCV.2015.478
10.1007/s10618-019-00619-1
10.1109/CVPR.2014.81
10.1109/CVPR.2016.278
10.1109/CVPR.2019.00494
10.1109/SURV.2012.110112.00192
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s20154271
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_95120ebfdd28429ca4c4ed5dba2eadba
PMC7435596
10_3390_s20154271
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c512t-df4f5833c5c27be8099c38a1ce52656f910c60a0cca5cfb0bc0330b8ea6092973
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:25:17 EDT 2025
Thu Aug 21 13:48:43 EDT 2025
Fri Jul 11 00:24:06 EDT 2025
Fri Jul 25 20:42:46 EDT 2025
Tue Jul 01 03:55:42 EDT 2025
Thu Apr 24 22:55:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-df4f5833c5c27be8099c38a1ce52656f910c60a0cca5cfb0bc0330b8ea6092973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4877-8287
0000-0003-3210-3891
0000-0003-3288-750X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s20154271
PMID 32751855
PQID 2430302262
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_95120ebfdd28429ca4c4ed5dba2eadba
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7435596
proquest_miscellaneous_2430647648
proquest_journals_2430302262
crossref_primary_10_3390_s20154271
crossref_citationtrail_10_3390_s20154271
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200731
PublicationDateYYYYMMDD 2020-07-31
PublicationDate_xml – month: 7
  year: 2020
  text: 20200731
  day: 31
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
ref_14
ref_13
ref_11
ref_10
ref_19
Gurrin (ref_51) 2014; 8
ref_18
ref_17
ref_16
Pan (ref_8) 2009; 22
Li (ref_25) 2019; 98
Cowie (ref_34) 2001; 18
ref_24
ref_22
ref_21
ref_20
Fonollosa (ref_42) 2015; 215
ref_29
Li (ref_47) 2019; 12
ref_28
ref_26
Candanedo (ref_44) 2017; 140
ref_36
ref_35
ref_33
Chavarriaga (ref_41) 2013; 34
ref_31
Afridi (ref_23) 2018; 73
ref_30
Fawaz (ref_12) 2019; 33
Jirayucharoensak (ref_37) 2014; 14
Cook (ref_27) 2013; 36
ref_39
ref_38
Lara (ref_32) 2013; 15
Wang (ref_1) 2018; 119
ref_46
ref_45
ref_43
ref_40
ref_3
ref_2
ref_49
ref_48
ref_9
Koelstra (ref_15) 2012; 3
ref_5
ref_4
ref_7
ref_6
References_xml – ident: ref_22
  doi: 10.1109/CVPR.2014.222
– ident: ref_9
– ident: ref_5
– volume: 18
  start-page: 32
  year: 2001
  ident: ref_34
  article-title: Emotion Recognition in Human-Computer Interaction
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.911197
– ident: ref_16
– ident: ref_38
  doi: 10.1145/3343031.3350871
– ident: ref_39
– volume: 140
  start-page: 81
  year: 2017
  ident: ref_44
  article-title: Data driven prediction models of energy use of appliances in a low-energy house
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.01.083
– ident: ref_4
  doi: 10.3390/s16010115
– volume: 34
  start-page: 2033
  year: 2013
  ident: ref_41
  article-title: The Opportunity challenge: A benchmark database for on-body sensor-based activity recognition
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2012.12.014
– volume: 22
  start-page: 1345
  year: 2009
  ident: ref_8
  article-title: A Survey on Transfer Learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– volume: 14
  start-page: 1
  year: 2014
  ident: ref_37
  article-title: EEG-based Emotion Recognition using Deep Learning Network with Principal Component Based Covariate Shift Adaptation
  publication-title: Sci. World J.
  doi: 10.1155/2014/627892
– ident: ref_3
  doi: 10.1007/978-3-319-10590-1_53
– ident: ref_28
  doi: 10.1145/2971763.2971764
– volume: 119
  start-page: 3
  year: 2018
  ident: ref_1
  article-title: Deep Learning for Sensor-based Activity Recognition: A Survey
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2018.02.010
– ident: ref_31
– volume: 215
  start-page: 618
  year: 2015
  ident: ref_42
  article-title: Reservoir computing compensates slow response of chemosensor arrays exposed to fast varying gas concentrations in continuous monitoring
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2015.03.028
– ident: ref_10
– ident: ref_13
– ident: ref_17
– ident: ref_45
– ident: ref_20
– volume: 98
  start-page: 107049
  year: 2019
  ident: ref_25
  article-title: A Baseline Regularisation Scheme for Transfer Learning with Convolutional Neural Networks
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107049
– ident: ref_7
– ident: ref_29
  doi: 10.1109/PERCOM.2018.8444585
– volume: 8
  start-page: 1
  year: 2014
  ident: ref_51
  article-title: LifeLogging: Personal Big Data
  publication-title: Found. Trends Inf. Retr.
  doi: 10.1561/1500000033
– ident: ref_30
  doi: 10.1109/PERCOM.2018.8444572
– ident: ref_11
– volume: 36
  start-page: 537
  year: 2013
  ident: ref_27
  article-title: Transfer Learning for Activity Recognition: A Survey
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-013-0665-3
– ident: ref_35
  doi: 10.1109/BIBE.2018.00031
– ident: ref_40
– ident: ref_48
  doi: 10.1109/CVPR.2018.00958
– ident: ref_36
  doi: 10.1109/ICASSP.2013.6637858
– ident: ref_14
– volume: 12
  start-page: 162
  year: 2019
  ident: ref_47
  article-title: Exploring EEG Features in Cross-subject Emotion Recognition
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00162
– ident: ref_18
– volume: 73
  start-page: 65
  year: 2018
  ident: ref_23
  article-title: On Automated Source Selection for Transfer Learning in Convolutional Neural Networks
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.07.019
– volume: 3
  start-page: 18
  year: 2012
  ident: ref_15
  article-title: DEAP: A Database for Emotion Analysis Using Physiological Signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.15
– ident: ref_6
– ident: ref_50
– ident: ref_2
  doi: 10.3390/s18020679
– ident: ref_33
– ident: ref_46
– ident: ref_49
  doi: 10.1109/ICCV.2015.478
– volume: 33
  start-page: 917
  year: 2019
  ident: ref_12
  article-title: Deep Learning for Time Series Classification: A Review
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-019-00619-1
– ident: ref_21
  doi: 10.1109/CVPR.2014.81
– ident: ref_26
  doi: 10.1109/CVPR.2016.278
– ident: ref_19
– ident: ref_43
– ident: ref_24
  doi: 10.1109/CVPR.2019.00494
– volume: 15
  start-page: 1192
  year: 2013
  ident: ref_32
  article-title: A Survey on Human Activity Recognition using Wearable Sensors
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/SURV.2012.110112.00192
SSID ssj0023338
Score 2.5079424
Snippet The scarcity of labelled time-series data can hinder a proper training of deep learning models. This is especially relevant for the growing field of ubiquitous...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4271
SubjectTerms Classification
Datasets
deep learning
emotion recognition
Experiments
human activity recognition
Machine learning
Neurons
Sensors
time-series classification
transfer learning
Ubiquitous computing
wearable computing
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT4MwFG7MTnow_ozoNNV48EIGpS1wdM5lMZkXXbIb6S_UxMAy2P_va2FkJCZevNJ3KO8B3_eV9nsI3XPg7LFk8PWjnPlURNwXglBf5ipJRUDD1Nizw_NXPlvQlyVb7rT6snvCGnvgJnEjYAAkMDLXGj6kJFWCKmo001IQSIJ01AgwbyumWqkVgfJqfIQiEPWjiliqQOKwhz7OpL_HLPv7IneAZnqEDluGiB-bmR2jPVOcoIMd38BT9DYxZoUdzORmjVuP1A8MBBTbMx3YrnmZCk9ELfAYcErjsoCLRQUB81I77o1dP0y7U8gV5wwtps_vTzO_7Y7gK0hJ7euc5vbIlGKKxNIkQPVUlIhQGet4z3PgAYoHIoASMZXLQKogigKZGMGD1HasOkeDoizMBcKJoYqHOkzzGABdpyICZBMsZVRyUDCphx62WctUax1uO1h8ZyAhbIKzLsEeuutCV41fxm9BY5v6LsBaXLsLUPisLXz2V-E9NNwWLmvfuyojFCAZaAknHrrthuGNsb9BRGHKTRPDacxp4qG4V_DehPojxden894GwgUajF_-xx1coX1i1btbKR6iQb3emGugOLW8cU_zDy7R_QE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB1RuNADaguIFKhcxIFLROI4TnJC5WNBSPRSkLhF_gogoWS7Wf4_M15vIBLiao-UyGP7vbHHbwAOJXL2Que4-wmZx0JlMlaKi1g3pqxUItLK0dvhm7_y6k5c3-f34cCtD2mVyz3Rb9S2M3RGfswFbrYIOJKfTP_HVDWKbldDCY0vsJYi0lBKVzm5HAKuDOOvhZpQhqH9cc-JMPAiHWGQl-of8ctxduQ7uJl8g43AE9mfhWO_w4prf8DXd-qBm_Dv3Lkp82DTuBkLSqkPDGkoo5cdjE6-XM_O1VyxU0Qry7oWG9seDW466xk481UxKV_Iu2gL7iYXt2dXcaiREBuE6nlsG9HQwymTG15oVyLhM1mpUuNI9142yAaMTFSCjspNoxNtkixLdOmUTCqqW7UNq23Xuh1gpRNGpjatmgJh3VYqQ3xTeZULLTGOqSI4Wo5abYKAONWxeK4xkKABrocBjuBgMJ0uVDM-MjqloR8MSOjaN3SzhzqsmxoJIE-cbqxFHOWVUcIIZ3OrFcc1oFUEe0vH1WH19fXbXIng99CN64YuQ1TrupeFjRSFFGUExcjhox8a97RPj16BG2kXRmLy5-cf34V1TtG5Pwneg9X57MXtI4WZ619-nr4Cu47yJQ
  priority: 102
  providerName: ProQuest
Title Deep Transfer Learning for Time Series Data Based on Sensor Modality Classification
URI https://www.proquest.com/docview/2430302262
https://www.proquest.com/docview/2430647648
https://pubmed.ncbi.nlm.nih.gov/PMC7435596
https://doaj.org/article/95120ebfdd28429ca4c4ed5dba2eadba
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9tAEB1RuLSHio9WdYFoqXroxe1mvV7bhwoRIEWVglDbSLlZ-2WohGyaBAn-fWc2joUlDlx8WI8le2bX783a8wbgs0LOnpkU335SpbHUiYq1FjI2lc0LzeWw8FQ7PLlUF1P5c5bONmDdY7N14OLZ1I76SU3nt18f_j0e44L_ThknpuzfFoKIgKBK8i0EpIwaGUxk9zFBJEloaE01XTHiIV8JDPUv7cFSUO_vUc7-D5NPEGi8DW9b6shOVrHegQ1f78KbJ4KCe_D7zPs7FvCn8nPWiqdeM2SmjIo9GG2G-QU700vNRghgjjU1DtYLNJg0LpByFhpl0i9EIWrvYDo-_3N6EbdtE2KL6L2MXSUrqqWyqRWZ8TlyQJvkemg9SeGrCgmCVVxzjF1qK8ON5UnCTe614gW1snoPm3VT-w_Aci-tGrphUWXoWFfoBCFPp0UqjcLUpojgy9prpW01xam1xW2JuQU5uOwcHMGnzvRuJaTxnNGIXN8ZkPZ1GGjm12W7lErkhIJ7UzmH0CoKq6WV3qXOaIHLwugIDtaBK9fzqRQSsRr5ihIRHHWncSnR9xFd--Z-ZaNkpmQeQdYLeO-G-mfqvzdBlBuZGCZn6uNLHnMfXgtK28MW8QFsLuf3_hC5zdIM4FU2y_CYj38MYGt0fnn1axD2CQZhTv8Hxg37SA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKcaKGAQSFyiJo7jJAeEKMuypd1eaKXegl8pSChZNlsh_hS_kRnnQSMhbr3GozzGM_6-cTwzAC8lcvZMp7j6CZmGQiUyVIqLUFcmL1Qk4sJR7vDyWC5Oxaez9GwLfg-5MHSsclgT_UJtG0N75Htc4GKLgCP529WPkLpG0d_VoYVGZxaH7tdPDNnaNwcznN9XnM8_nLxfhH1XgdAguG1CW4mKUo1ManimXY4UySS5io2jSvGyQvw0MlIRflpqKh1pE2HMr3OnZFRQpye87zW4LhJEcspMn38cA7wE472uehEORnstJ4LCs3iCeb41wITPTk9jXoK3-R243fNS9q4zpLuw5ep7cOtStcL78Hnm3Ip5cKvcmvWVWc8Z0l5GmSSMdtpcy2Zqo9g-oqNlTY0X6xYFlo31jJ_5Lpx0PsmbxAM4vRLtPYTtuqndDrDcCSNjGxdVhjTCFipBPFVpkQotMW4qAng9aK00fcFy6pvxvcTAhRRcjgoO4MUouuqqdPxLaJ9UPwpQYW1_oVmfl72flkg4eeR0ZS3iNi-MEkY4m1qtOPqcVgHsDhNX9t7eln9tM4Dn4zD6Kf18UbVrLjoZKTIp8gCyyYRPXmg6Un_76it-I83DyE8--v_Dn8GNxcnyqDw6OD58DDc57Qz4Xehd2N6sL9wTpE8b_dTbLIMvV-0kfwCYTS8g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9VAEB7qKYg-iFdMrbqKgi_hJJvNJnkQ8Xh6aK09FLXQt3RvqUJJjieniH_NX-dMbjYgvvV1d8hldma_b_YyA_BKImdPdIyzn5CxL1QkfaW48HVh0kwFIswc3R0-Wsr9E_HxND7dgt_9XRg6VtnPic1EbStDa-RTLnCyRcCRfFp0xyKO54t3qx8-VZCinda-nEZrIofu108M3-q3B3Mc69ecL_a-ftj3uwoDvkGg2_i2EAVdOzKx4Yl2KdIlE6UqNI6yxssCsdTIQAX4m7EpdKBNgPG_Tp2SQUZVn_C5N2A7oahoAtuzveXx5yHcizD6a3MZRVEWTGtOdIUn4QgBm0IBI3Y7Ppt5BewWd-FOx1LZ-9as7sGWK-_D7Su5Cx_Al7lzK9ZAXeHWrMvTes6QBDO6V8Jo3c3VbK42is0QKy2rSmwsaxQ4qmzD_1lTk5NOKzUG8hBOrkV_j2BSVqV7DCx1wsjQhlmRIKmwmYoQXVWcxUJLjKIyD970WstNl76cqmhc5BjGkILzQcEevBxEV23Ojn8JzUj1gwCl2W4aqvV53nltjvSTB04X1iKK88woYYSzsdWKowdq5cFuP3B55_t1_tdSPXgxdKPX0laMKl112cpIkUiRepCMBnz0QeOe8vu3Jv83kj6MA-XO_1_-HG6ig-SfDpaHT-AWp2WCZkl6Fyab9aV7ilxqo591Rsvg7Lr95A-GdTSy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Transfer+Learning+for+Time+Series+Data+Based+on+Sensor+Modality+Classification&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Fr%C3%A9d%C3%A9ric&rft.au=Shirahama%2C+Kimiaki&rft.au=Nisar%2C+Muhammad+Adeel&rft.au=Huang%2C+Xinyu&rft.date=2020-07-31&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=20&rft.issue=15&rft.spage=4271&rft_id=info:doi/10.3390%2Fs20154271&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s20154271
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon